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INTRODUCTION

Background

On August 7, 1984, a 66-inch-diameter prestressed concrete cylinder pipe unit abruptly failed
on Reach 3 of the Jordan Aqueduct near Salt Lake City, Utah. Reach 3 is part of the 36-
mile-long Jordan Aqueduct, which conveys municipal and industrial use water from near the
mouth of Provo Canyon to the Salt Lake Valley. Reach 3 consists of 3-1/4 miles of
pretensioned concrete cylinder pipe and 2-1/4 miles of prestressed concrete pipe, which
traverses both residential and commercial areas (fig. 1). Both pipes were cathodically
protected with impressed current systems. The rupture occurred in the prestressed section
of the line. This abrupt failure caused rapid and complete loss of pressure which essentially
emptied the line, discharging an estimated 5 million gallons of water. The subsequent flood
covered a one square city block area of the residential neighborhood adjacent to the break.

The pipeline was constructed under Reclamation (Bureau of Reclamation) Specifications DC-
7412. The section that failed was placed and backfilled in September 1981; the cathodic
protection system was energized in April 1983. The line was placed into service in July 1984,
and the failure occun-ed 1 month later.

The opinions, findings, and conclusions cited in this report are those of
Reclamation personnel. The producer of the prestressed concrete pipe used for
Jordan Aqueduct, Reach 3, conducted their own investigation of the failure. Their
conclusions do not necessarily agree with those of Reclamation.

Embedded Cylinder Prestressed Concrete Pipe Components and Fabrication

Embedded cylinder prestressed concrete pipe (fig. 2) consists of a mild steel cylinder, which
serves as the impermeable membrane, embedded in a concrete core, which is the compression
component. The inner core, that portion of the concrete core within the steel cylinder,
doubles as the con-osion preventive lining for the steel cylinder. Mter the core has cured, a
cement slun-y is applied and high-carbon, high-strength (ASTM A 648) steel prestressing wire
is helically wound on its surface at a mean wrapping stress of 75 percent of its specified
minimum ultimate tensile strength. In this particular case, two diametrically opposite steel
straps (1-1/4 inches wide by 0.03 inch thick) were placed longitudinally on the core surface
prior to wrapping. These straps reduce the electronic cun-ent return path resistance from
the wire, thereby enhancing cun-ent collection by wire surfaces. Nonetheless, the electronic
resistance along the straps is about 200 times that of its parallel counterpart (steel cylinder)
per foot of pipe. A 3/4-inch-thick cement mortar coating over the wire completes the pipe
construction and serves to protect the wire from handling damage and con-os ion effects.

The pipe uses steel bell-and-spigot joint rings which are gasketed by rubber O-rings to
provide the joint seal. The swedge-type anchors, which maintain stress on the wire at the
bell and spigot ends, are electrically bonded to the steel joint rings to provide electrical
continuity of all metallic components within each pipe unit. Joint bonds are installed after
adjacent units of pipe are placed to provide electric continuity across the rubber gaskets. A
diaper is then placed around the joint and the annular space is filled with cement grout for
external con-os ion protection of the joint rings. The internal surfaces of the joints are
mortared for internal protection.



Initial Observations

Pipe unit 797, which burst, was designed for 400 feet of head and 10 feet of earth cover. This
unit was located 160 feet from a cathodic protection ground bed. Observations of the rupture
disclosed that the No.8-gage (0.162-inch-diameter) prestressing wire (class III) failed near
spring line for a length along the pipe of about 7 feet (fig. 3). Wire fractures exhibited cup-
and-cone matching surfaces with essentially no macroscopically observable reduction in area
(figs. 4 and 5). The 5-1/4-inch-thick core and steel cylinder failed slightly below spring line.

Closer examination after rupture revealed that the wire was cracked along its longitudinal
axis (fig. 6). The crack, when forced open, revealed an oxidized layer and dark red deposits
on the crack surfaces (figs. 7 and 8).

Unit 797 failed while under a static head of 366 feet. Analyses for transients indicated that
operating procedures were not likely the cause for the rupture.

The cathodic protection system for the 2-1/4-mile-Iong stretch of prestressed pipe consisted
ofthree, essentially equally spaced, semi-deep-well (lOO-foot), impressed current ground beds
(fig. 9). The specified criteria for cathodic protection required a current-applied protective
potential of -0.85 volt or more negative as referenced to copper/copper sulfate electrode.
Additionally, a polarized (current interrupted) potential of -1.10 volts or less negative was
specified to preclude overprotection effects. Thus, the -0.85-volt criterion was effectively
removed from ground beds, and the -lo10-volt level became operative adjacent to ground
beds.

A potential survey conducted soon after failure revealed a polarized potential of -1.16 volts
at the ground bed near the ruptured unit. Following failure, the ruptured pipe exhibited a
polarized potential of -0.96 volt. Further, a potential survey of each wire coil with a close
electrode disclosed a maximum wire polarized potential of -1.07 volts (fig. 10).

A potential survey conducted 6 months after the burst and after replacement of the ruptured
unit showed that the pipeline was protected above the maximum polarized potential criterion
at all locations within 200 feet of each ofthe three ground beds (fig. 11). Polarized potentials
as high as -1.24 volts were observed immediately adjacent to the ground beds. In one 600-
foot span at the upstream end, protective potentials as low as -0.30 volt were observed.
Electronic discontinuity was determined to be the cause for these low potentials.

CONCLUSIONS

Reclamation investigations indicated that the pipeline rupture was caused by the overload
of the highly stressed, defective prestressing wire. This conclusion is based upon the
following findings:

1. Longitudinal cracks existed in all examined prestressing wire samples.

2. The wire was defective because longitudinal cracks were present in the prestressing
wire at the time of pipe manufacturing.

3. The prestressing wire of the ruptured pipe fractured in a ductile manner and the
longitudinal cracks were instrumental in the fractures. Inspection of the fractured ends
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of the wire from the failed pipe section showed a combination of two types of failure,
including a cup and cone ductile failure in combination with a sharp tongue formed by
an offset between longitudinal cracks in the wire. This finding indicated the failure was
initiated by stress concentrations at the termini of the longitudinal cracks.

4. The high stresses applied to the prestressing wire during the winding operation
were also instrumental in the fracture of the prestressing wire. Reclamation testing
indicated that the wire was wound at tensile stresses exceeding the specified level.

5. Although the failed pipe section was cathodically protected at polarization potentials
above the specified level, no tangible physical evidence was found to indicate excessive
cathodic protection resulted in hydrogen embrittlement, fracture ofthe prestressing wire,
and subsequent pipeline failure.

Based on findings from Reclamation's investigations, it is concluded that defective wire was
used in the manufacture of the pipe and that it likely was wrapped on the pipe at stresses
which exceeded Reclamation specifications. The prestressing load produced stress
concentrations at unstable crack termini exposed to the outer side of wire bends and caused
the offset, overlapping longitudinal cracks to grow inwardly (toward the center of the wire
cross sections), thereby reducing the effective load-carrying area. The situation was likely
aggravated by standard pipeline operating procedures, such as valve closings, which could
have caused surges and flexing of the highly stressed prestressing wire. As sufficient load-
carrying area was removed, instantaneous ductile failure of the wire occurred with little
reduction in area observed. The pipe ruptured when sufficient individual wire helices failed
such that the pressure could not be contained.

Examination of the wire through several inspection windows along the pipeline revealed
defective wire throughout the prestressed section. Therefore, all 2.3 miles were rehabilitated
by lining with steel prior to commissioning for service.

FAILURE INVESTIGATIONS

Two units of pipe, No. 797 (the ruptured unit), and an adjacent unit, No. 798, closer to the
ground bed, were removed from the pipeline for laboratory investigation and testing. In
addition, pipe was uncovered and the mortar coating was removed at eight additional
locations along the line to expose inspection windows for wire testing and sampling. Unit 798
was also pressure tested. Hydrostatic testing to 750 feet of head (design head was 400 feet)
disclosed no visually apparent distress.

Petrographic Examinations

Petrographic examinations of concrete fragments from the pipe core revealed that the
concrete was of satisfactory quality and exhibited no evidence of environmental attack. The
mortar was adjudged of fair quality, but perhaps typical of pipe mortar coatings. The only
anomalous observation was the presence of some ridges on the concave surfaces of the
mortar.

3



Metallurgical Examinations

Longitudinal cracks. -Although all wire samples exposed by the failure were found to have
suffered incipient corrosion from atmospheric and ground-water effects, wires removed from
beneath intact mortar were untarnished except where protective potentials below specified
criterion were observed.

