REC-ERC-72-5

HXDRAULIC MODEL STUDIES OF THE FOREBAY RESERVOIR INLET-OUTLET STRUCTURE-FOR MT. ELBERT PUMPED-STÓRAGE POWERPLANT, FRYINGPAN-ARKANSAS PROJECT, COLORADO

HYDRAULEG LAUSENTURY

第3日 王兄氏 おようおうろ

WITH BORCH

P. L. Johnson Engineering and Research Center Bureau of Reclamation

January

I. REPORT NO.	E. 90YE	NUMER'S ACCUSSION NO.	1.100	3. RECIPIENT'S CATAL	OG NO.
REC-ERC-72-5					
4. TITLE AND SUE	STITLE			5. REPORT DATE	· · · · · · · · · · · · · · · · · · ·
Hydraulic Model :	Studies of the Fore	bay		Jan 72	
	utlet Structure for			6. PERFORMING ORGAN	IZATION CODE
Pumped-Storage F	owerplant, Frying	pan-Arkansas			
Project, Colorado					. *
AUTHOR(\$)	· · · · · · · · · · · · · · · · · · ·			8. PERFORMING ORGAN	IZATION
			· · ·	REPORT NO.	
P. Ľ. Johnson	a				
	·			REC-ERC-72-5	
PERFORMING C	RGANIZATION NAM	E AND ADDRESS	1	0, WORK UNIT NO.	
Engineering and F	Research Center		: L		
Bureau of Reclam	ation		- F	1. CONTRACT OR GRAM	NT NO.
Denver, Colorado	80225	3			
			T	3. TYPE OF REPORT A	ND PERIOD
2. SPONSORING A	GENCY NAME AND A	ADDRESS		COVEREO	
	÷		19		-
			9	i.	*** -
	· · · ·	•,	L	·>	-
Same			1	4. SPONSORING AGENC	YCODE
· · · · · · · · · · · · · · · · · · ·		· · · ·	<u> </u>	:	
5. SUPPLEMENTA	RY NOTES				
					2
		176-75		÷.	а ^т .
		12			
ABSTRACT			· · · · · ·	<u> </u>	
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of	rmed to assure satisfactor Pumped-Storage Powerpla a uniform velocity distrib d minimize the possibility failure. Flow conditions fo air entraining surface vort	ant, Colora ution at the of formin the genera ices. Head	ado. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer	for the studies pumped cycle. ing and reduce ted to ensure a re made for the
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distrib d minimize the possibility failure. Flow conditions for air entraining surface vort deflector with flip blocks	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studie pumped cycle ing and reduc ted to ensure e made for th ertical velocit ce the origina
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct listribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
het-outlet struct vas to develop a Uniform velocity he forces causing niform velocity hlet-outlet struct istribution at th	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distributed d minimize the possibility failure. Flow conditions for air entraining surface vorthed deflector with flip blocks ion. A flat upward slopi	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct vas to develop a Jniform velocity he forces causing miform velocity nlet-outlet struct listribution at th oncave floor in t	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal ne trashrack positi	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w	do. The main purpose e trashracks during the ng strong vortex shedd ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original
nlet-outlet struct vas to develop a Uniform velocity he forces causing miform velocity nlet-outlet struct listribution at th oncave floor in t	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack position he structure. Two of O DOCUMENT ANAL	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	do. The main purpose e trashracks during the ng strong vortex sheddi ating cycle were evalua loss measurements wer oped to improve the v as developed to replace eneration of surface vor	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
nlet-outlet struct vas to develop a Jniform velocity he forces causing uniform velocity nlet-outlet struct distribution at th concave floor in t DESCR IPTORS low distribution/	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sevices were developed to acks/ model tests/ *velocity	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	tions/ *outlets/ flow ch	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
nlet-outlet struct vas to develop a Jniform velocity he forces causing uniform velocity nlet-outlet struct distribution at th concave floor in t DESCR IPTORS low distribution/	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL / *pumped stora head losses/ trashr	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sevices were developed to acks/ model tests/ *velocity	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	tions/ *outlets/ flow ch	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
nlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity nlet-outlet struct distribution at th concave floor in t DESCR IPTORS low distribution/	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL / *pumped stora head losses/ trashr	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sevices were developed to acks/ model tests/ *velocity	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	tions/ *outlets/ flow ch	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
Inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t <i>DESCRIPTORS</i> low distribution/ nodifications/ dis	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sever developed to devices were developed to studies	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	tions/ [*] outlets/ flow ch	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
Inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t <i>DESCRIPTORS</i> low distribution/ nodifications/ dis	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sever developed to devices were developed to studies	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	tions/ [*] outlets/ flow ch	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
Inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t DESCRIPTORS low distribution/ modifications/ dis	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sevices were developed to acks/ model tests/ *velocity	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	tions/ [*] outlets/ flow ch	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
Inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t DESCRIPTORS low distribution/ modifications/ dis	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sever developed to devices were developed to studies	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	tions/ [*] outlets/ flow ch	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
Inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t DESCRIPTORS low distribution/ modifications/ dis . IDENTIFIERS- . COSATI Field/	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of o DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model - / Fryingpan-Arka Group 13G	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to sever developed to devices were developed to studies	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge	do. The main purpose e trashracks during the ng strong vortex sheddi ating cycle were evalua loss measurements wer oped to improve the var as developed to replace eneration of surface vor tions/ *outlets/ flow ch tion/ vortices/ water sur Storage Plt, Colo	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices.
Inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t DESCRIPTORS low distribution/ modifications/ dis DESCRIPTORS	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of o DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model - / Fryingpan-Arka Group 13G STATEMENT	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to devices were developed to studies ansas Proj, Colo/ Mount El	ant, Colora ution at the of formin r the genera ices. Head was devek ng floor w suppress ge take transit y distribut	do. The main purpose e trashracks during the ng strong vortex sheddi ating cycle were evalua loss measurements wer oped to improve the va- ras developed to replace eneration of surface vor tions/ [#] outlets/ flow ch tion/ vortices/ water sur -Storage Plt, Colo	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original tices. maracteristics/ rface/ design
Inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t DESCRIPTORS low distribution/ modifications/ dis DENTIFIERS- COSATI Field/ DISTRIBUTION vailable from the	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of O DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model - / Fryingpan-Arka Group 13G STATEMENT National Technical	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to devices were developed to studies ansas Proj, Colo/ Mount El Information Service, Oper	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge take transit y distribut	do. The main purpose e trashracks during the ng strong vortex sheddi ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace eneration of surface vor tions/ [#] outlets/ flow ch tions/ [#] outlets/ flow ch tion/ vortices/ water sur Storage Plt, Colo	for the studies pumped cycle. ing and reduce ted to ensure a e made for the ertical velocity ce the original tices. haracteristics/ rface/ design
inlet-outlet struct was to develop a Uniform velocity the forces causing uniform velocity inlet-outlet struct distribution at th concave floor in t DESCRIPTORS flow distribution/ modifications/ dis . IDENTIFIERS- . COSATI Field/ . DISTRIBUTION vailable from the	ure for Mt. Elbert design to provide distribution woul trashrack fatigue f distribution free of ture. A horizontal he trashrack positi he structure. Two of o DOCUMENT ANAL / *pumped stora head losses/ trashr turbances/ *model - / Fryingpan-Arka Group 13G STATEMENT	Pumped-Storage Powerpla a uniform velocity distribut d minimize the possibility failure. Flow conditions for air entraining surface vorth deflector with flip blocks ion. A flat upward slopi devices were developed to devices were developed to devices were developed to studies ansas Proj, Colo/ Mount El Information Service, Oper	ant, Colora ution at the of formin r the genera ices. Head was develo ng floor w suppress ge take transit y distribut	do. The main purpose e trashracks during the ng strong vortex sheddi ating cycle were evalua loss measurements wer oped to improve the v vas developed to replace eneration of surface vor tions/ [#] outlets/ flow ch tions/ [#] outlets/ flow ch tion/ vortices/ water sur Storage Plt, Colo	for the studies pumped cycle, ing and reduce ted to ensure a e made for the ertical velocity ce the original tices. maracteristics/ rface/ design

REC-ERC-72-5

HYDRAULIC MODEL STUDIES OF THE FOREBAY RESERVOIR INLET-OUTLET STRUCTURE FOR MT. ELBERT PUMPED-STORAGE POWERPLANT, FRYINGPAN-ARKANSAS PROJECT, COLORADO

7

by

÷.

P. L. Johnson

January 1972

Hydraulics Branch Division of General Research Engineering and Research Center Denver, Colorado

UNITED STATES DEPARTMENT OF THE INTERIOR Rogers C. B. Morton Secretary BUREAU OF RECLAMATION Ellis L. Armstrong Commissioner

Ň,

ACKNOWLEDGMENT

The studies, conducted by the author, were reviewed and supervised by D. L. King, Applied Hydraulics Section Head. The final plans that evolved from these studies were developed through the cooperation of the Hydraulics Branch, Division of General Research, and the Hydraulic Structures Branch, Division of Design, at the Bureau of Reclamation Engineering and Research Center, during the period October 1970 through July 1971.

h

ii.//

CONTENTS

								l)	1																				Pag	e	
Purpose																						•						•		1	
Results										÷.,								• .	•	•		•		•.					·	1	
Application																		•						•	•					1	
Introduction								-							• •		•	-					-				•			1	
The Model .						•		•										•			•		• •		•	•		• *		4	
The Investigatic	п	•	•		•	•	•	:	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•.	•	•	•		4	
Test Procedu	ire	-																	•		-	•	-		•			•		4	
Pumping Cy	cle				-						•			1			•	٠.												4	
Generating C) yc	le												•					•	-					•				<i>i</i> i	9	

LIST OF FIGURES

Figure	
• iguit	
1	Location map
2	Project map
3	1:23.23 scale model penstocks
4	1:23,23 scale model of inlet-outlet structure and
	penstocks
5	Preliminary inlet-outlet structure
6	Velocity distribution, preliminary inlet-outlet
	structure, pumping cycle (initial unit)
7	Final inlet-outlet structure
8	Velocity distribution, final inlet-outlet structure,
	pumping cycle (initial unit)
9	Pumping cycle head loss curves
10	Vortices, generating cycle, one-unit operation
11	Vortices, generating cycle, two-unit operation
12	Raft-type vortex suppressor
13	Lattice wall vortex suppressor
14	Vortices, generating cycle with suppression structure
15	Velocity distribution, final inlet-outlet structure,
	generating cycle (initial unit)
16	Generating cycle head loss curves
-	

ì

6

1

۱. ج

PURPOSE

These studies were made to assist in developing a satisfactory forebay inlet-outlet structure for the Mt. Elbert Pumped-Storage Powerplant, Colorado.

RESULTS

1. Flow concentrations were observed in the inlet-outlet structure during the pumping cycle. These flow concentrations were indicated by high- and low-velocity areas in sections where velocity distribution data were taken.

