HISTORICAL PERFORMANCE OF BURIED WATER PIPE LINES

September 1994

U.S. DEPARTMENT OF THE INTERIOR
 Bureau of Reclamation
 Technical Service Center
 Research and Laboratory Services Division
 Materials Engineering Branch

HISTORICAL PERFORMANCE OF BURIED WATER PIPE LINES

Kurt F. von Fay Michael T. Peabody

ACKNOWLEDGMENTS

Acknowledgment is due Roman Fresquez, Eric Jones, Richard Pepin, Kurt Mitchell, and Steve Reo for their assistance compiling the data, and for conducting the follow-up phone interviews.

Recognition is due Harry Uyeda for his work developing the original questionnaire, and for his review of the original manuscript for this report. Recognition is also due Joel Catlin, AWWARF Project Manager, for his valuable technical input and for assembling and mailing the AWWARF questionnaires and compiling the responses.

U.S. Department of the Interior
 Mission Statement

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

CONTENTS

Page
Introduction 1
Conclusions 1
Reclamation pipe line questionnaire 3
AWWARF pipe line questionnaire 6
Compilation of questionnaire responses 10
TABLES
Table
1 Questionnaire totals 10
2 Opinion of pipe performance (Reclamation) 11
3 Opinion of pipe performance (AWWA) 14
4 Number of pipe lines by pipe type and size in the survey (Reclamation) 12
5 Number of pipe lines by pipe type and size in the survey (AWWA) 12
$6 \quad$ Availability of pipe by pipe size and head 13
7 Total number and length of pipe lines by pipe type and size in the survey 14
8 Pipe performance (Reclamation) 15
9 Pipe performance (AWWA) 15
$10 \quad$ Failures by size (Reclamation) 19
11 Failure rate by size (Reclamation, failures per mile-year $\left[x 10^{-2}\right]$) 19
12 Failures by size (AWWA) 20
13 Failure rate by size (AWWA, failures per mile-year [x10-2]) 20
14 Combined failure rate (AWWA and Reclamation, failures per mile-year [x10-2])
by pipe type 21

FIGURES

Figure

1 Reclamation questionnaire consisting of 12 questions regarding various types of manufactured water pipe 3
2 AWWARF questionnaire consisting of 10 questions regarding various types of manufactured water pipe 7
3 Failure rate by pipe type 16
4 Failure rate by pipe type 17
5 Combined failure rate by pipe type 22
APPENDIXES
Appendix
A Glossary for pipe types 23
B Survey failure rate data 27

INTRODUCTION

In 1990, Reclamation (Bureau of Reclamation) embarked on a program to determine the historical performance of buried water pipe lines. As a first step in that program, a questionnaire was developed and mailed to agencies and municipalities that used Reclamation-constructed water pipe lines, and to Reclamation regional and project offices for pipe lines still owned and/or operated by Reclamation.

In mid-1992, Reclamation joined forces with the AWWARF (American Water Works Association Research Foundatinn) to include members of the AWWA (American Water Works Association) in the survey. The original Reclamation questionnaire was modified and then mailed by AWWARF to selected AWWA utilities. Later, the AWWARF questionnaire was mailed to additional agencies not included in the first AWWARF mailing.

After a preliminary examination of the questionnaire information, a follow-up survey was conducted by phone to gather additional data. The information was needed to clarify some of the responses from the initial survey, as well as to obtain additional information to perform analysis of pipe failure rates incorporating pipe age information.

This report presents information about the questionnaires and results from examination of questionnaire responses to questions about pipe performance and failure rates. The appendix contains a glossary of pipe types included in this study.

CONCLUSIONS

Questionnaires were mailed to 839 water system managers, asking for information about types of pipes in their water systems, historical performance, and pipe type preferences, among other things. A total of 276 questionnaires were returned. Some of the returned questionnaires could not be used because some respondents omitted critical information or some returned the questionnaire without any responses.

Of the returned questionnaires, 162 were used to compile data on opinions of best performance by pipe type and size. Those same questionnaires were used as the basis of a follow-up phone survey.

The follow-up phone survey was conducted to gather additional information or clarification about length, age, and number of failures for all pipe lines in a system, whether or not the pipe line had experienced failures. That information was used to calculate failures per mile-year. The data were analyzed separately, grouped by AWWARF data and Reclamation data, as well as together for a combined analysis.

Failure was defined by the survey as requiring some type of action after installation to correct a pipe deficiency-namely repair, replacement, or both repair and replacement of the affected units. The term failure rate was therefore synonymous with repair/replacement rate.

The majority of information presented in the questionnaire responses pertained to pipe lines 48 inches or less in diameter, indicating that water managers are most familiar with those sizes. Also, availability of pipe types in different size ranges ultimately affects opinions about performance. For instance, AC (asbestos-cement) pipe is only available up to 42 inches in diameter, so it would not be selected as a good performer for pipe sizes larger than 48 inches.

For water transmission lines less than 24 inches in diameter, water system managers seem to prefer PVC (polyvinyl chloride) pipe, followed by AC and DI (ductile iron) pipe. The combined failure rates reported for these pipe types fell below the combined average failure rates for all pipe types.

For water transmission lines greater than 24 inches in diameter, opinions about best performing pipe type were mixed. Overall, a slight preference for PT (pretensioned concrete cylinder) pipe seemed apparent. AWWA members seemed to prefer DI pipe from 24 to 48 inches in diameter, and had no clear preference of pipe type for pipe larger than 48 inches. Again, the combined failure rates reported for these pipe types fell below the combined average failure rates for all pipe types.

For pipe types larger than 48 inches in diameter, RC (reinforced concrete pressure pipe) was the preferred option, even though it exhibited failure rates above the combined average. The availability of pipe sizes greater than 72 inches, however, is generally limited to pipe types ECP (embedded cylinder prestressed concrete), NCP (noncylinder prestressed concrete), FP (fiberglass) (no data), RC, RCCP, RPM (reinforced plastic mortar), and ST (steel). Of this group, only RCCP and ST pipe exhibited combined failure rates lower than the combined average failure rates. ST pipe, however, exceeded the combined average failure rate in two of the three cases considered. The Reclamation questionnaire did not separate RC and RCCP categories as did the AWWARF questionnaire. The Reclamation responses for RC pipe therefore could have included information for RC and RCCP in the RC category to a very limited degree (only 2 documented installations since 1964).

When Reclamation and AWWARF data were analyzed separately for failure rates, the Reclamation data showed that pipe types CI, ECP, NCP, PE (polyethylene), and RC exceeded the Reclamation average failure rates, whereas pipe types AC, DI, PT, PVC, and ST were below the Reclamation average failure rates. RPM pipe exceeded the Reclamation average failure rate in one of the three cases considered. Reclamation respondents reported no data for pipe types LCP (lined cylinder prestressed concrete) and FP. For the AWWARF data, pipe types CI and DI exceeded the AWWA average failure rate, whereas pipe types AC, ECP, LCP, PT, PVC, RC, RCCP, and ST fell below the AWWA average failure rate. AWWA respondents reported no data for pipe types FP, NCP, PE, and RPM.

The combined failure rate data indicated that pipe types CI, ECP (in 2 of 3 cases), NCP, PE, RC, RPM, and ST (in 2 of 3 cases) exceeded the combined average failure rates. Pipe types AC, DI, LCP, PT, PVC, and RCCP fell below the combined average failure rates. The cases considered included combined failure rate calculations for (1) all projected repairs to ECP and NCP, (2) major projected repairs to ECP and NCP, and (3) actual repairs to ECP and NCP. Projections for ECP and NCP repairs were based on extensive data collected by Reclamation specific to the Central Arizona Project, Hayden-Rhodes Aqueduct siphons.

For the most part, when examining pipe preference data with failure rates, water system managers indicated a preference for pipe types that had lower than average failure rates.

Readers should note that the lengths and number of pipe lines sampled for PE, RPM, and NCP pipe types were much lower than lengths and number of pipe lines sampled for the other pipe types included in the analysis. Also, no data were reported for pipe type FP, although RPM pipe is generally considered one type of FP.