Initially, the wire from the ruptured unit was found to contain longitudinal cracks.
Subsequently, the wire was found to be cracked longitudinally on unit 798, as well as at eight
other locations along the line where wire was removed for examination. Cracking was
verified either by dye penetrant or, if that technique provided inconclusive results, by
subsequent magnetic particle inspection as confirmed by metallographic examination of cut
and polished sections.

The cracks normally extended over the length of the examined wire (i.e., 2-foot lengths of
wire removed from inspection windows and several coils of wire removed from the pipe
circumference of units 797 and 798) in a discontinuous, overlapping pattern. The
discontinuous cracks were parallel on the wire surface, but were randomly oriented around
the wire circumference with respect to its bending axis. In some cases, the cracks spiraled
around the wire circumference and terminated. In such cases, another crack originated
diametrically opposite the terminating crack. A large number of wire samples were found
wherein the crack ran along a surface defect (die mark). These cracks were very straight for
great lengths (i.e., several feet to several coils of wire) (Mote, 1985a). Longitudinal cracking
was also observed on the free (unloaded) ends of the wire at the bell anchors of both units
797 and 798.

Because petrographic examinations of the mortar coating had disclosed ridges in the
concavity formed by the wire, the coating opposite wider, longitudinal cracks in the wire was
closely inspected. In many cases, the surfaces of the concavity exhibited a ridge or imprint
of the corresponding longitudinal crack (figs. 12 to 14). X-ray spectral analyses showed the
ridge, the smooth surfaces of the concavity, and the fractured mortar surfaces between
concavities to be ofthe same elemental composition. The major constituent was calcium, and
moderate amounts of silicon and aluminum were found. No cracking of the mortar was
observed beneath the ridges (fig. 15).

In some cases, particles of solid material were seen lodged within longitudinal cracks (figs. 16
to 20). Energy dispersive, elemental x-ray spectral analyses showed the major constituent
of the particles to be silicon. The appearance of the particles was that of quartz grains.

Metallographic examinations of the wire's cross section also showed that the longitudinal
cracks were radially oriented and varied substantially from a few hundredths of an inch (fig.
21) to a radius or more in depth (fig. 22). On some cross sections, two parallel cracks on the
wire surface could be seen to join or nearly join (fig. 23). Longitudinal sectioning exhibited
many instances where longitudinal cracks overlapped or joined such that a filament of steel
was observed between the cracks (figs. 24 and 25).

When the longitudinally cracked wire was split open by notching at close intervals with bolt
cutters, the crack surfaces were found to be covered with an adherent layer of rust. Energy
dispersive x-ray analyses of the rust-covered crack surfaces disclosed iron, oxygen, sodium,
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silicon, potassium, and calcium. X-ray analyses of a wire from the failure site detected only
iron on the fracture surface (Mote, 1985a).

Transverse wire fractures. - The intact bell end of unit 797 exhibited many fractured coils
(fig. 26) which were largely located over or near one of the bonding straps. This unit was
oriented in service such that the bonding straps were at the 3 and 9 o'clock positions. Wire
fractures were also noted on unit 798 (fig. 27) when the mortar coating was removed after
pressure testing. However, they were fewer in number and randomly located about the pipe
circumference. The bonding straps were at the 5 and 11 o'clock positions on this unit in
service. No other wire fractures were observed at other locations along the line where
windows were opened for wire inspection.

Wire was found to be fractured on the stressed side of the unit 798 bell anchor (fig. 28). The
fracture originated at a notch in the wire formed by the swedge-type anchor (fig. 29). The
fracture was imprinted in the concavity of the mortar coating opposite the anchor (figs. 30
and 31). Spectral analyses indicated that the imprinted crack, the smooth surfaces formed
by the wire and anchor, and the fractured surface of the mortar consisted of calcium and
progressively lower amounts of silicon and aluminum.

Field fracture morphology. - All 245 field-fractured coils of wire were sampled from unit 797
both above and below the rupture. Matching resulted in pairing 109 fractures such that the
wire on both sides of the fractures could be inspected. Paired fractures from unit 798 were
also examined. The examination revealed that all matched fractures occurred at cross
sections where a crack terminated and another originated (fig. 32). In addition, fracture
morphologies consistent with overload failure were apparent. These fractures were of the
ductile cup and cone type in combination with a sharp metal tongue formed by offsetting,
overlapping longitudinal cracks (figs. 33 to 35). No areas of typical brittle fracture were
observed. Extensive examination of wire surfaces failed to reveal a single secondary
transverse crack extending only partially into the wire cross section. Either the wire was
totally fractured or only longitudinal cracks were found (Mote, 1985a).

Field Testing

Field testing was conducted to inspect exposed wire as well as to determine the existing in
situ stress level. Reclamation selected six random locations along Jordan Aqueduct for
examination and testing. At each location, the bonding strap was electromagnetically located
and the mortar coating was removed to expose the underlying prestressing steel in windows
about two feet square. Some of the locations were directly opposite ground beds, and others
were midway between so that areas representing a wide range of polarized potentials were
evaluated (fig. 9).

Inspection windows. - At each inspection window, the exposed, in situ wire was subjected to
dye penetrant testing to assist in the identification of possible wire irregularities such as
longitudinal cracks. Only a limited portion of the wire was visible, however, because the
testing was performed in situ. If cracks existed along the side of the wire at the mortar
interface, they were difficult to identify because of smearing by the dye. Also, cracks on the
underside of the wire could not be seen. To confirm the existence of longitudinal cracks,
removed wire samples were subjected to magnetic particle inspection and metallographic
examination. The dye-penetrant testing, however, showed cracking at stations 1470+00,
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1447+00, 1427+00, and 1400+30 and was inconclusive at stations 1396+00 and 1394+60
(table 1).

Stress-relief testing. - Upon completion of the dye testing, stress-relief tests were conducted
at each test site adjacent to the inspection window. The in-place testing procedure consisted
of attaching a strain gage to the prestressing wire, cutting the wire, and measuring the strain
relaxation. Great care was taken to develop a test method which minimized or eliminated
torsion, bending, and shock effects. Mter much experimentation, the following procedure was
implemented:

1. Two holes about 2-1/2 inches in diameter were chipped in the mortar coating, one
above the other in a line along the circumference of the pipe. The holes were separated
by 1 inch of intact mortar coating. A minimum amount of prestressing wire was exposed
in the holes for strain gage attachment and most of the wire remained encased in the
surrounding mortar (figs. 36 and 37).

2. A strain gage (Ailtech SG-129) was attached to the prestressing wire in one hole
while the wire remained stressed around the pipe under in situ tension (figs. 38 and 39).

3. A strain indicator was set (Measurements Group P-350 or P-3500) and the initial
strain reading was zeroed (fig. 40).

4. The prestressing wire was cut in the second hole to relieve the tension on the wire,
and a strain reading was obtained (fig. 41).

5. The mortar bridge separating the two holes was removed (figs. 42 and 43).

6. The wire was held down near the strain gage with a specially fabricated mandrel
and a final strain reading was obtained. The mandrel was cut on the same wire radius
as that of the pipe and was slotted to prevent damage to the strain gage (fig. 44). In
many cases, strain readings obtained in step 4 and step 6 were similar. However, in
limited cases, it was apparent that the mortar bridge had restrained the wire (step 4)
from becoming totally stress-relieved.

The cut wire then was removed from the pipeline and taken to the laboratory. In the
laboratory the wire was straightened, reinstrumented, and tested in tension to produce a
stress-strain curve. The field-measured strain was then converted into field stress using the
stress-strain curve. Measured field wire stresses ranged from 150,000 to 185,000 Ib/in2
under no-service loads. The field procedure was validated in a controlled laboratory study
(Peabody et aI., 1986).

Laboratory Testing

Validation offield testing. -The laboratory study consisted of fabricating an aluminum half
mandrel with the same radius as the prestressed concrete pipe core (fig. 45). A guide slot
was cut into the mandrel so that when a wire sample was placed into the slot, about
20 percent of the wire surface was not in contact with the mandrel. The guide slot was
lubricated with oil to minimize the friction between the contact points of the wire and the
mandrel. Wire samples, with a length greater than one-half the circumference of the pipe
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core, were cut from Jordan Aqueduct pipe segments to serve as test specimens. Shorter
samples of wire were also cut from the longer samples.

The field testing was validated by simulating the field test on the laboratory half mandrel.
A wire sample was loaded on the mandrel in tension to a known measured stress. A strain
gage was placed on the wire 4 inches away from the applied load (where friction was
negligible), the wire was cut, and strain relaxation was recorded (fig. 46).