2. A deflector placed in the inlet-outlet structure significantly improved the velocity distribution in a vertical plane at the trashrack section for pumped flow.

3. A flat floor rising from an elevation of 9566.5 ft (2915.9 m) at the stoplog section to an elevation of 9580.5 ft (2920.1 m) at the base of the trashrack section was found to be satisfactory. This replaced the initial concave upward-shaped floor that connected the two points.

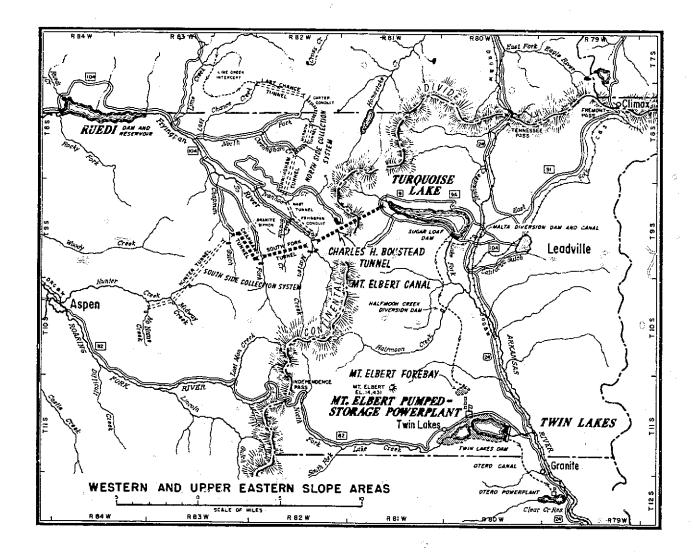
4. In the preliminary structure, a tendency for vortex formation was observed during the generating cycle for both one- and two-unit operation. The tendency was observed at all reservoir water-surface elevations between 9615 ft (2930.6 m) and 9640 ft (2938.3 m).

5. Two successful structures for vortex suppression were developed. The first consisted of a raft that was floated over the vortex. It supplied a simple, yet effective solution for all operating conditions. The raft did not eliminate the swirling flow, but it did eliminate air intake into the penstocks. The second successful vortex suppression structure consisted of a lattice-like wall extending from the top edge of the trashracks to an elevation of 9621 ft (2932.3 m). The wall extended upward on a 1:3 slope (perpendicular to trashrack face). Walls corresponding to both steel and reinforced concrete structures were tested and found satisfactory. As in the case of the raft, the walls did not eliminate the swirling flow, but they did eliminate air intake into the penstocks.

6. The observed head losses through approximately 124 ft (37.8 m) of penstock and the inlet-outlet structures for pumping flow were found to be 2.27 ft (0.692 m) for the initial unit and 2.46 ft (0.750 m) for the future unit. The corresponding pumping cycle resistance coefficient (head loss/velocity head in penstock) values are 0.48 and 0.52, respectively. The observed head losses for generating flow were found to be 2.18 ft (0.664 m) for the initial unit and 2.45 ft

(0.747 m) for the future unit. The corresponding generating cycle resistance coefficient values are 0.34 and 0.38, respectively. \heartsuit

APPLICATION

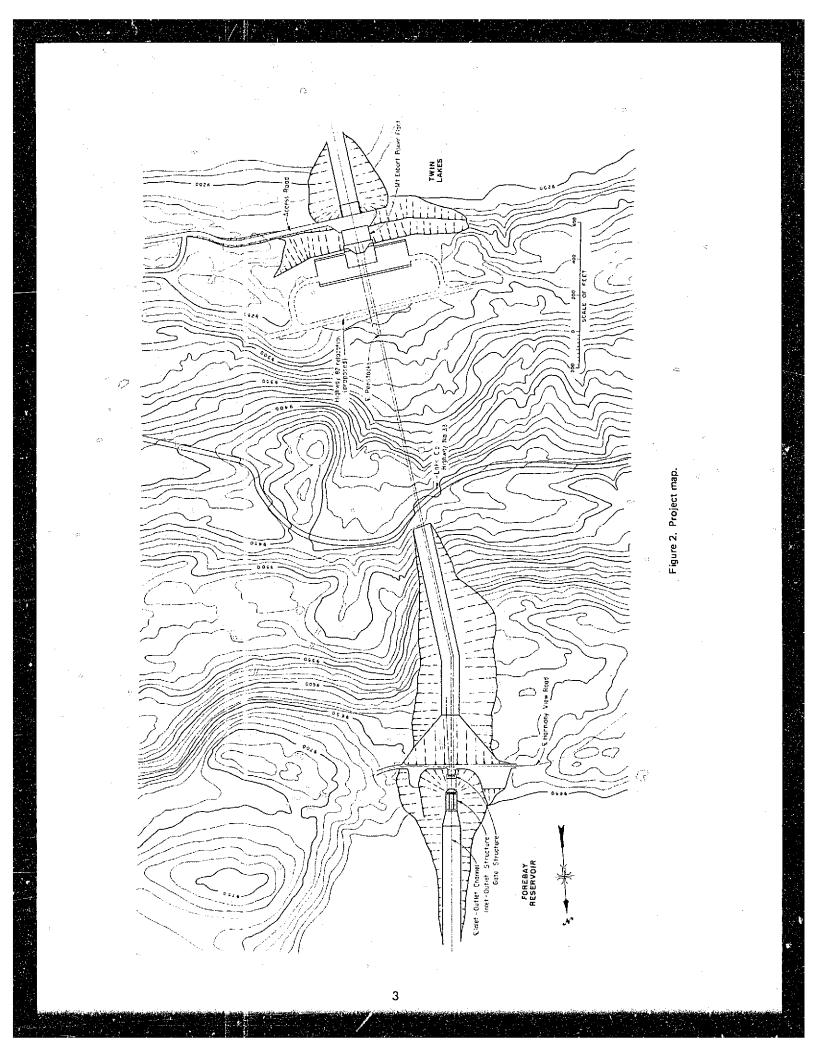

The results of these studies are generally applicable only to structures with similar geometrical configurations. These studies may be useful in initial evaluation of similar problems.

INTRODUCTION

The Fryingpan-Arkansas Project is a multipurpose, transmountain diversion development. It will make surplus water from the western slope of the Rocky Mountains available to inhabitants of the eastern slope (Figure 1). The water will be used for municipal, industrial, and irrigation purposes. Mt. Elbert Pumped-Storage Powerplant (Figure 2) is one of two powerplants to be constructed on this project. These powerplants will produce power from the water as it descends to the eastern plains. The prime contract for construction of Mt. Elbert is described in Specifications No. DC-6915.

Mt. Elbert Pumped-Storage Powerplant will eventually produce 200,000 kw of power with two units. These units will be reversible pump-turbine facilities. Each unit will have a 15-ft (4.57-m) diameter penstock that will connect it to a 10,000-acre-ft (12,335,000-m³) forebay reservoir (Figure 2). The length of each penstock will be approximately 3,000 ft (944 m). The maximum water-surface elevation in the forebay (upper) reservoir will be 9646.8 ft (2940.3 m) while the absolute minimum water-surface elevation will be 9615 ft (2930.7 m). The lower water supply for the pump-turbine units will be Twin Lakes (Figure 2). The maximum active water surface for Twin Lakes will be 9208.5 ft (2806.8 m) and the minimum active water surface will be at 9168.7 ft (2794.7 m). The maximum static head will therefore be 478.1 ft of water (145.6 m). The maximum discharge through each penstock will be about 3,600 cfs (101.94 cu m/sec) during the generating cycle and 3,090 cfs (87.50 cu m/sec) during the pumping cycle. Initially, only one unit and one complete penstock will be installed with the other following at a future date. The first unit to be installed will be the west one and will be referred to as the initial unit in this report. The east unit will be referred to as the future unit.

Because of the possibility of unsatisfactory flow conditions, a hydraulic model study of the forebay


