HYDRAULICMODEL STUDIES OF

 SGOGGINS DAM FISHIRAP AERATIONE: AND SUPRLY STRUCTURE
G. L. Beichley

Engineering and Research Center
Bureau of Reclamation

July 1972

TECHNICAL REPORT STANDARD TITLE PAGE

17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS--/ hydraulic structures/hydraulic design/*aeration/*air entrainment/ hydraulic models/ "water measurement/ air bubbles/ baffle piers/ deflectors/*energy dissipation/ valves/ laboratory tests/ test results/ flow measurement/stilling basins/ oxygenation
b. IDENTIFIERS--/ Tualatin Project, Oreg/ Scoggins Dam, Oreg/ Ute Dam Outlet Works; N Mex/ China Meadows Dam, Wyo
c. COSATI Fleld/Group 13G
18. DISTRIBUTION STATEMENT

Available from the National Technical Information Service, Operations Division. Springfield, Virginia ?2151.

$|$| 19. SECURITYCLASS.21. | NO. OF PAGES |
| :---: | :---: |
| (THIS REPORT) | 8 |
| UNCLASSIF!ED | 8 |
| 2G. SECURITY CLASS | |
| ITHIS PAGE) | |
| UNCLASSIFIED | |

HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE

by
G. L. Beichley

July 1972

[^0]| UNITED STATES DEPARTMENT OF THE INTERIOR $\quad * \quad$BUREAU OF RECLAMATION
 Rogers C. B. Morton
 Secretary | Ellis L. Armstrang
 Commissioner |
| :--- | :--- |

ACKNOWLEDGMENT

The studies described herein were performed by the author under the supervision of D. L. King, Head, Applied Hydraulics Section. During the course of the studies close liaison was maintained with the Hydraulic Structures Branch, Division of Design.

CONTENTS

Page

Purpose . 1
Conclusions and Recommendations . 1
Applications . 1
Introduction . 1
The Model . 2
The Investigation . 3
©The Requirements \ddagger. 3
Performance at Minimum Requirement 3
Performance at Maximum Requirement 5

LIST OF FIGURES
Figure
1 Location Map . 1
2 Fishtrap and supply structure 2
3 The 1:3.33 scale model . 3
4 Aeration and supply structure discharging 18 cfs
(0.51 cms) from maximum reservoir eleva-
tion 305.70 feet (93.18 m)
5 Aeration structure discharging 18 cfs (0.51 cms) from minimum reservoir elevation 263.68 feet (80.37 m) 5
6 Aeration and supply structure discharging 55 cfs (4.56 cms) from reservoir elevation 305.70 feet (93.18 m)6

7 Aeration structure discharging 55 cfs (1.56 cms) from
reservoir elevation 263.68 feet (80.37 m)
7
8. Aeration and supply structure discharging 78 cfs $(2.21 \mathrm{cms})$ from reservoir elevation 305.70 feet (93.18 m) 7

9
Aeration structure discharging 78 cfs (2.21 cms) from reservoir elevation 263.68 feet (80.37 m) 8
Aeration and supply structure discharging 110 cfs $(3.12 \mathrm{cms})$ at full open valve 8

PURPOSE

The purpose of the study was to aid in the development of the hydraulic design of the aerator and supply structure for the fishtrap.

CONCLUSIONS AND RECOMMENDATIONS

1. The aerator, which includes the horizontally mounted fixed-cone valve discharging into a containment structure followed by a covered stilling basin, satisfactorily performed its function of mixing the water with a very large amount of air.
2. The containment tructure and stiling basin, buth part of the aerator sid, cture, performed very well as an energy dissipator and derator, One baffle block on the floor of the basin was found to be adequate.
3. The basin should be kept free of heavy debris that might circulate in the turbulence and cause abrasion of the concrete.
4. The hanging baffle in the supply structure was effective in smoothing the water surface in the upstream compartment of the constant head-orifice-flow-measurement structure and in keeping the water surface free of foam on the downstream side of the baffle.
5. It was recommended that the weir gages in the compartments supplying the pipes to the fishtrap and fishway be placed on the upstream wall for better view of the gage and to be in a slightly more stable water surface area.
6. Air vents were needed immediately downstream from the gates in the supply structure to provide stable, steady flow in the pipes to the fishtrap. The air vents also prevent accidental overflow of the supply structure if orifice gates are adjusted improperly. For this reason, the air vents were increased to 18 inches (in.) (45.72 centimeters (cm)) in diameter after completion of the model study.