The shorter samples of wire which were removed from the longer wire samples prior to
mandrel testing were then straightened, instrumented, and tested in tension to failure in a
testing machine to produce stress-strain curves. The predicted stress corresponding to the
strain relaxation measured by cutting the wire on the mandrel was obtained from the
straight wire stress-strain curve. Predicted stress was then compared to the known wire
stress measured on the mandrel at the time of stress relieving. The predicted stresses were
always lower than the measured stresses, indicating the need for a correction factor (table
2).

The correction factor was determined to be +9 percent. Mter correction, wire stresses were
found to range from 161,000 to 201,000 Ib/in2 for the in-place pipe at the six field test sites.
Considering assumptions for stress loss over time resulting from elastic deformation, creep,
and shrinkage of the pipe core and subsequent relaxation of the wire when properly wrapped,
stress levels at the time of testing should have ranged between 140,000 to 170,0001b/in2.
The measured values, therefore, exceeded those predicted by design at the time of stress
relieving (table 3).

Destructive testing. - Laboratory testing was also conducted on wire from the failure site to
verify compliance with the destructive test criteria of ASTM A 648-73 (fig. 47), which was in
effect when the pipe was fabricated. During tensioning, the wire was loaded at rates
specified in ASTM A 370. Mter fracture, the ends of the broken specimen were fitted
together and the dimensions ofthe smallest cross section were measured to the nearest 0.001
inch. The area reduction was calculated as the difference between the area after fracture and
the initial area, expressed as a percentage of the initial area. Although ASTM A 648-73 did
not contain an area reduction criterion and placed no upper limit on the tensile strength, its
successor, ASTM A 648-84, required that class III wire achieve a tensile strength ranging
from 262,000 to 297,000 Ib/in2 for 8-gage wire and a minimum area reduction of 30 percent.
As the data indicate, wire from the failure site (pipe 797) met the tensile strength
requirements of both ASTM A 648-73 and ASTM A 648-84, but failed to meet the ASTM A
648-84 area reduction criterion. The mean tensile strength of ten samples was 283 kips/in2
with a standard deviation of 3.9 kips/in2 and a coefficient of variation of 1.4 percent. The
mean area reduction of the same samples was 13.8 percent with a standard deviation and
coefficient of variation of6.7 and 48.5 percent, respectively (table 4). Wire from pipe 798 also
achieved the required tensile strength and exhibited a mean of 288 kips/in2 with a standard
deviation of 2.4 kips/in2 and a coefficient of variation of 0.8 percent for the ten samples
tested. The average reduction in area of three of the ten samples was 10.5 percent with a
corresponding standard deviation and coefficient of variation of 1.2 and 11.4 percent,
respectively. Many specimens failed at the jaw-wire interface, indicating wire susceptibility
to notch effects. The area reduction measurements were not tabulated in these cases (table
4).
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In-service wire fractures with further reduced, or no, neck down were reproduced in the
Reclamation laboratory by rapidly loading Jordan wire to failure in tension. To perform
these tests, specimens were preloaded to about 60 percent of the minimum ultimate tensile
strength of the prestressing wire at a rate of 50 kips/in2/min and rapidly loaded to failure at
1100 kips/in2/min. One of the fractures (17 percent) occurred in the free length between the
jaws and exhibited virtually no neck-down when tested in this manner (fig. 48).

Wire from stations 1499+56 and 1478+44 was also tested to failure in tension. This wire
contained severe longitudinal splits visible to the unaided eye but was protected at potentials
within criteria while in service. The average reduction in area of 6 samples was 26.5 percent
and the corresponding standard deviation and coefficient of variation were 5.9 and 22.1
percent, respectively (table 5). The wire therefore failed to meet the ASTM A 648-84
minimum reduction in area criterion. Also, one specimen failed below the minimum required
tensile strength.

Wrap tests were performed by closely wrapping prestressing wire about a mandrel twice the
nominal wire diameter. A specimen is considered to have failed if any cracks appear in the
wire after the first complete turn. All specimens from unit 797 and unit 798 failed the wrap
test (table 4). Wire from unit 797, however, commonly failed the wrap test by breaking
whereas wire from unit 798 usually could be wrapped around the test mandrel without
breaking. Wire from stations 1499+56 and 1478+44 passed the wrap test (table 5). In many
cases, wrap test specimens showed no visible signs of cracking in the wrapping coils, but
longitudinal cracks were easily split open on the ends with bolt cutters (fig. 49).

Longitudinal cracks that were not found with the wrap test were often revealed by the bolt
cutting test (tables 1,4, 5). The bolt cutting test was not specified in ASTM A 648-73, but
was useful in revealing defects. The test was performed by cutting a wire, rotating the wire
90° about its longitudinal axis, and cutting the wire a second time 3 inches away from the
first cut. Cracks that were not identified in the original3-inch sample were sometimes found
with additional cutting at different angles, but not in all cases. Wire which had passed both
wrap and bolt cutting tests was found to be cracked longitudinally when inspected
microscopically or by magnetic particle techniques.

Hydrogen Embrittlement Exemplar Testing

Almost from the onset of the investigations, explanations for the cause of rupture focused
upon the effects of cathodic overprotection that was speculated to have produced wire failure
by hydrogen embrittlement. Reclamation conducted several studies to examine this
possibility. One study attempted to produce brittle failures of wire in laboratory conditions
that were representative ofthe field environment but more severely stressed and more highly
polarized. Wire was tested in simulated concrete (saturated Ca(OH)2) environments (pH =
7 to 12.5), loaded to 90 percent of the minimum ultimate tensile strength of the wire, and
locked off. The specimens were cathodically protected, some at polarized potentials near
-1300 millivolts, with corresponding cathode current densities up to 35 A/ft2 (fig. 50). Mter
5 years of testing under sustained load, no longitudinal cracking or failure attributable to
hydrogen embrittlement occurred for the exemplar wire tested. Failures that did occur were
determined to be ductile and near the electrolyte/atmosphere interface, where protection was
ineffective and active pitting was observed (Mote, 1985b).
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In a separate series oftests, hydrogen-induced brittle fractures were produced by cathodically
charging wire in a 4-percent solution of sulfuric acid with 50 milligrams of arsenic per liter
both before and during stressing. The resulting fractures all exhibited a characteristic ledge
or step perpendicular to the longitudinal axis (figs. 51 to 54). Wires tested in this manner
also exhibited secondary partial transverse cracking (figs. 55 and 56) (Mote, 1986).

In a third study, bulk hydrogen contents were measured on wire near the failure site after
cathodic protection was reestablished to -1210 millivolts for 3 weeks and were compared to
the bulk hydrogen contents oflaboratory samples of Jordan wire fractured while cathodically
charged under load in an acidic environment. Comparisons were also made to the bulk
hydrogen content of new wire that was cathodically charged at polarized potentials near
-1300 millivolts in a basic environment for over 15 months without failure (Mote, 1987).
Wires removed from the Jordan Aqueduct pipeline showed average hydrogen contents of 3.38,
3.08, and 2.26 p/m at stations showing measured potentials of -1210, -980, and -710
millivolts, respectively. Laboratory samples fractured in an acidic environment (4-percent
solution of sulfuric acid with 50 milligrams of arsenic per liter) showed hydrogen contents up
to 17.6 p/m. In addition, new wire that was tested in a basic solution and held under a
sustained load of 70 percent of the minimum tensile strength of the wire for over 15 months
without failure exhibited an average hydrogen content of 6.27 p/m.

DISCUSSION

The cause for the pipeline failure became an issue of reconciling the effects of cathodic
overprotection and the longitudinal cracks found in the prestressing wire. This issue is
addressed below. Conclusions are followed by a summary of the supporting evidence.

Longitudinal cracks existed in all prestressing wire examined.

Longitudinal cracks were found in all examined wire from various locations along the
pipeline. The cracks typically ran the entire length of the wire (i.e., 2-foot lengths of wire
removed from inspection windows and several coils of wire removed from the pipe
circumference of units 797 and 798) in a discontinuous, overlapping, and offsetting pattern,
but were randomly oriented around the wire circumference with respect to the bending axis.
In some cases, the cracks spiraled around the wire circumference and terminated. Another
crack then originated diametrically opposite the terminating crack. A metallurgist concluded
that the longitudinal cracks were overstress failures from residual stresses induced during
manufacturing and/or the prestressing operation. The cracks varied in depth from a few
hundredths of an inch to a radius or more in depth (Mote, 1985a).

The wire was defective because the longitudinal cracks were present in the
prestressing wire at the time of pipe manufacturing.