RECLAMATION PIPE LINE QUESTIONNAIRE

Figure 1 shows the questionnaire mailed to Reclamation offices and users of Reclamationconstructed water delivery systems. Each questionnaire was mailed with an instruction sheet asking respondents to consider all buried lines 4 inches or larger in diameter and 2,000 feet or more in length. Some respondents provided information on water lines smaller in diameter or shorter in length than specified, but the data were still included if possible.

Questionnaire

1. Owner \qquad Telephone No. (_)

Address \qquad
2. What types (and corresponding sizes and quantities) of buried pipe do you have in your system?

Figure 1. - Reclamation questionnaire consisting of 12 questions regarding various types of manufactured water pipe.
3. Sumarize pipe failures in the lable below:

> Pipe Leak Sunnary

legend

1 AC - Asbestos cenent CI - Gray cast iron

- Ductile iron

CP - Embedded cylinder prestressed
CP - Lined cylinder
MCP - prestressed
prestressed
PT - Pretensioned cylinder
PVC - Polyvinylchloride
RC - Reinforced concrete
Others (identify in accord with response for question 21
${ }^{2} B S-B e l l$ and spigot MC - Hechanical couplings H - Velded - Other
${ }^{3} \mathrm{C}$-Corrosion $\quad 4 \mathrm{RR}$ - Repoir Ex - External damage RE - Replace
IN - Installation damage
0 - Other
? - Undetermined
- Undetermined

Figure 1. - Reclamation questionnaire consisting of 12 questions regarding various types of manufactured water pipe (continued).
4. What maintenance measures have been required to retain pipe system serviceability?
\qquad
5. Are copies of installation specifications available? $\square_{\text {yes }}$
6. Are failure reports available?
\square yes
[no
7. Are cost reports (to repair failures) availatle?
\square yes
Пno
8. Do you have a computer database of your water system that contains data relevant to this survey?

Byes
■ по
9. If yes, can we get a copy?
$\square_{\text {yes }}$
[no
10. In your opinion, which type of pipe has provided the most trouble free service?

24- to 48 -inch inside diameter
48- to 72 -inch inside diameter
over 72-inch inside diameter
11. May we publish this information?

0 yes
\square no
Only with the following provisions: \qquad
\qquad
\qquad
\qquad
12. Person to be contacted if additional information is desired:

Name \qquad Telephone No. ()

Figure 1. - Reclamation questionnaire consisting of 12 questions regarding various types of manufactured water pipe (continued).

The questionnaires covered three main areas:

1. The first area concerned owner information and other ancillary data (questions 1 , and 4 through 12).
2. The second area asked for information about the types and lengths of buried water pipes in the system (question 2).
3. The third area asked for data about pipe leaks and failures (question 3).

The questionnaire asked respondents to provide information on the 12 pipe types listed. Although space was provided for information on other types of pipe as well, the response was so limited that an attempt was not made to compile those data separately.

A follow-up survey was conducted by phone to obtain additional information needed for failure rate calculations. Only organizations that had properly responded to the initial questionnaire were contacted. Time constraints prevented contacting all respondents. Information on length, age, and number of failures for all pipe lines in a system (whether or not the pipe lines had experienced failures) was gathered.

AWWARF PIPE LINE QUESTIONNAIRE

Figure 2 shows the questionnaire mailed to AWWA members. The AWWA member names, addresses, and mailings were supplied by AWWARF. Although the AWWARF questionnaire was essentially the same as that mailed to Reclamation users, it was modified somewhat to account for the type of pipe and pipe designations with which AWWA members were familiar. In addition, the mailing included a glossary to clearly identify pipe types (see appendix).

Two mailings were performed by AWWARF: the first was from a list supplied by AWWARF, and the second was a follow-up mailing to water users from lists provided by AWWARF members. Each questionnaire was mailed with an instruction sheet asking the respondents to limit their responses to all water pipe lines that were 24 inches or larger in diameter and $1 / 2$ mile or more in length. As with the Reclamation questionnaire, some respondents provided information on pipe lines that were smaller in diameter or shorter in length than requested; however, the information was included if possible.

The AWWARF questionnaire listed several more pipe types than the Reclamation questionnaire. In the AWWARF questionnaire, the steel pipe and ductile iron pipe classifications were divided into several subclassifications. When the compilation was performed, however, all responses in the subclassifications were lumped into their main classifications because the respondents seldom provided data for pipes in the subclassifications, and when they did, it was generally for a subclassification that was not listed.

As with the Reclamation questionnaire, a follow-up survey was conducted by phone to clarify information provided from the initial questionnaire (in limited cases) and to obtain additional information needed for failure rate calculations. Only organizations that had properly responded to the initial questionnaire were contacted. Time constraints prevented contacting all respondents. Information on length, age, and number of failures for all pipe lines (whether or not the pipe lines had experienced failures) was gathered.

Abstract

Owner Pipe Performance Survey Address Telephone No. (_) 2. Summarize pipe information in the table below. | | \% Size Rnnge | Leng(h) | $\overline{\operatorname{Tear}(\mathrm{s})}$ | 8ventshat | \%, bosign, | Aulicipated | Cost | per Mile K 盛, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | Installations | Mninteriance** |
| AC (AWWA C402) | | | | | | | | |
| RC (AWWA CJ02) | | | | | | | | |
| RCCP (AWWA C300) | | | | | | | | |
| PT (AWWA C303) | | | | | | | | |
| NCP (No Standard) | | | | | | | | |
| LCP (AWWA CJO1) | | | | | | | | |
| ECP (AWWA C3OI) | | | | | | | | |
| RPM (AWWA C950) | | | | | | | | |
| FP (AWWA C950) | | | | | | | | |
| PVC (AWWA COOS) | | | | | | | | |
| PEE (AWWA C906) | | | | | | | | |
| St (AWWA C-200) | | | | | | | | |
| St w/C-203 Conting | | | | | | | | |
| St w/C-205 Conting | | | | | | | | |
| StwC-210 Conting | | | | | | | | |
| St w/C-21J Coating | | | | | | | | |
| St w/C-214 Coating | | | | | | | | |
| St w/C-215 Coating | | | | | | | | |
| St w/Other Coating ${ }^{\text {di }}$ | | | | | | | | |
| | | | | | | | | |
| DI (AWWA C150) | | | | | | | | |
| DI w/Clos Coating | | | | | | | | |
| DI w/ no coating | | | | | | | | |
| DIw/ Other Coatiag ID | | | | | | | | |
| | | | | | | | | |
| | | K, | - | | | | Wumes. | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | | - Enter fotal nmemnt of maintenance nod repair expenses per mile.

Figure 2. - AWWARF questionnaire consisting of 10 questions regarding various types of manufactured water pipe.

Figure 2. - AWWARF questionnaire consisting of 10 questions regarding various types of manufactured water pipe (continued).

Figure 2. - AWWARF questionnaire consisting of 10 questions regarding various types of manufactured water pipe (continued).

COMPILATION OF QUESTIONNAIRE RESPONSES

Data compilation was performed on the questionnaire responses. Table 1 shows a total of 462 questionnaires were mailed to Reclamation water users, and 377 questionnaires were mailed to AWWA members. Of those, 162 Reclamation questionnaires and 114 AWWA questionnaires were returned. Ninety-seven Reclamation questionnaires and 65 AWWA questionnaires contained sufficient information to be included in the analysis. Those questionnaires also served as the basis for the follow-up phone surveys.

Table 1. - Questionnaire totals.

	Reclamation	AWWA
Questionnaires Mailed	462	377
Questionnaires Returned Questionnaires Used	162	114

As noted, not all of the returned questionnaires were used, primarily because critical information was omitted. For instance, some respondents supplied data about lengths of various pipe types in their system, but did not indicate whether or not leaks or failures had occurred associated with any pipe types. Also, some respondents sent ample data about their water pipe systems that were not in the indicated format and/or not classified by the pipe types shown in the questionnaire. Some questionnaires were returned with no information.

For the failure rate calculations, involving information gathered by phone, data from 36 Reclamation and 29 AWWA responses were used in the calculations. Those responses were selected because they contained the information needed for the calculations.

Tables 2 and 3 show questionnaire responses to the question asking water system managers their opinion of which pipe type for the indicated size ranges performed the best. Numbers in the table show the total number of times a particular pipe type was chosen as the best performer. Some respondents indicated which size they thought performed the best; they did not consider pipe type, so their responses were not included. For this part of the analysis, 97 Reclamation and 65 AWWA responses were used.

