REC-ERC-72-27

HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE

THE REAL SPICE

NO NOT PERSON

G. L. Beichley Engineering and Research Center Bureau of Reclamation

July 1972

ः स

REC-ERC-72-27 4. TITLE AND SUBTITLE Hydraulic Model Studies of Scoggins Da Supply Structure 7. AUTHOR(S) G. L. Beichley 9. PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	L	d 6	- REPORT DATE Jul 72 - PERFORMING ORGANIZA - PERFORMING ORGANIZA REPORT NO. REC-ERC-72-27 - WORK UNIT NO.	1. A
Hydraulic Model Studies of Scoggins Da Supply Structure 7. AUTHOR(S) G. L. Beichley 9. PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	L	d 6	ULI 72 PERFORMING ORGANIZA PERFORMING ORGANIZA REPORT NO. REC-ERC-72-27	ų ™
Supply Structure 7. AUTHOR(S) G. L. Beichley 9. PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	L	B 10	PERFORMING ORGANIZA PERFORMING ORGANIZA REPORT NO. REC-ERC-72-27	ų ™
7. AUTHOR(S) G. L. Beichley 9. PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	NO ADDRESS	B 	PERFORMING ORGANIZA REPORT NO. REC-ERC-72-27	ų №
G. L. Beichley 9. PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	NO ADDRESS	ا ۱۵	REPORT NO.	TION
G. L. Beichley 9. PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	NO ADDRESS	ا ۱۵	REPORT NO.	TION
9. PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	NO ADDRESS	10	REC-ERC-72-27	
PERFORMING ORGANIZATION NAME A Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 z. SPONSORING AGENCY NAME AND ADD	NO ADDRESS	10		
Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	NO ADDRESS		WORK UNIT NO.	
Bureau of Reclamation Denver, Colorado 80225 2. SPONSORING AGENCY NAME AND ADD	2			
Denver, Colorado 80225			. CONTRACT OR GRANT N	0.
		13	. TYPE OF REPORT AND	PERIOD
	RESS	2	COVERED	:
	<i>6</i>	10	e Alexandra de la companya de la com La companya de la comp	
Same	<i>i</i> .	14	. SPONSORING AGENCY C	DDE :
5. SUPPLEMENTARY NOTES			· · · · · · · · · · · · · · · · · · ·	
	aanse Konstante Konstante			
			and the second	
measured and regulated in the constant-				
			9	
			*	
the second s			*	
and a straight of the straight			€ 	· · · ·
				· · · · ·

ġ,

A CHARGE

1.1

2 2

.

1

1

Ţ

Ş

REC-ERC-72-27

HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE

by G. L. Beichley

July 1972

Hydraulics Branch Division of General Research Engineering and Research Center Denver, Colorado

UNITED STATES DEPARTMENT OF THE INTERIOR Rogers C. B. Morton Secretary

BUREAU OF RECLAMATION Ellis L. Armstrong Commissioner

ACKNOWLEDGMENT

The studies described herein were performed by the author under the supervision of D. L. King, Head, Applied Hydraulics Section. During the course of the studies close liaison was maintained with the Hydraulic Structures Branch, Division of Design.

ŷ

CONTENTS

		•																					Page
Purpose	•						•															2	1
Conclusions and Re																				• .			1
Applications																							1
Introduction .			•	÷.		•	•			•			•	•	٠				- .	•			.1
The Model																				1	•		2
The Investigation	•		-	•	٠						•				•		•	•			•	•	3
• The Requiremen	ts											•		•				•					3
Performance at N	/lin	imu	m l	Rec																	•		3
Performance at N	lax	imu	m	Re	qui	геп	теп	t	•-		•	•	•	•	٠	•	•						5

LIST OF FIGURES

Figure		с Т
1	Location Map	1
2	Fishtrap and supply structure	2
3	The 1:3.33 scale model	3
4	Aeration and supply structure discharging 18 cfs (0.51 cms) from maximum reservoir eleva- tion 305.70 feet (93.18 m)	4
5	Aeration structure discharging 18 cfs (0.51 cms) from minimum reservoir elevation 263.68 feet (80.37 m)	5
6 <i>k</i>	Aeration and supply structure discharging 55 cfs (4.56 cms) from reservoir elevation 305.70 feet (93.18 m)	6
7	Aeration structure discharging 55 cfs (1.56 cms) from	7
8 ,	Aeration and supply structure discharging 78 cfs (2.21 cms) from reservoir elevation 305.70 feet (93.18 m)	7
9	Aeration structure discharging 78 cfs (2.21 cms) from reservoir elevation 263.68 feet (80.37 m)	8
10	Aeration and supply structure discharging 110 cfs (3.12 cms) at full open value	[:] R

PURPOSE

The purpose of the study was to aid in the development of the hydraulic design of the aerator and supply structure for the fishtrap.