EXPLANATION

BUREAU OF RECLAMATION Completed and Authorized Works

	- ARKANSAS JECT	
COMPLETED	AUTHORIZED	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DAM AND RESERVOIR
~~~p~		DIVERSION DAM
>	b ssed	TUNNEL
•	٥	\$HAFT
~	N	CANAL
ным		CONDUIT
٠	٥	PUMPING PLANT
É.	6	POWERPLANT

reservoir inlet-outlet structure was initiated. The main reason for the model study was to obtain a design which would insure a proper velocity distribution at the trashracks so that there would be no high-velocity areas, jets, or reverse flows present. This would eliminate any chance for formation of strong vortex shedding and vibration and thus insure a trashrack which would not be subject to fatigue failure. The testing would also provide information to insure satisfactory flow conditions during the generating cycle. This would include control or elimination of surface vortices. Finally, the testing would evaluate head loss through each unit for both the pumping and generating cycles.

Dimensions used in this report, unless otherwise stated, refer to the prototype structure. Minor modifications were made to the structure design after the completion of the model study but their effect on the study results is considered negligible.

THE MODEL

Because of the availability of 7.75-inch (19.7-cm) inside diameter clear plastic pipe, and with consideration given to the physical properties of the prototype, a model scale of 1:23.23 was selected. The 7.75-inch (19.7-cm) clear plastic pipe was therefore used to represent the upper portions of both penstocks (Figures 3 and 4). The remaining portions of the penstocks were modeled with steel pipe. The rectangular-to-circular transitions, the gate sections, and inlet-outlet structure were fabricated from sheet metal (Figures 3 and 4). The topography at the forebay reservoir was modeled in concrete (Figure 4). The maximum discharges of 3,090 cfs (87.50 cu m/sec) for the pumping cycle and 3,600 cfs (101.94 cu m/sec) for the generating cycle for one unit were represented in the model by 1.187 cfs (0.0336 cu m/sec) and 1.385 cfs (0.0392 cu m/sec), respectively. The model was arranged so that both pumping and generating flow could be simulated. Discharges were measured with venturi and venturi-orifice meters.

THE INVESTIGATION

Test Procedure

In the analysis of the inlet-outlet structure, velocity distribution data were taken at two sections in the system. One section contained the trashracks and the other contained the stoplog slots. A majority of the velocities was measured with a small propeller-type flowmeter. A cup-type flowmeter and a Pitot tube

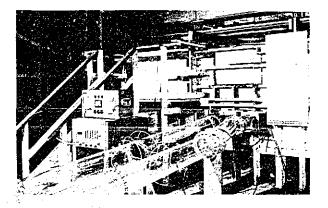


Figure 3. 1:23.23 scale model penstocks. Photo PX-D-70819

were also used. In all cases, however, only average flow velocity data were taken. The severity of the velocity fluctuations was evaluated by the author as the average flow velocity data were collected. The velocities were measured in a grid-type pattern at each section.

Head loss data were obtained for the inlet-outlet structures including 124 ft (37.8 m) of attached penstock. The data were obtained through the use of two piezometer ring-manifolds (one tapping each penstock), one piezometer that tapped the reservoir, and three open water-manometers (Figure 4). The piezometer ring-manifolds were approximately 124 ft (37.8 m) from the section where the penstock attaches to the circular-to-rectangular transitions.

Data were taken with various reservoir water-surface elevations. It is, however, believed that the 9615 ft (2930.7 m) water-surface elevation is critical with respect to velocity distribution and vortex formation. This elevation is the absolute minimum operating water surface for the forebay reservoir.

Pumping Cycle

Hydraulic analysis of the inlet-outlet structure began with the realization, based on previous experience, that a deflector would be required to obtain a satisfactory pumped flow velocity distribution through the trashrack sections. To verify this experience and to obtain knowledge of the flow distribution that would be modified, the initial inlet-outlet structure (Figure 5) was studied without a deflector. Coarse, rapid velocity distribution data were taken at the trashrack section and at a section near the stoplog section. The cup flowmeter was used to obtain these data. It was observed that the flow was concentrated over an area covering approximately one-half of the total stoplog

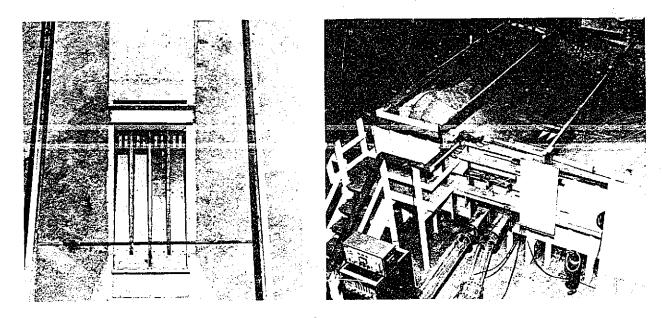


Figure 4. 1:23.23 scale model of inlet-outlet structure and penstocks. Left Photo PX-D-70820, right Photo PX-D-70818

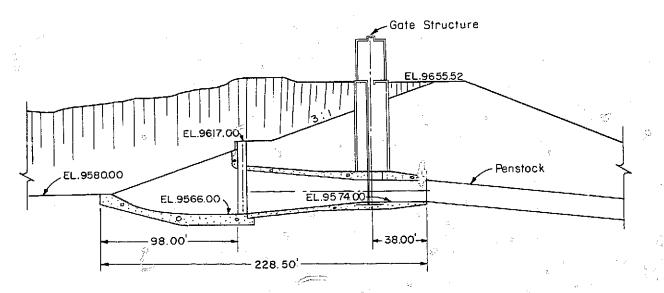
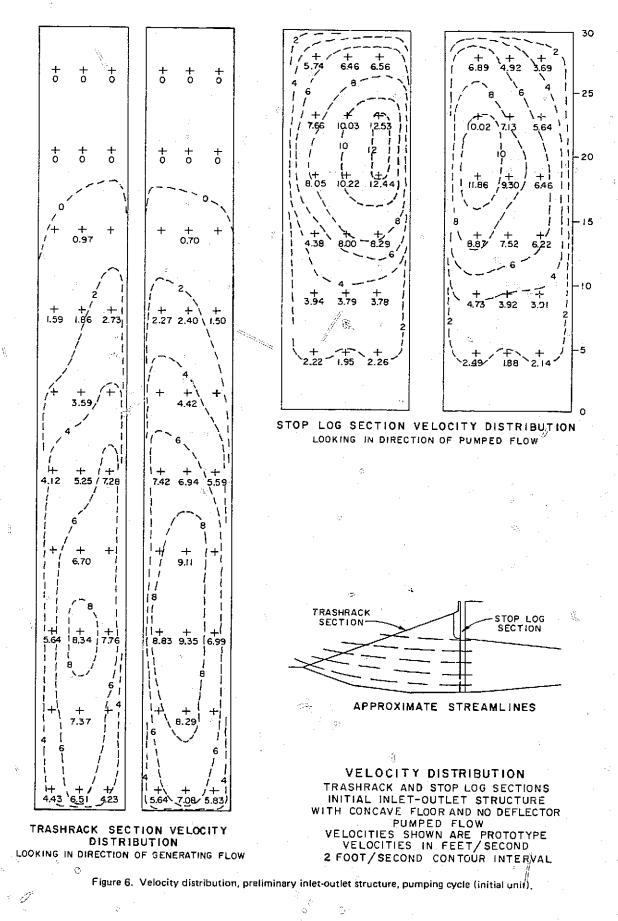



Figure 5, Preliminary inlet-outlet structure.

section area (Figure 6). The total height of the stoplog section was 30 ft (9.14 m). It was also observed that the same flow was concentrated in the lower half of the trashrack section. The maximum velocity observed at the trashrack section was 9.35 fps (2.85 m/sec). From this information, it was concluded that as the pumped flow leaves the penstock it rises for a short distance. It is believed that this flow rise is a result of the momentum established by the rising penstocks. It was, however, observed that there was very little flow rise between the stoplog section and the trashrack section; the flow was nearly horizontal. It was also observed that the rising floor concentrated the flow and therefore increased the flow velocities near the bottom.

To improve the velocity distribution at the trashrack section, several flow deflectors were tried. Initial deflectors (Figure 7), both straight and doglegged upward, were constructed to represent 1-ft (0.30-m) thick flat slabs. The angle of rise, from horizontal, for the deflectors varied from 10° to 22° . The deflectors

Ű,

6

J

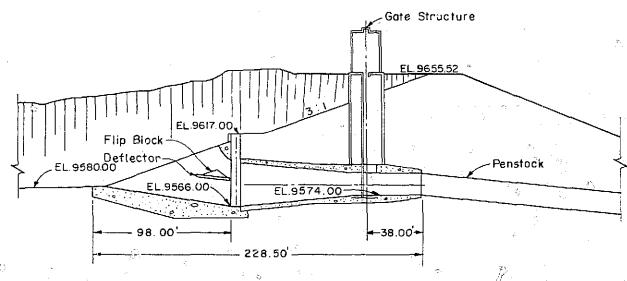
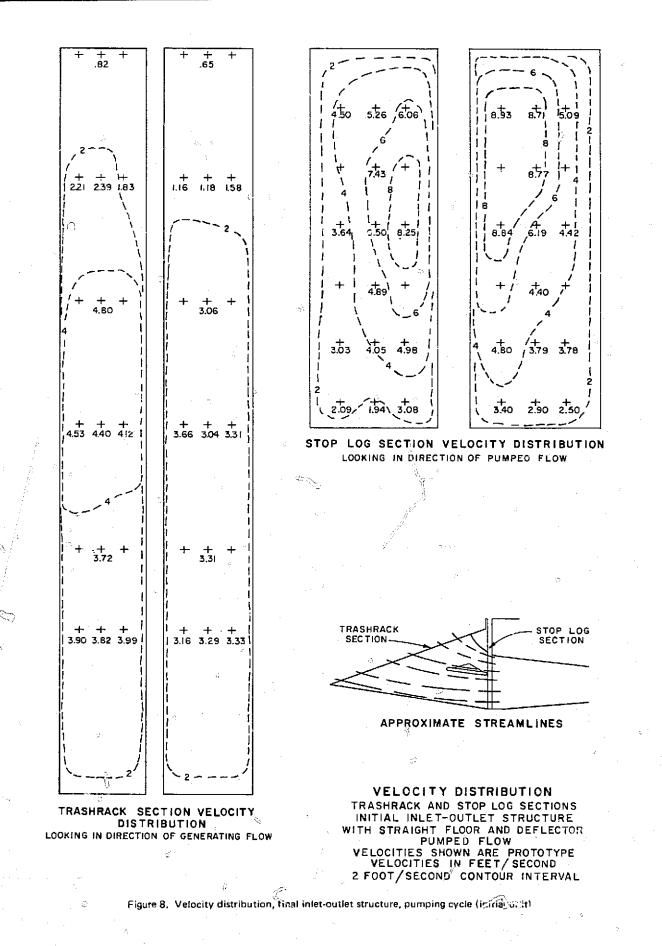


Figure 7. Final inlet-outlet structure.

were located at several levels in the structure in an attempt to find their most effective position. It was observed that very high-velocity areas were created just above the deflector and low-velocity areas were created just below. When such deflectors were allowed to run from the stoplog section to the trashrack section, velocities as high as 9.20 fps (2.82 m/sec) were observed at the trashrack section. It was also noticed that the deflectors were only partially successful in increasing flow in the upper half of the trashrack section. To improve the deflector operation, two alterations were tried. The first was to shorten the deflector's length to 25 ft (7.62 m). The deflector therefore ran from the stoplog section to a position approximately halfway between the stoplog section and the trashrack section (Figure 7). This allowed mixing of the pumpedflow downstream from the deflector prior to reaching the trashrack section. Flow at the trashrack section was more uniform and flow velocity variations were less pronounced. Flip-type blocks were also placed on the upper face of the deflector. The blocks forced a portion of the pumpedflow into the upper areas of the trashrack section (Figure 8). With these two modifications, the final deflector design was obtained (Figure 7). It was observed that a maximum flow velocity of 4.8 fps (1.46 m/sec) occurred at the trashrack section (Figure 8).

Less complete velocity distribution data were collected for the future inlet-outlet structure. The observed velocity distributions were similar to those obtained for the initial structure. It was observed, however, that the flow was mildly concentrated in the right-hand bay (looking in the direction of pumped flow). It was felt


43

that this concentration was probably oue to the miter bends in the future penstock (Figures 3 and 4). These bends do not exist in the initial penstock. The obtained trashrack velocity distribution was satisfactory and the deflector appeared to be effective.

A final consideration was given to the necessity of an upward facing concave floor in the inlet-outlet structures. Testing was done to evaluate a straight, upward sloping floor (Figure 7) that ran from the stoplog section to the end of the structure. No worsening of the velocity distribution was observed. With the modification of this floor, the final recommended inlet-outlet structure was obtained (Figure 7).

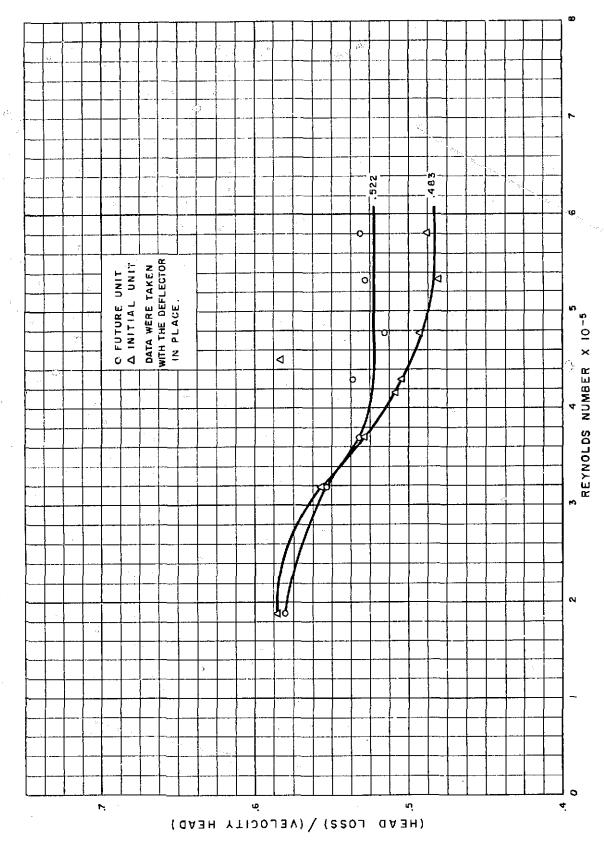
