

R-89-01

CONCRETE CORE TESTING BRANTLEY DAM, NEW MEXICO

February 1989

U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Denver Office Research and Laboratory Services Division Concrete and Structural Branch

1. REPORT NO GOVERNMENT ACCESSION NO.	CAL REPORT STANDARD TITLE PAGE 3. RECIPIENT'S CATALOG NO.
R-89-01	
4. TITLE AND SUBTITLE	5. REPORT DATE
	Fèbruary 1989
CONCRETE CORE TESTING,	6. PERFORMING ORGANIZATION CODE
BRANTLEY DAM, NEW MEXICO	D 9799
	D-3732
.40R(S)	8. PERFORMING ORGANIZATION
	REPORT NO.
	R-89-01
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. WORK UNIT NO.
Bureau of Reclamation	11. CONTRACT OR GRANT NO.
Denver Office	
Denver CO 80225	13. TYPE OF REPORT AND PERIOD
	COVERED
2. SPONSORING AGENCY NAME AND ADDRESS	
C -m-	
Same	
	14. SPONSORING AGENCY CODE
·	DIBR
5. SUPPLEMENTARY NOTES	
Microfiche and/or hard copy available at the Denver Of	fice Denver Colorado
Microliche and/or hard copy available at the Deriver Or	nce, Deriver, Colorado.
6. ABSTRACT	
compressive strength, modulus of elasticity, Poisson's r strength, splitting tensile strength, and density.	and, direct tensile strength, direct shear
The overall quality of the concrete cores in Brantley Dat compressive strength exceeding the design requiremen are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con intact joints is 60 percent of the parent material. The sp <u>normally expected for mass concrete</u> .	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp normally expected for mass concrete.	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp normally expected for mass concrete.	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp normally expected for mass concrete.	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spin normally expected for mass concrete.	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete.	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete.	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spin normally expected for mass concrete.	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp normally expected for mass concrete. IRPARY JUN 2 8 2000	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp normally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass con-	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The sp normally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass con-	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass con- dams/shear strength	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range gth/tensile strength/splitting tensile hcrete/concrete properties/concrete
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spin normally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass con- dams/shear strength	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range gth/tensile strength/splitting tensile hcrete/concrete properties/concrete
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spin normally expected for mass concrete. JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass cor dams/shear strength DENTIFIERS Brantley Dam, Brantley Project, New	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range gth/tensile strength/splitting tensile hcrete/concrete properties/concrete
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete. IRPARY JUN 2.8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass cor dams/shear strength . IDENTIFIERS Brantley Dam, Brantley Project, New	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the plitting tensile strength is within the range gth/tensile strength/splitting tensile ncrete/concrete properties/concrete
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass con dams/shear strength . IDENTIFIERS Brantley Dam, Brantley Project, New . COSATI Field/Group COWR:	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the plitting tensile strength is within the range gth/tensile strength/splitting tensile hcrete/concrete properties/concrete Mexico
compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spinormally expected for mass concrete. IRPARY JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass con dams/shear strength . IDENTIFIERS Brantley Dam, Brantley Project, New . COSATI Field/Group COWR:	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the plitting tensile strength is within the range gth/tensile strength/splitting tensile hcrete/concrete properties/concrete
 compressive strength exceeding the design requirement are significantly higher than normal for mass concrete of tensile strength is within the normal range for mass con- intact joints is 60 percent of the parent material. The spin normally expected for mass concrete. JUN 2 8 2000 7. KEY WORDS AND DOCUMENT ANALYSIS DESCRIPTORS concretes/cores/compressive streng strength/modulus of elasticity/Poisson's ratio/mass cor dams/shear strength IDENTIFIERS Brantley Dam, Brantley Project, New 	ts. The elastic properties of the concrete of this strength and age. The direct crete. The direct shear strength of the olitting tensile strength is within the range of the strength is within the range of the strength/splitting tensile norete/concrete properties/concrete of Mexico SRIM: 19. SECURITY CLASS 21. NO. OF PAGES 90

T 45,7 .R4 No.R 89 01 1989 6.2

CONCRETE CORE TESTING BRANTLEY DAM NEW MEXICO

a(i)=0

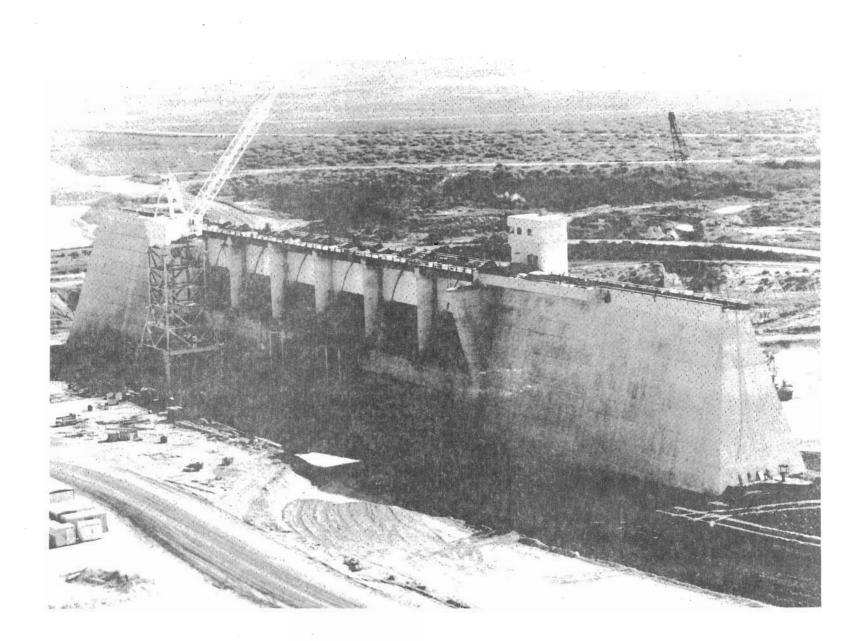
by

William F. Kepler

Concrete and Structural Branch Research and Laboratory Services Division Denver Office Denver, Colorado

February 1989

UNITED STATES DEPARTMENT OF THE INTERIOR


¥

BUREAU OF RECLAMATION

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water resources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major responsibility for American Indian reservation communities and for people who live in Island Territories under U.S. Administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

The information contained in this report was developed for the Bureau of Reclamation; no warranty as to the accuracy, usefulness, or completeness is expressed or implied.

Brantley Dam, New Mexico - Spillway Section

CONTENTS

Page

Introduction
Drilling and handling 2
Testing
Compressive strength and elastic properties
Direct tensile strength
Splitting tensile strength
Shear strength
Density
Test results
Compressive strength and elastic properties
Direct tensile strength
Splitting tensile strength
Shear strength
Density
Conclusions
Bibliography

TABLES

Table

.