CONCLUSIONS AND RECOMMENDATIONS

1. The aerator, which includes the horizontally mounted fixed-cone valve discharging into a containment structure followed by a covered stilling basin, satisfactorily performed its function of mixing the water with a very large amount of air.

2. The containment structure and stilling basin, both part of the aerator still cture, performed very well as an energy dissipator and aerator. One baffle block on the floor of the basin was found to be adequate.

3. The basin should be kept free of heavy debris that might circulate in the turbulence and cause abrasion of the concrete.

4. The hanging baffle in the supply structure was effective in smoothing the water surface in the upstream compartment of the constant head-orifice-flow-measurement structure and in keeping the water surface free of foam on the downstream side of the baffle.

5. It was recommended that the weir gages in the compartments supplying the pipes to the fishtrap and fishway be placed on the upstream wall for better view of the gage and to be in a slightly more stable water surface area.

6. Air vents were needed immediately downstream from the gates in the supply structure to provide stable, steady flow in the pipes to the fishtrap. The air vents also prevent accidental overflow of the supply structure if orifice gates are adjusted improperly. For this reason, the air vents were increased to 18 inches (in.) (45.72 centimeters (cm)) in diameter after completion of the model study.

APPLICATIONS

The principle, whereby discharge is at a moderate head from a fixed-cone valve into a containment structure following by a stilling basin, proved to be a good one in this installation, both for the aeration process and for energy dissipation. It can probably be adapted for use at other structures without the need for an additional model study. The model in this study was used on a 1:1 scale basis to verify a proposed design of an outlet for the China Meadows Dam.

INTRODUCTION

Scoggins Dam, situated on Scoggins Creek about 7 miles (11.27 kilometers (km)) southwest of Forest Grove, Oregon, Figure 1, is part of the Tualatin Project. It is an earth embankment approximately 2,700 feet (ft) (822.96 meters (m)) long with a maximum height of approximately 116 ft (35.36 m) above the bed of Scoggins Creek. Maximum reservoir water surface elevation 305.7 ft (93.18 m) is 92.9 ft (28.22 m) above the maximum tailwater.

Figure 1. Location map.

The fishtrap supply structure, Figure 2, takes water from deep in the reservoir and supplies measured quantities to two different locations in the holding tank and to three locations in the fish ladder leading to the tank. The 16-in. (40.64-cm) supply line on the left to be used most frequently is designed for 10 cubic feet per second (cfs) (0.28 cubic meter per second (cu m/sec); the next is an 18-in. (45.72-cm) supply line designed for 15 cfs (0.43 cu m/sec); the next is a 24-in, (60.96-cm) supply line designed for 30 cfs (0.85 cu m/sec); and the one on the right is another 24-in. (60.96-cm) line designed for 23 cfs (0.65 cu m/sec).

The valve discharging into the aerator structure is a 20-in. (50.80-cm) horizontally mounted fixed-cone valve. This valve was chosen because it sprays the jet in a 360° arc, thus exposing a large flow surface to the atmosphere for maximum aeration. However, to contain the cone-shaped jet in a relatively small space, a containment structure is needed. Much of the advantage of spraying into the atmosphere is lost by use of the containment structure but a very large

SECTION ON Q

Figure 2. Fishtrap and supply structure.

amount of air is entrained in the flow in the containment structure and stilling basin that follows.

The valve, containment structure, and stilling basin arrangement is similar to that provided for the outlet works at Ute Dam¹ which is used only as an energy dissipator. From the stilling basin the flow discharges over the end sill into the constant-head-orifice flow measurement structure. In the Scoggins structure the flow is regulated and measured through four separate compartments from which, it is discharged into four pipelines to different areas of the fishtrap as required.

THE MODEL

A 6-in. (15.24-cm) fixed-cone valve was used to simulate a 20-in. (50.8-cm) prototype valve, thereby fixing the model scale at 1:3.33. Included in the model, Figure 3, in addition to the valve was the containment structure and stilling basin, the constant-head-orifice flow measurement structure, and 24-in. (60.96-cm) lengths of the pipes leading away from each of the four compartments in the flow measurement structure to the fishtrap.

Q.