The results of queried opinions showed that for pipes less than 24 inches in diameter, Reclamation respondents preferred PVC pipe, followed by AC and DI pipe.

For pipe sizes above 24 inches in diameter, opinions about best performing pipe type were mixed for both Reclamation and AWWA respondents. The AWWA members seem to prefer DI pipe from 24 to 48 inches in diameter, and had no clear preference of pipe type for pipe larger than 48 inches in diameter. Reclamation water system managers seem to prefer PT pipe from 25 to 48 inches in diameter and RC pipe for sizes greater than 48 inches.

Table 2. - Opinion of pipe performance (Reclamation).

Pipe				
Type	less than 12 inch	12 to 24 inch	25 to 48 inch	over 48 inch
AC	9	11	3	
CI				
DI	4	5	1	3
ECP		1	4	4
LCP	1			
NCP	1		8	2
PE	1	1	3	
PT	27	2		8
PVC		3	5	4
RC				
RPM				
ST				

Table 3. - Opinion of pipe performance (AWWA).

Pipe Type	24 to 48 inch	49	to 72 inch
over 72 inch			
AC			
CI	2		
DI	9	2	1
ECP		2	1
FP	4		
LCP		1	1
NCP	3	1	1
PE	1	2	1
PT	3	1	
PVC	2		
RC			
RCCP			
RPM			
ST			

As shown in tables 4,5, and 7, the survey sample size is greatest for pipe lines less than 48 inches in diameter, indicating that many water managers oversee lines smaller than that. As with the AWWA respondents, Reclamation water managers appear to have more experience with pipe lines less than 48 inches in diameter.

Table 4. - Number of pipe lines by pipe type and size in the survey (Reclamation).

Pipe Type	less than 12 inch	12 to 24 inch	25 to 48 inch	49 to 72 inch	over 72 inch
AC	9	7			
CI	4				
DI		1			
ECP		1	1	4	4
LCP*					
NCP		2			4
PE	1			1	
PT		1	9		
PVC	10	8		2	3
RC		5	5		
RPM		1	2	2	1
ST	1	6	7		

*No data reported for this pipe type.

Table 5. - Number of pipe lines by pipe type and size in the survey (AWWA).

Pipe Type	24 to 48 inch	49	to 72 inch
over 72 inch			
AC	1		
CI	20		
DI	46	4	3
ECP	7		
FP*		2	
LCP	52		
NCP*		4	
PE* *	16	1	1
PT	1		
PVC	11		
RC	25	7	
RCCP			
RPM			
ST			

[^0]Table 6. - Availability of pipe by pipe size and head.

Pipe Type	Availability by Size (inches)	Head (feet)
AC	4 to 42	25 to 800
CI	3 to 54	-
DI	3 to 59	up to 1000
ECP	24 and up	25 and up
FP	8 to 144	25 to 550
LCP	16 to 48 and larger	25 to 500
NCP	up to 252	-
PE	4 to 63	95 to 575
PT	10 to 72 and larger	25 to 700
PVC	4 to 48	25 to 700
RC	12 to 144 and larger	25 to 150
RCCP	24 to 144 and larger	25 to 600
RPM	8 to 144 and larger	up to 500
ST	$1 / 2$ to 252 and	25 to 1300 and
	\quad larger	higher

Table 7 data show that 85 percent of the respondents managed pipe lines less than 48 inches in diameter; 9 percent managed pipe lines 49 to 72 inches in diameter; and the remaining 6 percent managed pipe lines greater than 72 inches in diameter. The table also presents sample size information, both by pipe line sample numbers and pipe line lengths, categorized by pipe type. The number of pipe lines providing information for pipe types PE, NCP, and RPM was less than 10; all the information on PE pipe came from one pipe line. Also, these three pipe types were represented by only one percent of the total length of all pipe types. Furthermore, table 7 shows that pipe types LCP, ST, DI, and PT contain information from the largest number of pipe lines, and pipe types LCP, ST, AC, PT, and RC make up the majority of pipe line lengths.

The availability of different pipe types in the various sizes is shown in table 6. Availability of pipe types affect choices for use, ultimately affecting opinions about which type of pipe perform best. Head class and cover are also important design parameters that affect pipe selection, particularly when large diameter pipe is involved.

Tables 8 and 9 show pipe type by total length, percent of total length of each pipe type versus total length of all pipe lines, total number of failures, and number of failures per mile-year. Figures 3 and 4 are graphical representations of the failure rates shown in tables 8 and 9.

Failure was indicated as requiring some type of action after installation to correct a pipe deficiency - namely repair, replacement, or both repair and replacement of the affected units. Indicated causes of failure included corrosion, external damage, fish mouth, installation damage, other, and/or undetermined. The term failure rate is therefore synonymous with repair/replacement rate.

Table 7. - Total number and length of pipe lines by pipe type and size in the survey.

Pipe Type	Number of Pipe Lines or less					49 to 72 inches	over 72 inches
	Combined Total	\% of Com- bined Total	Combined Total (ft.)	\% of Combined Total			
AC	17			17	5	$1,086,858$	13
CI	24			24	8	306,400	4
DI	47			47	15	683,711	8
ECP	9	8	7	24	8	329,792	4
FP*							
LCP	52	2		54	17	$1,481,124$	18
NCP	2		4	6	2	80,637	1
PE	1			1	.	3	125,000
PT	26	5	3	34	11	987,153	1
PVC	19			19	6	670,496	12
RC	15	3	3	21	7	856,005	8
RCCP	11		1	12	4	190,407	10
RPM	3			3	1	77,767	1
ST	39	9	1	49	16	$1,50,218$	18
Total	265	27	19	311	100	$8,375,568$	100
\% of	85	9	6	100	100	100	100
Total							

*No data reported for this pipe type.

Table 8. - Pipe performance (Reclamation).

Pipe Type	Length, ft	Percent of Total Length	Failures	Failures per Mile Year (x10-2)
AC	1,074,858	29	170	2.64
CI	64,829	2	57	15.10
DI	15,794	0	0	0.00
ECP	96,735	3	$22^{* *} / 50^{\dagger} / 148^{\ddagger}$	$8.48{ }^{* *} / 19.30^{\dagger} / 57.0^{\ddagger}$
LCP*				
NCP	80,637	2	$70^{* *} / 112^{\dagger} / 489$	$21.2{ }^{* *} / 33.90^{\dagger} / 148^{\ddagger}$
PE	125,000	3	\ddagger	15.80
PT	311,190	8	75	1.75
PVC	662,163	18	20	2.14
RC	554,425	15	41	10.90
RPM	77,767	2	287	5.82
ST	626,844	17	8	5.45
			277	
Average Failure Rate: $5.46^{* *} / 5.83^{\dagger} / 8.36^{\ddagger}$				
${ }_{* *}^{*}$ No data reported for this pipe type.				
** Includes actual repairs to excavated pipe units only				
Includes only projected repairs of complete prestressing replacement for part or all of a pipe unit.				
\ddagger Includes all projected repairs.				

Table 9. - Pipe performance (AWWA).

Pipe Type	Length, ft,	Percent of Total Length	Failures per Mile Year $\left(\mathrm{x} 10^{-2}\right)$	
AC	12,000	0	0	0.00
CI	241,571	5	126	4.69
DI	667,917	14	23	1.79
ECP	233,057	5	5	0.65
FP*				
LCP	$1,481,124$	32	21	0.30
NCP *				
PE *			11	0.43
PT	675,963	14	0	0.00
PVC	8,333	0	2	0.01
RC	301,580	6	0	0.00
RCCP	190,407	4		
RPM			24	0.64
ST	873,374	19		

Average Failure Rate: . 97
*No data reported for this pipe type.

*No data reported for this pipe type

Figure 3. - Failure rate by pipe type.

Figure 4. - Failure rate by pipe type.

Failure rates were calculated using a weighted average age of pipe to account for pipe lines that were older and therefore likely to have experienced more failures. Age for a pipe line was weighted by feet of pipe for a given pipe type within a size range. The number of failures was then divided by the weighted average age and length of the pipe line to yield failures per mile-year. Data used for the calculations is in appendix B.