The fractography of characteristic in-service wire fractures, as well as those generated by
tensile testing, showed that the longitudinal cracks were a primary material factor in the
rupture. Thus, a determination of when the longitudinal cracks existed became relevant.
The oxidized surface of the cracks showed that they existed prior to energization of the
cathodic protection system because the wire likely did not oxidize in this manner while under
cathodic protection in the highly alkaline environment of the mortar coating. The surfaces
of the longitudinal cracks in wire from the failure site also contained dark-red deposits.
Energy dispersive comparisons between deposits on an in-service field fracture and those on
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the surface of a longitudinal crack indicated that the longitudinal crack was older than the
field fracture. The longitudinal crack surface contained iron, oxygen, sodium, silicon,
potassium, and calcium, whereas only iron was detected on the field-fractured surface.

The particles lodged in wider cracks were determined to be largely silicon and appeared to
be quartz. The particles are undoubtedly fine grains of sand, which indicates that the cracks
existed while the mortar coating was plastic. Although a few particles could have fallen into
the longitudinal cracks from gravity effects, Reclamation inspections revealed numerous
particles that were lodged and cemented in cracks. Particle impaction could only occur
during the pipe manufacturing process when mortar is sprayed on the prestressing wire.
Therefore, the impacting or forcing of particles into cracks most likely occurred during the
pipe manufacturing process, indicating the existence of cracks at that time.

The inner surface of the mortar coating forms a cast of the surfaces of the prestressing wire.
The longitudinal cracks in the wire were found to be embossed on the mortar. The resulting
ridge, the smooth surfaces of the concavity formed by the wire, and fractured mortar between
concavities exhibited the same composition of a major amount of calcium and moderate
quantities of silicon and aluminum, essentially the composition of portland cement. Ridge
formation on the mortar surface must have occurred while the mortar was in the plastic
state. Because the mortar coating is applied after the pipe core is wrapped with prestressing
wire, the presence of the ridges on the concavity of the mortar indicates the defects forming
the ridges were present at the time of wrapping and before application of the cathodic
protection. The imprints thus add further credence to the conclusion that the wire was
cracked while the cement slurry and mortar coating were in a plastic condition.

The condition of the mortar under the embossed ridges provides further evidence. No
cracking was found. Because the mortar is a brittle (strain intolerant) material, radial cracks
in the mortar should be evident if wire cracking occurred after the mortar coating had
hardened.

Discontinuity of the ridge was also an important revelation. Ridges can form as a result of
wire die marks, although wire with die marks serious enough to result in the formation of
ridges would not comply with specifications (ASTM A 648-73, sec. 9.1) for use in pipe
production. Die marks occur as die defects are etched onto the wire during drawing. If a
ridge attributable to a die mark was formed on the wire, the pattern would be straight and
continuous because it is a reflection of a consistent defect on the die surfaces. The
longitudinal crack defect on the prestressing wire, however, exhibited a characteristic
discontinuous offsetting and overlapping pattern. If mortar was sprayed upon cracked wire
during pipe manufacturing and ridge formation occurred at that time, the discontinuous
offsetting pattern should also be observed on the concavity of the hardened mortar coating.
Reclamation investigations have revealed this phenomenon when ridges in the concavity of
the mortar were related to longitudinal wire cracks. Both ridges that were straight and
formed by straight preexisting longitudinal cracks in the wire, and ridges that were offset and
formed by preexisting offsetting longitudinal cracks in the wire, were observed. Metallurgists
also have related ridges in the mortar concavity to longitudinal cracks in the wire (Mote,
1985a), (Klodt, 1985).

The random orientation of longitudinal cracks about the wire circumference with respect to
its axis of bending also showed they were not related to die marks from the drawing process.
Longitudinal cracking of newly manufactured wire would most likely occur at the outermost
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fiber of the bend as it was wrapped on the original wire spool. To determine if the wire is
cracked on the surface adjacent to the concrete core, however, the wire must be removed from
the pipe. When removed, the wire assumes a different curvature and orientation which is
not representative of wire as wrapped on the pipe. Observations regarding the orientation
of longitudinal cracks with respect to the curvature of the wire would then most likely be
valid for the wire orientation on the wire spool and not around the pipe. Such observations
indicated that the longitudinal cracks were likely present at the time of wrapping because
they were randomly oriented with respect to the curvature of the wire on the pipe.

The most important observation regarding this matter is that longitudinal cracks were found
on the unstressed side of wire anchors. Longitudinal cracks in the unstressed wire would
once again indicate that cracks were present at time of wrapping.

Reclamation specifications required that the prestressing wire conform to the requirements
of ASTM A 648-73, "Standard Specification for Steel Wire, Hard Drawn for Prestressing
Concrete Pipe." Section 9.1 states "The surface of the wire as received shall be smooth and
free from cross checking or torn surface. No serious die marks, scratches, pits, or seams may
be present." Reclamation, in its examination, concluded that the wire contained longitudinal
cracks at the time of pipe manufacturing and therefore did not meet these specifications.

Specifications also required conformance to two destructive tests specified in ASTM A 648-73,
namely the tensile and wrap tests. Numerous tensile tests conducted by Reclamation on
longitudinally cracked Jordan wire yielded only one sample which failed below the minimum
tensile strength requirement of 262,000 Ib/in2.

Reclamation tests have raised doubts regarding the effectiveness of the wrapping test in
revealing the longitudinal crack. The effectiveness of the test is dependent upon the
orientation of the crack with respect to the direction of bending. Reclamation performed a
wrap test by closely wrapping prestressing wire about a mandrel twice the specified wire
diameter. When the crack was oriented on the inside or side of a wrap, the wire usually did
not split open. When the crack was oriented toward the outer side of the wrap, diametrically
opposite the wire-mandrel interface, the crack usually split open. The greater the length of
a crack, the more probable the failure during wrap testing because chances were greater that
the cracks would be critically oriented.

Reclamation tests showed that if a wire is cracked in the longitudinal direction on one side
of a wire, chances are reduced for the defect to be oriented toward the outside of a wrap, and
a defective specimen will generally pass the wrap test. In many cases, wrap test specimens
showed no visible signs of cracking in the wrapping coils, but longitudinal cracks were easily
split open on the ends with bolt cutters. If a wire is cracked in the longitudinal direction in
more than one location around the wire circumference, however, chances become
progressively greater for a defect to be exposed in proportion to the number of crack locations.

Reclamation tests also demonstrated that the depth and surface area of the crack are
important considerations once a wrap test defect is exposed. If the depth was shallow, the
crack was forced open, but the wire could still be wrapped around the test mandrel without
breaking. If the crack was deep, however, and extended over a large surface area, the wire
usually broke during winding.

11



In the majority of cases of cracked wire tested along Jordan Aqueduct, the specimens could
be wound around the test mandrel after a defect was exposed without breaking. For the wire
at the failure site, however, this was generally not true because most of the wire failed the
wrap test by breaking. The cracks were very deep, extending about halfway through the
wire, and the offsets and overlaps were also more closely concentrated throughout the wire
length and about the wire circumference. Wire from the failure site therefore likely failed
the wrapping test the majority of the time because it was more severely cracked over a larger
surface area.

The bolt cutting test often revealed longitudinal cracks that were not found with the wrap
test. ASTM A 648-73 did not specify the bolt cutting test, but the test was useful in revealing
defects. However, some wire which passed both the wrap and the bolt cutting tests was
found to be cracked longitudinally when inspected microscopically or by magnetic particle
techniques.

Reclamation testing demonstrated that cracked wire could easily have been wound around
Jordan pipe during manufacturing. Even if longitudinally cracked defective wire passed the
destructive ASTM A 648-73 quality control tests prior to use in pipe production, defects
probably would not have been identified without careful and continuous visual inspection as
required by section 9.1. The tensile and wrap test results of most longitudinally cracked wire
indicate it was both sufficiently strong and ductile to be wrapped on the pipe core during
manufacturing without breaking.

A wire manufacturer's mill certificate and letter submitted to Reclamation both indicated that
some wire supplied to the pipe manufacturer in 1981 met the ASTM A 648-73 criteria for
chemical composition, tensile strength, and wrap test, as well as more stringent self-imposed
quality control tests prior to being shipped to the pipe manufacturer for use in pipe
production. However, no determination can be made whether the mill certificate relates
specifically to the wire used in the production of some of the Jordan pipe, all of the Jordan
pipe, or if it is only an example ofthe pipe manufacturer's general requirements. In addition,
the mill certificate only implies conformance to the chemical, wrap, and tensile requirements
of ASTM A 648-73, and does not provide additional supporting data to verify the claim that
the wire met even more stringent self-imposed quality control guidelines. For instance, no
data were provided to show that the wire was subjected to a more severe wrap test requiring
it to be bent around a test mandrel in three planes at 1200 intervals. The only data provided
appeared on a document showing a "2d" and an "OK" implying that the wrap test passed the
ASTM A 648-73 criterion requiring it to be closely wound around a test mandrel twice the
specified wire diameter. Further, the mill certificate disclaimer states, "No warranty is
expressed or implied other than those set forth above." In other words, the manufacturer
apparently only warrants the ASTM A 648-73 criteria.