1	Mass concrete, typical yield quantities per cubic yard (per cubic meter)	7
2	Concrete properties	
3	Summary of shear strength test results	10

FIGURES

Figure		
1	Brantley Dam cross section	11
2	Brantley Dam upstream elevations	12

APPENDIXES

Appendix		
Ι	Aggregate evaluation	13
II	Locations of cores used in testing	23
III	Shear strength testing data	27

INTRODUCTION

Brantley Dam is located on the Pecos River, in Eddy County of southeastern New Mexico, about midway between the cities of Carlsbad and Artesia. It is an earthen and concrete gravity dam, 140 feet (43 m) high and 4 miles (6.4 km) long. The dam has a 700-foot (213-m) long concrete spillway flanked by nearly 2 miles (3.2 km) of earthfill on each side. Over 159,000 yd³ (122 000 m³) of concrete were placed in the structure between 1985 and 1987.

The concrete structure contains 28,500 tons (25 855 metric tons) of cement and pozzolan, and over 2.2 million pounds (1 million kg) of reinforcing steel. The 99,785 yd³ (72 290 m³) of mass concrete required over 52,000 feet (15 850 m) of 1-inch (25-mm) outside-diameter cooling coil to ensure proper temperature control.

The overflow spillway in the concrete section is controlled by six radial gates measuring 50 by 25 feet (15.2 by 7.6 m). The gates have a maximum discharge capacity of 350,000 ft³/s (9910 m³/s).

For a typical cross section and profile of the Brantley Dam spillway, see figures 1 and 2.

In August 1986, as part of the quality control program included in the specifications, 10-inch (250-mm) diameter cores were extracted from the partially completed mass concrete structure. While drilling in block 6, there was a significant loss of drill water indicating large voids in the mass concrete.

It was determined that more core sampling was necessary. Cores tested were taken from blocks 3, 4, 5, and 9, the right retaining wall, and the stilling basin. The cores were taken to determine the physical properties of the in-place concrete and to look for other void areas. More voids were found between elevations 3215 and 3235 (980 and 986 m) in block 6. These voids were attributed to some consolidation problems that occurred in concrete placed before August 1986. The drilling program included grouting all of the void areas found.

This report presents the results from the physical properties testing. The age of the cores at testing was between 4 and 10 months from the time of placement.

The cores were evaluated for:

- · Compressive strength
- · Modulus of elasticity
- Poisson's ratio
- Direct tensile strength
- Splitting tensile strength
- · Direct shear strength
- Density

The compressive strength requirement cited in the specifications for the mass concrete was that 80 percent of the 1-year strength tests exceed 3,500 lb/in² (24.1 MPa). The mass concrete contains type II portland cement, class F fly ash, 4-inch (100-mm) maximum-size aggregate, and a water-reducing, set-controlling admixture. An air-entraining admixture was used to entrain 3.5 percent air by volume of concrete. Aggregate for the concrete

was obtained from borrow "H," upstream of the dam, near the right abutment. The aggregate was a natural gravel composed chiefly of limestone and dolomitic limestone. See table 1 for typical yield quantities for mass concrete.

See appendix I for the aggregate evaluation.

DRILLING AND HANDLING

Six randomly located 10-inch (250-mm) diameter cores and two 6-inch (150-mm) diameter cores were extracted from Brantley Dam during 1986 to furnish specimens for physical properties testing. The 10-inch cores tested were extracted from blocks 3 and 5, the right retaining wall, and the stilling basin. The 6-inch cores tested were extracted from blocks 4 and 9. All cores were drilled vertically. The initial cores extracted had rock pockets at the joints, and there was a significant loss of drill water indicating large voids in the mass concrete. Additional 10-inch, 6-inch, and NX-size cores were drilled throughout the dam to locate areas of poor consolidation. (See appendix II for locations of other cores.)

The moist cores were wrapped in plastic at the jobsite and then shipped in wooden crates packed with sawdust to the Bureau of Reclamation's Denver laboratories. In Denver, the core specimens were logged in and photographed, and test specimens were selected. The 10-inch-diameter specimens were sawed to 20-inch (500-mm) lengths to maintain a length-to-diameter ratio of 2.0. Specimens for direct shear testing were sawed to 4-inch (100-mm) lengths. The 6-inch-diameter specimens were used only for direct shear testing.

ASTM C 42, "Standard Method of Obtaining and Testing Drilled Cores and Sawed Beams of Concrete" (ASTM, 1986) specifies that the diameter of concrete core extracted for compressive strength testing "should preferably be at least three times the nominal maximum size of coarse aggregate used in the concrete, and must be at least twice the maximum nominal aggregate size of the coarse aggregate in the core sample." Therefore, since the mass concrete contains 4-inch maximum-size aggregate, the diameter of the core by ASTM standards should preferably have been 12 inches (300 mm); however, a 10-inch diameter was selected because it exceeded the minimum diameter permitted. Reclamation has a significant data base of concrete properties based on this diameter, and it was more economical than a 12-inch diameter.

TESTING

Compressive Strength and Elastic Properties

The compressive strength testing was done according to ASTM C 39, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens" (ASTM, 1986). The ends of compressive strength specimens were lapped plane to a tolerance of 0.002 inch (0.05 mm). Specimens were sealed in plastic to prevent moisture loss.

The modulus of elasticity (E) and Poisson's ratio (r) were determined using epoxied strain gauges with computer readout.

Lines of strain gauges were placed around the cylinder, two along either side of the long axis and two around the middle. Each line consisted of two strain gauges connected in series. The manufacturer recommends that the total length of the strain gauges be between 2.5 and 3 times the size of the maximum-size aggregate. The maximum-size aggregate was 4 inches; therefore, the total length of the strain gauges should have been at least 10 inches (250 mm). However, the two 4-inch (100-mm) long strain gauges connected in series developed a total length of only 8 inches (200 mm). Subsequent testing to confirm the use of two rather than three strain gauges in series yielded comparable results.

Values for E and r were computed using the test method, "Procedure for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression" (Bureau of Reclamation, in preparation) which uses a stress range between 100 and 1,000 lb/in² (689 to 6895 kPa). The compressive strength specimens were tested to failure. The compressive strength values were adjusted for the specimens with a length-to-diameter ratio not equal to 2.0 according to ASTM C 42.

Direct Tensile Strength

The core specimens for direct tension testing were 10 inches in diameter and were sawcut to 20-inch lengths. The specimens were sealed in plastic to prevent moisture loss. Double end plates, 4-1/2 inches (114 mm) thick and designed to minimize deformation, were bonded to each end of the core with epoxy, which was then cured for 24 hours. The test specimens were then placed in a hydraulic testing machine and loaded to failure in tension at 200 lb/in²/min (1379 kPa/min).