Failure is difficult to quantify on a per pipe unit basis when repair or replacement of an entire pipe line is required. For the Reclamation survey, the ECP and NCP pipe categories include projections of severe distress for six 252 -inch-diameter CAP (Central Arizona Project) siphons. In other words, based on the findings from representative excavations, 161 pipe units out of 1562 total units were projected to be so severely distressed that complete prestressing replacement was required for all or a portion of a pipe unit. Twenty-three of the 223 excavated units were found in this condition.

If all the repairs to the excavated units are considered, as suggested by the survey concept of failure, it is projected that 636 pipe units would require some type of repair. In fact, 91 units of the 223 excavated units required some type of repair. Combined average failure rates for all pipe types were therefore calculated using (1) all projected repairs to ECP and NCP, (2) major projected repairs to ECP and NCP, and (3) actual repairs to ECP and NCP.

Although the projected repairs are specific to the 252 -inch-diameter ECP and NCP Central Arizona Project pipe, it should be noted that the Reclamation figures in the tables are conservative because the Jordan Aqueduct Reach 3 (66 -inch diameter) failure is treated as a single failure, even though the entire 2.3 miles of the pipe line were lined with steel.

Survey data show that for Reclamation water systems, NCP, ECP, CI, PE, and RC pipe had failure rates above the Reclamation average failure rates. RPM pipe exceeded the Reclamation average failure rate in one of the three cases considered. Survey data from the AWWA members showed that CI had the highest failure rate, and both CI and DI failure rates were above the AWWA average.

Tables $10,11,12$, and 13 present the failure data shown in tables 8 and 9 by pipe type and size of pipe. Table 14 shows the combined failure rates for both Reclamation and AWWA data. Figure 5 is a graphical representation of the data in table 14.

The combined failure rate data (table 14) shows that the failure rates for pipe types CI, ECP (in 2 of 3 cases), NCP, PE, RC, RPM, and ST (in 2 of 3 cases) exceeded the combined average failure rate. Failure rates for pipe types AC, DI, LCP, PT, PVC, and RCCP fell below the combined average failure rates. It should be emphasized that these results were based on a relatively small sample size for pipe types PE, RPM, and NCP. No data were provided on FP pipe, although RPM pipe is generally considered one type of FP.

It is interesting to note that Reclamation water users preferred (table 2) PVC, AC, and DI for pipe sizes less than 24 inches; PT for pipe sizes ranging from 24 to 48 inches; and RC for sizes greater than 48 inches. With the exception of RC pipe, these pipe types exhibited lower than average failure rates (tables 8,10 , and 11). The availability of pipe sizes greater than 72 inches is generally limited to pipe types ECP, NCP, FP (no data), RC, RCCP, RPM, and ST. Of this group, only RCCP and ST pipe exhibited a combined failure rate lower than the combined average failure rate. ST pipe, however, exceeded the combined average failure rate in two of the three cases considered. Also, the Reclamation questionnaire did not separate

RC and RCCP categories as did the AWWARF questionnaire. The Reclamation responses for RC pipe therefore included information for RC and RCCP in the RC category to a very limited degree (only 2 documented installations since 1964).

Table 10. - Failures by size (Reclamation).

Pipe Type	less than 12 inch	12 to 24 inch	25 to 48 inch	49 to 72 inch	over 72 inch
AC	98	72			
CI	57				
DI		0	0	1	$21^{* *} / 49^{\dagger} / 147^{\ddagger}$
ECP		0	0		$70^{* *} / 112^{\dagger} / 489^{\ddagger}$
LCP*		0	0		
NCP	75				
PE		3	16	1	
PT	39	2			
PVC		207	24	55	1
RC	2	6			
RPM		252	15	8	
ST	2	252			

** No data reported for this pipe type
${ }^{* *}$ Includes actual repairs to excavated units only.
${ }^{\dagger}$ Includes only projected repairs of complete prestressing replacement for part or all of a pipe unit.
\mp Includes all projected repairs.

Table 11. - Failure rate by size (Reclamation, failures per mile-year [x10-2]).

Pipe Type	less than 12 inch	$\begin{gathered} 12 \text { to } 24 \\ \text { inch } \end{gathered}$	$\begin{aligned} & 25 \text { to } 48 \\ & \text { inch } \end{aligned}$	$\begin{aligned} & 49 \text { to } 72 \\ & \text { inch } \end{aligned}$	over 72 inch
AC	2.35	3.18			
CI	15.10				
DI		0.00			
ECP		0.00	0.00	8.10	$26.6{ }^{* *} / 62.00^{\dagger} / 186.0^{\ddagger}$
LCP*					
NCP		0.00	0.00		$161^{* *} / 258.0^{\dagger} / 1,130^{\ddagger}$
PE	15.80				
PT		2.98	1.69	1.04	
PVC	2.21	1.32			
RC		16.40	1.91	92.9	1.89
RPM		2.19	12.90		
ST	4.62	5.23	7.38	4.10	0.00

Average Failure Rate: $5.46^{* *} / 5.83^{\dagger} / 8.36^{\ddagger}$
${ }_{* *}^{*}$ No data reported for this pipe type
** Includes actual repairs to excavated units only
\dagger Includes only projected repairs of complete prestressing replacement for part or all of a pipe unit.
\ddagger Includes all projected repairs.

Table 12. - Failures by size (AWWA).

Pipe Type	24 to 48 inch	49 to 72 inch	over 72 inch
AC	0		
CI	126		
DI	23	4	0
ECP	1		
FP*	19	2	
LCP			
NCP*	11	0	
PE*	0	0	
PT	2		
PVC	0		
RC	22	2	
RCCP			
RPM			
ST			

*No data reported for this pipe type

Table 13. - Failure rate by size (AWWA, failures per mileyear $\left[x 10^{-2}\right]$).

Pipe Type	24 to 48 inch	49 to 72 inch	over 72 inch
AC	0.00		
CI	4.69		
DI	1.79		
ECP	0.26	1.37	0.00
FP*			
LCP	0.28	2.78	
NCP*			
PE *	0.85	0.00	0.00
PT	0.00		
PVC	0.28		
RC	0.00		0.00
RCCP			
RPM	0.61	1.23	
ST			
Avere			

Average Failure Rate: . 97
*No data reported for this pipe type

Table 14. - Combined failure rate (AWWA and Reclamation, failures per mile-year $\left[x 10^{-2}\right]$) by pipe type.

Pipe Type	Failure Rate
AC	2.63
CI	5.97
DI	1.75
ECP	$2.63^{* *} / 5.32^{\dagger} / 14.9{ }^{\ddagger}$
FP*	
LCP	0.30
NCP	$21.2{ }^{* *} / 33.9^{\dagger} / 148^{\ddagger}$
PE	15.8
PT	0.84
PVC	2.14
RC	5.30
RCCP	0.00
RPM	5.82
ST	3.40
Combined Average	$3.05^{* *} / 3.22^{\dagger} / 4.40^{\ddagger}$
Failure Rate	
** No data reported for this pipe type ** Includes repairs to excavated pipe units only \dagger Includes only projected repairs of complete prestressing replacement for part or all of a pipe unit. \ddagger Includes all projected repairs.	

AWWA member respondents showed a preference for DI pipe (table 3). Although its failure rate was higher than the AWWA average failure rate, the combined DI pipe failure rates were lower than the combined average failure rate (tables $9,12,13$, and 14).

*No data reported for this pipe type

Figure 5. - Combined failure rate by pipe type.

APPENDIX A

GLOSSARY FOR PIPE TYPES

AC - Asbestos-cement. This type of rigid transmission pipe consists of a mixture of portland cement and asbestos fibers.

DI - Ductile Iron Pipe. This type of pipe, which has considerable rigidity in the small diameters but is flexible in the larger diameters, is manufactured by introducing a charge of molten iron in a rapidly spinning mold. The centrifugal force caused by the spinning process forms the molten iron into a cylinder of uniform thickness that is determined by the volume of the molten charge. After cooling and annealing, a thin cement-mortar lining is applied to the inside of the pipe.

ECP - Embedded Cylinder Prestressed Concrete Pipe. This type of rigid pipe consists of a welded steel cylinder with steel joint rings attached to each end and embedded in a concrete core. The high-tensile wire reinforcement is helically wound under measured tension in one or more layers around the outside of the concrete core containing the cylinder. The hightensile wire is protected by a cement mortar placed by an impact method.