APPLICATIONS

The principle, whereby discharge is at a moderate head from a fixed-cone valve into a containment structure following by a stilling basin, proved to be a good one in this installation, both for the aeration process and for energy dissipation. It can probably be adapted for use at other structures without the need for an additional model study. The model in this study was used on a

1:1 scale basis to verify a proposed design of an outlet for the China Meadows Dam.

INTRODUCTION

Scoggins Dam, situated on Scoggins Creek about 7 miles (11.27 kilometers (km)) southwest of Forest Grove, Oregon, Figure 1, is part of the Tualatin Project. It is an earth embankment approximately 2,700 feet (ft) (822.96 meters (m)) long with a maximum height of approximately $116 \mathrm{ft}(35.36 \mathrm{~m})$ above the bed of Scoggins Creek. Maximum reservoir water surface elevation $305.7 \mathrm{ft}(93.18 \mathrm{~m})$ is 92.9 ft (28.22 m) above the maximum tailwater.

Figure 1. Location map.

The fishtrap süpply structure, Figure 2, takes water from deep in the reservoir and supplies measured quantities to two different locations in the holding tank and to three locations in the fish ladder leading to the tank. The $16-\mathrm{in}$. $(40.64-\mathrm{cm})$ supply line on the left to be used most frequently is designed for 10 cubic feet per second (cfs) (0.28 cubic meter per second (cu $\mathrm{m} / \mathrm{sec}$); the next is an $18-\mathrm{in}$. ($45.72-\mathrm{cm}$) supply line designed for $15 \mathrm{cfs}(0.43 \mathrm{cu} \mathrm{m} / \mathrm{sec})$; the next is a $24-\mathrm{in}$. $(60.96-\mathrm{cm})$ supply line designed for $30 \mathrm{cfs}(0.85 \mathrm{cu}$ $\mathrm{m} / \mathrm{sec}$); and the one on the right is another $24-\mathrm{in}$. $(60.96-\mathrm{cm})$ line designed for $23 \mathrm{cfs}(0.65 \mathrm{cu} \mathrm{m} / \mathrm{sec})$.

The valve discharging into the aerator structure is a $20-\mathrm{in}$. ($50.80-\mathrm{cm}$) horizontally mounted fixed-cone valve. This valve was chosen because it sprays the jet in a 360° arc, thus exposing a large flow surface to the atmosphere for maximum aeration. However, to contain the cone-shaped jet in a relatively small space, a containment structure is needed. Much of the advantage of spraying into the atmosphere is lost by use of the containment structure but a very large

SECTION OM \mathbb{Z}

Figure 2. Fishtrap and supply structure.
amount of air is entrained in the flow in the containment structure and stilling basin that follows. The valve, containment structure, and stilling basin arrangement is similar to that provided for the outlet works at Ute Dam ${ }^{1}$ which is used only as an energy dissipator. From the stilling basin the flow discharges over the end sill into the constant-head-orifice flow measurement structure. In the Scoggins structure the flow is regulated and measured through four separate compartments from which. it is discharged into four pipelines to different areas of the fishtrap as required.

THE MODEL
A $6-\mathrm{in}$. ($15.24-\mathrm{cm}$) fixed-cone valve was used to simulate a $20-\mathrm{in}$. $(50.8 \cdot \mathrm{~cm})$ prototype valve, thereby fixing the model scale at $1: 3.33$. Included in the model, Figure 3, in addition to the valve was the containment structure and stilling basin, the constant-head-orifice flow measurement structure, and $24-\mathrm{in}$. ($60.96-\mathrm{cm}$) lengths of the pipes leading away from each of the four compartments in the flow measurement structure to the fishtrap.

[^1]

Figure 3. The 1:3.33 scale model. Photo P417-D-71883

A piezometer tap was installed on each side of the pipe one valve diameter upstream of the valve. The two piezometers at centerline elevation were connected together and used with a U-tube mercury manometer to adjust the valve opening for the required head and discharge combination.