Splitting Tensile Strength

Splitting tensile strength testing of 10-inch-diameter specimens was done in accordance with ASTM C 496 "Standard Tensile Strength of Cylindrical Concrete Specimens" (ASTM, 1986).

Shear Strength

Currently in the Bureau of Reclamation, the direct shear (break bond) test is used to determine residual shear strength for integral concrete specimens and specimens with intact construction joints, while the sliding friction test is used for specimens with disbonded construction joints and for tests subsequent to the direct shear test. To determine the shear strength, data from these tests were analyzed by the linear regression method.

Eighteen concrete core specimens were tested by direct shear. Five tests were through unjointed material, four were on disbonded joints, and nine were along intact construction joints. Three specimens were 6 inches in diameter, and the remainder were 10 inches in diameter. The 6-inch-diameter specimens were tested in the 10,000-lbf (44.5-kN) normal, 20,000-lbf (89-kN) shear capacity machine, and the 10-inch specimens were tested in the 100,000-lbf (445-kN) normal, 240,000-lbf (1068-kN) shear capacity machine.

Density

The density of the concrete was determined by dividing the "as is" weight of the concrete specimen by the volume of water the specimen displaced.

TEST RESULTS

Compressive Strength and Elastic Properties

The average compressive strength for the eight specimens tested is significantly higher than the design strength. The average strength of $5,200 \text{ lb/in}^2$ (35.8 MPa) was determined at an average age of 132 days. The specifications require that 80 percent of the compressive strength tests exceed $3,500 \text{ lb/in}^2$ (24.1 MPa) at 1 year. The results ranged between 3,360 and $6,870 \text{ lb/in}^2$ (23.2 and 47.4 MPa). Only one of the eight compressive strength tests was below $3,500 \text{ lb/in}^2$. Test results for compressive strength are shown in table 2. Due to the hardness of the limestone aggregate, the average modulus of elasticity and Poisson's ratio are significantly higher than normal for mass concrete of this strength and age. The modulus of elasticity averaged $6.61 \times 10^6 \text{ lb/in}^2$ (45.6 GPa), ranging from 5.88 to 7.56 x 10^6 lb/in^2 (40.5 to 52.1 GPa). The Poisson's ratio for the concrete averaged 0.24.

Direct Tensile Strength

Although the direct tensile strength program was too limited for other than qualified conclusions, it appears that the full tensile strength of the concrete was obtained across many of the construction joints. The average direct tensile strength for four specimens was 265 lb/in^2 (1840 kPa), with values ranging from 220 to 330 lb/in² (1525 to 2290 kPa). Test results for the direct tensile strength are shown in table 2.

Splitting Tensile Strength

Results of the two splitting tensile strength tests were: 900 lb/in² (6200 kPa) and 555 lb/in² (3830 kPa). Both specimens were from stilling basin block 39A. Since the concrete represented by the splitting tensile specimens is different from that of the direct tensile specimens, there is no correlation between the two tests.

Shear Strength

The direct shear strength of the intact joints tested is 60 percent of the parent material. The angle of internal friction, ϕ , for the parent material is 76°, which is nearly the same as that of the intact construction joints, 78°. The cohesion, c, for the parent material is 575 lb/in² (3950 kPa), which is considerably higher than the 360 lb/in² (2475 kPa), for the intact joints. Once the sliding plane has been established, the angle of internal friction, ϕ , and the cohesion, c_a, are similar for the parent material [45°, 90 lb/in² (625 kPa)], the intact joints [44°, 50 lb/in² (345 kPa)], and the open joints [46°, 50 lb/in² (345 kPa)]. Table 3 summarizes direct shear strength testing. The complete testing data are in appendix III.

Density

The densities, shown in table 2, vary little from sample to sample and are higher than normal for mass concrete. This is due to the high specific gravity of the aggregate. The average density for 14 core specimens was 158.0 lb/ft^3 (771 kg/m³), ranging from 155.0 to 160.3 lb/ft³ (757 to 783 kg/m³).

CONCLUSIONS

Jil I

1. The overall quality of the concrete cores in Brantley Dam indicates a durable concrete having a compressive strength exceeding the design requirements.

2. The modulus of elasticity of the concrete is almost 50 percent higher than normal for mass concrete of this strength and age.

3. The direct tensile strength of the concrete is 5 percent of the compressive strength. The normal expected range for mass concrete is 4 to 6 percent of the compressive strength.

4. The splitting tensile strength is 6 percent of the compressive strength, similar to that of mass concrete in other Bureau of Reclamation projects.

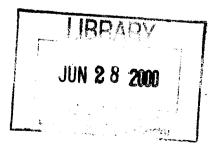
5. The direct shear strength of the intact joints is 60 percent of that of unjointed material.

BIBLIOGRAPHY

ASTM, Annual Book of ASTM Standards, Concrete and Mineral Aggregates, vol. 04.02, American Society for Testing and Materials, 1986.

Bureau of Reclamation, Concrete Manual, 9th ed., vol. 2, Denver, Colorado, in preparation.

+ § \$


I

Material	v	Veight	Source
Water	170 lb	(101 kg)	
Cement	256 lb	(152 kg)	Lonestar Cement
Pozzolan	60 lb	(36 kg)	Rocky Mountain Ash Company
Sand	1,131 lb		Borrow "H"
Coarse aggregate	2,561 lb	(1519 kg)	Borrow "H"
Air entraining admixture	4 oz	(118 mL)	Monier Air
Chemical admixture	12 oz	(355 mL)	Monier LR

Table 1. - Mass concrete, typical yield quantities per cubic yard (per cubic meter).

JE I

Concrete temperature = 45 °F (7.2 °C) Slump = .2.0 inches (51 mm) Unit weight = 153.9 lb/ft³ (2465.2 kg/m³) W/C+P = 0.53 Air content: Gravimetric = 4.5 percent Pressure meter = 3.3 percent Sand content: 30 percent of total aggregate Coarse aggregate content: 34 percent No. 4 to 3/4 inch (4.75 to 19 mm) 33 percent 3/4 to 1-1/2 inches (19.0 to 38.1 mm) 33 percent 1-1/2 to 4 inches (37.5 to 100 mm) Compressive strength at 28 days = 5,375 lb/in² (37.06 MPa) Required average strength = 3,343 lb/in² (23.05 MPa) From January 1987 L-29 construction report for concrete placed on January 29, 1986.