FP - Fiberglass Pipe (Reinforced Thermosetting Resin Pipe). This type of flexible pipe is composed of continuous fiberglass filaments in a polyester resin matrix. The glass strands are wound on a rotating mandrel in a helical fashion until the required wall thickness is obtained. The helical angle, which varies among manufacturers, provides longitudinal as well as circumferential strength.

LCP - Lined Cylinder Prestressed Concrete Pipe. This type of pipe consists of a welded steel cylinder with steel joint rings attached to each end. Then, the cylinder is centrifugally lined with dense concrete to constitute the core. The high-tensile wire is helically wound under controlled tension directly on the steel cylinder. The wrapped core is then covered by a cement mortar coating applied by a mechanical impact method.

NCP - Noncylinder Prestressed Concrete Pipe. This type of pipe consists of a concrete core which may include embedded prestressed longitudinal reinforcement. The high-tensile wire reinforcement is helically wound under controlled tension around the outside of the concrete core. The high-tensile wire is protected by a cement mortar coating applied by impact.

PE - Polyethylene. This type of pipe is made from materials having standard PE code designations.

PT - Pretensioned Concrete Cylinder Pipe. This type of flexible pipe is a composite design; the basic element of the pipe is a welded steel cylinder with steel joint rings welded to its ends. The cylinder is lined with centrifugally placed cement mortar or concrete. Then, continuous reinforcing rod is helically wound, under controlled tension, around the lined cylinder, and a mortar coating is placed by means of high-velocity impaction. In Saudi Arabia, this type of pipe is called Concrete Cylinder Pipe.

PVC - Polyvinyl Chloride Pipe. PVC plastic is a thermo-plastic that can be repeatedly softened to a plastic state by the application of heat and hardened to a solid state by cooling. This type of flexible pipe is manufactured by extruding the heated, molten plastic through a forming die to obtain a cylindrical shape of the proper diameter and wall thickness. The pipe is immediately cooled and then is cut to the proper length.

RC - Reinforced Concrete Pressure Pipe. This type of rigid pipe is commonly called "bar" pipe and consists of reinforcing cages placed in the concrete shell to resist bursting pressures and external earth loads.

RCCP - Reinforced Concrete Cylinder Pressure Pipe. This type of rigid pipe was developed to handle higher internal heads than reinforced concrete pressure pipe. This pipe consists of a steel cylinder welded to end rings and surrounded by reinforcing cages embedded in a concrete shell.

RPM - Reinforced Plastic Mortar Pipe (Fiberglass Pipe). This type of flexible pipe is manufactured of polyester plastic resin reinforced with continuous fiberglass filaments. Sand is incorporated into the pipe wall at various stages of manufacture as an inexpensive filler. material to build up the pipe wall to its required thickness. The continuous fiberglass strands are wound on a rotating mandrel in a circumferential fashion and separate longitudinally oriented fibers are added to provide the necessary longitudinal strength.

ST - Steel Pipe. Flexible steel pipe can be manufactured in practically any size and for any pressure rating. The pipe is manufactured by rolling sheet steel (either flat plate or continuous roll) into a cylindrical shape and welding the edges of the sheet together. The inside of the pipe can be lined with cement mortar, coal-tar epoxy, or fusion epoxy. The outside of the pipe is coated with either cement-mortar or coal-tar enamel. Polyethylene tape coating systems are also allowed for steel pipe.

APPENDIX B

SURVEY FAILURE RATE DATA

Bureau of Reclamation Survey Failure Rate Data

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (f)	$\begin{gathered} \text { Length } \mathrm{X} \\ \text { Age } \\ \hline \end{gathered}$	Failures per Mile• Year
AC	less than 12	12	0	8,000	96,000	
AC	less than 12	30	0	4,400	132,000	
AC	leas than 12	35	30	200,000	7,000,000	
AC	less than 12	35	30	200,000	7,000,000	
AC	less than 12	35	30	200,000	7,000,000	
AC	less than 12	30	6	19,645	589,350	
AC	less than 12	12	0	3,700	44,400	
AC	less than 12	30	0	1,100	33,000	
AC	less than 12	25	2	3,320	83,000	
AC	less than 12	otal	98	640,165	21,977,750	
AC	less than 1	verage Age	nd Failure Ra		34	2.35E-02
AC	12 to 24	34	50	285,120	9,694,080	
AC	12 to 24	20	0	2,400	48,000	
AC	12 to 24	24	2	49,530	1,188,720	
AC	12 to 24	12	18	68,940	827,280	
AC	12 to 24	2	1	6,403	12,806	
AC	12 to 24	16	0	2,600	41,600	
AC	12 to 24	8	1	19,700	157,600	
AC	12 to 24 Tot		72	434,693	11,970,086	
AC	12 to 24 A	Age and	vilure Rate		28	3.18E-02
AC Total			170	1,074,858	33,947,836	
AC Average Age and Failure Rate					32	2.64E-02
CI	less than 12		0	50,481	1,463,949	
CI	less than 12	45	17	4,800	216,000	
CI	less than 12		40	5,180	181,300	
CI	less than 12	30	0	4,368	131,040	
CI Total			57	64,829	1,992,289	
CI Average Age and Failure Rate					31	1.51E-01
DI	12 to 24	11	0	15,794	173,734	
DI Average Age and Failure Rate			0	15,794	173,734	
					11	0.00E+00
Note. ECP and NCP values include projected repairs of prestressing for part or all of a pipe unit. See end of table for other cases						
ECP	12 to 24	30		29,540	886,200	
ECP	12 to 24 Tot			29,540	886,200	
ECP	12 to 24 Ave	ge Age and	Failure Rate		30	$0.00 \mathrm{E}+00$
ECP	25 to 48	3		382	1,146	
ECP	25 to 48 Tot			382	1,146	
ECP	25 to 48 Ave	ge Age and	Failure Rate		3	$0.00 \mathrm{E}+00$
ECP	49 to 72	31	0	3,775	11,325	
ECP	49 to 72		0	5,808	17,424	
ECP	49 to 72		0	528	1,584	
ECP	49 to 72	3		11,616	34,848	
ECP	49 to 72 Tot		,	21,727	65,181	
ECP		ge Age and	Failure Rate		3	8.10E-02
ECP	over 72	5		22,176	110,880	
ECP	over 72	14	0	8,588	120,232	
ECP	over 72		42	8,998	116,974	
ECP	over 72	13	7	5,324	69,212	
ECP	over 72 Total	硡	49	45,086	417,298	
ECP	over 72 Ave	ge Age and F	Failure Rate		${ }^{9}$	6.20E-01
ECP Total	\mid		50	96,735	1,369,825	
ECP Average Age and Failure Rate					14	1.93E-01