¹ REC-OCE-70-11, "Hydraulic Model Studies of an Energy Dissipator for a Fixed-Cone Valve at the Ute Dam Outlet Works," G. L. Beichley, U.S. Bureau of Reclamation, March 1970.

Figure 3. The 1:3.33 scale model, Photo P417-D-71883

A piezometer tap was installed on each side of the pipe one valve diameter upstream of the valve. The two piezometers at centerline elevation were connected together and used with a U-tube mercury manometer to adjust the valve opening for the required head and discharge combination.

THE INVESTIGATION

The Requirement

The minimum requirement of the fishtrap aeration and supply structure was to discharge a flow of 10 cfs (0.28 cu m/sec) through the left pipe plus 4 cfs (0.11 cu m/sec) through each of the two center pipes for a total of 18 cfs (0.51 cu m/sec) at a reservoir elevation ranging between 263.68 ft (80.37 m) and 303.68 ft (92.56 m). The maximum requirement was to be able to deliver a flow of 10 cfs (0.28 cu m/sec) through the left pipe, 15 cfs (0.43 cu m/sec) through the next one and 30 cfs (0.85 cu m/sec) through the next with an additional 23 cfs (0.65 cu m/sec) through the right pipe. This is a total of 55 or 78 cfs (1.56 or 2.21 cu m/sec) depending upon whether the right-hand pipe discharging an additional 23 cfs (0.65 cu m/sec) is in operation. This flow can come from any reservoir elevation at or above that specified for the minimum requirement. The maximum total head at the valve was computed to be 75.13, 70.10, and 63.18 ft (22.90, 21.37, and 19.26 m) for the three discharges of 18, 55, and 78 cfs (0.51, 1.56, and 2.21 cu m/sec), respectively.

The minimum water surface elevation in the upstream compartment of the flow measurement structure (o discharge the maximum flow requirement was computed to be at elevation 209.5 ft (63,86 m). This is only 2 ft (0.61 m) below the centerline elevation of the fixed-cone valve but is required to provide the minimum head differential between the upstream and downstream compartments in the flow measurement structure plus enough head to overcome the losses in the most critical of the four pipelines to the fishtrap. The 24-in. (60.96 cm) line discharging 30 cfs (0.85 cu m/sec) was the critical line that governed the minimum head requirement.

Performance at Minimum Requirement

At 18 cfs (0.51 cu m/sec) in the aerator and supply structure, either from maximum reservoir elevation 305.70 ft (93.18 m) or from minimum elevation 263.68 ft (80.37 m), Figures 4 and 5, respectively, the air entrainment in the stilling basin portion of the aerator structure appeared to be sufficient to cause good aeration of the flows as judged by the disintegration of the jet in the containment structure and the air entrainment observed in the stilling basin. At maximum head, Figure 4, a considerable amount of water from the roof and walls of the containment structure portion of the aerator deflected upstream over the valve; however, other than appearance, this was not a hydraulic performance problem and, actually, was probably a benefit to the aeration process.

a. Flow from? the fixed-cone valve into the containment structure, Photo P417-D-71892

b. Flow from the containment structure into the stilling basin. Photo P&17 D-71893

ŵ.

a.

c. Flow from the stilling basin into the constant-head-orifice-flowmeasurement structure. Photo P417-D-71894

d. Flow in constant-head-orifice structure to fish trap pipelines. Photo P417-D-71895

ĥ

e. Flow in pipes to fish trap. Photo P417-D-71896

Figure 4. Aeration and supply structure discharging 18 cfs (0.51 cms) from maximum reservoir elevation 305.70 feet (93.18 m).

Figure 5. Aeration structure discharging 18 cfs (0.51 cms) from minimum reservoir elevation 263.68 feet (80.37 m). Photos P417-D-71890 and P417-D-71891

Gravel placed in the stilling basin swirled around to some extent and did not wash out of the basin. Therefore, it was recommended that the basin be kept free of debris.

Flow on the downstream side of the hanging baffle in the flow measurement structure; Figure 4c, provided a very quiet water surface for measurement by the wall-mounted weir gage.

Performance at Maximum Requirement

At design capacity of 78 cfs (2.21 cu m/sec) including 23 cfs (0.65 cu m/sec) from the right compartment of the flow measurement structure discharging from maximum or minimum reservoir elevation and at 55 cfs (1.56 cu m/sec) without the 23 cfs (0.65 cu m/sec), Figures 6 through 9, the aeration process appeared to

be excellent as determined by observing the very large amount of entrained air in the flow.