With the final configuration of the inlet-outlet structure determined, the forebay reservoir water surface conditions were evaluated during pumped operation. It was noted that the severity of the water surface disturbance was not increased for two-unit operation as compared to one-unit operation. The extent of the disturbance was, however, wider spread for two-unit operation. The disturbance consisted of mild boils extending approximately 100 ft (30.5 m) downstream from the area directly above the trashracks. The maximum observed boil height was approximately 1 ft (0.3 m).

Head loss data were taken for the recommended inlet-outlet structure with the deflector in place. The observed head loss coefficients (the ratio of head loss through the system to the velocity head of the flow in the penstock) stabilized with respect to Reynold's number (VD/v where V is the average flow velocity in

the penstock, D is the diameter of the penstock, and v is the kinematic viscosity) at 0.48 for the joitial unit and 0.52 for the future unit (Figure 9). The Reynold's number values are related to the values of the resistance coefficients to show that above a certain value the resistance coefficient becomes constant. It was observed that the above resistance coefficients became constant at Reynold's numbers of 5.4 by 10⁴ and 4.3 by 10⁵, respectively (Figure 9). Corresponding Reynold's numbers in the prototype will be several times greater than those at which the model loss coefficients become constant, and therefore the obtained resistance coefficients are applicable to the prototype.

Generating Cycle

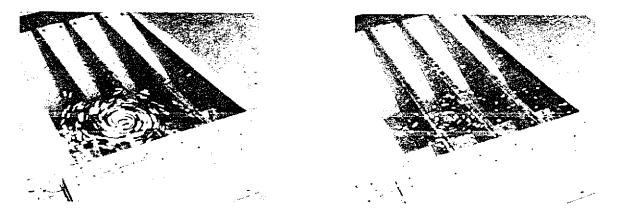
The recommended design obtained through evaluation of the pumping cycle flow (Figure 7) was then evaluated for generating cycle flow. Once again velocity distribution data were taken at the trashrack and stoplog sections. For these tests, the reservoir water level was field at elevation 9615 ft (2930.6 m). Velocity distribution data were taken for the inlet-outlet structure with and without the deflector. Head loss data were also taken for the generating cycle.

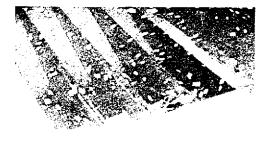

Initial observation revealed that a vortex problem existed for the generating cycle (Figures 10 and 11). Testing was done at 100 and 200 percent of design discharge for single-unit operation and at 100 and 125 percent of design discharge for two-unit operation.

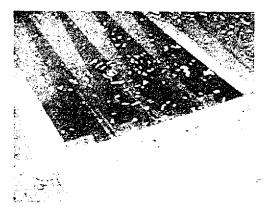

Discharges greater than those representing the design conditions were studied because of uncertainty in the accuracy of vortex modeling. Vortex modeling presents similitude problems that, as of yet, have not been answered.⁴ It is felt that the high discharge tests represent conditions that are as bad as, if not worse than, actual prototype conditions. There was a strong tendency for vortex formation with both one- and two-unit operations. It should be noted that strong air cores were observed at all water surface levels when the initial unit was operated at 200 percent of design discharge (Figure 10). Although this indication of air intake was present, no bubbles were noted moving down the penstock. The trashracks were simulated to see if they would reduce the vortex tendency. Only a slight reduction, if any, was observed.

Possible solutions to the vortex problem included raising the height of the piers and walls, closing off upper portions of the trashrack section, placing walls so that they would alter the flow configuration, and floating a raft over the vortex. It was decided that either the raft-type suppressor (Figure 12) or a suppressor consisting of a lattice-like wall (Figure 13) extending from the top edge of the trashracks to an elevation of 9621 ft (2932.3 m) would be the most effective. The raft studied (Figure 12) was composed of six 16-ft (4.88-m) by 20-ft (6.10-m) segments. The cross members of the segments were spaced at 2-ft (0.61-m) centers for both directions. The depth of the segments was 2 ft (0.61 m) as was the diameter of the supporting cylindrical pontoons. The lattice wall (Figure 13) extended out over the trashracks on a 1:3 slope which is perpendicular to the trashrack face. Lattice walls corresponding to both steel and reinforced concrete structures were tested and found satisfactory. The lattice wall shown in Figure 13 corresponds to the reinforced concrete structure. The cross members in both directions are at 4-ft (1.22-m) spacings. The depth of the wall was 1 ft (0.30 m). Neither the raft nor the lattice wall stopped the rotation in the flow, but both eliminated air intake into the penstocks. Figure 14 shows the lattice wall operating under various flow conditions.

The velocity distributions obtained at the trashrack section were nearly uniform (Figure 15). The maximum velocity observed was 3.90 fps (1.19 M/sec) and this was in the portion of the trashrack section affected by the vortex. The velocity distributions at the stoplog section were also quite uniform (Figure 15). Mild flow concentrations were observed in the lower left-hand corner (when looking in the direction of pumped flow) of the stoplog section. Flow disturbances were also observed at the stoplog section near the deflector. From this it was concluded that the flow distribution for the generating cycle was satisfactory.

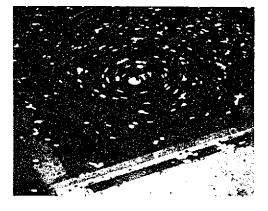

Head loss data were taken for the recommended inlet-outlet structure with the deflector in place. The observed head loss coefficients stabilized with respect to Reynold's number at 0.34 for the initial unit and at 0.37 for the future unit (Figure 6). It was observed that this stabilization occurred at Reynold's numbers of 3.75 by 10^5 and 4 by 10^5 , respectively (Figure 16).




10

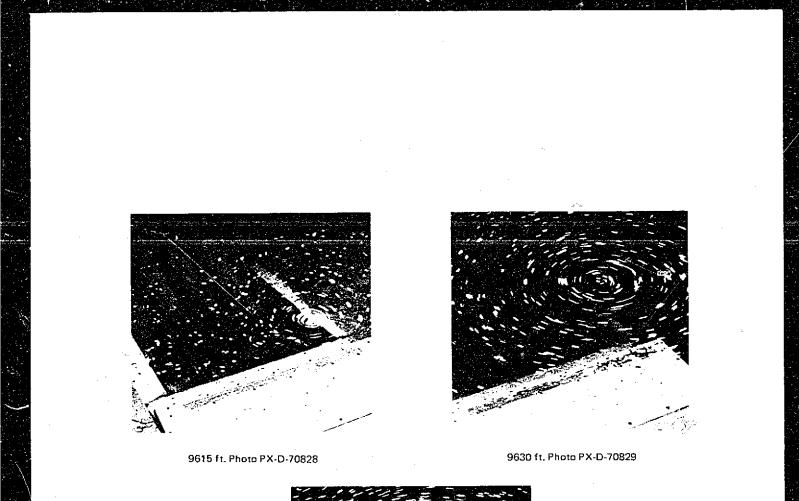
...

9615 ft water surface elevation. Left Photo PX-D-70822, right Photo PX-D-70825



9630 ft water surface elevation. Left Photo PX-D-70823, right Photo PX-D-70826

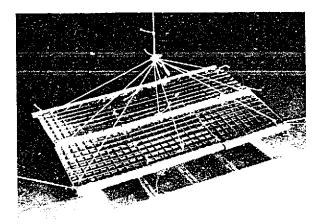
1


9645 ft water surface elevation. Left Photo PX-D-70824, right Photo PX-D-70827

200% discharge .100% discharge

Figure 10. Vortices, generating cycle, one-unit operation.

2


Ŕ

9645 ft water surface elevation. Photo PX-D-70830

Figure 11. Vortices, generating cycle, two-unit operation.

1 - C

ζų.

Figure 12. Raft-type vortex suppressor, Photo PX-D-70821

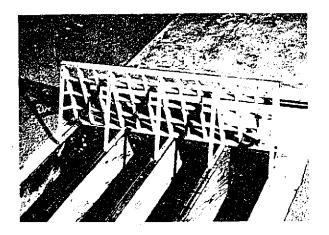
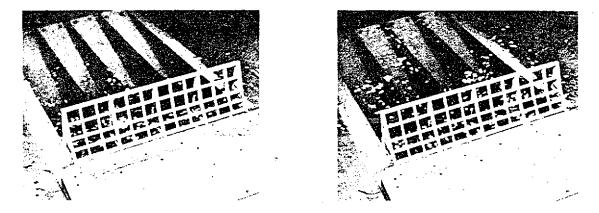
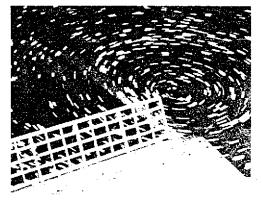
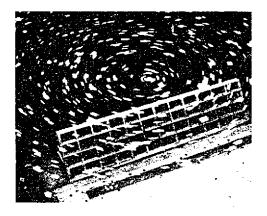
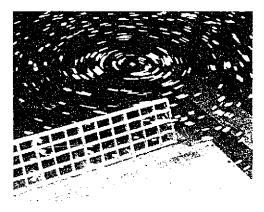



Figure 13. Lattice wall vortex suppressor. Photo PX-D-70837

Ŧ


: : : - : :


9615 ft water surface elevation. Left Photo PX-D-70831, right Photo PX-D-70834



٩

9630 ft water surface elevation. Left Photo PX-D-70832, right Photo PX-D-70835

9645 ft water surface elevation. Left Photo PX-D-70833, right Photo PX-D-70836

One-unit operation 200% discharge

II.

Two-unit operation 125% discharge

Generation vortices with suppression structure

Figure 14. Vortices, generating cycle with suppression structure.

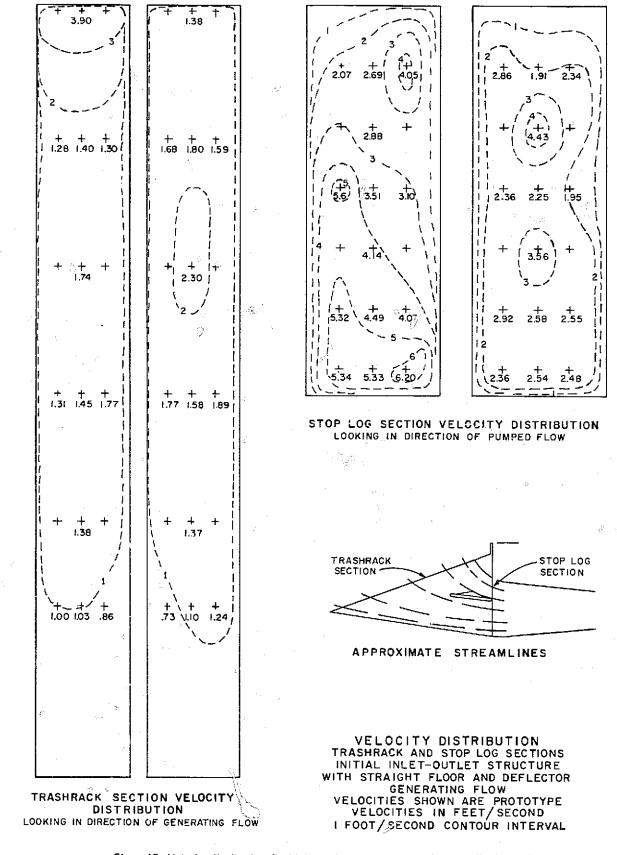
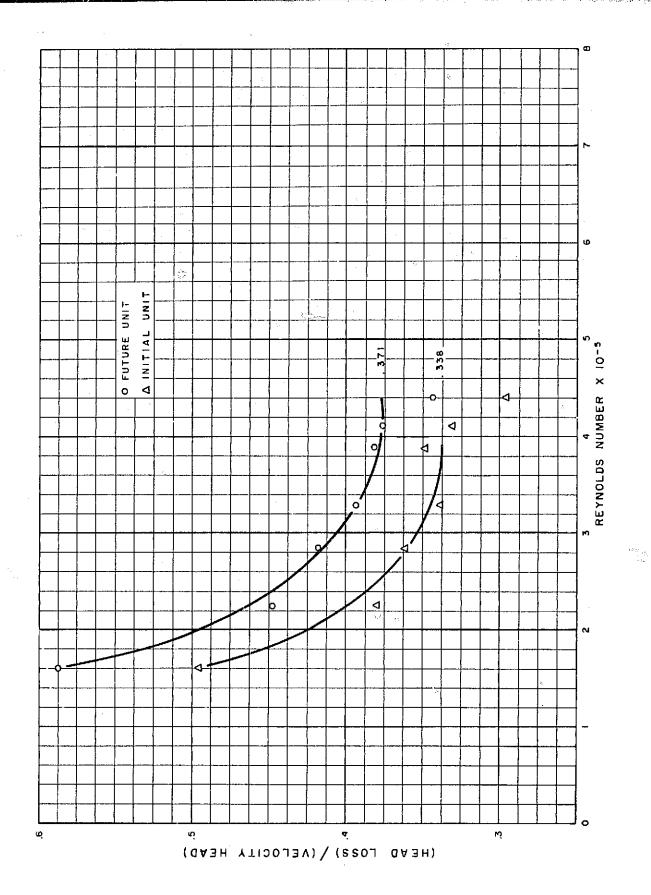
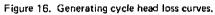




Figure 15. Velocity distribution, final inlet-outlet structure, generating cycle (initial unit)

GPO 840-357

7-1750 (3-71) Burery of Reclamation

200

CONVERSION FACTORS-BRITISH TO METRIC UNITS OF MEASUREMENT

The following conversion factors adopted by the Bureau of Reclamation are those published by the American-Society for Testing and Materials (ASTM Metric Practice Guide, E 380-68) except that additional factors (*) commonly used in the Bureau have been added. Further discussion of definitions of quantities and units is given in the ASTM Metric Practice Guide.

2 ve

The metric units and conversion factors adopted by the ASTM are based on the "International System of Units" (designated SI for Systeme International d'Unites), fixed by the International Committee for Weights and Measures: this system is also known as the Giorgi or MKSA (meter-kilogram (mass)-second-ampere) system. This system has been adopted by the International Organization for Standardization in ISO Recommendation R-31.

The metric technical unit of force is the kilogram force; this is the force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 9.80665 m/sec/sec, the standard acceleration of free fall toward the earth's center for sea level at 45 deg latitude. The metric unit of force in SI units is the newton (N), which is defined as unat force which, when applied to a body having a mass of 1 kg, gives it an acceleration of 1 m/sec/sec. These units must be distinguished from the (inconstant) local weight of a body having a mass of 1 kg, that is, the weight of a body is that force with which a body is attracted to the earth and is equal to the mass of a body multiplied by the acceleration due to gravity. However, because it is general practice to use "pound" rather than the technically correct term "pound-force," the conversion factors for forces. The newton unit of force will find increasing use, and is essential in SI units.