Location (Block No.)	Elevation ft (m)	Date placed	Test age (days)	Density lb/ft ³ (kg/m ³)	Compressive strength lb/in ² (MPa)	Modulus of elasticity lb/in ² x 10 ⁶ (GPa)	Poisson's ratio
			COMPRES	SIVE STREN	GTH		
<u>12- by 24-inch</u>	a (305- by 610-1	mm) cast cyline	ders				
3		3/7/86	90	156.2 (2502.1)	4290 (29.6)	6.44 (44.4)	0.26
4		3/7/86	90	153.8 (2463.6)	4470 (30.8)	7.56 (52.1)	0.31
Averages			90	155.0 (2482.9)	4380 (30.2)	7.00 (48.3)	0.29
<u>10- by 20-inch</u>	1 (254- by 508-1	mm) core spec	imens				
3-6N	3223.3 (982.5)	2/20/86	120	. 160.3 (2567.8)	5840 (40.3)	7.48 (51.6)	0.24
3-6N	3217.8 (980.8)	2/20/86	120	156.8 (2511.7)	5630 (38.8)	6.70 (46.2)	0.24
3-6N	3218.9 (981.1)	2/20/86	120	158.6 (2540.5)	4400 (30.3)	6.39 (44.0)	0.24
5-4S	3200.6 (975.5)	4/30/86	140	158.6 (2540.5)	6630 (45.7)	5.88 (40.5)	0.22
SB-35A*	3166.3 (965.1)	4/15/86	153	158.9 (2545.3)	6870 (47.4)	***	***
SB-37A	3172.5 (967.0)	4/24/86	141	155.0 (2482.9)	3360 (23.2)	***	***
SB-39A	3169,8 (966.2)	4/15/86	150	158.7 (2542.1)	4690 (32.3)	***	***
RRW-6T**	3216.2 (980.3)	5/22/86	113	159.3 (2551.7)	4220 (29.1)	***	***
Averages	1 1 1		132	158.3 (2535.7)	5210 (35.9)	6.61 (45.6)	0.24

Table 2. - Concrete properties.

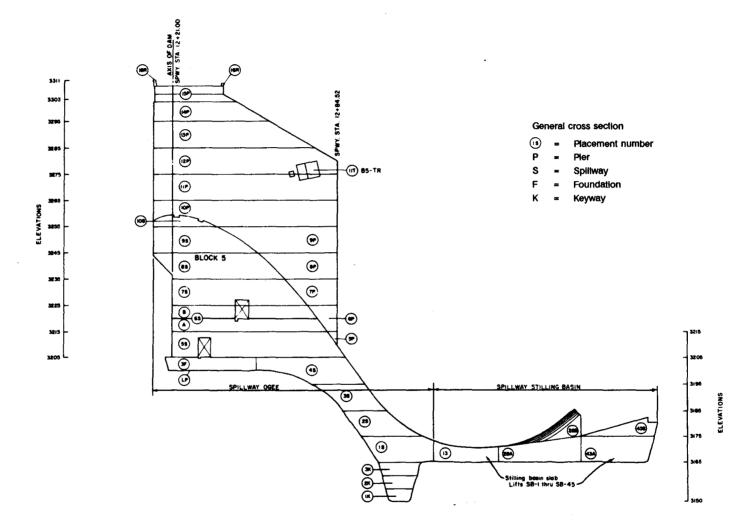
8

,

Location (Block No.)	Elevation ft (m)	Date placed	Age (days)	Density lb/ft ³ (kg/m ³)	Tensile strength lb/in ² (kPa)
	DIF	RECT TENSILE S	STRENGTH		
<u>10- by 20-inch (254-</u>	by 508-mm) core spe	<u>cimens</u>			
3-1	3221.0 (981.8)	2/20/86	210	158.4 (2537.3)	330 (2275)
3-1	3213.7 (979.5)	2/20/86	210	157.2 (2518.1)	255 (1758)
5-48	3198.4 (974.9)	4/30/86	140	159.0 (2546.9)	260 (1793)
RRW-6T	3219.0 (981.2)	5/22/86	117	155.8 (2495.7)	220 (1517)
Averages			169	157.6 (2524.5)	265 (1827)
	SPLI	TTING TENSILE	STRENGTH		
<u>10- by 20-inch (254-</u>	by 508-mm) core spe	cimens			
SB-39A	3172.4 (966.9)	4/15/86	314	157.5 (2522.9)	900 (6205)
SB-39A	3168.1 (965.6)	4/15/86	314	157.9 (2529.3)	555 (3826)
Averages			314	157.7 (2526.1)	730 (5033)

Table 2. - Concrete properties (continued).

..E. I


,

*SB = stilling basin **RRW = right retaining wall ***Not tested for modulus of elasticity or Poisson's ratio

	Dire	Direct shear		friction
	ø, deg.	c, lb/in² (kPa)	ø, deg.	c _a , lb/in² (kPa)
Parent	76	575 (3950)	45	90 (625)
Intact joints	78	360 (2475)	44	50 (330)
Open joints		-	46	50 (345)

Table 3. - Summary of shear strength test results.

 ϕ = angle of internal friction c = cohesion in direct shear c_a = cohesion in sliding friction

SECTION A-A

Figure 1. - Brantley Dam cross section.

11

.

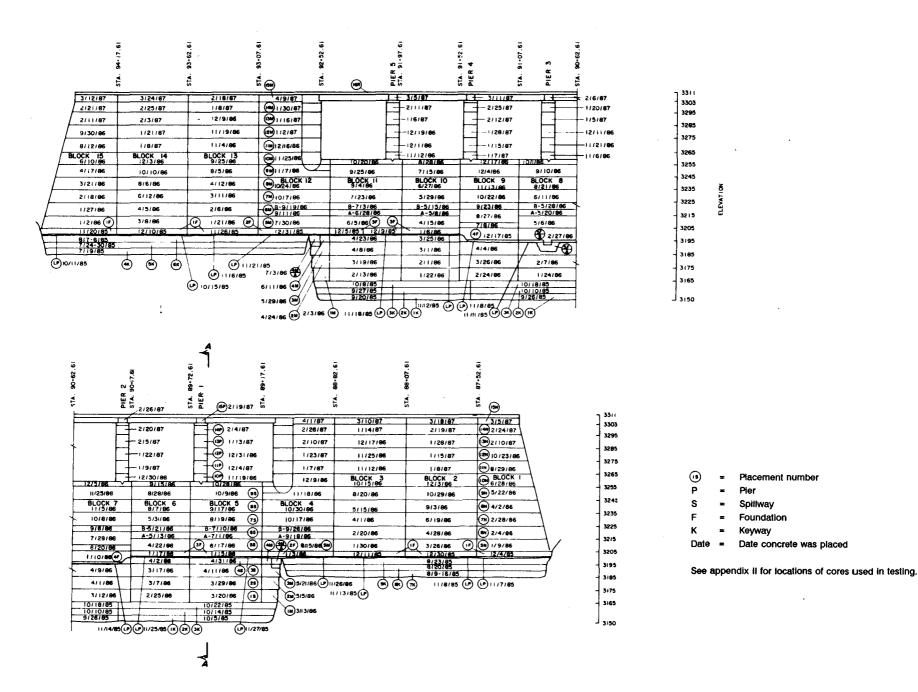


Figure 2. - Brantley Dam upstream elevations.