At the higher heads a considerable amount of flow deflected upstream from the containment structure over the valve and the valve was partially submerged; but no vibration of the valve could be detected. Because the prototype is to be only 3.33 times larger than the model it was believed that vibration would definitely not be a problem in the prototype.

The stilling basin portion of the aerator appeared to perform well as an energy dissipator as well as for the aeration process. Two baffle blocks were originally anticipated for the stilling basin; however, only one was installed and this was found to be sufficient.

The hanging baffle in the flow measurement structure performed very satisfactorily in keeping the foam created by the air-entrained water on the upstream side of the baffle, and in providing a smooth water surface at the weir staff gage mounted on the left wall downstream from the baffle. The water surface in each of the downstream compartmenter of flow measurement structure that supplied water to each of the four pipelines to the fishtrap was less smooth. This water surface elevation could not be measured as accurately as in the upstream compartment but it was sufficiently accurate for the prototype requirements.

< <u>-</u> -

In operation at design capacity the upstream gates to the four downstream compartments were set fully open while the downstream gates to the pipelines were regulated to provide the proper differential as determined from the flow measurement handbook.² It was found important that air vents be installed in the crown of the pipes immediately downstream of the gates, Figures 2 and 8, to provide a stable flow condition in the pipes to the fishtrap; otherwise, the pipes carrying near full capacity alternately flowed full and part full.

The positions of the gates discharging into the pipes were not calibrated in the model since this could and should be done more accurately in the prototype. It was suggested that the weir staff gages mounted on the side walls of the compartments, Figure 2, be mounted on the upstream wall to provide a better view of the gage from above and to be in a slightly more stable water surface area.

To determine the maximum capacity of the aerator supply structure the fixed-cone valve was fully opened

H

²U.S. Department of the Interior, Bureau of Reclamation "Water Measurement Manual,"

Figure 6. Aeration and supply structure discharging 55 cfs (4.56 cms) from reservoir elevation 305.70 feet (93.18 m). Photos from left to right P417-D-71897, -71900, -71898, -71901, -71899, and -71902

and the flow increased until the foamy water surface was roughly a foot from the ceiling of the stilling basin over the end sill. From this test it was determined that the structure could probably discharge up to approximately 110 cfs (3.12 cu m/sec), Figure 10. It was noted that the flow through the basin created a strong breeze blowing foam from under the cover out the sides between the stilling basin and hanging baffle. This was an indication of the very large amount of air that was being drawn into the aerator around the valve at the upstream end; and, therefore, it was believed that the aerator was doing a good job in performing its function.

.

<u>с</u>

 \mathcal{O}

Figure 7. Aeration structure discharging oulurs (1.56 cms) from reservoir elevation 263.68 feet (80.37 m), Photos P417-D-71903 and P417-D-71904

Figure 8. Aeration and supply structure discharging 78 cfs (2.21 cms) from reservoir elevation 305.70 feet (93.18 m). Photos P417-D-71886, -71887, and -71888

7

۰,

زمته

Figure 9. Aeration structure discharging 78 cfs (2.21 cms) from reservoir elevation 263.58 feet (80.37 m). Photos P417-D-71884 and P417-D-71885

<u>_</u>

7-1750 (3-71) Bureou of Reclamation

ŧ?

CONVERSION FACTORS-BRITISH TO METRIC UNITS OF MEASUREMENT

The following conversion factors adopted by the Bureau of Reclamation are those published by the American Society for Testing and Materials (ASTM Metric Practice Guide, E 380-68) except that additional factors (*) commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Practice Guide.

The metric units and conversion factors adopted by the ASTM are based on the "International System of Units" (designated SI for Systeme International d'Unites), fixed by the International Committee for Weights and Measures; this system is also known as the Giorgi or MKSA (meter-kilogram (mass)-second-ampere) system. This system has been adopted by the International Organization for Standardization in ISO Recommendation R-31.

The metric technical unit of force is the kilogram-force; this is the force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 9.80665 m/sec/sec, the standard acceleration of free fall toward the earth's center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as that force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 1 m/sec/sec. These units must be distinguished from the (inconstant) local weight of a body having a mass of 1 kg, that is, the weight of a body having a mass of 1 kg, that is, the weight of a body having a mass of 1 kg, that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term "pound-force," the term "kilogram" (or derived mass unit) has been used in this guide instead of "kilogram-force" in expressing the conversion factors for forces. The newton unit of force will find increasing use, and is essential in SI units.