THE INVESTIGATION

The Requirement

The minimum requirement of the fishtrap aeration and supply structure was to discharge a flow of $10 \mathrm{cfs}(0.28$ $\mathrm{cu} \mathrm{m} / \mathrm{sec}$) through the left pipe plus $4 \mathrm{cfs}\{0.11 \mathrm{cu}$ $\mathrm{m} / \mathrm{sec}$) through each of the two center pipes for a total of 18 cf 5 ($0.51 \mathrm{cu} \mathrm{m} / \mathrm{sec}$) at a reservoir elevation ranging between $263.68 \mathrm{ft}(80.37 \mathrm{~m})$ and 303.68 ft $(92.56 \mathrm{~m})$. The maximum requirement was to be able to deliver a flow of $10 \mathrm{cfs}(0.28 \mathrm{cu} \mathrm{m} / \mathrm{sec}$) through the left pipe, $15 \mathrm{cfs}(0.43 \mathrm{cu} \mathrm{m} / \mathrm{sec})$ through the next one and $30 \mathrm{cfs}(0.85 \mathrm{cu} \mathrm{m} / \mathrm{sec})$ through the next with an additional $23 \mathrm{cfs}(0.65 \mathrm{cu} \mathrm{m} / \mathrm{sec})$ through the right pipe. This is a total of 55 or $78 \mathrm{cfs}(1.56$ or 2.21 cu $\mathrm{m} / \mathrm{sec}$) depending upon whether the right-hand pipe discharging an additional $23 \mathrm{cfs}(0.65 \mathrm{cu} \mathrm{m} / \mathrm{sec})$ is in operation. This flow can come from any reservoir elevation at or above that specified for the minimum requirement. The maximum total head at the valve was computed to be $75.13,70.10$, and $63.18 \mathrm{ft}(22.90$, 21.37, and 19.26 m) for the three discharges of 18,55 , and $78 \mathrm{cfs}(0.51,1.56$, and $2.21 \mathrm{cu} \mathrm{m} / \mathrm{sec}$), respectively.

The minimum water surface elevation in the upstream compartment of the flow measurement structure so discharge the maximum flow requirement was computed to be at elevation $209.5 \mathrm{ft}(63.86 \mathrm{~m})$. This is only $2 \mathrm{ft}(0.61 \mathrm{~m})$ below the centerline elevation of the fixed-cone valve but is required to provide the minimum head differential between the upstream and downstream compartments in the flow measurement structure plus enough head to overcome the losses in the most critical of the four pipelines to the fishtrap. The $24-\mathrm{in}$. $(60.96 \mathrm{~cm})$ line discharging $30 \mathrm{cfs}(0.85 \mathrm{cu}$ $\mathrm{m} / \mathrm{sec}$) was the critical line that governed the minimum head requirement.

Performance at Minimum Requirement

At 18 cfs ($0.51 \mathrm{cu} \mathrm{m} / \mathrm{sec}$) in the aerator and supply structure, either from maximum reservoir elevation $305.70 \mathrm{ft}(93.18 \mathrm{~m})$ or from minimum elevation $263.68 \mathrm{ft}(80.37 \mathrm{~m})$, Figures 4 and 5 , respectively, the air entrainment in the stilling basin portion of the aerator structure appeared to be sufficient to cause good aeration of the flows as judged by the disintegration of the jet in the containment structure and the air entrainment observed in the stilling basin. At maximum head, Figure 4, a considerable amount of water from the roof and walls of the containment structure portion of the aerator deflected upstream over the valve; however, other than appearance, this was not a hydraulic performance problem and, actually, was probably a benefit to the aeration process.

a. Flow fromi the fixed-cone valve into the containmicnt structure. Photo P417.D-71892

b. Ftow from the containment structure into the stilting basin. Photo Pir17-D-71893

c. Flow from the stilling basin into the constant-head-orifice-flowmeasurement structure. Photo P417-D-71894

d. Flow in constant-head-orifice structure to fish trap pipetines. Photo P417-D. 71895

e. Flow in pipes to fish trap. Photo P417-D-71896

Figure 4. Aeration and supply structure discharging $18 \mathrm{cfs}(0.51 \mathrm{cms})$ from maximum reservair elevation 305.70 feet (93.18 m).

Figure 5. Aeration structure discharging $18 \mathrm{cfs}(0.51 \mathrm{cms})$ from minimum reservoir elevation 263.68 feet (80.37 m). Photos P417-D-71890 and P417-D. 71891

Gravel placed in the stilling basin switled around to some extent and did not wash out of the basin. Therefore, it was recommended that the basin be kept free of debris.

Flow on the downstream side of the hanging baffle in the flow measurement structure, Figure $4 c$, provided a very quiet water surface for measurement by the wall-mounted weir gage.