12

APPENDIX I

..... I

Aggregate Evaluation

. .

Bit Sample No. M-6786 MATERIAL Sand and gravel DATE REC'D. DEPOSIT NAME BOTTOW Area ''I'' OVERBURDEN 3-3m (0-1) OVERBURDEN 3-3m (0-1) DEPOSIT NAME BOTTOW Area ''I'' OVERBURDEN 3-3m (0-1) VOLUMEPIUS 2 486 25 DEVENTION Along Rocky Arrovo to its confluence with Pecos River (3, 250, 00) SEC. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I FEATURE Brantley Dam SEC. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I GRADING (DES.4,5,6) CUM. % RETAINED TEST RESULTS 6'-3' 3'-1/g' 1/g'-3g' 3'g'-4' GRADING (DES.4,5,6) CUM. % RETAINED TEST RESULTS 6'-3' 3'-1/g' 1/g'-3g' 3'g'-4' SIEVE RUN 3'-1/g' 1/g'-3g' 3'g'-4' FINE WASHED ABG RPTION, % (DES.9,10) 0.9 1.6 1.0 1.3 SIEVE RUN 3'-1/g' 1/g'-3g' 3'g'-3g' 3'g'-4' AGG SR GR, S.S.D. (DES.9,10) 0.9 1.6 1.0 1.3 000000000000000000000000000000000000	1
ENGINEERING AND RESEARCH CENTER AGGR REGATE CHECKED BY C. D. PT. State Reviewed by J. B. GR DATE REVIEWED BY J. B. GR DATE REVIEWED BY J. B. GR State New Next Color REVIEWED BY J. B. GR DATE REVIEWED BY J. B. GR State New Next Color State State Stat	s
2 DENVER.COLORADO 1925 XKKKXXXX REVIEWED BYJ.S. 2. 21 2 DATE_ZEDTUARY 1973 QUALITY EVALUATION SUBMITTED BYL.R.GE. 2 DATE_ZEDTUARY 1973 QUALITY EVALUATION SUBMITTED BYL.R.GE. 2 SAMPLE NO. M-6786 MATERIAL Sand and gravel DATE RECO. 3 DEPOSIT NAME BOTTOW Ared "H" OVERBURDEN 0-3m (0-11) 4 OWNERSHIP BUTEAU OF Reclamation and private IVOLUMEPIUS 2 486 255 5 DEVOLUMEPIUS 2 486 255 OVERBURDEN 0-3m (0-11) 1 LOCATION Along Rocky Arroyo to its confluence with Pecos River (3,250,00 3 SEC. 1 & 2 T 21 S 7 PEOJECT Brantley Dam 9 SEC. 1 & 2 T 21 S 9 BERDJECT Brantley 9 SIEVE PIT 3'-14/4'*-** are fine MASHED 9 SIEVE PIT 3'-14/	sia
C -3 DATE Repruary 1973 QUALITY EVALUATION SUBMITTED BY J. B. Gr. C -3 SAMPLE NO. M-6786 IREG. SW SOURCE NO. LAT. 320% ILONG. C -3 SAMPLE NO. M-6786 IMATERIAL Sand and gravel DATE REC. 00 DATE REC. 00 ILONG. C -3 DEPOSIT NAME BOTTOW ÅREN 'M'' OVERBURDEN 0-3m (0-1) OVERBURDEN 0-3m (0-1) OVERBURDEN 0-3m (0-1) C -3 DEPOSIT NAME BOTTOW ÅREN 'M'' IVOLUMEPIUS 2 486 251 OVERBURDEN 0-3m (0-1) IVOLUMEPIUS 2 486 251 C -0 OWNERSHIP Bureau of Reclamation and private VOLUMEPIUS 2 486 251 IVOLUMEPIUS 2 486 251 C -3 FEATURE Brantley Dam SEC. 1 G 2 IT 21 S R 25 E MERIDIAN New Mexico I S - 0 FEATURE Brantley Dam DATE LTR. TRANS. 11-8-7 C -3 SIEVE PIT ST-INZIVA-'N'W'.4 FINE MASHED AGG FEST RESULTS 6'-3' 3'-1/2' 1/2'-3/3' 3'-3' 3'/2'-3'/2' 3'/2'-3'/2''''''''''''''''''''''''''''''	
Image: State New Nexico REG. SW SOURCE NO. LAT. 320% LONG. Image: Sample NO. M-6786 MATERIAL Sand and gravel DATE REC'D. Image: Sample NO. M-6786 MATERIAL Sand and gravel DATE REC'D. Image: Sample NO. M-6786 MATERIAL Sand and gravel DATE REC'D. Image: Sample NO. M-6786 MATERIAL Sand and gravel OVERBURDEN 0-378 (0-1) Image: Sample NO. M-6786 MATERIAL Sand and gravel OVERBURDEN 0-378 (0-1) Image: Sample NO. M-6786 Reclamation and private VOLUMEPlus 2 486 25 Image: Sample NO. Along Rocky Arroyo to its confluence with Pecos River (3,250,00) Sec. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I Image: Sample No. Sec. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I Sec. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I Image: Sample No. Sec. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I Sec. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I Image: Sample No. Sec. 1 & 2 T 21 S RESULTS Grading (des. 4.5.6) CUM. % RETAINED TEST RESULTS Grading (des. 4.5.6) CUM. % RETAINED Image: Sec. 1 & 2 T 2 C 75 2.78 2.78 2.77 2.78 2.78 2.77 2.78 2.78	
Solution Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Description Sec. 1 § 2 T 21 S jr 25 E Meridian New Mexico I FEATURE Brantley Brantley Brantley Bremarks Fried Date Ltr. TRANS. 11-8-7 GRADING (DES.4,5,6) CUM. % RETAINED TEST RESULTS 6*-3* 5*-1½ Sieve Pit S*-1½ Fine Washerd Age Sieve Pit S*-1½ Fine Washerd Grading Sieve Pit S*-1½ Fine Washerd Grading S. J. O Sieve Pit S*-1½ Fine Washerd Grading S. J. O Sieve Pit S*-1½ Sec. 1 Sec. 1 Sec. 1 Sieve Pit S*-1½ Sec. 1 Sec. 1 Sec. 1 Sieve Pit Sec. 5.6 Sec. 7.73 Sec. 73 Sec. 77 Sieve Sec. 1 Sec. 1	04°₩
Solution Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Description Sec. 1 § 2 T 21 S jr 25 E Meridian New Mexico I FEATURE Brantley Brantley Brantley Bremarks Fried Date Ltr. TRANS. 11-8-7 GRADING (DES.4,5,6) CUM. % RETAINED TEST RESULTS 6*-3* 5*-1½ Sieve Pit S*-1½ Fine Washerd Age Sieve Pit S*-1½ Fine Washerd Grading Sieve Pit S*-1½ Fine Washerd Grading S. J. O Sieve Pit S*-1½ Fine Washerd Grading S. J. O Sieve Pit S*-1½ Sec. 1 Sec. 1 Sec. 1 Sieve Pit S*-1½ Sec. 1 Sec. 1 Sec. 1 Sieve Pit Sec. 5.6 Sec. 7.73 Sec. 73 Sec. 77 Sieve Sec. 1 Sec. 1	
Solution Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Ownership Bureau of Reclamation and private VolumePlus 2 486 253 Description Sec. 1 § 2 T 21 S jr 25 E Meridian New Mexico I FEATURE Brantley Brantley Brantley Bremarks Fried Date Ltr. TRANS. 11-8-7 GRADING (DES.4,5,6) CUM. % RETAINED TEST RESULTS 6*-3* 5*-1½ Sieve Pit S*-1½ Fine Washerd Age Sieve Pit S*-1½ Fine Washerd Grading Sieve Pit S*-1½ Fine Washerd Grading S. J. O Sieve Pit S*-1½ Fine Washerd Grading S. J. O Sieve Pit S*-1½ Sec. 1 Sec. 1 Sec. 1 Sieve Pit S*-1½ Sec. 1 Sec. 1 Sec. 1 Sieve Pit Sec. 5.6 Sec. 7.73 Sec. 73 Sec. 77 Sieve Sec. 1 Sec. 1	11-17-70
UCATION Along Rocky Arroyo to its confluence with Pecos River (3,250,00) SEC. 1 & 2 T 21 S R 25 E MERIDIAN New Mexico I State FEATURE Brantley Dame Date Itrans Itra	<u>jeet</u>
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	yd~)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	rincipal
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\frac{1}{10} = \frac{1}{10} $	
$\frac{1}{10} = \frac{1}{10} $	6
Bit Asis Size Fire Pir Run 3"-1/2" 1/2" AGG SP GR., S.S.D. (DES. 9, 10) 2.75 2.78 2.77 2.78 2.77 Control of the second sec	INE WASHED
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GG. AGG.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2.64
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2.7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $.8
Image: Constraint of the second s	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Image: Single State Sta	
Image: Section of the section of th	7.
Image: Second system % LOSS, 100 REV. 4 Image: Second system % LOSS, 500 REV. 24 Image: Second system % LOSS, 500 REV. % LOSS, 700 Strength	
NO.4 O O W/C SLUMP X AIR H2O 28 - DAY WEIGHT WEIGHT 0<	
NO.4 O O W/C SLUMP X AIR H2O 28 - DAY WEIGHT WEIGHT 0<	
O Jain Concrete 0	
Image: Strength weight Cycles Loss Strength weight - <td>RRAP</td>	RRAP
Image: Strength Reserved Model Image: Strength Reserved Method Strength Reserved Strength Reserved Cycles Loss Junch Strength Reserved Loss Junch Strength Reserved	
	% CYCLES
	185
NO.16 30 36 ALKALI - AGGREGATE REACTIVITY DATA	
T T R NO.30 49 56 MATERIALS SAND GRAVE	
	-
NO. 100 64 73 CEMENT NO. Not tested Not te	sted
NO.100 75 83 SODA EQUIVALENT	
A PAN 100 100 TEST AGG. % 100 100 50 25 100 100	50 25
H = 0 F.M 2.33 2.67 EXP % - 6 MO.	
%SAND EXP % -12 MO.	
PETROGRAPHIC DESCRIPTION: MEMORANDUM NO. 77-48 DATE: 8-5-77 BY:LL D. NES	