Where approximate or nominal English units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I

Multiply	By	To obtain
	LENGTH	
AB	25.4 (exactly)	Micron
nches	25.4 (exactly)	Millimeters
nches	2.54 (exactly)	Centimeters
eet	30.48 (exactly)	Centimeters
	0.3048 (exactly)*	Meters
eet	0.0003048 (exactly)*	Kilometers
ards	0.9144 (exactly)	Meters
files (statute)	1.609.344 (exactly)*	Meters
files	1.609344 (exactly)	Kilometers
	AREA	
quare inches	6.4516 (exactly)	Square centimeters
quare feet	\$29.03	
quare feet		
quare yards		
cres	0.40469	Hectares
cres	*4,046.9	Square meters
Cres		Square kilometers
quare miles	2.58999	Square kilometers
· · · · · · · · · · · · · · · · · · ·	VOLUME	
Subic inches	16.3871	Cubic centimeters
Lubic feet	0.0283168	Cubic meters
Cubic yards	0.764555	Cubic meters
· · · · · · · · · · · · · · · · · · ·	CAPACITY	
Juid ounces (U.S.)		Cubic centimeters
luid ounces (U.S.)	29.5729	
iquid plots (U.S.)		Cubic decimeters
iquid pints (U.S.)		Liters
luarts (U.S.) . (*946.358	
luarts (U.S.)		Liters
iallons (U.S.)	*3,785.43	Cubic centimeters
Salions (U.S.)	3.78533	
allons (U.S.)	*0,00378543	
allons (U.S.)		Cubic decimeters
ations (U.K.)	4.54596	
ubic feet	28.3160	
Subjc vards	*764.55	Liters
cre-feet	*1,233.5	
Acre-feet	*1,233,500	
NUICHCEL		

Table II

QUANTITIES AND UNITS OF MECHANICS

33

Muitiply	By To obtain
	MASS
Grains (1/7,000 lb)	64.79891 (exactly) Milligram
Troy ounces (480 grains)	31.1035 Gran
Dunces (avdp)	28.3495 Gran
Counds (avdp)	0.45359237 (exactly) Kilogram
bort tons (2,000 lb)	907.185 Kilogram
Short tons (2,000 lb)	0.907185 Metric to
.ong tons (2,240 lb)	1,016.05 Kilogram
	FORCE/AREA
ounds per square inch	0.070307 Kilograms per square centimet
Pounds per square inch	0.689476 Newtons per square centimer
ounds per square foot	4.88243 Kilograms per square met
ounds per square foot	47.8803 Newtons per square met
	MASS/VOLUME (DENSITY)
Dunces per cubic inch	1.72999 Grams per cubic centimet
Pounds per cubic foot	16.0185, Kilograms per cubic met
Pounds per cubic foot	0.0160185 Grams per cubic centimet
Fons (long) per cubic yard	1,32894
	MASS/CAPACITY
Dunces per gation (U,S,)	7,4893 Grams per lit
Dunces per gallon (U.K.)	6.2362 Grams per lit
Pounds per gallon (U.S.)	119.829 Grams per lit
ounds per gallon (U.K.)	99.779 Grams per lit
	BENDING MOMENT OR TORQUE
Inch-pounds	0.011521
Inch-pounds	0.011521
Foot-pounds	0.138255 Meter-kilogram
Foot-pounds	1.35582 x 10 ⁷ Centimeter-dyn
Foot-pounds per inch	5.4431 Centimeter-kilograms per centimet
Ounce-inches	
	VELOCITY
Feet per second	30.48 (exactly) Centimeters per second 0,3048 (exactly)* Meters per second *0.965873 x 10 ⁻⁶ Centimeters per second
Feet per second	0.3048 (exactly)* Meters per second
Feetperyear	*0.965873 x 10 ⁻⁶ Centimeters per second
eerperyeer	
	1.609344 (exactly)
Ailes per hour	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per second
Miles per hour	1.609344 (exactly)
Miles per hour Miles per hour	1.609344 (exactly)
Miles per hour Miles per hour	ACCELERATION*
Villes per hour Villes per hour Feet par second ² Cubic feet per second	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per secon ACCELERATION* *0,3048 Meters per secon FLOW
Miles per hour Miles per hour Feet par second ² Cubic feet per second (second-feet)	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per second ACCELERATION* Meters per second *0,3048 Meters per second FLOW *0.028317
Villes per hour Villes per hour Feet per second ² Cubic feet per second (second-feet) Cubic feet per minute	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per secon ACCELERATION* *0,3048 Meters per secon FLOW
Villes per hour Villes per hour Feet per second ² Cubic feet per second (second-feet) Cubic feet per minute	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per second ACCELERATION* Meters per second *0,3048 Meters per second FLOW *0.028317
Villes per hour Villes per hour Feet par second ² Cubic feet per second	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per secon ACCELERATION* *0,3048 FLOW *0.028317 Cubic meters per secon 0,4719
Wiles per hour Miles per hour Feet per second ² Cubic feet per second (second-feet) Dubic feet per minute Gallons (U.S.) per minute	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per secon ACCELERATION* *0.3048 *0.3048 Meters per secon ELDW *0.028317 *0.028317 Cubic meters per secon 0.4719 Liters per secon 0.06309 Liters per secon FORCE* *0.453592 Kilometers Kilometers
Villes per hour Villes per hour Feet per second ² Cubic feet per second (second-feet) Cubic feet per minute	1.609344 (exactly) Kilometers per ho 0.44704 (exactly) Meters per second ACCELERATION* Meters per second *0.3048 Meters per second ELDW *0.028317 Cubic meters per second Liters per second 0.4719 Liters per second 0.06309 Liters per second