Where approximate or nominal English units are used to express a value or range of values, the converted metric units in parentheses are also approximate or nominal. Where precise English units are used, the converted metric units are expressed as equally significant values.

Table I

QUANTITIES AND UNITS OF SPACE

Square feet *929.03 Square centimeter Square yards 0.092903 Square meter Acres *0.40469 Square meter Acres *0.0040469 Square kilometer Square miles 2.58999 Square kilometer Square miles 2.58999 Square kilometer VOLUME VOLUME Cubic inches 16.3871 Cubic centimeter Cubic inches 0.0764555 Cubic meter Cubic seet 0.0283168 Cubic meter Cubic seet 0.764555 Cubic meter Cubic onches 0.473179 Cubic centimeter Cubic set (U.S.) 0.473179 Cubic centimeter Cuarts (U.S.) 0.473179 Cubic centimeter Cuarts (U.S.) 0.473179 Cubic centimeter Cuarts (U.S.) 0.473179 Liter Gallons (U.S.) 3.78543 Cubic centimeter Gallons (U.S.) 3.78543 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54609 </th <th>Multiply</th> <th>Ву</th> <th>To obtaîn</th>	Multiply	Ву	To obtaîn
nches 25.4 [exactly] Millimeter nches 2.54 [exactly] Centimeter eet 0.3048 (exactly] Meter eet 0.0003048 (exactly] Millimeter Yards 0.01734 (exactly] Meter Yards 1.609344 (exactly] Meter Yards 1.609344 (exactly] Meter Yards 1.609344 (exactly] Meter Yards 1.609344 (exactly] Meter Yiles 1.609344 (exactly] Meter Yards 0.373 (exactly] Meter Yards 0.334 [27 Square centimeter Square feet 0.092903 Square meter Square feet 0.024069 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square meter Square miles 2.58999 Square kilometer Square miles 0.764555 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic inches 0.764555 Cubic meter Cubic inches 0.764555 Cubic meter		LENGTH	
nches 25.4 [exactly] Millimeter nches 2.54 [exactly] Centimeter eet 0.3048 (exactly] Meter eet 0.0003048 (exactly] Millimeter Yards 0.01734 (exactly] Meter Yards 1.609344 (exactly] Meter Yards 1.609344 (exactly] Meter Yards 1.609344 (exactly] Meter Yards 1.609344 (exactly] Meter Yiles 1.609344 (exactly] Meter Yards 0.373 (exactly] Meter Yards 0.334 [27 Square centimeter Square feet 0.092903 Square meter Square feet 0.024069 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square meter Square miles 2.58999 Square kilometer Square miles 0.764555 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic inches 0.764555 Cubic meter Cubic inches 0.764555 Cubic meter	Mil	25,4 (exactly)	Micron
nches 2.54 (exactly)* Centimeter Sq.49 (exactly) Gentimeter Centimeter Teet 0.0003048 (exactly)* Meter Feet 0.0003048 (exactly)* Meter Wiles (statute) 1,609.344 (exactly)* Meter Miles (statute) 1,609.344 (exactly)* Meter Miles 1,609.344 (exactly) Kilometer Square inches 6.4516 (exactly) Square centimeter Square feet '929.03 Square entimeter Square feet 0.092903 Square entimeter Square feet 0.092903 Square entimeter Square feet 0.092903 Square entimeter Acres * 0.040469 Hectare Acres * 0.040469 Square meter Cubic inches 16.3871 Cubic centimeter	-	25.4 (exact(v)	Millimeters
Feet 30.49 (exactly)			
Teet 0.3048 (exactly)* Meter rect 0.0003048 (exactly)* Kilometer Vards 0.51:3 (exactly)* Meter Miles (statute) 1.609.344 (exactly)* Meter Miles 1.609.344 (exactly)* Kilometer Miles 1.609.344 (exactly)* Kilometer Miles 1.609.344 (exactly)* Kilometer AREA Square centimeter 1.609.344 (exactly) Square centimeter Square feet 9.03 Square centimeter Square centimeter Square feet 0.092903 Square centimeter Square centimeter Acres * 0.040469 Hectare Acres * 0.0040469 Square kilometer Square miles 2.58999 Square kilometer Square stillometer 0.0283168 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic deit 0.764555 Cubic meter		30.49 (exactly)	Centimeters
Feet 0.0003048 (exactly)* Kilometer. Yards 0.0013048 (exactly)* Meter. Miles (statute) 1.609.344 (exactly)* Meter. Miles 1.609.344 (exactly)* Kilometer. Miles 1.609.344 (exactly)* Kilometer. Miles 6.4516 (exactly)* Square centimeter Square feet 929.03 Square centimeter Square feet 0.092903 Square centimeter Acres 0.40469 Square meter Acres *4.046.9 Square meter Acres *4.046.9 Square meter Square miles 2.58999 Square kilometer Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic yards 0.764555 Cubic meter Cubic yards 0.764555 Cubic centimeter Cubic yards 0.743179 Cubic centimeter Cubic yards 0.74355 Cubic centimeter Cubic yards 0.764555 Cubic centimeter Cubic y			
Yards 0.51:3 (exactly) Meter Miles (statute) 1.609.344 (exactly)* Meter Miles 1.609.344 (exactly)* Kilometer AREA AREA Square feet 929.03 Square centimeter Square feet 0.092903 Square centimeter Square feet 0.092903 Square meter Square feet 0.092903 Square meter Acres * 0.40469 Hectare Acres * 0.0040469 Square meter Acres * 0.0040469 Square kilometer Square miles 2.58999 Square kilometer Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic meter Cubic feet 0.283168 Cubic meter Cubic geet 0.754555 Cubic meter Cubic squds 0.473179 Cubic decimeter Cubic gedt 0.473179 Cubic centimeter Quarts (U.S.) 946.338 Cubic centimeter Quarts (U.S.) 946.331 Cubic centimete	_		
Miles (statute) 1,609.344 (exactly)* Meter Miles 1,609.344 (exactly) Kilometer AREA AREA Square feet 929.03 Square centimeter Square feet 0.092903 Square meter Square feet 0.092903 Square meter Square feet 0.092903 Square meter Acres *0.40469 Hectare Acres *0.40469 Square meter Square miles 2.58999 Square kilometer Square miles 2.58999 Square kilometer Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic square 0.744555 Cubic meter Cubic onches 0.744555 Cubic meter Cubic squares 0.744555 Cubic meter Cubic squares 0.744555 Cubic meter Cubic vards 0.743179 Cubic centimeter Cubic squares 0.473179 Cubic centimeter Cuarts (U.S.) 0.473179 Cubic centimeter Square 10,946331 Liter 0.496331 </td <td></td> <td></td> <td></td>			
Wiles 1.609344 (exactly) Kilometer AREA AREA Square inches 6.4516 [exactly) Square centimeter Square feet *929.03 Square centimeter Square feet 0.092903 Square meter Square yards 0.336127 Square meter Acres *0.40469 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square kilometer Square miles 2.58999 Square kilometer Square miles 2.6899 Square kilometer Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic meter Cubic squares 0.0283168 Cubic meter Cubic squares 0.754555 Cubic meter Cubic squares (U.S.) 29.5737 Cubic centimeter Cubic square (U.S.) 29.5737 Cubic centimeter Cuparts (U.S.) 0.473179 Cubic centimeter Cuparts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 0.473178 Cubic centimeter Gallons (U.S.) <		1 609 344 (eventiv)*	Meters
AREA Squarc inches 6.4516 [exactly) Square centimeter Square feet 929.03 Square centimeter Square feet 0.092903 Square centimeter Square feet 0.092903 Square meter Square yards 0.836127 Square meter Acres 10.40469 Square meter Acres 10.0040469 Square kilometer Square miles 2.58999 Square kilometer Square miles 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic meter Cubic inches 16.3871 Cubic meter Cubic yards 0.754555 Cubic meter Cubic yards 0.754555 Cubic meter Cubic yards 0.473179 Cubic centimeter Cubic yards 0.473179 Cubic centimeter Cuars (U.S.) 9.46331 Liter Cuarts (U.S.) 0.473179 Cubic centimeter Cuarts (U.S.) 3.78543 Cubic centimeter Gallons (U.S.) 3.78543 Cubic deetimeter <td></td> <td></td> <td></td>			
Square inches 6.4516 (exactly) Square centimeter Square feet 929.03 Square centimeter Square feet 0.92903 Square meter Square yards 0.36127 Square meter Acres *0.40469 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square meter Square miles Square meter Square meter Square miles \$Square meter Square meter Cubic inches 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic set 0.0283168 Cubic meter Cubic yards 0.764555 Cubic meter Cubic yards 0.473179 Cubic decimeter Liquid pints (U.S.) 946.331 Liter Quarts (U.S.) *3785.43 Cubic centimeter Quarts (U.S.) *3785.43 Cubic decimeter Gallons (U.S.) *3785.43 Cubic decimeter Gallons (U.S			