The prestressing wire of the ruptured pipe fractured in a ductile manner, and the
longitudinal cracks were instrumental in the fractures.

Field-fractured wire from the failure site was sampled above and below the break, and
matched pairs were examined microscopically. In every case, transverse wire fractures
occurred at the termini of the longitudinal crack segments. These locations are characterized
by a circumferential offset between the longitudinal cracks. The transverse fracture surface
contained both a sharp metal tongue formed by the offset between the ends of the
longitudinal cracks and a cup and cone failure surface. The cup and cone failure surfaces
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were characteristic of a ductile failure mode, typical of overloaded wire conditions, but little
load was carried in the portion of the fracture affected by the defect, namely the metal
tongue. When Reclamation tested wire from the failure site in tension in the laboratory, the
field fracture morphology was commonly reproduced, i.e., the failure occurred at the termini
of offsetting longitudinal cracks, resulting in a cup and cone fracture with a corresponding
metal tongue. The fracture morphology, therefore, exhibited the uneven and overstressed
conditions of defective wire.

Fractured wire from the failure site also commonly exhibited little to no reduction in area at
the fracture cross-section. The lack of reduction in area could have resulted from several
effects, including stress concentrations from wire defects (longitudinal cracks), high strain or
rapid loading rates, restraint ofthe wire, compound triaxial stresses, and wire embrittlement.

Laboratory uniaxial tension testing demonstrated that wire failure will always occur at a
location influenced by stress concentrations from the wire defects (i.e., at the termini of
offsetting longitudinal cracks). Small reductions in area will also be produced because
reduction in area measurements are made at the fracture point, where the characteristic
metal tongue carries little load. Although the wire fails in a ductile manner, the longitudinal
cracks prohibit the load from being carried uniformly in all areas of the fracture, and cracked
wire cannot neck down normally. As a result, the neck down of nonhomogeneous cracked
wire is less than that of homogeneous wire. The offsetting longitudinal cracks therefore
contribute to the small reductions in area for the Jordan wire.

The rate of loading also influences the neck down characteristics of the wire. The faster the
loading rate, the smaller the reduction in area. When Jordan wire was rapidly strained to
failure in uniaxial tension in the laboratory, wire fractures with little to no area reductions
were obtained (Mote, 1985a). Fractures with essentially no measurable neck down were
commonly produced. Fracture morphology of such samples was virtually indistinguishable
from those found at the failure site. One sample exhibited no measurable neckdown when
tested in uniaxial tension in accordance with the loading rates specified in ASTM A 370. The
wire sample was obtained from unit 797, the ruptured pipe, and was tested about 7 years
after the pipe failure occurred.

The standard uniaxial tensile test does not simulate the restraint of the wire on the pipe by
friction of the surrounding mortar or the role of compound triaxial stresses in limiting the
neck down capabilities of the wire. Unit 798 was pressure tested to 750 feet of head with no
visually apparent failure. However, upon removal of the mortar coating, many wire fractures
were found with features identical to those from unit 797 and exhibited little to no neck
down. Whether these fractures (other than the one at the bell anchor) occurred before or
after pressure testing is not known. However, the pipe does not exhibit outward signs of
distress, even though individual prestressing wire coils have fractured.

A preponderance of wire fractures along the bonding straps on the intact bell end of unit 797
was also noted. No such tendency was noted on unit 798, where fewer and more randomly
located fractures were observed. Other units along the line where the wire was partially
exposed at the bonding straps disclosed no wire fractures. Unit 797 was oriented in service
such that the bonding straps were located at pipe spring line, whereas on unit 798, the
bonding straps were located near the crown and invert. Spring line is an area of high tensile
stress concentration at the wire level on the pipe circumference. The foregoing indicates that
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the O.03-inch-thick bonding strap perfonned as a stress riser for the wire at this already
highly stressed area.

Wire embrittlement caused by excessive cathodic protection was ruled out as a probable cause
of the no neck-down fractures. A loss in wire ductility caused by an embrittling effect also
would have likely been accompanied by a microscopically visible brittle fracture of the
prestressing wire at the failure site, which was not the case. It was also possible to
determine the area reduction of longitudinally cracked wire that was cathodically protected
within criteria where reduced potential for wire embrittlement existed. Such a detennination
was necessary because comparing neck-down of crack-free exemplar wire to that of
longitudinally cracked Jordan wire is not appropriate because the detrimental influence of
the longitudinal crack would not be known and equivalent materials would not be compared.
Wire from stations 1499+56 and 1478+44, which contained severe splits visible to the unaided
eye, was therefore tested. The observation that this wire was severely split even though it
was protected within criteria once again substantiated that high pipe polarization potentials
were not related to the longitudinal cracking. As before, the wire failed to meet the ASTM
A 648-84 minimum reduction in area criterion, again indicating that the offsetting
longitudinal cracks contributed to the small area reductions as opposed to hydrogen
embrittlement from excessive cathodic protection.

The high stresses that were applied to the prestressing wire during the winding
operation were also instrumental in the fractures of the prestressing wire.

Field testing to determine the existing stress level of the prestressing wire at six locations
along Jordan Aqueduct yielded in situ stresses ranging from 148,000 to 184,000 Ib/in2. With
the laboratorl correction of 9 percent, pipe stresses were found to range from 161,000 to
201,000Ib/in . Taking into account assumptions for stress loss over time resulting from
elastic defonnation, creep, and shrinkage of the pipe core and subsequent relaxation of the
wire when properly wrajped, stress levels at the time of testing should have ranged from
140,000 to 170,000 lb/in . The measured values therefore exceeded design values predicted
at the time of stress relieving.

Regression analysis of the corrected field measurements that were projected back to the time
of manufacturing by application of design assumptions for stress loss caused by elastic
defonnation, creep, and shrinkage of the pipe core and subsequent relaxation of the wire
indicated that the pipe was wound at stress levels in the 200,000 to 250,000 Ib/in2 range.
Although Reclamation specifications pennitted instantaneous load fluctuations outside a
range of plus and minus 10 percent of the mean wrapping stress during wrapping, it is most
unlikely that the particular coils selected for testing were only those on which the load
excursions above tolerance occurred. These projections therefore indicated the wire was
overstressed during pipe manufacturing and exceeded the specified wrapping limitations
(177,000 to 216,000 Ib/in2).

The 1974 Standard Specification for Embedded Cylinder Prestressed Concrete Pipe required
that the tension in the prestressing wire be recorded with a calibrated measuring device. The
load calibration of the prestressing machine should have been verified by proof of calibration
ofthe dynamometer used to adjust the prestressing load of the specific machine used to wrap
Jordan pipe. Quality control procedures required certification of the dynamometer calibration
by an independent laboratory with calibration equipment certified by the National Institute
of Standards and Technology. Although requested, no such certification was produced by the

14



pipe manufacturer, and the calibration of the prestressing machine used in the production
of Jordan pipe has never been verified.

The fracture on the bell anchor of unit 798 is also indicative of high wire stresses. At the
ends of the pipe, the wire is wrapped at about half the nominal stress. Nevertheless, the
wire fractured at this location. The fracture originated at a notch in the wire formed by the
swedge-type anchor and is indicative ofthe notch sensitivity ofthe high-strength prestressing
wire. The fracture and corresponding longitudinal crack were imprinted on the mortar
coating opposite the anchor when the slurry and mortar were plastic at the time of pipe
manufacture. Spectral analysis showed that the imprinted crack, the smooth surfaces formed
by the wire and anchor, and the fractured surface of the mortar were of the same elemental
composition. The failure exhibited no reduction in area.

Reclamation specifications also required that records be kept to verify the proper wire tension
during prestressing. Records of wire prestressing showing the dynamic load fluctuations
during the wrapping process should have also been produced. Quality control procedures
required that records be kept up to date, properly labeled, and sent to quality controL
Records should have been kept on charts in the recording device throughout the duration of
pipe manufacturing. Although no calibration or prestressing records were submitted for
Jordan pipe, prestressing records of pipe made for another customer on the same day were
submitted as proof of calibration of the prestressing machine used to produce Jordan pipe.
These records only indicated the load measured by the load cell during the production of a
pipe for the other customer. If the load was not adjusted to the calibrated dynamometer prior
to manufacturing, the prestressing records are meaningless because the accuracy of the load
cannot be determined.