.

Table II-Continued

bl. Istalia		
Multiply	8γ	To obtain
	WORK AND ENERGY	
tritich thormal units (Btu)	*0.252	
British thermal units (Btu)		Joules
tu per pound		Joules per gram
oot-pounds	"1.3558Z	
	POWER	
	745 700	
Horsepower		
Btu per hour		
Foot-pounds per second	1,35582	Watts
	HEAT TRANSFER	
Btu in./hr ft ² degree F (k,		
thermal conductivity	1,442	Milliwatts/cm degree C
Btu in /hr ft ² degree F (k,		
thermal conductivity)	0,1240	Kg cal/hr m degree C
Btu ft/hr ft ² degree F	1,4880	
Btu/hr ft ² degree F (C		
thermal conductance)	0.568	Milliwatts/cm ² degree C
Btu/hr ft ² degree F (C	VIU00 + 1 + 1 + 1 + 1 + 1 + + + +	A F F F F F F F F F F INNINFELLENCIT CEGICE C
	4 995	
thermal conductance)	4.882	Ng cai/nr m ^o degree C
Degree F hr ft ² /Btu (ft,	4 744	B
thermal resistance)		Degree C cm ² /milliwatt
Btu/Ib degree F {c, heat capacity}	4.1868	J/g degree C
Btu/Ib degree F	*1.000	
Ft ² /hr (thermal diffusivity)	0,2581	
Ft ² /hr (thermal diffusivity)	*0.09290	M ² /hr
	WATER VAPOR TRANSMISS	SION
Grains/hr ft ² (water vapor)		Grams/24 hr m ²
transmission)		
Perms (permeance)	0.659	Metric perms
Perm-inches (permeability)	1.07	Metric perm-centimeters
	, we are a second se	ý.
	and the second sec	Ŕ
		ŝ
	- The second sec	ŝ
		۹
Δ	Table III	۹
	Table III	·
	Table III OTHER QUANTITIES AND U	JNITS
Multiply	Table III	·
	Table III OTHER QUANTITIES AND U By	JNITS To obtain
Cubic feet per square foot per day (se	Table III OTHER QUANTITIES AND U By epage) 304.8	JNITS To obtain
Cubic feet per square foot per day (se Pound-seconds per square foot (viscos	Table III OTHER QUANTITIES AND U By epage) *304.8 ity) *4.8824	JNITS To obtain Liters per square metter per day Kilogram second per square meter
Cubic feet per square foot per day (se Pound-seconds per square foot (viscos Square feet per second (viscosity)	Table III OTHER QUANTITIES AND U By epage) *304.8 	JNITS Ta obtain Liters per square meter per day Kilogram second per square meter Square meters per second
Cubic feet per square foot per day (se Pound-seconds per square foot (viscos Square feet per second (viscosity) Fahrenheit degrees (change)*	Table III OTHER QUANTITIES AND U By epage) *304.8 ity) *4.8824 *0.092903 5/9 exactly	JNITS To obtain Liters per square meter per day Kilogram second per square meter Square meters per second Cetsius or Kelvin degrees (change)
Cubic feet per square foot per day (se Pound-seconds per square foot (viscos Square feet per second (viscosity) Fahrenheit degrees (change)*	Table III OTHER QUANTITIES AND U By epage) *304.8 	JNITS To obtain Liters per square meter per day Kilogram second per square meter Square meters per second Cetsius or Kelvin degrees (change)* Kilovolts per millimeter
Cubic feet per square foot per day (se Pound-seconds per square foot (Viscos Square feet per second (viscosity) Fahrenheit degrees (change)* Volts per mil Lumens per square foot (foot-candles)	Table III OTHER QUANTITIES AND L By epage) 304.8 (ty) 4.8824 5/9 exactly 5/9 exactly 0.03937 0	JNITS To obtain Liters per square metter per day Kilogram second per square metter Square metters per second Cetsius or Kelvin degrees (change) [*] Kilovolts per millimeter