Square feet *929.03 Square centimeter Square yards 0.932903 Square meter Acres 0.40469 Square meter Acres *0.0040469 Square kilometer Square miles 2.58999 Square kilometer Square miles 2.58999 Square kilometer VOLUME VOLUME Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic feet 0.283168 Cubic meter Cubic seet 0.764555 Cubic meter Cubic ources (U.S.) 29.5737 Cubic centimeter Cubic seet (U.S.) 29.5737 Cubic centimeter Cubic seet (U.S.) 0.473179 Cubic centimeter Cuarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 0.473178 Cubic centimeter Gallons (U.S.) 3.78543 Cubic centimeter Gallons (U.S.) 3.78543 Cubic decimeter Gallons (U.S.) 3.78543 Cubic decimeter Gallons (U.S.) 4.54699 Cubic decimeter Gallons (U.S.) 4.54699 Cubic decimeter			
Square feet 0.092903 Square meter Square yards 0.36127 Square meter Acres *0.40469 Hectare Acres *0.0040469 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square meter Square miles 2.58999 Square kilometer Cubic inches 16.3871 Cubic centimeter Cubic feet 0.764555 Cubic meter Cubic square 0.764555 Cubic meter Cubic vards 0.764555 Cubic meter Cubic square 0.764555 Cubic centimeter Cubic vards 0.764555 Cubic centimeter Liquid pints (U.S.) 29.5737 Cubic centimeter Liquid pints (U.S.) 0.473179 Cubic decimeter Quarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) *0.946331 Liter Gallons (U.S.) 3.78543 Cubic centimeter Gallons (U.S.) 3.78543 Cubic decimeter 3.78543 Cubic decimeter <td>Square inches</td> <td>6.4516 (exactly)</td> <td> Square centimeters</td>	Square inches	6.4516 (exactly)	Square centimeters
Square yards 0.836127 Square meter Acres *0.40469 Hectare Acres *0.0040469 Square meter Acres *0.0040469 Square meter Acres *0.0040469 Square kilometer Square miles 258999 Square kilometer VOLUME VOLUME Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic feet 0.283168 Cubic meter Cubic seet 0.764555 Cubic meter Cubic ources (U.S.) 29.5737 Cubic centimeter Liquid pints (U.S.) 0.473179 Cubic decimeter Liquid pints (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) *946.358 Cubic centimeter Gallons (U.S.) *3785.43 Cubic centimeter Gallons (U.S.) 3.78543 Cubic decimeter Gallons (U.S.) 4.54699 Cubic decimeter Gallons (U.S.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic feet 28.3160 Liter Cubic vards *764.55	Square feet		
Square yards 0.336127 Square meter Acres *0.40469 Square meter Acres *0.0040469 Square meter Square miles 2.58999 Square kilometer Square miles 16.3871 Cubic centimeter Cubic inches 16.3871 Cubic centimeter Cubic feet 0.283168 Cubic meter Cubic seet 0.764555 Cubic meter Cubic yards 29.5737 Cubic centimeter Cubic set (U.S.) 29.5737 Cubic centimeter Fluid ounces (U.S.) 0.473179 Cubic decimeter Liquid pints (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) *946331 Liter Gallons (U.S.) *946331 Liter Gallons (U.S.) 3.78543 Cubic centimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.S.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic feet 28.3160 Liter Cubic vards *764.55	Square feet	0.092903	Square meters
Acres *0.40469 Hectare Acres *4,0469 Square meter Acres *0.0040469 Square kilometer Square miles 2.58999 Square kilometer VOLUME VOLUME Cubic inches 16,3871 Cubic centimeter Cubic feet 0.0283168 Cubic meter Cubic seet 0.764555 Cubic meter Cubic seet 0.764555 Cubic centimeter Cubic seet(U.S.) 29.5737 Cubic centimeter Liquid pints (U.S.) 0.473179 Cubic decimeter Liquid pints (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) *946.358 Cubic centimeter Quarts (U.S.) *946.351 Liter Gallons (U.S.) *3.785.43 Cubic centimeter Gallons (U.S.) *3.785.43 Cubic decimeter Gallons (U.S.) *3.78543 Cubic decimeter Gallons (U.S.) *4.54596 Cubic decimeter Cubic feet 28.3160 Liter Cubic feet 28.3160 Liter Cubic feet *1.233.5 Liter <td></td> <td>0.836127</td> <td> Square meters</td>		0.836127	Square meters
Acres *4,046.9 Square meter Acres \$0,0040469 Square kilometer Square miles \$2,58999 Square kilometer VOLUME VOLUME Cubic inches 16,3871 Cubic centimeter Cubic feet 0.0283168 Cubic meter Cubic feet 0.764555 Cubic meter Cubic vards 0.764555 Cubic meter Cubic operation 29,5737 Cubic centimeter Fluid ounces (U.S.) 29,5737 Cubic centimeter Liquid pints (U.S.) 29,5737 Cubic centimeter Quarts (U.S.) 29,5737 Cubic centimeter Quarts (U.S.) 0.473179 Cubic decimeter Quarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) *0.946331 Liter Gallons (U.S.) *0.946331 Liter Gallons (U.S.) 3,785,43 Cubic centimeter Gallons (U.S.) *0.00378543 Cubic decimeter Gallons (U.S.) *0,00378543 Cubic decimeter Gallons (U.S.) *0.00378543 Cubic decimeter Gallons (U.K.)		*0.40469	Hectares
Acres *0.0040469 Square kilometer Square miles 2.58999 Square kilometer Square miles VOLUME VOLUME Cubic inches 16.3871 Cubic centimeter Cubic feet 0.0283168 Cubic meter Cubic yards 0.764555 Cubic meter Cubic yards 0.764555 Cubic centimeter CAPACITY 29.5737 Cubic centimeter Fluid ounces (U.S.) 29.5737 Cubic centimeter Liquid pints (U.S.) 0.473179 Cubic decimeter Quarts (U.S.) 0.473179 Cubic decimeter Quarts (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Liter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54596 Liter Cubic rest 2.3160 Liter Cubic rest *764.55 Liter Cubic rest *764.55 Liter Cubic rest *764.55 Li		4.046.9	Square meters
Square miles 2,58999 Square kilometer VOLUME 16.3871 Cubic centimeter Cubic feet 0.0283168 Cubic centimeter Cubic yards 0.764555 Cubic meter Cubic ources (U.S.) 29.5737 Cubic centimeter Fluid ources (U.S.) 29.5729 Milliliter Liquid pints (U.S.) 0.473179 Cubic decimeter Quarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 0.473179 Liter Quarts (U.S.) 0.473178 Cubic centimeter Gallons (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54609 Liter Cubic feet 2.3160 Liter Cubic yards *764.55 Liter Cubic yards *764.55 Liter		*0.0040469	Square kilometers
Cubic inches 16.3871 Cubic centimeter Cubic feet 0.0283168 Cubic meter Cubic yards 0.764555 Cubic meter CAPACITY 29.5737 Cubic centimeter Fluid ounces (U.S.) 29.5737 Cubic centimeter Liquid pints (U.S.) 29.5729 Milliliter Liquid pints (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 0.473179 Liter Gallons (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54609 Cubic decimeter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter Cubic yards *764.55 Liter		2.58999	Square kilometers
Cubic feet 0.0283168 Cubic meter Cubic yards 0.764555 Cubic meter Cubic ounces (U.S.) 29.5737 Cubic centimeter Fluid ounces (U.S.) 29.5729 Millitizer Liquid pints (U.S.) 0.473179 Cubic centimeter Ouarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 946.358 Cubic centimeter Quarts (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Liter Gallons (U.S.) 0.00378543 Cubic meter Gallons (U.S.) 4.54609 Cubic meter Gallons (U.K.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic feet 2.33160 Liter Cubic feet 2.33160 Liter Cubic feet 1.233.5 Cubic meter Cubic feet 2.33160 Liter			
Cubic feet 0.0283168 Cubic meter Cubic yards 0.764555 Cubic meter Cubic ounces (U.S.) 29.5737 Cubic centimeter Fluid ounces (U.S.) 29.5729 Millitizer Liquid pints (U.S.) 0.473179 Cubic centimeter Ouarts (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 946.358 Cubic centimeter Quarts (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Liter Gallons (U.S.) 0.00378543 Cubic meter Gallons (U.S.) 4.54609 Cubic meter Gallons (U.K.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic feet 2.33160 Liter Cubic feet 2.33160 Liter Cubic feet 1.233.5 Cubic meter Cubic feet 2.33160 Liter	Cubie instan	16 3871	Cubic centimeters
Cubic vards 0.764555 Cubic mater Cubic vards 0.764555 Cubic mater CAPACITY 29.5737 Cubic centimeter Fluid ounces (U.S.) 29.5729 Milliliter Liquid pints (U.S.) 0.473179 Cubic centimeter Quarts (U.S.) 0.473176 Liter Quarts (U.S.) 0.473166 Liter Quarts (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78543 Cubic decimeter Gallons (U.S.) 3.78543 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.S.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54609 Cubic decimeter Gallons (U.K.) Liter 28.3160 Liter Cubic vards *764.55 Liter Cubic vards *764.55 Liter			
CAPACITY Fluid ounces (U.S.) 29,5737 Cubic centimeter Fluid ounces (U.S.) 29,5729 Milliliter Liquid pints (U.S.) 0.473179 Cubic decimeter Liquid pints (U.S.) 0.473176 Liter Quarts (U.S.) *946.358 Cubic centimeter Quarts (U.S.) *0.946331 Liter Gallons (U.S.) *0.00378543 Cubic decimeter Gallons (U.S.) *0.00378543 Cubic decimeter Gallons (U.K.) 4.54609 Cubic decimeter Gallons (U.K.) *1.54609 Cubic decimeter Gallons (U.K.) *1.54609 Liter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter *764.55 Liter *1.5460			