Additional reasons exist to question the load used in Jordan pipe production. The pipe
manufacturer produced pipe wrapped with 6-gage wire (0.192-in diameter) in the same time
period in which Jordan pipe was manufactured. The Jordan Aqueduct pipe, however, was
made with 8-gage wire (0.162-in diameter). In Reclamation specifications, the prestressing
wire is required to be wound at 75 percent of its minimum ultimate tensile strength plus or
minus 10 percent. For 6-gage wire, the mean wrapping stress required for prestressing
would be 0.75 x 252,000 = 189,000 Ib/in2, and the corresponding tensile load would be 5,470
pounds. When switching from producing pipe with 6-gage wire to pipe with 8-gage wire, the
operator of the machine must adjust the load from 5,470 to 4,050 pounds to stress the 8-gage
wire to 75 percent of its minimum ultimate tensile strength. The operator should also
document this adjustment. Without the verification of prestressing records, especially in
these circumstances, the 5,470-pound load appropriate for 6-gage wire could have been used
to wrap 8-gage prestressing wire around the Reclamation pipe, which would have resulted
in a wrapping stress of 265,000Ib/in2. The wire would then have been dangerously
overstressed, exceeding the specification wrapping limitations (177,000 to 216,000 Ib/in2) and
the required minimum tensile strength of the wire (262,000Ib/in2). If the prestressing
machine was out of calibration, the prestressing load could have been even higher.

Although the failed pipe section was cathodically protected at polarization
potentials above the specified level, no tangible evidence was found to
indicate that excessive cathodic protection resulted in hydrogen
embrittlement, fracture of the prestressing wire, and subsequent pipeline
failure.
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Examination and testing have shown that longitudinal cracks were present in the
prestressing wire at the time of pipe manufacture and that no demonstrated loss of ductility
occurred because of wire embrittlement from an external cathodic source. It is also well
known throughout the wire industry that longitudinal cracks can and do develop during the
wire manufacturing process (Klodt, 1984 and 1985).

The longitudinal splits were not related to high pipe polarization levels because virtually all
wire examined along Jordan Aqueduct contained offsetting longitudinal crack segments which
ran the entire length of the removed wire, regardless of the polarized pipe potential. Severe
splits visible to the unaided eye were apparent when wire from stations 1499+56 and
1478+44 was examined. Pipe polarization potentials at these stations, however, were within
specifications and reduced potential for wire embrittlement existed. Longitudinal cracks were
also observed at station 1394+60, where no cathodic protection was being provided. The
observation that wire was split even though it was protected within criteria or not protected
at all further substantiated that high pipe polarization potentials were not related to the
longitudinal cracking.

Also, area reduction measurements that were performed at the fracture cross-section of these
longitudinally cracked samples tested to failure produced mean values less than those
required in ASTM A 648-84 for uncracked homogeneous wire, as did those from the failure
site. Because samples protected above and within criteria exhibited unacceptable ductility,
the comparison indicates that effects from the offsetting longitudinal cracks likely contributed
to the small area reductions, as opposed to effects from excessive cathodic protection.

Hydrogen embrittlement by excessive cathodic protection can be substantiated only if the
following claims can be proven:

1. Atomic hydrogen is produced at the reinforcing wire by high cathodic protection
potentials with corresponding current densities which can realistically be applied
by the system.

2. The atomic hydrogen so produced survives long enough in the highly alkaline
environment to diffuse into the wire.

3. The absorbed hydrogen produces a specific embrittlement effect in the wire,
which then adversely affects the strength of the wire.

4. Wire from the failed Jordan Aqueduct pipe exhibits the specific effect of strength
loss (i.e., fracture) under sustained load from hydrogen embrittlement effects.

Although grosser degrees of wire embrittlement result in a reduction of wire ductility, the
most insidious manifestation of hydrogen embrittlement is that of fracture ofthe steel under
a sustained load that is appreciably less than the tensile strength. Strength loss as opposed
to ductility loss is the key issue of the wire failure.

The properties of ductility and strength are required to initially wrap the wire around the
pipe core. Thereafter, wire strength is the controlling property. If the level of cathodic
protection used on Jordan Aqueduct can be shown capable of producing an embrittlement
effect on the wire in an alkaline environment, then the next step is to show that the hydrogen
embrittlement is severe enough to produce a loss in tensile strength under a sustained load
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which is appreciably less than the original tensile strength of the wire. The preceding step
would indicate whether hydrogen could be produced in an alkaline environment by higher
levels of cathodic protection and if the hydrogen could diffuse into the wire, resulting in a loss
of strength.

Reclamation performed this type of laboratory test in which longitudinally cracked samples
from the failure site, as well as new homogenous samples, were immersed in an alkaline
environment, loaded to 90 percent of the minimum ultimate tensile strength, and locked off.
The wire relaxed such that stresses near 70 percent were continuously sustained. No
attempt was made to sustain the alkaline pH (12.5), and the solution acidified toward a pH
of 7 and lower with time. As previously mentioned, the specimens were cathodically
protected, some at polarized potentials near -1300 millivolts, with corresponding cathode
current densities of up to about 35 Nft2. Current densities of this magnitude are unheard
of in practice. Typically, current densities of 200 p.A/ft2 are required to achieve adequate
protection for this type of environment. The maximum theoretical average current density
available within the span between the two rectifiers adjacent to the failure site was 400
p.A/ft2. Mter 5 years of Reclamation testing, no failures attributable to hydrogen
embrittlement occurred in the exemplar wire tested.

Furthermore, examination of fractures from Jordan Aqueduct and wire failed through
induced hydrogen embrittlement has shown that the fracture morphologies are completely
different (Mote, 1986). Hydrogen-induced fractures all exhibited a characteristic ledge or step
perpendicular to the longitudinal axis and secondary partial transverse cracking. The testing
demonstrated that hydrogen-induced fractures will occur when excessive external cathodic
charging is applied to prestressing wire in an acidic environment. Atomic hydrogen will then
diffuse from the outer surface of the wire into the lattice, where it will propagate or advance
cracks. As cracks propagate, the load carrying area will be removed and the wire will fail.
Evidence of the path so traveled will remain on the fracture surface and will be characterized
by a ledge or step transverse to the longitudinal axis. In addition, characteristic secondary
partial transverse cracking will occur where cracks have not reached the critical size
necessary for wire fracturing. Nothing resembling this fractography was evident on any
examined field-fractured wire. Instead, features of a cup and cone failure, typical of tensile
overload, were observed on every wire examined.

Bulk hydrogen contents were also measured on wire near the failure site after cathodic
protection was reestablished to -1210 millivolts for 3 weeks and compared to the bulk
hydrogen contents of laboratory samples of Jordan wire that fractured while cathodically
charging under load in an acidic environment (Mote, 1987). The measured concentration of
hydrogen in the laboratory-fractured wires was significantly higher than that found in the
wires removed from the Jordan pipeline. The lowest hydrogen content found in the
laboratory-fractured samples was also greater than the highest value found on specimens
removed from the pipeline. In addition, the bulk hydrogen content of a new wire that was
cathodically charged at a polarized potential near -1300 millivolts in a basic environment for
over 15 months without failure was greater than the bulk hydrogen contents measured on
the Jordan pipeline. Although the new wire exhibited a hydrogen content of 6.27 p/m, the
material was not embrittled based on results of strength/ductility tests. It is also interesting
to note that although a wide range of hydrogen contents existed (probably because of the
structural defects or longitudinal cracks within the wire), each of the samples that fractured
in the acidic environment while under load exhibited hydrogen contents greater than 11.79
p/m at some location within the specimen.

17



The pipe was determined to be overprotected at all locations within 200 feet of each cathodic
protection ground bed where polarized potentials as high as -1.25 volts were observed. At
the rupture, polarized potentials of wire coils with close electrodes were found to be a
maximum -1.07 volts. The potential of either the steel cylinder or prestressing wire is
essentially impracticable to determine because the two are electronically shorted. Thus, a
potential measurement reflects a composite condition (mixed potential) of the two
components. Although cathodic polarization effects would tend to equalize the two potentials,
considering the grossly different current return path electronic resistances (two orders of
magnitude), the wire likely was not polarized to potentials sufficiently high to generate
hydrogen under the highly alkaline conditions provided by cement mortar.

The pipe rupture was likely caused by the overload of the highly stressed,
longitudinally cracked prestressing wire.