Performance at Maximum Requirement

At design capacity of $78 \mathrm{cfs}(2.21 \mathrm{cu} \mathrm{m} / \mathrm{sec})$ including 23 cfs ($0.65 \mathrm{cu} \mathrm{m} / \mathrm{sec}$) from the right compartment of the flow measurement structure discharging from maximum or minimum reservoir elevation and at 55 cfs $(1.56 \mathrm{cu} \mathrm{m} / \mathrm{sec}$) without the $23 \mathrm{cfs}(0.65 \mathrm{cu} \mathrm{m} / \mathrm{sec})$, Figures 6 through 9 , the aeration process appeared to
be excellent as determined by observing the very large amount of entrained air in the flow.

At the higher heads a considerable amount of flow deflected upstream from the containment structure over the valve and the valve was partially submerged; but no vibration of the valve could be detected. Because the prototype is to be only 3.33 times larger than the model it was believed that vibration would definitely not be a problem in the prototype.

The stitling basin portion of the ee:ctor appeared to perform well as an energy dissipator as well as for the aeration process. Two baffle blocks were originally anticipated for the stilling basin; however, only one was installed and this was found to be sufficient.

The hanging baffle in the flow measu:ement structure performed very satisfactorily in keeping the foam created by the air-entrained water on the upstream side of the baffle, and in providing a smooth water surface at the weir staff gage mounted on the left wall downstream from the baffle. The water surface in each of the downstream compartmenter of flow measurement structure that supplied water to each of the four pipelines to the fishtrap was less smooth. This water surface elevation could not be measured as accurately as in the upstream compartment but it was sufficiently accurate for the prototype requirements.

In operation at design capacity the upstream gates to the four downstream compartments were set fully open while the downstream gates to the pipelines were regulated to provide the proper differential as determined from the flow measurement handbook. ${ }^{2}$ It was found important that air vents be installed in the crown oi the pipes immediately downstream of the gates, Figures 2 and 8 , to provide a stable flow condition in the pipes to the fishtrap; otherwise, the pipes carrying near full capacity alternately flowed full and part full.

The positions of the gates discharging into the pipes were not calibrated in the model since this could and should be done more accurately in the prototype. It was suggested that the weir staff gages mounted on the side walls of the compartments, Figure 2, be mounted on the upstream wall to provide a better view of the gage from above and to be in a slightly more stable water surface area.

To determine the maximum capacity of the aerator supply structure the fixed-cone valve was fully opened

[^2]

Figure 6. Aeration and supply structure discharging $55 \mathrm{cfs}(4.56 \mathrm{cms})$ from reservoir elevation 305.70 feet (93.18 m). Photos from left to right P417-D-71897,-71900, -71898, -71901, -71899, and -71902
and the flow increased until the foamy water surface was roughly a foot from the ceiling of the stilling basin over the end sill. From this test it was determined that the structure could probably discharge up to approximately 110 cfs ($3.12 \mathrm{cu} \mathrm{m} / \mathrm{sec}$), Figure 10 . It was noted that the flow through the basin created a strong breeze blowing foam from under the cover out
the sides between the stilling basin and hanging baffle. This was an indication of the very large amount of air that was being drawn into the aerator around the valve at the upstream end; and, therefore, it was believed that the aerator was doing a gocd job in performing its function.

Figure 7. Aeration structure discharging $0 . .15(1.56 \mathrm{cms})$ fram reservoir elevation 263.68 feet 180.37 m). Photos P417-D. 71903 and P417.D.71904

Figure 8. Aeration and supply structure discharging $78 \mathrm{cfs}(2.21 \mathrm{cms})$ from reservoir elevaticn 305.70 feet (93.18 m). Photos P417-0-71886, -71887 , and .71888

Figure 9. Aeration structure discharging $78 \mathrm{cfs}(2.21 \mathrm{cms})$ from reservoir elevation 263.58 feet $(80.37$ m). Photos P417-D-71884 and P417-D-71885

Figure 10. Aeration and supply structure discharging 110 cfs $\{3.12$ cms $\}$ at full open valve- $1: 3.33$ scale model. Photo P417-D-71889
$7-1750$ (3-71)
Bureou of Resiomotion

CONVERSION FACTORS-BRITISH TO METRIC UNITS OF MEASUREMENT

The following conversion factors adopted by the Bureau of Reclamation are those published by the American Society for Testing and Materials (ASTM Metric Practice Guide, E 380-68) except that additional factors (*) commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Practice Guide.