Fluid ounces (U.S.) 29,5737 Cubic centimeter Fluid ounces (U.S.) 29,5737 Milliliter Liquid pints (U.S.) 0,473179 Cubic centimeter Liquid pints (U.S.) 0,473176 Liter Quarts (U.S.) 0,473176 Liter Quarts (U.S.) 0,473176 Liter Quarts (U.S.) 0,946358 Cubic centimeter Gallons (U.S.) 3,78543 Cubic centimeter Gallons (U.S.) 3,78543 Cubic decimeter Gallons (U.S.) 3,78543 Cubic decimeter Gallons (U.S.) 0,0378543 Cubic meter Gallons (U.S.) 4,54609 Cubic meter Gallons (U.K.) 4,54596 Liter Cubic feet 28,3160 Liter Cubic yards *764,55 Liter			<u> </u>
Fuild outrices (U.S.) 29.5729 Milliliter Liquid pints (U.S.) 0.473179 Cubic decimeter Liquid pints (U.S.) 0.473179 Liter Quarts (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78543 Cubic decimeter Gallons (U.S.) 3.78533 Liter Gallons (U.S.) Cubic decimeter 3.78533 Gallons (U.S.) Cubic decimeter 3.78543 Gallons (U.K.) Liter 4.54609 Gallons (U.K.) Liter 2. Gallons (U.K.) Liter 2. Cubic feet 2. 2. Cubic yards *764.55 Liter *764.55 Cubic meter 1. *0.00237853 Cubic meter <t< td=""><td></td><td>CAPACITY</td><td>······</td></t<>		CAPACITY	······
Liquid pints (U.S.) 0.473179 Cubic decimeter Liquid pints (U.S.) 0.473179 Liter Quarts (U.S.) 946.358 Liter Quarts (U.S.) 0.946331 Liter Gallons (U.S.) 3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Cubic decimeter Gallons (U.S.) 0.00378433 Cubic decimeter Gallons (U.S.) 4.54609 Liter Gallons (U.K.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter *1233.5 Cubic meter *1233.5	Fluid ounces (U.S.)		
Liquid pints (U.S.) 0.473166 Liter Quarts (U.S.) 946.358 Cubic centimeter Quarts (U.S.) *946.358 Liter Gallons (U.S.) \$0.946331 Liter Gallons (U.S.) \$3.785.43 Cubic centimeter Gallons (U.S.) \$3.78543 Cubic decimeter Gallons (U.S.) \$3.78533 Liter Gallons (U.S.) \$3.78533 Cubic meter Gallons (U.S.) \$3.78543 Cubic decimeter Gallons (U.K.) \$4.54596 Liter Cubic feet \$2.3160 Liter Cubic yards *764.55 Liter *1233.5 Cubic meter *1.233.5	Fluid ounces (U.S.)	29.5729	Milliliter
Cuparts (U.S.) *946.35B Cubic centimeter Quarts (U.S.) *0.946331 Liter Gallons (U.S.) *3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Liter Gallons (U.S.) 0.00378543 Liter Gallons (U.S.) *0.00378543 Liter Gallons (U.S.) *0.00378543 Liter Gallons (U.S.) *0.00378543 Liter Gallons (U.K.) 4.54609 Liter Gallons (U.K.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter *1.233.5 Cubic meter *1.233.5	Liquid pints (U.S.)		
Quarts (U.S.) *0.946331 Liter Gallons (U.S.) *3.785.43 Cubic centimeter Gallons (U.S.) 3.78533 Liter Gallons (U.S.) 3.78533 Liter Gallons (U.S.) 0.00378543 Cubic decimeter Gallons (U.K.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter *1.233.5 Cubic meter 2.335	Liquid pints (U.S.)		
Gallons (U.S.) *3,785,43 Cubic centimeter Gallons (U.S.) 3,78543 Cubic decimeter Gallons (U.S.) 3,78533 Liter Gallons (U.S.) 0,00378543 Cubic decimeter Gallons (U.S.) 4,54609 Cubic decimeter Gallons (U.K.) 4,54699 Cubic decimeter Gallons (U.K.) 4,54596 Liter Cubic feet 28,3160 Liter Cubic yards *764,55 Liter *1233.5 Cubic meter *1233.5	Quarts (U.S.)	*946.35B	Cubic centimeter
Gallons (U.S.) 3,78543 Cubic decimeter Gallons (U.S.) 3,78533 Liter Gallons (U.S.) 0,00378543 Cubic meter Gallons (U.K.) 4,54609 Cubic decimeter Gallons (U.K.) 4,54596 Liter Cubic feet 28,3160 Liter Cubic yards *764,55 Liter *1,233.5 Cubic meter Cubic meter	Quarts (U.S.)	*0.946331	Liter
Gallons (U.S.) 3.78533 Liter Gallons (U.S.) *0.00378543 Cubic meter Gallons (U.K.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter 1.233.5 Cubic meter Cubic meter	Gallons (U.S.)	*3,785,43	Cubic centimeter
Gallons (U.S.) *0.00378543 Cubic meter Gallons (U.K.) 4.54609 Cubic decimeter Gallons (U.K.) 4.54596 Liter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter 1.233.5 Cubic meter Cubic meter	Gallons (U.S.)	3,78543	Cubic decimeter:
Gallons (U.S.) *0.00378543 Cubic meter Gallons (U.K.) 4,54609 Cubic decimeter Gallons (U.K.) 4,54596 Liter Cubic feet 28,3160 Liter Cubic yards *764,55 Liter 1,233.5 Cubic meter Cubic meter	Gallons (U.S.)	3,78533	Liter
Gallons (U.K.) 4,54609 Cubic decimater Gallons (U.K.) 4,54596 Liter Cubic feet 28,3160 Liter Cubic yards *764,55 Liter *1,233,5 Cubic meter 1,233,5			
Gallons (U,K) 4.54596 Liter Cubic feet 28.3160 Liter Cubic yards *764.55 Liter Acre-feet *1,233.5 Cubic meter		4,54609	, Cubic decimeter:
Cubic feet 28.3160 Liter Cubic yards *764.55 Liter Acre-feet *1,233.5 Cubic meter	Gallons (U.K.)	4.54596	Liter
Cubic yards		28.3160	S Liter
Arrefeet *1,233.5		*764,55	Liter
Arra feet *1 233 500		*1.233.5	, , , Cubic meter
	Acre-feet	*1.233.500	Liter

Table II

QUANTITIES AND UNITS OF MECHANICS

Multiply	By	To obtain
	MASS	
Grains (1/7,000 lb)		
Troy ounces (480 grains)		Gram
Dunces (avdp)		Gram
Pounds (avdp)	0.45359237 (exactly	
Short tons (2,000 lb)		Kilograin
Short tans (2,000 lb)	0.907185	Metric ton
ong tens (2,240 ib)	1,016.05	Kilogram
	FORCE/AREA	
Pound: per square inch		
Pounds per square inch	0.689476	Newtons per square centimeter
Pounds per square foot	4.88243	Kilograms per square meter
Pounds per square foot	47.8803	Newtons per square meter
······································	MASS/VOLUME (DENS	
Ounces per cubic inch		Grams per cubic centimete
Pounds per cubic foot	16.0185	Kilograms per cubic mete
Pounds per cubic feat	0.0160185	Grams per cubic centimete
Tons (long) per cubic yard	1,32894	Grams per cubic centimete
	MASS/CAPACITY	
Ounces per galion (U.S.)		Grams per lite
Ounces per gallon [U,K.}	6.2362	Grams per lite
Pounds per gallon (U.S.)	119,829	Gramsper lite
Pounds per gallon (U.K.)	99.779	Grams per lite
	BENDING MOMENT O	R TORQUE
Inch-pounds	0.011521	
Inch-pounds		
Foot pounds		Meter-kilogram
Foot-pounds		
Foot-pounds per inch		Centimeter-kilograms per centimete
Ounce-inches		Gram-centimeter
	VELOCITY	
Feet per second	30.48 (exactly)	Centimeters per second Meters per second Centimeters per second
Feet per second	0.3048 (exactly) * .	Meters per second
Feet per year	*0.965873 x 10 ⁶	Centimeters per second
Miles per hour	1.609344 (exactly)	Kilometers per hou
Miles per hour	0.44704 (exactly)	Meters per second
	ACCELERATION*	
Feet per second ²		
Feet per second ²		Meters per second
Cubic feet per second	*0.3048	
Cubic feet per second	*0.3048	
Cubic feet per second (second.feet)	*0.3048 FLOW *0.028317 0.4719	Cubic meters per secon
Cubic feet per second	*0.3048 FLOW *0.028317 0.4719	
Cubic feet per second (second-feet) Cubic feet per minute	*0.3048 FLOW *0.028317 0.4719	Cubic meters per secon
Cubic feet per second (second-feet) Cubic feet per minute	*0.3048 FLOW *0.028317 0.4719 0.06309 FORCE* *0.453592	
Cubic feet per second (second_feet) Cubic feet per minute Gallons (U.S.) per minute	*0.3048 FLOW *0.028317 0.4719 0.06309 FORCE* *0.453592	Cubic meters per secon Liters per secon Liters per secon

Table II-Continued

Multiply	Βγ	To obtain
	WORK AND ENERGY*	
British thermal units (Btu) British thermal units (Btu) Btu per pound Foot-pounds	1,055.06 2.326 (exactly)	Kilogram calories Joules Joules per gram Joules
	POWER	ه، <u>چين و سين و</u>
Horsepower Btu per hour Foot prunds per second	0.293071	Watts Watts Watts Watts
	HEAT TRANSFER	
Btu in,/hr ft ² degree F (k, thermal conductivity) Btu in,/hr ft ² degree F (k, thermal conductivity) Btu ft/hr ft ² degree F Btu/hr ft ² degree F [G, thermal_conductance)	0,1240 1,4880	Milliwatts/cm degree C Kg cal/hr m degree C Kg cal m/hr m ² degree C Milliwatts/cm ² degree C
Btu/hr ft ² degree F (C, thermal conductance)	4,882	Kg cal/hr m ² degree C
Degree F hr ft ² /Btu (R, thermat resistance) Btu/lb degree F Ic, heat capacity} Btu/lb degree F Ft ² /hr (thermal diffusivity) Ft ² /hr (thermal diffusivity)	4,1868 1,000 0,2581	Degree C cm ² /milliwatt J/g degree C Cal/gram degree C cm ² /gram M ² /hr
;	WATER VAPOR TRANSMIS	SION
Grains/hr tt ² (water vapor) transmission)	16.7	Grams/24 hr m ² Metric perms Metric perm-centimeters

Table III

OTHER QUANTITIES AND UNITS

Maltiply	By	To obtain
Cubic feet per square foot per day (seepage)	3D4.8	Liters per square meter per day
Pound seconds per square foot (viscosity)	4.8824	. Kilogram second per square meter
Square feet per second (viscosity)	*0,092903 ,	Square meters per second
Fahrenheit degrees (change)	5/9 exactly	. Celsius or Kelvin degrees (change)*
Volts per mil		Kilovolts per millimeter
Lumens per square foot (foot-candles)		Lumens per square meter
Ohm-circular mils per foot	0.001662	. Ohm-square millimeters per meter
Millicuries per cubic foot	*35.3147	Millicuries per cubic meter
Milliamps per square foot		Milliamps per square meter
Gailons per square yard		Liters per square meter
Pounds per inch		Kilograms per contimeter

GPO 835 - 188

12

TEATRACT