All in-service wire fractures examined displayed morphology consistent with tensile overload
failures. Loss in wire ductility caused by an embrittling effect from excessive cathodic
protection would likely have been accompanied by a microscopically visible brittle fracture
of the prestressing wire at the failure site, which was not the case. The characteristic
fractography of the in-service failures bore no resemblance to exemplar fractures resulting
from laboratory embrittlement. Additionally, secondary transverse cracking typical for stress
corrosion and hydrogen embrittlement was nonexistent on surfaces of in-service fractured
WIre.

With the exception of one sample, all wires removed from the pipeline and tested to failure
were found to meet the requirement for minimum tensile strength. The failed pipe section
ruptured while statically loaded and in service. The pipeline had been under earth load for
3 years, cathodically protected for about 15 months, and pressurized for 1 month before
failure occurred. Thus, a delayed static failure mechanism is suggested. The common
potential causes for this mode of failure are corrosion, stress corrosion cracking, hydrogen
embrittlement, and structural defects. No tangible evidence supported the first three causes
as probable reasons for the failure.

The observation that failures occurred at the termini of longitudinal cracks showed that
stress concentrations at crack tips, along with geometry, played a major role in the rupture.
The termini are cross sections of stress concentrations. Wrapping the wire around the core
imposes torsional, bending, and axial stresses. The stresses on the wire cross section are
compression and tension. The tensile stress, tending to separate the wire, results from
Poisson's effect. The forces could then open or close the crack, depending on the orientation
of the longitudinal cracks about the wire circumference with respect to the bending axis.
Thus, if the cracks were oriented about the wire circumference with respect to the bending
axis such that the surfaces were exposed to the outer side of a wire bend, the sustained
prestressing force would have produced stress concentrations at the unstable crack tips,
causing cracks to propagate inward. The situation could have been aggravated by standard
pipeline operating procedures, such as valve closings, which would have caused surges and
flexing of the highly stressed prestressing wire. When cracks were offset or overlapping on
the surface, they propagated toward the center of the wire cross section until they met and
effectively removed a sector of load carrying cross-sectional area (fig. 57). As sufficient load-
carrying area was removed, instantaneous ductile failure of a wire occurred with little
reduction in area observed. When enough individual wires failed, a pipe section would
rupture.
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Reclamation dye-penetrant testing indicated that longitudinal cracks were located toward the
outer side of the bend on the failed pipe section. It is also known that the pipe section
ruptured near spring line. Many transverse wire fractures also occurred along the bonding
strap for cathodic protection, which in this particular case was also located at spring line, an
area of high stress concentration. Other pipe units along the line, however, were partially
exposed at the bonding straps not located at spring line, and no wire fractures were observed.
The foregoing indicates the bonding strap acted as another stress riser, assisting crack
growth and increasing the probability of pipe rupture in this particular case.
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Polarized Dye Magnetic
Station potential penetrant Bolt cutting particle Metallographic

(ft) (volts) inspection test inspection inspection

1394+60 -0.50 Inconclusive Pass Cracks Cracks 1

1396+00 -0.32 Inconclusive Pass Cracks Cracks

1400+30 -0.85 Cracks Fail

1427+00 -1.23 Cracks Fail

1447+00 -0.94 Cracks Fail

1470+00 -1.00 Cracks Fail

1 See figure 21.

Specimen identification Wire stress (kips/in2) Indicated field error
Field method Lab. mandrel (percent)

test

Unit 797 - wire 1 200 213 -6

Unit 707 - wire 1A 191 198 -4

Unit 797 - wire 1B 205 227 -10

Unit 798 - wire 3A 184 198 -7

Unit 798 - wire 5A 206 233 -12

Unit 798 - wire 5B 170 193 -12

New wire 1 196 219 -11

New wire 1A 186 209 -11

New wire 1B 184 190 -3

Mean -9

Table 1. - Results of tests for longitudinal cracking.

Table 2. - Validation of field method of testing by laboratory mandrel tests
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Expected
stress
range

(lb/in2)

Field stresses 140,000
(lb/in2) to

170,000

Estimated 177,000
wrapping stress to
range (lblin2)* 216,000

Laboratory 140,000
corrected field to
stress range 170,000
(lb/in2)**

Estimated 177,000
corrected to
wrapping stress 216,000
range

(lb/in2)***

Polarized

I.\:) potential
..... (volts)****

Notes:

Station 1394+60 Station 1396+00 Station 1400+30

Strain Calculated Strain Calculated Strain Calculated
(10-6 in/in) stress (10-6 in/in) stress (10-6 in/in) stress

(lb/in2) (lblin 2) (lb/in2)

6,530 184,000 5,440 6,135 166,000
6,290 177,000 6,150 174,000 6,220 170,000
6,380 180,000 6,420 177,000 6,350 174,000
4,900 6,560 178,000 6,230 172,000

220,000 to 230,000* 218,000 to 223,000* 208,000 to 218,000*

Station 1427+00 Station 1447+00 Station 1470+00

Strain Calculated Strain Calculated Strain Calculated
(10-6 in/in) stress (10-6 in/in) stress (10-6 in/in) stress

(lb/in2) (lb/in2) (lb/in2)

5,950 170,000 5,875t 165,000t 5,580 162,Ooot
5,600 162,000 5,060 148,000t
5,820 165,000

Table 3. - Summary of Jordan Aqueduct field testing.

193,000 to 201,000** 190,000 to 194,000** 181,000 to 190,000**

241,000 to 251,000*** 237,000 to 243,000*** 226,000 to 238,000***

-0.50 -0.32 -0.85

203,000 to 213,000* 185,000 to 203,000*206,000*

177,000 to 185,000** 161,000 to 177,000**180,000**

221,000 to 232,000*** 202,000 to 221,000***225,000***

-1.23 -0.94 -1.00

1. Required mean wrapping stress = 196,500 Ib/in2.
2. Allowable wrapping stress range = 177,000 Ib/in2 to 216,000 Ib/in2.
3. Expected stress range at time of testing = 140,000 Ib/in2 to 170,000 Iblin2.
4. Stress data rounded to nearest 1,000 Ib/in2.
5. All stress measurements include the area of the strain gages in the cross-sectional area calculation.
6. All stresses calculated from stress-strain curves of actual in situ field tested wire unless noted.

t Representative stress-strain curves from in situ wire on the same pipe segment.

**

***

Field stress increased 25 percent to account for wire stress losses over time due to elastic deformation, creep and shrinkage of pipe core, and relaxation of the wire.
Factor obtained from John Thurston, design engineer in the Water Conveyance Branch. No laboratory corrections are applied.
Laboratory tests indicate the calculated field stress should be increased an average of 9 percent.
Laboratory corrected field stress increased 25 percent to account for wire stress losses over time due to elastic deformation, creep and shrinkage of pipe core, and
relaxation of the wire. Factor obtained from John Thurston, a design engineer in the Water Conveyance Branch. Laboratory corrections are applied.
Relative to copper/copper sulfate electrode reference with current interrupted.****



Table 4. - Results of tension, wrap, and bolt cutting tests.

Specimen Rapidly
No. Slowly strained! strained2

Wire Diameter Area Tensile Tensile
diameter after test (in) reduction strength strength

(in) (%)3 (kips/in2) (kipS/in2)

Wire from unit 797

1 0.163 0.150 15.3 284 285

2 0.163 0.156 8.4 283 288

3 0.163 0.154 10.7 287 289

4 0.163 0.155 9.6 281 292

5 0.163 0.145 20.9 284 291

6 0.163 0.150 15.3 285 292

7 0.163 0.143 23.0 286 290

8 0.163 0.159 4.8 273 282

9 0.163 0.157 7.2 282 290

10 0.163 0.143 23.0 285 291

11 290

Sample Size 10 10 11

Mean 13.8 283 289

Std. 6.7 3.9 3.1
Deviation

Var. Co. (%) 48.5 1.4 1.1

Wrap test - failed Bolt cutting test - failed

! All specimens loaded at 50 kipS/in2/min.
2 All wire preloaded to 160 kips/in2 and rapidly loaded to failure.
3 Many specimens failed in the jaws such that it was not possible to determine area reduction.

Note: Minimum tensile strength requirement for class III, gage 8 prestressing wire =262 kips/in2.
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Specimen
Slowly strainedlNo.