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (ft)	Length X Age	Failures per Mile• Year
NCP	12 to 24	25	0	7,919	197,975	
NCP	12 to 24 To		0	7,919	197,975	
NCP	12 to 24 Av	ge Age and	Failure Rate		25	$0.00 \mathrm{E}+00$
NCP	25 to 48	25	0	52,676	1,316,900	
NCP	25 to 48 To		0	52,676	1,316,900	
NCP	25 to 48 Av	age Age and F	Failure Rate		25	$0.00 \mathrm{E}+00$
NCP	over 72	13	28	770	10,010	
NCP	over 72	13	28	5,544	72,072	
NCP	over 72	13	42	3,168	41,184	
NCP	over 72	10	14	10,560	105,600	
NCP	over 72 Tot		112	20,042	228,866	
NCP	over 72 Aver	age Age and F	ilure Rate		11	$2.58 \mathrm{E}+00$
NCP Total			112	80,637	1,743,741	
NCP Average	Age and Fai	R Rate			22	3.39E-01
PE	lless than 12	20	75	125,000	2,500,000	
PE Total			75	125,000	2,500,000	
PE Average	ge and Failu	Rate			20	$1.58 \mathrm{E}-01$
PT	12 to 24	25	3	21,230	530,750	
PT	12 to 24 To		3	21,230	530,750	
PT	12 to 24 Av	ge Age and	Failure Rate		25	$2.98 \mathrm{E}-02$
PT	25 to 48	25	6	8,090	202,250	
PT	25 to 48	30	4	60,850	1,825,500	
PT	25 to 48	15	1	12,398	185,970	
PT	25 to 48	14.	1	81,877	1,146,278	
PT	25 to 48	25	4	3,960	99,000	
PT	25 to 48	4	0	13,910	55,640	
PT	25 to 48	10	0	13,504	135,040	
PT	25 to 48	20	0	67,056	1,341,120	
PT	25 to 48	1	0	1,515	1,515	
PT	25 to 48 Tot		16	263,160	4,992,313	
PT	25 to 48 Av	age Age and F	Failure Rate		19	$1.69 \mathrm{E}-02$
PT	49 to 72	19	1	26,800	509,200	
PT	49 to 72 Tot		1	26,800	509,200	
PT	$49 \text { to } 72 \mathrm{Av}$	age Age and	Failure Rate		19	1.04E-02
PT Total			20	311,190	6,032,263	
PT Average	ge and Failu	Rate			19	1.75E-02
PVC	less than 12	1	0	4,000	4,000	
PVC	less than 12	8	2	55,000	440,000	
PVC	less than 12	30	1	6,300	189,000	
PVC	less than 12	25	30	300,000	7,500,000	
PVC	less than 12	5	0	4,500	22,500	
PVC	less than 12		0	10,000	40,000	
PVC	less than 12	7	5	125,000	875,000	
PVC	less than 12	5	0	4,000	20,000	
PVC	less than 12	6	1	24,285	145,710	
PVC	less than 12	8	0	10,560	84,480	
PVC	less than 12	Total	39	543,645	9,320,690	
PVC	less than 12	Average Age a	and Failure Ra		17	$221 \mathrm{E}-02$
PVC	12 to 24	11	0	36,960	406,560	
PVC	12 to 24	5	0	12,000	60,000	
PVC	12 to 24	14	2	2,640	36,960	
PVC	12 to 24	2	0	23,500	47,000	
PVC	12 to 24	1	0	4,260	4,260	
PVC	\|12 to 24	7	0	30,058	210,406	

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (f)	$\begin{gathered} \text { Length X } \\ \text { Age } \\ \hline \end{gathered}$	Failures per Mile ${ }^{\bullet}$ Year
PVC	12 to 24	3	0	3,400	10,200	
PVC	12 to 24	4	0	5,700	22,800	
PVC	12 to 24 To		2	118,518	798,186	
PVC	12 to 24 Av	ge Age and	Failure Rate		7	132E-02
PVC Total			41	662,163	10,118,876	
PVC Average Age and Failure Rate					15	2.14E-02
RC	12 to 24	26	173	161,040	4,187,040	
RC	12 to 24	30	22	56,520	1,695,600	
RC	12 to 24	18	0	6,144	110,592	
RC	12 to 24	25	0	12,900	322,500	
RC	12 to 24	25	12	13,200	330,000	
RC	12 to 24 To		207	249,804	6,645,732	
RC	12 to 24 Av	ge Age and	Failure Rate		27	1.64E-01
RC	25 to 48	12	2	72,470	869,640	
RC	25 to 48		1	30,040	150,200	
RC	25 to 48	25	0	2,000	50,000	
RC	25 to 48	30	21	172,950	5,188,500	
RC	25 to 48	37	0	10,000	370,000	
RC	25 to 48 To		24	287,460	6,628,340	
RC	25 to 48 Av	ge Age and	Failure Rate		23	1.91E-02
RC	49 to 72	55	55	3,259	179,245	
RC	49 to 72	37	0	3,600	133,200	
RC	49 to 72 To		55	6,859	312,445	
RC	49 to 72 Av	ge Age and	Failure Rate		46	$9.29 \mathrm{E}-01$
RC	over 72	7	0	4,800	33,600	
RC	over 72	37	0	1,230	45,510	
RC	over 72	47	1	4,272	200,784	
RC	over 72 Tot		- 1	10,302	279,894	
RC	over 72 Av	ge Age and	Failure Rate		27	1.89E-02
RC Total			287	554,425	13,866,411	
RC Average Age and Failure Rate					25	1.09E-01
RPM	12 to 24	12	2	40,122	481,464	
RPM	12 to 24 To		2	40,122	481,464	
RPM	12 to 24 Av	age Age and	Failure Rate		12	2.19E-02
RPM	25 to 48	61	3	36,182	217,092	
RPM	25 to 48	19	- 3	1,463	27,797	
RPM	25 to 48 To		6	37,645	244,889	
RPM	25 to 48 Av	ge Age and	Failure Rate		7	1.29E-01
RPM Total			8	77,767	726,353	
RPM Average Age and Failure Rate					9	5.82E-02
S	less than 12	20	2	11,440	228,800	
S	less than 1	Total	2	11,440	228,800	
S	less than 1	Average Age	and Failure Ra		20	$4.62 \mathrm{E}-02$
S	12 to 24	55	200	400,000	22,000,000	
S	12 to 24	38	52	76,560	2,909,280	
S	12 to 24	5	0	13,175	65,875	
S	12 to 24	24		15,840	380,160	
S	12 to 24	35	0	2,300	80,500	
S	12 to 24	11		623	6,853	
S	12 to 24 To		252	508,498	25,442,668	
S	12 to 24 Av	ge Age and	Failure Rate		50	5.23E-02
S	25 to 48	30	15	300	9,000	
S	25 to 48	20	0	500	10,000	
S	25 to 48	10	0	26,192	261,920	

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (ft)	$\begin{gathered} \text { Length } X \\ \text { Age } \\ \hline \end{gathered}$	Failures per Mile• Year
S	25 to 48	3	0	26,192	78,576	
S	25 to 48	12	0	33,885	406,620	
S	25 to 48	26	0	3,000	78,000	
S	25 to 48	30	0	7,650	229,500	
S	25 to 48 To		15	97,719	1,073,616	
S	25 to 48 A	ge Age and	ailure Rate		11	738E-02
S	49 to 72	37	8	100	3,700	
S	49 to 72	14	0	7,087	99,218	
S	49 to 72 To		8	7,187	102,918	
S	49 to 72 A	ge Age and	Failure Rate		14	4.10E-01
S	over 72	61	0	2,000	12,000	
S	over 72 To		0	2,000	12,000	
S	over 72 Av	ge Age and	Failure Rate		6	$0.00 \mathrm{E}+00$
		-	277	626,844	26,860,002	
S Average Age and Failure Rate					43	5.45E-02

Note: ECP and NCP values below include all projected repairs for part or all of a pipe unit				
ECP	$\|$12 to 24 30	29,540	886,200	
ECP	12 to 24 Total 0	29,540	886,200	
ECP	12 to 24 Average Age and Failure Rate		30	$0.00 \mathrm{E}+00$
ECP	25 to 48 3	382	1,146	
ECP	25 to 48 Total 0	382	1,146	
ECP	25 to 48 Average Age and Failure Rate		3	0.00E +00
ECP	49 to 72 3	3,775	11,325	
ECP	49 to 72 3 0	5,808	17,424	
ECP	49 to 72 3	528	1,584	
ECP	49 to 72 3	11,616	34,848	
ECP	49 to 72 Total 1	21,727	65,181	
ECP	49 to 72 Average Age and Failure Rate		3	$8.10 \mathrm{E}-02$
ECP	over 72 5 0	22,176	110,880	
ECP	over 72 14	8,588	120,232	
ECP	over 72 13	8,998	116,974	
ECP	over 72 13	5,324	69,212	
ECP	over 72 Total 147	45,086	417,298	
ECP	over 72 Average Age and Failure Rate		9	$1.86 \mathrm{E}+00$
ECP Total	148	96,735	1,369,825	
ECP Average Age and Failure Rate			14	$5.70 \mathrm{E}-01$
NCP	12 to 24 25 0	7,919	197,975	
NCP	12 to 24 Total 0	7,919	197,975	
NCP	12 to 24 Average Age and Failure Rate		25	$0.00 \mathrm{E}+00$
NCP	25 to 48 \| 25 0	52,676	1,316,900	
NCP	25 to 48 Total 0	52,676	1,316,900	
NCP	25 to 48 Average Age and Failure Rate		25	$0.00 \mathrm{E}+00$
NCP	over 72 13 56	770	10,010	
NCP	over 72 13 181	5,544	72,072	
NCP	over 72 13	3,168	41,184	
NCP	over 72 10	10,560	105,600	
NCP	over 72 Total 489	20,042	228,866	
NCP	over 72 Average Age and Failure Rate		11	1.13E+01
NCP Total	489	80,637	1,743,741	
NCP Average Age and Failure Rate			22	$1.48 \mathrm{E}+00$
Note: ECP and NCP values below include actual repairs for part or all of a pipe unit				
ECP ECP ECP	\| $\left\|\begin{array}{llr}12 \text { to } 24 & \mid & 30 \\ 12 \text { to } 24 \text { Total } & \\ 12 \text { to } 24 & \text { Average Age and Failure Rate }\end{array}\right\|$	29,540 29,540	886,200 886,200 30	$0.00 \mathrm{E}+$