Cubic feet per square foot per day (se Pound-seconds per square foot (viscos Square feet per second (viscosity) Fahrenheit degrees (change)* Volts per mil Lumens per square foot (foot-candles Ohm-circular mils per foot	Table III OTHER QUANTITIES AND U By epage) *304.8 *4.8824 *0.092903 5/9 exactly 0.03937 10.764 0.001652	JNITS To obtain Liters per square meter per day Kilogram second per square meter Square meters per second Cetsius or Kelvin degrees (change) ² Liters per millimeter Lumens per square meter Ohm-square millimeter per meter
Cubic feet per square foot per day (se Pound-seconds per square foot (Viscos Square feet per second (viscosity) Fahrenheit degrees (change)* Volts per mil Lumens per square foot (foot-candles)	Table III OTHER QUANTITIES AND U By epage) *304.8 *4.8824 *0.092903 5/9 exactly 0.03937 10.764 0.001652	JNITS To obtain Liters per square meter per day Kilogram second per square meter Square meters per second Cetsius or Kelvin degrees (change) ² Liters per millimeter Lumens per square meter Ohm-square millimeter per meter
Cubic feet per square foot per day (se Pound-seconds per square foot (viscos Square feet per second (viscosity) Fahrenheit degrees (change)* Volts per mil Lumens per square foot (foot-candles Ohm-circular mils per foot	Table III OTHER QUANTITIES AND U By epage) 304.8 ity) 4.8824 0.092903 5/9 exactly 0.03937 10.764 0.001662 35.3147	JNITS To obtain Liters per square meter per day Kilogram second per square meter Square meters per second Cetslus or Kelvin degrees (change)* Kilovolts per millimeter Lumens per square meter Ohm-square millimeters per meter Millicuries per cubic meter
Cubic feet per square foot per day (se Pound-seconds per square foot (Viscos Square feet per second (viscosity) Fahrenheit degrees (change)* Volts per mil Lumens per square foot (foot-candles) Dhm-circular mils per foot Millieuries per cubic foot	Table III OTHER QUANTITIES AND U By epage) *304.8 *******************************	JNITS To obtain Liters per square meter per day Kilogram second per square meter Square meters per second Celsius or Kelvin degrees (change) [*] Kilovolts per millimeter Lumens per square meter Ohm-square millimeters per meter Millicarnes per cubic meter Millicarnes per quare meter
Cubic feet per square foot per day (se Pound-seconds per square foot (viscos Square feet per second (viscosity) Fahrenheit degrees (change)* Volts per mil Lumens per square foot (foot-candles Dhm-circular mils per foot	Table III OTHER QUANTITIES AND U By epage) *304.8 *4.8824 *0.092903 5/9 exactly 0.03937 0.03937 10.754 *0.01662 *35.3147 *0.0599 *4.527219	JNITS To obtain Liters per square meter per day Kilogram second per square meter Square meters per second Cetslus or Kelvin degrees (change)* Kilovolts per millimeter Lumens per square meter Ohm-square millimeters per meter Millicuries per cubic meter

J.

GPO 844 - 375

ABSTRACT

Laboratory studies were made of the Scoggins Dam fishtrap serator and supply structure with a 2.3.33 scale model to aid the development of the hydraulic design. A horizontally mounted fixed-cone valve discharging into a containment structure, followed by a stilling basin, was used to serate the flow and to dissipate the flow energy before releasing it to the constant-head-orifice flow measurement structure. All of these features are part of the fishter supply structure. Results showed that the valve containment structure and stilling basin perform very well as an serator and energy dissipator to provide quiet, oxygenated flow that could be measured and regulated in the constant-head-orifice structure.