IMPORTANT NOTICE

The gravel, subangular to mostly subrounded to rounded with about 8 percent flat and/or elongated particles and many particles covered with a calcium carbonate coating which is well bonded to the particle surface, is composed chiefly of limestone and dolomitic limestone with minor amounts of quartz pebbles, quartzite, quartzose sandstone, chert, and ferruginous particles. About 3 percent physically unsound and 0.3 percent alkali-reactive chert are present. The sand, mostly angular to rounded in shape, is composed of the same rock types found in the gravel and increasing amounts of monomineralic grains of calcite, dolomite, quartz, feldspar, ferruginous particles, mica, magnetite, chert, gypsum, and a few miscellaneous detrital minerals in the finer sizes. About 5 percent physically unsound and 1 percent potentially alkali-reactive chert are present in the coarse sand.

<u>Conclusions:</u> Aggregate comparable to sample No. M-6786 is suitable for use in concrete provided the sand is washed to remove excess silt and organic impurities and proper gradings are obtained.

GPO #37 . 597

OFTIGNAL FORM NG. 10 JULY 1873 EDITION GSA FPMR (41 CFR) 161-11.6 UNITED STATES GOVERNMENT

emorandum

Branch File No. C-1404 Appendix A

Memorandum Head, Concrete Section :

TO

Denver, Colorado DATE: August 5, 1977

FROM : Head, Physical Sciences and Chemical Engineering Section

SUBJECT: Petrographic Examination of Concrete Aggregate - Brantley Dam -Brantley Project, New Mexico

Petrographic examination by: L.D. Klein

Petrographic referral code: 77-48

Material: Processed sand and gravel

Sample No. M-6786

Source: Borrow area H located in sec 1 and 2, T 21 S, R 25 E, New Mexico principal meridian

CONCLUSIONS

The examined gravel and sand, M-6786, are petrographically of satisfactory physical quality for use as concrete aggregate. The coarse gravel contains about 17 percent and 3 percent physically fair and poor quality particles, respectively. The coarse sand contains about 5 percent undesirable particles of poor physical quality.

The analyzed gravel and sand are not considered to be deleteriously reactive with high-alkali cement due to the presence of only about 1 percent chert.

SUMMARY

The gravel, subangular to mostly subrounded to rounded with about 8 percent flat and/or elongated particles and many particles covered with a calcium carbonate coating which is well bonded to the particle surface, is composed chiefly of limestone and dolomitic limestone with minor amounts of quartz pebbles, quartzite, quartzose sandstone, chert, and ferruginous particles. About 3 percent physically unsound and 0.3 percent alkali-reactive chert are present.