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (ft)	$\begin{gathered} \text { Length X } \\ \text { Age } \\ \hline \end{gathered}$	Failures per Mile ${ }^{\text {Y }}$ Year
ECP	25 to 48	3	0	382	1,146	
ECP	25 to 48 To		0	382	1,146	
ECP	25 to 48 A	ge Age and	Failure Rate		3	$0.00 \mathrm{E}+00$
ECP	49 to 72		0	3,775	11,325	
ECP	49 to 72		0	5,808	17,424	
ECP	49 to 72		0	528	1,584	
ECP	49 to 72	3	1	11,616	34,848	
ECP	49 to 72 T		1	21,727	65,181	
ECP	49 to 72 A	ge Age and	Failure Rate		3	8.10E-02
ECP	over 72		0	22,176	110,880	
ECP	over 72		0	8,588	120,232	
ECP	over 72		10	8,998	116,974	
ECP	over 72		11	5,324	69,212	
ECP	over 72 To		21	45,086	417,298	
ECP	over 72 Av	ge Age and	Failure Rate		9	2.66E-01
ECP Total			22	96,735	1,369,825	
ECP Average Age and Failure Rate					14	8.48E-02
NCP	12 to 24	25	0	7,919	197,975	
NCP	12 to 24 T		0	7,919	197,975	
NCP	12 to 24 A	ge Age and	Failure Rate		25	$0.00 \mathrm{E}+00$
NCP	25 to 48	25	0	52,676	1,316,900	
NCP	25 to 48 To		0	52,676	1,316,900	
NCP	25 to 48 A	ge Age and	Failure Rate		25	0.00E+00
NCP	over 72	13	8	770	10,010	
NCP	over 72		26	5,544	72,072	
NCP	over 72		16	3,168	41,184	
NCP	over 72	10	20	10,560	105,600	
NCP	over 72 To		70	20,042	228,866	
NCP	over 72 Av	ge Age and	Failure Rate		11	$1.61 \mathrm{E}+00$
NCP Total			70	80,637	1,743,741	
NCP Average Age and Failure Rate					22	2.12E-01

AWWARF Survey Failure Rate Data

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (ft)	$\begin{gathered} \text { Length X } \\ \text { Age } \end{gathered}$	Failures per Mile• Year
AC	25 to 48	20	0	12,000	240,000	
AC Total			0	12,000	240,000	
AC Average	ge and Fai	re Rate			20	$0.00 \mathrm{E}+00$
CI	24 to 48	45	24	1,600	72,000	
CI	24 to 48	30	1	385	11,550	
CI	24 to 48	52	6	8,000	416,000	
CI	24 to 48	31	4	66,700	2,067,700	
CI	24 to 48	25	1	3,822	95,550	
CI	24 to 48	81	2	8,170	661,770	
CI	24 to 48	79	0	5,369	424,151	
CI	24 to 48	38	20	3,000	114,000	
CI	24 to 48	92	5	9,000	828,000	
CI	24 to 48	92	8	5,300	487,600	
CI	24 to 48	58	8	5,300	307,400	
CI	24 to 48	58	0	8,500	493,000	
CI	24 to 48	58	5	5,000	290,000	
CI	24 to 48	39	0	4,000	156,000	
CI	24 to 48	39	20	10,000	390,000	
CI	24 to 48	100	1	10,500	1,050,000	
CI	24 to 48	90	0	40,000	3,600,000	
CI	24 to 48	57	1	20,000	1,140,000	
CI	24 to 48	20	0	9,600	192,000	
CI	24 to 48	80	20	17,325	1,386,000	
CI Total			126	241,571	14,182,721	
CI Average A	ge and Fail	Rate			59	4.69E-02
DI	24 to 48	20	0	30,974	619,480	
DI	24 to 48	3	0	5,280	15,840	
DI	24 to 48	1	0	5,280	5,280	
DI	24 to 48	3	0	13,250	39,750	
DI	24 to 48	20	0	2,000	40,000	
DI	24 to 48	6	0	8,870	53,220	
DI	24 to 48	27	0	1,049	28,323	
DI	24 to 48	25	0	2,430	60,750	
DI	24 to 48	24	0	2,944	70,656	
DI	24 to 48	23	0	2,381	54,763	
DI	24 to 48	20	0	3,406	68,120	
DI	24 to 48	19	12	2,540	48,260	
DI	24 to 48	18	0	2,112	38,016	
DI	24 to 48	17	0	5,124	87,108	
DI	24 to 48	15	0	2,458	36,870	
DI	24 to 48	13	0	2,646	34,398	
DI	24 to 48	8	4	24,307	194,456	
DI	24 to 48	7	0	42,305	296,135	
DI	24 to 48	1	0	7,866	7,866	
DI	24 to 48	1	0	7,956	7,956	
DI	24 to 48	1	0	17,010	17,010	
DI	24 to 48	20	0	4,287	85,740	
DI	24 to 48	19	0	2,765	52,535	
DI	24 to 48	11	1	8,838	97,218	
DI	24 to 48	6	0	3,131	18,786	
DI	24 to 48	20	0	19,401	388,020	
DI	24 to 48	10	0	23,111	231,110	
DI	24 to 48	16	0	4,000	64,000	
DI	24 to 48	4	0	7,000	28,000	

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (f)	$\begin{gathered} \text { Length } X \\ \text { Age } \end{gathered}$	Failures per Mile• Year
DI	24 to 48	4	0	7,500	30,000	
DI	24 to 48	4	0	8,500	34,000	
DI	24 to 48	1	0	10,000	10,000	
DI	24 to 48	1	0	5,300	5,300	
DI	24 to 48	25	0	84,968	2,124,200	
DI	24 to 48	5	0	139,002	695,010	
DI	24 to 48	3	1	35,000	105,000	
DI	24 to 48	2	1	4,434	8,868	
DI	24 to 48	14		4,634	64,876	
DI	24 to 48	12	0	2,100	25,200	
DI	24 to 48	18	1	4,200	75,600	
DI	24 to 48	5	0	5,500	27,500	
DI	24 to 48	3	0	41,589	124,767	
DI	24 to 48	8	,	3,924	31,392	
DI	24 to 48	3	0	17,690	53,070	
DI	24 to 48	20	3	28,800	576,000	
DI	24 to 48	28	0	55	1,540	
DI Total			23	667,917	6,781,989	
DI Average Age and Failure Rate					10	1.79E-02
ECP	24 to 48	12	0	71,200	854,400	
ECP	24 to 48	33	0	6,400	211,200	
ECP	24 to 48	37	0	6,467	239,279	
ECP	24 to 48	8	0	5,000	40,000	
ECP	24 to 48	28	1	20,000	560,000	
ECP	24 to 48	11	0	6,800	74,800	
ECP	24 to 48	14	0	6,000	84,000	
ECP	24 to 48 To		1	121,867	2,063,679	
ECP	24 to 48 Av	rage Age an	Failure Rate		17	$2.56 \mathrm{E}-03$
ECP	49 to 72	4	0	17,512	61,292	
ECP	49 to 72	28	0	15,640	437,920	
ECP	49 to 72	28	0	16,304	456,512	
ECP	49 to 72	28	4	20,807	582,596	
ECP	49 to 72 To		4	70,263	1,538,320	
ECP	49 to 72 Av	rage Age an	Failure Rate		22	137E-02
ECP	over 72		0	3,861	30,888	
ECP	over 72	11	0	18,516	203,676	
ECP	over 72	12	0	18,550	222,600	
ECP	over 72 To		0	40,927	457,164	
ECP	over 72 Av	age Age an	ailure Rate		11	$0.00 \mathrm{E}+00$
ECP Total				233,057	4,059,163	
ECP Average Age and Failure Rate					17	6.50E-03
LCP	24 to 48	28	0	14,200	397,600	
LCP	24 to 48	42	2	60,670	2,548,140	
LCP	24 to 48	28	0	24,805	694,540	
LCP	24 to 48	28	0	4,360	122,080	
LCP	24 to 48	26	0	16,765	435,890	
LCP	24 to 48	24	0	4,355	104,520	
LCP	24 to 48	13	0	9,153	118,989	
LCP	24 to 48	35	0	86,328	3,021,480	
LCP	24 to 48	25	0	50,888	1,272,200	
LCP	24 to 48	6	0	21,014	126,084	
LCP	24 to 48	26	0	100,320	2,608,320	
LCP	24 to 48	25	0	3,624	90,600	
LCP	24 to 48	21	0	11,421	239,841	