Hydraulic model studies were performed to assure satisfactory flow gonditions through the hydraulic model studies were performed to assure satisfactory flow gonditions through the The main purpose for the studies was to develop a design to provide a uniform velocity distribution at the trashracks during the pumped cycle. Uniform velocity distribution would minimize the possibility of forming strong vortex shedding and reduce the forces causing trashrack fatigue failure. Flow conditions for the generating cycle were evaluated to ensure a uniform velocity distribution free of air entraining surface vortices. Head loss measurements were made for the inter-outlet structure. A horizontal deflector with flip blocks was developed to improve the vertical velocity distribution at the trashrack position. A flat upward sloping floor was developed to replace the original concave floor in the structure. Two devices were the vertical velocity distribution at the trashrack position. A flat upward sloping to improve the vertical velocity distribution at the trashrack position. A flat upward sloping floor was developed to replace the original concave floor in the structure. Two devices were the veloped to suppress generation of surface vortices.

TOARTEACT

Hydraulic model studies were performed to assure sarisfactory flow conditions through the forebay reservoir inlet-outlet structure for Mr. Elbert Pumped-Storage Powerplart, Colorado. The main purpose for the studies was to develop a design to provide, a uniform velocity distribution would distribution at the trashracks during the pumped cycle. Uniform velocity distribution would minimize the possibility of forming strong vortex shedding and reduce the forese causing minimize the possibility of forming strong vortex shedding and reduce the forese causing minimize the possibility of forming strong vortex shedding and reduce the forese causing minimize the possibility of forming strong vortex shedding and reduce the possibility of forming strong vortex shedding and reduce the possibility of forming strong unstand cycle were evaluated to ensure a uniform velocity distribution free of air entraining surface vortices. Head loss measurements were made for the inlet-outlet structure. A horizontal deflector with flip blocks was developed to improve the vertical velocity distribution at the trashrack position. A flat upward storing to improve the vertical velocity distribution at the trashrack position. A flat upward storing to improve the vertical velocity distribution at the trashrack position. A flat upward storing the infer-outlet structure. A horizontal deflector with flip blocks was developed to replace the original concave floor in the structure. Two devices were floor as developed to replace the original concave floor in the structure. Two devices were developed to suppress generation of surface vortices.

ABSTRACT

Hydraulic model studies were performed to assure satisfactory flow conditions through the forebay reservoir inter-outlet structure for Mt. Elbert Pumped-Storage Powerplant, Colorado. The main purpose for the studies was to develop a design to provide a uniform velocity distribution at the trashracks during the pumped cycle. Uniform velocity distribution would minimize the possibility of forming strong vortex shedding and reduce the forces causing minimize the possibility of forming strong vortex shedding and reduce the forces causing uniform velocity distribution the enditions for the generating cycle were evaluated to ensure a uniform velocity distribution the structure. How conditions for the generating cycle were evaluated to ensure a uniform velocity distribution the structure. A horizontal deflector with flip blocks was developed to improve the vertical velocity distribution at the trastreck position. A flat upward sloping to improve the vertical velocity distribution at the trastreck position. A flat upward sloping to improve the vertical velocity distribution the structure. Two devices were developed to replace the original concave floor in the structure. Two devices were developed to suppress generation concave floor in the structure. Two devices were developed to suppress generation concave floor in the structure. Two devices were developed to suppress generation of surface vortices.

ABSTRACT

Hydraulic model studies were performed to assure satisfactory flow conditions through the forebay reservoir inter-outlet structure for ML. Elbert Pumped-Storage Powenplant, Colorado. The main purpose for the studies was to develop a design to provide a uniform velocity distribution at the trashracks during the pumped cycle. Uniform velocity distribution would minimize the possibility of forming strong vortex shedding and reduce the forces causing trashrack tarigue failure. Flow conditions for the generating cycle were evaluated to ensure a uniform velocity distribution free of air entraining surface vortices. Head loss measurements were made for the inter-outlet structure. A horizontal deflector with flip blocks was developed to improve the vertical velocity distribution at the trashrack position. A flat upward sloping to improve the vertical velocity distribution at the trashrack position. A flat upward sloping thore was developed to replace the original concave floor in the structure. Two devices were developed to replace the original concave floor in the structure. Two devices were developed to replace the original concave floor in the structure. Two devices were thor was developed to replace the original concave floor in the structure. Two devices were developed to replace the original concave floor in the structure. Two devices were the material structure were as the presence floor in the structure. Two devices were developed to replace the original concave floor in the structure. Two devices were there was developed to replace the original concave floor in the structure. Two devices were the structure were were as the trastrue of an endance of a tracture to the structure. Two devices were the structure is a structure to a structure. Two devices were the structure is a structure to replace the original concave floor in the structure. Two devices were the structure is a structure to a structure to a structure to replace the original concave floor in the structure.

REC-ERC-72-5 Johnson, P L

HYDRAULIC MODEL STUDIES OF THE FOREBAY RESERVOIR INLET-OULET STRUCTURE FOR MT. ELBERT PUMPED-STORAGE POWER PLANT FRYINGPAN-ARKANSAS PROJECT, COLORADO

Bur Reclam Rep REC-ERC-72-5, Div Gen Res, Jan 1972, Bureau of Reclamation, Denver, 16 p, 16 fig

DESCRIPTORS-/ *pumped storage/ hydraulic models/ *intake transitions/ *outlets/ flow characteristics/ flow distribution/ head losses/ trashracks/ model tests/ *velocity distribution/ vortices/ water surface/ design modifications/ disturbances/ *model studies

IDENTIFIERS-/ Fryingpan-Arkansas Proj, Colo/ Mount Elbert Pump-Storage Pit, Colo

REC-ERC-72-5

Johnson, P.L.

HYDRAULIC MODEL STUDIES OF THE FOREBAY RESERVOIR INLET-OULET STRUCTURE FOR MT. ELBERT PUMPED-STORAGE POWER PLANT FRYINGPAN-ARKANSAS PROJECT, COLORADO

Bur Reclam Rep REC-ERC-72-5, Div Gen Res, Jan 1972, Bureau of Reclamation, Denver, 16 p, 16 fig

DESCRIPTORS-/ *pumped storage/ hydraulic models/ *intake transitions/ *outlets/ flow characteristics/ flow distribution/ head losses/ trashracks/ model tests/ *velocity distribution/ vortices/ water surface/ design modifications/ disturbances/ *model studies

IDENTIFIERS-/ Fryingpan-Arkansas Proj, Colo/ Mount Elbert Pump-Storage Plt, Colo

REC-ERC-72-5 Johnson, P L

HYDRAULIC MODEL STUDIES OF THE FOREBAY RESERVOIR INLETOULET STRUCTURE FOR MT. ELBERT PUMPED STORAGE POWER PLANT FRYINGPAN-ARKANSAS PROJECT, COLORADO

Bur Reclam Rep REC-ERC-72-5, Div Gen Res, Jan 1972, Bureau of Reclamation, Denver, 16 p, 16 fig

DESCRIPTORS-/ *pumped storage/ hydraulic models/ *intake transitions/ *outlets/ flow characteristics/ flow distribution/ head tosses/ trashracks/ model tests/ *velocity distribution/ vortices/ water surface/ design modifications/ disturbances/ *model studies IDENTIFIERS-/ Fryingnan-Arkansas Proj. Colo/ Mount Elbert Pump-Storage Plt, Colo

REC-ERC-72-5 Johnson, P L

HYDRAULIC MODEL STUDIES OF THE FOREBAY RESERVOIR INLET-OULET STRUCTURE FOR MT. ELBERT PUMPED-STORAGE POWER PLANT FRYINGPAN-ARKANSAS PROJECT, COLORADO

Bur Reclam Rep REC-ERC-72-5, Div Gen Res, Jan 1972, Bureau of Reclamation, Denver, 16 p, 16 fig

DESCRIPTORS—/ *pumped storage/ hydraulic models/ *intake transitions/ *outlets/ flow characteristics/ flow distribution/ head losses/ trashracks/ model tests/ *velocity distribution/ vortices/ water surface/ design modifications/ disturbances/ *model studies IDENTIFIERS—/ Fryingpan-Arkansas Proj, Colo/ Mount Elbert Pump-Storage Pit, Colo