The sand, mostly angular to rounded in shape, is composed of the same rock types found in the gravel and increasing amounts of monomineralic grains of calcite, dolomite, quartz, feldspar, ferruginous

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

17

particles, mica, magnetite, chert, gypsum, and a few miscellaneous detrital minerals in the finer sizes. About 5 percent physically unsound and 1 percent potentially alkali-reactive chert are present in the coarse sand.

J.S. Bachton

Ċ

Enclosure

Copy to: 1523

Rock types	Description of rock types	Physical quality		particle count 19 mm to 9.5 mm
NOCK LYPES	Description of fock types	quarrey	20 mm CO 13 mm	19 mm LO 9.5 m
Limestone and dolomitic	Hard, dense to slightly vuggy, very finely crystalline, light to dark gray to buff to brownish to yellowish,	Satisfactory	82.0	77.4
limestone	somewhat absorptive and weathered surfaces, generally unfractured to slightly fractured, massive to somewhat bedded, includes minor arena- ceous, fossiliferous and argillaceous limestone			
	Hard, slightly to moderately vuggy, moderately absorptive and weathered, somewhat fractured	Fair	14.5	19.0
	Hard to firm to friable to soft, highly absorptive, deeply weathered, somewhat fractured, slakes somewhat in water, can cause popouts in concrete	Poor	1.9	2.6
Quartz pebbles, quartzite and quartzose	Hard, dense, pebbles to fine grained, massive to bedded, somewhat absorptive, weathered and fractured	Satisfactory	1.0	-
sandstone	Firm to friable, highly absorptive, deeply weathered somewhat clayey	Poor	0.3	-
Chert*	Hard, dense, dark gray, angular	Satisfactory	0.3	0.3
Ferruginous particles	Firm, highly absorptive, deeply weathered, can cause staining and popouts in concrete	Poor	-	0.7
•				
	· · ·			

Table 1. - Petrographic examination of coarse aggregateSample No.

*Alkali-reactive rock types.

•

19

ł

1

		Percentage by 38 mm to 19 mm	particle count 19 mm to 9.5 mm
Physical quality	Satisfactory	83.3	77.7
	Fair	14.5	19.0
	Poor	2.2	3.3
Chemical quality	Alkali reactive	0.3	0.3

Table 2. - Summary of quality of coarse aggregateSample No. M-6786

Remarks: The coarse gravel consists of subangular to mostly subrounded to rounded stream worn particles with a few angular, broken particles. Flat and/or elongated particles constitute about 10 percent and 5 percent of the 38-19-mm and 19-9.5-mm size aggregate, respectively.

Many particles contain a thin calcium carbonate coating which is well bonded to the particle surface and is generally in optical continuity with the carbonate rocks.

The 4.75-mm size aggregate appears similar to the 19- to 9.5-mm size aggregate in composition, is angular to mostly subangular to rounded in shape, slightly poorer in physical quality, contains more alkali-reactive chert (about 2.4 percent) and contains a trace of clay balls. No opal or opaline particles were observed.

Rock and mineral types	Percentage by particle count			
	2.36 mm	1.18 mm	600µm	
Limestone and dolomitic limestone	95	96	95	
Quartz grains and quartzose sandstone	3	2	3	
Chert	2	1	1	
Ferruginous particles	Tr	1	1	

Table 3. - Petrographic examination of coarse sand Sample No. M-6786

Percent unsound	5	5	5
Percent alkali reactive	2	1	1
Percent flat	8	*	*
Percent calcium carbonate coated noncarbonates	· 1	*	*

*Not determined

Remarks: The coarse sand is mostly angular and subangular to rounded in shape. The fine sand is mostly angular to almost rounded in shape and consists of decreasing amounts of the fine-grained rock types found in the coarse sand and increasing amounts of monomineralic grains of calcite, dolomite, quartz, feldspar, ferruginous particles, magnetite, chert, gypsum, mica, and a few miscellaneous detrital minerals.

About 9 percent physically unsound and 1 percent alkali-reactive chert are present in the fine sand sizes.

The material removed by washing, about 19 percent by weight, consists of the same material as found in the fine sand sizes, in addition to some organic debris and clay. No chloride (salt) but significant sulfate (gypsum) was detected chemically.

APPENDIX II

- 6 - E

Locations of Cores Used in Testing

Block/Lift No.	Core diameter, inches (mm)	Dam station	Dam offset, feet (m)	Elevation (top) feet, (m)	Core depth, feet (m)	Date placed
3-6N	10 (254)	88 + 22	11.45 D/S* (3.49)	3225 (983.0)	12.4 (3.8)	2/86
3-6N	10 (254)	88 + 47	20.08 D/S (6.12)	3225 (983.0)	12.1 (3.7)	2/86
4-1M	6 (151)	89 + 13	85.07 D/S (25.93)	3174 (967.4)	12.4 (3.8)	3/86
5-45	10 (254)	89 + 23	58.84 D/S (17.93)	3205 (976.9)	12.3 (3.7)	4/86
9-35	6 (151)	91 + 25	67.80 D/S (20.66)	3195 (973.8)	12.2 (3.7)	4/86
**SB-35A	10 (254)	91 + 73	172.30 D/S (52.52)	3175 (967.7)	12.1 (3.7)	4/86
SB-37A	10 (254)	91 + 18	170.71 D/S (52.03)	3175 (967.7)	12.2 (3.7)	4/86
SB-39A	10 (254	90 + 52	170.74 D/S (52.04)	3175 (967.7)	12.3 (3.7)	4/86
***RRW-6T	10 (254)	88 + 38	230.70 D/S (70.32)	3225 (983.0)	12.0 (3.6)	5/86

LOCATIONS OF CORES USED IN TESTING

Note: All locations are by dam stationing, not by spillway stationing.

*D/S = downstream **SB = stilling basin ***RRW = right retaining wall

25

APPENDIX III

Shear Strength Testing Data

.

MS-884 (10-85) Bureau of Reclamation

UNITED STATES GOVERNMENT

DATE:

то

Memorandum Chief, Concrete and Structural Branch Mar 87

Denver, Colorado MAR 2 0 1987

FROM Acting Chief, Geotechnical Branch

SUBJECT:

Laboratory Test Results on Concrete - Direct Shear Tests - Brantley Dam - Brantley Project, New Mexico

Geotechnical Branch Memorandum Reference No. 87-13

Investigated by: R. Coco, S. Coman, B. Harper, R. Hough, R. Kelsic, J. Montgomery, B. Scavuzzo, and A. Scott

Written by: J. C. Bowen

INTRODUCTION

This memorandum reports results from direct shear tests of concrete core from Brantley Dam and appurtenant structures. These tests were used to evaluate the shear strengths of (1) parent material, (2) construction joints, and (3) open joints.