ABSTRACT

Laboratory studies were made of the Scoggins Dem fishtrap aerator and supply structure with a nonnoted of the Scoggins Dem fishtrap aerator and supply structure with a first scale model to aid the development of the hydraulic design. A horizontally mounted fixed-cone valve discharging into a containment structure, followed by a stilling basin, was used to aerate the flow energy before releasing it to the forward that the valve containment structure and stilling basin perform very well as an aerator and energy dissipator to provide quiet, oxygenated flow that containment structure. Reality structure are stilling basin perform very well as an aerator and energy dissipator to provide quiet, oxygenated flow that could be messured and regulated in the containment or provide quiet, oxygenated flow that could be messured and regulated in the containt-head-orifice structure.

TDAATZBA

Laboratory studies were made of the Scoggins Dam fishtrap aerator and supply structure with a bit nom and the development of the hydraulic design. A horizontally mounted fixed-cone valve discharging into a containment structure, followed by a stilling basin, was used to aerate the flow and to dissipate the flow energy before releasing it to the constant-head-orifice flow measurement structure. All of these features are part of the fishtrap perform very well as an aerator and energy dissipator to provide quiet, oxygenated flow that perform very well as an aerator and energy dissipator to provide quiet, oxygenated flow that could be measured and regulated in the containment structure.

TOAATEACT

Laboratory structure with a Laboratory structure with a 1:3.33 scale model to aid the development of the hydraulic design. A horizontally mounted fixed-cone valve discharging into a containment structure, followed by a stilling basin, was used to aserate the flow and to discipate the flow energy before releasing it to the constant-head-onlice flow measurement structure. All of these features are part of the fishtrap supply structure. Results showed that the valve containment structure and stilling basin perform very well as an aerator and energy dissipator to provide quiet, oxygenated flow that could be measured and regulated in the constant-head-orifice structure.

REC-ERC-72-27

Beichley, G L

HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE

Bur of Reclam Rep REC-ERC-72-27, Div Gen Res, July 1972. Bureau of Reclamation, Denver, 8 p. 10 fig, 2 ref

DESCRIPTORS—/ hydraulic structures/ hydraulic design/ *aeration/ *air entrainment/ hydraulic models/ *water measurement/ air bubbles/ baffle piers/ deflectors/ *energy dissipation/ valves/ laboratory tests/ test results/ flow measurement/ stilling basins/ oxygenation IDENTIFIERS—/ Tualatin Project, Oreg/ Scoggins Dam, Oreg/ Ute Dam Outlet Works, N Mex/ China Meadows Dam, Wyo

REC-ERC-72-27

Beichley, G L

HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE

Bur of Reclam Rep REC-ERC-72-27, Div Gen Res, July 1972. Bureau of Reclamation, Denver, 8 p, 10 fig, 2 ref

DESCRIPTORS-/ hydraulic structures/ hydraulic design/ *aeration/ *air entrainment/ hydraulic models/ *water measurement/ air bubbles/ baffle piers/ deflectors/ *energy dissipation/ valves/ laboratory tests/ test results/ flow measurement/ stilling basins/ oxygenation IDENTIFIERS-/ Tualatin Project, Oreg/ Scoggins Dam, Oreg/ Ute Dam Outlet Works, N Mex/ China Meadows Dam, Wyo

REC-ERC-72-27

Beichley, G L

HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE

Bur of Reclam Rep REC-ERC-72-27, Div Gen Res, July 1972, Bureau of Reclamation, Denver, 8 p. 10 fig, 2 ref

DESCRIPTORS—/ hydraulic structures/ hydraulic design/ *aeration/ *air entrainment/ hydraulic models/ *water measurement/ air bubbles/ baffle piers/ deflectors/ *energy dissipation/ valves/ laboratory tests/ test results/ flow measurement/ stilling basins/ oxygenation IDENTIFIERS—/ Tualatin Project, Oreg/ Scoggins Dam, Oreg/ Ute Dam Outlet Works, N Mex/ China Meadows Dam, Wyo

REC-ERC-72-27

Beichley, G L

HYDRAULIC MODEL STUDIES OF SCOGGINS DAM FISHTRAP AERATION AND SUPPLY STRUCTURE

Bur of Reclam Rep REC-ERC-72-27, Div Gen Res, July 1972. Bureau of Reclamation, Denver, 8 p, 10 fig, 2 ref

DESCRIPTORS—/ hydraulic structures/ hydraulic design/ *aeration/ *air entrainment/ hydraulic models/ *water measurement/ air bubbles/ baffle piers/ deflectors/ *energy dissipation/ valves/ laboratory tests/ test results/ flow measurement/ stilling basins/ oxygenation IDENTIFIERS—/ Tualatin Project, Oreg/ Scoggins Dam, Oreg/ Ute Dam Outlet Works, N Mex/ China Meadows Dam, Wyo