Wire Diameter Area Tensile
diameter after test (in) reduction strength

(in) (%)3 (kips/in2)

Wire from unit 798

1 0.162 0.145 10.5 286

2 0.162 0.143 11.7 284

3 0.162 291

4 0.162 287

5 0.162 0.147 9.3 288

6 0.162 287

7 0.162 292

8 0.162 288

9 0.162 288

10 0.162 290

Sample Size 3 10

Mean 10.5 288

Std Deviation 1.2 2.4

Var. Co. (%) 11.4 0.8

Wrap test - failed Bolt cutting test - failed

Table 4. - Results of tension, wrap, and bolt cutting tests (continued).

Rapidly
strained2

Tensile
strength
(kips/in2)

290

290

289

282

285

290

6

288

3.4

1.2

1 All specimens loaded at 50 kipS/in2/min.
2 All wire preloaded to 160 kips/in2 and rapidly loaded to failure.
3 Many specimens failed in the jaws such that it was not possible to determine area reduction.

Note: Minimum tensile strength requirement for class III, gage 8 prestressing wire =262 kips/in2.
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Specimen Diameter Diameter Area** Tensile Wrap Bolt
No. of wire after test reduction stren~th test cutting

(in) (in) (%) (Ib/in ) test

1478+44 NO.1 0.164 270,300 Passed Failed
1478+44 NO.2 0.164 267,100 Passed Failed
1478+44 NO.3 0.164 0.137 30.2 266,100 Passed Failed
1478+44 NO.4 0.164 279,900 Passed Failed
1478+44 NO.5 0.164 0.143 24.0 282,000 Passed Failed
1478+44 NO.6 0.164 284,200 Passed Passed***
1499+56 NO.1 0.164 0.133 34.2 271 ,400 Passed Passed
1499+56 NO.2 0.164 0.147 19.7 267,100 Passed Failed
1499+56 NO.3 0.164 0.137 30.2 269,300 Passed Passed
1499+56 NO.4 0.164 0.146 20.8 256,500**** Passed Passed

I.\.:)
,j::o..

Mean 26.5 271 ,390
Standard deviation 5.9 8,440
Coefficient of var. (%) 22.1 3.1

Table 5. - Prestressing wire tests from Jordan Aqueduct, Reach 3, where cathodic protection polarized potentials were measured within
specifications. *

* All specimens loaded at 50,000 Ib/in2/min.
** Several specimens failed in the jaws of the testing machine. Therefore, it was not possible to determine the area reduction

of these specimens.
*** Specimen passed the bolt cutting test; however, a crack was found on the specimen after the test with additional cutting

of original 3-inch sample.

**** Specimen failed below the minimum tensile strength requirement of 262,000 Ib/in2 for class III, 8-gage prestressing wire.
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Figure 2. - Schematic drawing of embedded cylinder prestressed concrete pipe.



Figure 3, Burst pipe unit 797, station 1428+60.

Figure 4. Fractured ends of prestressing wire at rupture.
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Figure 5. -Characteristic cup and cone fracture.
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~

Figure 6. -Longitudinal crack along surface of prestressing wire, about 9X.

28



~~~

Figure 7. -Wire after forcing to split open. Dark surface is oxidized; light surface is freshly fractured, about
3X.
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Figure 8. -Magnified view of wire after splitting, about 9X.
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Figure 10. Testing for polarized potential of individual wire coils with reference to the coil under test.
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Figure 11 Potential survey, February 25-March 1985.
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Figure 12. - Mortar coating opposite the prestressing wire. Note line in center of the middle concavity, about 2.5X.
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-

Figure 14. -Offsetting ridges in mortar concavity

Figure 15. -Cross section of mortar coating concavity after encapsulating in plastic. No voids in mortar and
no cracking of the mortar beneath ridge, about 14X.
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a. Magnification -510X. b. Magnification -870X.

Figure 20. -Particles that have been lodged or impacted within longitudinal cracks.

1! .j
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f

Figure 21. -Photomicrograph of wire cross section. Crack is 0.01 inches deep, about 80X.
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Figure 22. - Photomicrograph of wire cross section. Crack is 0.09 inches deep, about 35X.

Figure 23. - Two longitudinal cracks have not quite joined in this cross section, about 35X.
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Figure 24. - Photomacrograph of a short length of wire after mounting in plastic and grinding to slight depth.
Note overlapping and offsetting longitudinal cracks, about 3X.

Figure 25. - Photomicrograph of longitudinal section. Notice the filament of steel between the cracks, about
200X.

Figure 26. - Numerous wire fractures were observed opposite the bonding strap on unit 797. The unit was
oriented in service such that the bonding straps welt:! at spring line.
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Figure 27. -Fewer and randomly located fractures were found on unit 798. The bonding straps were at the
5 and 11 o'clock positions on this unit in service.
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Figure 28. -Wire fracture adjacent to bell anchor of unit 798.
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Figure 31. -Mortar coating opposite bell anchor, unit 798. Mirror image of wire fracture is imprinted, about

5.5X.

Figure 32. -Matched field fractured wires showing fractures occurred at a cross section where two longitudinal
cracks meet, about 12X.
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Figure 33. -Field fractured surface of wire, about 20X.

~

Figure 34 -Field fractured surface of wire, about 20X.
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Figure 35. -Field fractured wire, about 20X.

Figure 36. -Two holes were chipped in the mortar coating adjacent to each other in a line along the
circumference of the pipe.
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Figure 37. -The holes were separated by 1 inch of intact mortar coating and a minimum amount of

prestressing wire was exposed for strain gage application.
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Figure 38. -A strain gage was spot welded to the prestressing wire in one hole while the wire remained
stressed around the pipe under in situ tension.

Figure 39. -A strain gage completely spot welded in place.
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Figure 40. -A strain indicator was set and the initial strain reading was zeroed.
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Figure 41. -The prestressing wire was cut to relieve the tension on
the wire in the second hole opposite the strain gage and a strain
reading was obtained.

Figure 42. -The mortar bridge separating the two holes
was removed.

Figure 43. -A tested wire after the mortar bridge was removed.
Notice that a large portion of the wire remained encased in the
surrounding mortar.
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Figure 44. -The wire was held down at the strain gage with a specially fabricated mandrel and a final strain
reading was obtained. The mandrel was cut on the same wire radius as that of the pipe and was slotted to
prevent damage to the strain gage.

Figure 45. -An aluminum mandrel cut as a semicircle on the same wire radius as the prestressed concrete
pipe was constructed to validate field data.
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Figure 46. -The wire was cut and the strain relaxation was recorded.
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Figure 47. -Two wire samples fractured by laboratory tensile testing. Note similarity to field fracture, fig. 32,
about 3X.
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Figure 48. -Laboratory fractured wire. Note similarity to fig. 35, about 20X.
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Figure 49. -In many cases, wrap test specimens showed no visible signs of cracking in the wrapping coils,
but longitudinal cracks were easily split open on the ends with bolt cutters.

Figure 50. -Cell in which wire, both cracked and uncracked, was cathodically charged while under sustained
stress.
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Figure 51. -Photomacrograph of wire embrittled in the laboratory, about 4X.
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Figure 52. -Photomicrograph of surface in fig. 51. Notice the step transverse to the wire axis, about 14X.

53



Figure 53. -Photomacrograph of wire embrittled in the laboratory, about 4X.

Figure 54. -Photomicrograph of surface in figure 53. Note the ledge or step transverse to the wire axis.
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Figure 55. -Dye penetrant indication of transverse cracking after laboratory embrittlement, about 4X.
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Figure 56 -Secondary transverse crack not associated with fracture of laboratory-embrittled wire, about 160X.
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Figure 57. - Schematic showing growth of offsetting longitudinal cracks toward the center of a wire cross section caused by the Poisson's effect.



Mission of the Bureau of Reclamation 

The Bureau of Reclamation of the U.S. Department of the Interior 
is responsible for the development and conservation of the 
Nation's water resources in the Western United States. 

The Bureau's original purpose "to provide for the reclamation of 
arid and semiarid lands in the Westn today covers a wide range 
of interrelated functions. These include providing municipal and 
industrial water supplies; hydroelectric power generation; irrigation 
water for agriculture; water quality improvement; flood control; 
river navigation; river regulation and control; fish and wildlife 
enhancement; outdoor recreation; and research on water-related 
design, construction, materials, atmospheric management, and 
wind and solar power. 

Bureau programs most frequently are the result of close 
cooperation with the ' US. Congress, other Federal agencies, 
States, local governments, academic institutions, water-user 
organizations, and other concerned groups. 

A free pamphlet is available from the Bureau entitled 
"Publications for Sale." It describes some of the technical 
publications currently availabte, their cost, and how to order 
them. The emphlet can be obtained upon request from the 
Bureau of Reclamation, Attn D-7923A, PO Box25007, Denver 
Federal Center, Denver CO 80225-0007. 