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (ft)	$\begin{gathered} \text { Length X } \\ \text { Age } \\ \hline \end{gathered}$	Failures per Mile Year
LCP	24 to 48	1	0	85,784	85,784	
LCP	24 to 48	31	1	19,591	607321	
LCP	24 to 48	5	0	26,946	134,730	
LCP	24 to 48	20	1	85,102	1,702,040	
LCP	24 to 48	21	0	8,800	184,800	
LCP	24 to 48	32	0	3,400	108,800	
LCP	24 to 48	31	0	5,314	164,734	
LCP	24 to 48	27	0	11,740	316,980	
LCP	24 to 48	26	0	11,616	302,016	
LCP	24 to 48	24	0	10,191	244,584	
LCP	24 to 48	24	0	8,800	211,200	
LCP	24 to 48	5	0	12,807	64,035	
LCP	24 to 48	33	0	28,600	943,800	
LCP	24 to 48	39	3	47,500	1,852,500	
LCP	24 to 48	20	1	5,000	100,000	
LCP	24 to 48	21	1	31,549	662,529	
LCP	24 to 48	30	0	18,600	558,000	
LCP	24 to 48	36	5	163,700	5,893,200	
LCP	24 to 48	27	0	3,114	84,078	
LCP	24 to 48	24	0	3,000	72,000	
LCP	24 to 48	4	0	51,482	205,928	
LCP	24 to 48	26	0	31,680	823,680	
LCP	24 to 48	35	0	2,250	78,750	
LCP	24 to 48	38	0	52,800	2,006,400	
LCP	24 to 48	21	1	53,162	1,116,402	
LCP	24 to 48	26	0	42,366	1,101,516	
LCP	24 to 48	26	0	23,340	606,840	
LCP	24 to 48	20	0	16,309	326,180	
LCP	24 to 48	3	0	13,665	40,995	
LCP	24 to 48	26	0	14,963	389,038	
LCP	24 to 48	24	0	14,773	354,552	
LCP	24 to 48	15	0	13,277	199,155	
LCP	24 to 48	15	0	15,174	227,610	
LCP	24 to 48	1	0	20,206	20,206	
LCP	24 to 48	27	0	13,936	376,272	
LCP	24 to 48	24	0	13,129	315,096	
LCP	24 to 48	19	1	31,680	601,920	
LCP	24 to 48	36	0	31,200	1,123,200	
LCP	24 to 48	21	3	5,555	116,655	
LCP	24 to 48		19	1,460,004	36,103,810	
LCP		rage Age an	d Failure Rate		25	2.78E-03
LCP	49 to 72	18	2	21,120	380,160	
LCP	49 to 72 T		2	21,120	380,160	
LCP	49 to 72 A	rage Age an	d Failure Rate		18	$2.78 \mathrm{E}-02$
LCP Total			21	1,481,124	36,483,970	
LCP Average	Age and Fa	ure Rate			25	3.04E-03
PT	24 to 48	3	0	27,607	82,821	
PT	24 to 48	23	4	6,000	138,000	
PT	24 to 48	37	2	42,240	1,562,880	
PT	24 to 48	28	0	11,769	329,532	
PT	24 to 48	44	2	20,180	887,920	
PT	24 to 48	2	0	38,500	77,000	
PT	24 to 48	24	0	8,330	199,920	
PT	24 to 48	11	0	58,679	645,469	
PT	24 to 48	11	1	14,000	154,000	

Pipe Type	Size Range (in)	Years in Service	Number of Failures	Length (ft)	$\begin{gathered} \text { Length X } \\ \text { Age } \\ \hline \end{gathered}$	Failures per Mile• Year
PT	24 to 48	11	1	20,000	220,000	
PT	24 to 48	4	0	9,000	36,000	
PT	24 to 48	20	0	16,000	320,000	
PT	24 to 48	25	0	42,40	1,056,000	
PT	24 to 48	15	1	2,640	39,600	
PT	24 to 48	8	0	2,445	19,560	
PT	24 to 48	28	0	36,760	1,029,280	
PT	24 to 48 T		11	356,390	6,797,982	
PT	24 to 48 A	age Age an	Failure Rate		19	8.54E-03
PT	49 to 72	28		20,854	583,912	
PT	49 to 72	8	0	4,160	33,280	
PT	49 to 72	27	0	11,495	310,365	
PT	49 to 72	28	0	16,479	461,412	
PT	49 to 72 T		0	52,988	1,388,969	
PT	49 to 72 A	rage Age and	Failure Rate		26	$0.00 \mathrm{E}+00$
PT	over 72	20	0	16,742	334,840	
PT	over 72	20	0	240,035	4,800,700	
PT	over 72	17	0	9,808	166,736	
PT	over 72 T		0	266,585	5,302,276	
PT	over 72 A	rage Age and	Failure Rate		20	0.00E+00
PT Total			11	675,963	13,489,227	
PT Average Age and Failure Rate					20	4.31E-03
PVC	24 to 48	2	0	8,333	16,666	
PVC Total			0	8,333	16,666	
PVC Average Age and Failure RateRC					2	$0.00 \mathrm{E}+00$
				23,400	1,333,800	
RC	24 to 48	25	1	11,500	287,500	
RC	24 to 48	53	0	16,420	870,260	
RC	24 to 48	47	0	11,000	517,000	
RC	24 to 48	47	0	17,500	822,500	
RC	24 to 48 T	1	2	79,820	3,831,060	
RC	$24 \text { to } 48$	rage Age an	Failure Rate		${ }^{48}$	2.76E-03
RC	49 to 72	50	0	221,760	11,088,000	
RC	49 to 72 T		0	221,760	11,088,000	
RC	49 to 72 A	rage Age an	Failure Rate		50	$0.00 \mathrm{E}+00$
RC Total			2	301,580	14,919,060	
RC Average Age and Failure Rate					49	7.08E-04
RCCP	24 to 48	45	0	32,800	1,476,000	
RCCP	24 to 48	30	0	38,500	1,155,000	
RCCP	24 to 48	10	0	32,962	329,620	
RCCP	24 to 48	25	0	12,907	322,675	
RCCP	24 to 48	20	0	11,190	223,800	
RCCP	24 to 48	29	0	11,160	323,640	
RCCP	24 to 48	19	0	5,500	104,500	
RCCP	24 to 48	20	0	16,050	321,000	
RCCP	24 to 48	7	0	4,248	29,736	
RCCP	24 to 48	30	0	6,900	207,000	
RCCP	24 to 48	22	0	16,330	359,260	
RCCP	24 to 48 T		0	188,547	4,852,231	
RCCP	24 to 48 A	rage Age an	d Failure Rate		26	$0.00 \mathrm{E}+00$
RCCP	over 72	15	0	1,860	27,900	
RCCP	over 72 T		0	1,860	27,900	
RCCP	over 72 A	rage Age and	Failure Rate		15	$0.00 \mathrm{E}+00$

Mission

The mission of the Bureau of Reclamation is to manage, develop; and protect water and related resources in an environmentally and economically sound manner in the interest of the American Public.

[^0]: *No data reported for this pipe type.