Tite metric units and comersion factors adopted by the ASTM are based on the "International System of Units": (designated Sl for Systeme International d'Unites), fixed by the International Commitree for Weights and Measures; this pytern is also known as the Giorgi or MKSA (meter-kifogrem \{mest-second-ampere) system. This system has been adopted by the International Organization for Standardizetion in ISO Recommendation R31.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg , gives it an acceleration of $9.80665 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$, the standard acceleration of free fall toward the earth's center for sea tevel at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as that force which, when applied to a body having a mass of 1 kg , gives it an acceleration of $1 \mathrm{~m} / \mathrm{sec} / \mathrm{sec}$. These units must be distinguished from the (inconstant) local weight of a body having a mass of 1 kg , that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mess of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term "pound-force," the term "kifogram" (or derived mass unit) hes been used in this guide instead of "kilogram-force" in expressing the conversion factors for forces. The newton unit of force will find increasing use, and is essential in Sl units.

Where approximate or nominal English units are used to express a value or range of values, the converted metrit units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I
OUANTITIES AND UNITS OF SPACE

rable II
OUANTITIES AND UNITS OF MECHANICS

JDYusisgy

L5VYLSEV

 denus!

REC-ERC-72-27

Beichley, GL
hYdraulic model studies of scoggins dam fishtrap aeration and SUPPLY STRRUCTURE
Bur of Reciam Rep REC-ERC-72-27, Div Gen Res, July 1972. Bureau of Reclamation, Denver, $8 \mathrm{p}, 10$ fig, 2 ref

DESCRIPTORS-/ hydrewitic structures/ hydraulic design/ *aeration/ *air entrainment/ hydraulic models/ 'water measurement/ air bubbles/ baffle piers/ deflectors/ *energy dissipation/ valves/ laboratory tests/test results/flow measurement/stilling basins/oxygenation identifiers-/ Tuaatin Project, Oreg/Scoggins Dam, Oreg/ Ute Dam Outlet Works, N Mex/ China Meadows Dam, Wyo

REC-ERC-72-27
Beichley, GL
hYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE
Bur of Reclam Rep REC-ERC-72-27, Div Gen Res, July 1972. Bureau of Reclamation, Denver, 8 p. 10 fig. 2 ref
DESCRIPTORS-/ hydraulic structures/ hydraulic design/ *aeration/ *air entrainment/ hydraulic models/ *water measurement/ air bubbles/ baffle piers/deflectors/ *energy dissipation/ valves/ laboratory tests/ test results/flow measurement/stilling basins/ oxygenation IDENTIFIERS-/ Tualatin Project, Oreg/ Scoggins Dam, Oreg/ Ute Dam Outlet Works, N Mex/ China Meadows Dam, Wyo

REC-ERC-72-27

Beichley, G L
hydraulic model studies of scongins dam fishtrap aeration and SUPPLY STRUCTURE
Bur of Reclam Rep REC-ERC-72.27, Div Gen Res, July 1972. Bureau of Reclamation, Denver. $8 \mathrm{p}, 10$ fig, 2 ref

DESCRIPTORS-/ hydraulic structures/ hydraulic design/ *aeration/ *air entrainment/ hydraulic models/ "water measurement/ air bubbles/ baffie piers/deflectors/ "energy hydraulic models/ water measurement/ air bubbles/ batie piers/ deflectors/ energy
dissipation/ valves/ laboratory tests/ test results/flow measurement/stilling basins/ oxygenation IDENTIFIERS-/Tualatin Project, Oreg/Scoggins Dam. Oreg/Ute Dam Outlet Wcrks, N iaiex/ China Meadows Dam, Wyo

REC-ERC-72-27

Beichley, GL
HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE
Bur of Redam Rep REC-ERC.72-27, Div Gen Res, July 1972. Bureau of Reclamation, Denver, $8 \mathrm{p}, 10 \mathrm{fig}, 2$ ref
DESCRIPTORS-/ hydraulic structures/ hydraulic design/ *aeration/ "air entrainment/ hydraulic models/ *water measurement/ air bubbies/ baffle piers/ deflectors/ *energy dissipation/ valves/ laboratory tests/ test results/ flow measurement/stilling basins/ oxygenation IDENTIFIEAS-/ Tualatin Project, Oreg/ Scoggins Dam, Oreg/ Ute Dam Outlet Works, N Mex/f China Meadows Dam, Wyo

[^0]: Hydraulics Branch
 Division of General Research
 Engineering and Research Center
 Denver, Colorado

[^1]: ${ }^{1}$ REC-OCE-70-11, 'Hydraulic Model Studies of an Energy Dissipator for a Fixed-Cone Valve at the Ute Dam Outlet Works," G. L. Beichley, U.S. Bureau of Reclamation, March 1970.

[^2]: ${ }^{2}$ U.S. Department of the Interior, Bureau of Reclamation "Water Measurement Manual."