Brantley damsite is located on the Pecos River about 15 miles northwest (upstream) of Carlsbad, New Mexico. Brantley Dam will be a combination concrete and earthfill structure with a crest length of over 4 miles and a maximum structural height of 140 feet. The total initial reservoir capacity will be 348,500 acre-feet.

Eighteen concrete core specimens were submitted for direct shear testing by personnel from D-1511 [1, 2].¹ Five tests were through intact parent material, four were on open joints, and nine were along intact construction joints. Three specimens (4-3165.0, 4-3165.5, 9-3185.0) were 6 inches in diameter, and the remainder were 10 inches. The 6-inchdiameter specimens were tested in the 10,000-lbf normal, 20,000-lbf shear capacity machine, and the 10-inch specimens were tested in the 100,000-lbf normal, 240,000-lbf shear capacity machine. The direct shear test procedure is described in appendix A. All specimens were submerged in water overnight prior to testing.

1Numbers in brackets refer to entries in the bibliography.

DISCUSSION

Individual direct shear test results for all 18 tests are listed in table 1. Plots of shear stress versus relative shear displacement, and peak shear stress versus normal stress for each of these tests are shown on figures 1 through 18. Photographs of each specimen before and after testing are provided in appendix B (figs. B1 through B18). The following abbreviations were used for specimen identification (Spec. No.) on figures 1 through 18:

Grouping	D-1511 specimen identification	Figure specimen identification
Parent (no construction joints)	B5-4S 3195.7 B5-4S 3196.4 3-1 3219.8 3-2 3222.2 BRRW-6T 3222.7	B5-3195.7 B5-3196.4 3-1-3219.8 3-2-3222.2 BRW-3222.7
Intact construction joints	SB-35A/L.Mat 316 SB-39A/L.Mat 316 B5-4S/3S 319 BRRW-6T/5T 321	5.1 SB-3165.1 5.2 SB-3165.2 5.0 B5-3195.0 4.9 BRW-3214.9 5.2 3-2-3215.2 5.0 4-3165.0 5.5 4-3165.5
Open joints	3-1 321 3-2 322	8.93-1-3218.94.93-1-3214.90.03-2-3220.07.23-2-3217.2

Test results were grouped and analyzed as described below.

Parent Material (no construction joints)

Five concrete specimens were tested through intact parent material. These specimens were broken during the first test cycle and then tested for sliding friction at various normal stresses ranging from 25 to 300 lbf/in². Combined results for these five tests are summarized in table 2 and plotted on figure 19. Best-fit regression lines were calculated and drawn for both intact and sliding results.

All specimens slid to some extent on their encapsulating material, but specimen 3-2-3222.2 broke so deeply into it (fig. B4) that the sliding results were considered inaccurate and were deleted from the combined plot.

Construction Joints

Nine concrete specimens were sheared along intact construction joints. After the break cycle, these specimens were slid under normal stresses ranging from 25 to $300 \ lbf/in^2$. Combined results for these tests are listed in table 2 and plotted on figure 20. The break bond failure envelope has a friction angle of 78° and a cohesion of 359 lbf/in^2 , and the sliding failure envelope has a friction angle of 44° and a cohesion of 48 lbf/in^2 . All specimens broke along their construction joints. Several may have slid to a small extent on their encapsulating material as they were displaced.

Open Joints

Four concrete specimens were sheared along open joints. Each specimen was slid under approximate normal stresses of 25, 50, 75, 100 and 150 lbf/in^2 . Specimen 3-2-3220.0 was slid twice at a normal stress of approximately 150 lbf/in^2 because of breakage through intact material during the first slide. Results for this first slide/break are shown in table 1 and on figure 17, but were not included in the linear regression analysis for figure 17, and also were not used in the plot of the combined open joints (fig. 21). Except for this run, all other data were combined to yield a sliding failure envelope with a friction angle of 46° and a cohesion of 50 lbf/in^2 . Combined results are listed in table 2 and plotted on figure 21.

SUMMARY AND CONCLUSION

Individual direct shear test results for the 18 concrete specimens are presented in table 1. Plots of shear stress versus relative displacement, and peak shear stress versus normal stress for each test are shown on figures 1 through 18. Combined test results for parent material, construction joints, and open joints are listed in table 2, and plots of peak shear stress versus normal stress for these three groups are shown on figures 19 through 21. Sliding results for specimen 3-2-3222.2 were deleted from the combined plot for parent material because this specimen broke deeply into the encapsulating material. The first slide cycle for specimen 3-2-3220.0 was deleted from the combined plot of open joints because of breakage through intact material. The five subsequent slide cycles were used.

The combined test results are summarized below:

	Int	tact	Sliding					
	∳ (deg.)	c (lbf/in²)	∳ (deg.)	c (lbf/in2 ₎				
Parent	76	573	45	91				
Intact construction joints	78	359	44	48				
Open joints			46	50				

3

BIBLIOGRAPHY

- [1] Drahushak-Crow, Roselle, Two-Way Memorandum to D-1542, Subject: "Direct Shear Testing of Brantley Dam Cores," Bureau of Reclamation, Denver, Colorado, September 15, 1986.
- [2] Drahushak-Crow, Roselle, Two-Way Memorandum to D-1542, Subject: "Direct Shear Testing of Brantley Dam Concrete Cores," Bureau of Reclamation, Denver, Colorado, May 30, 1986.

.

CONTENTS

·

Brantley Dam

·. ,

1

Geotechnical Branch Memeorandum Reference No. 87-13

TABLES

											T	able
Individual test results Combined test results												

FIGURES

	Figure	
Test results - B5-3195.7	1	
Test results - B5-3196.4	2	
Test results - 3-1-3219.8	3	
Test results - 3-2-3222.2	. 4	
Test results - BRW-3222.7		
Test results - SB-3163.0		
Test results - SB-3165.1	-	
Test results - SB-3165.2		
Test results - B5-3195.0		
Test results - BRW-3214.9		
Test results - 3-2-3215.2		
Test results - 4-3165.0		
Test results - 4-3165.5		
Test results - 9-3185.0		
Test results - 3-1-3218.9		
Test results - 3-1-3214.9		
Test results - 3-2-3220.0		
Test results - 3-2-3217.2	/	
Test results - Combined parent material		
Tost posulto Combined exacting distate		
	• • 20	
Test results - Combined open joints	21	

APPENDIX

<u>Appendix</u>

Direct shear test procedure .		•	•	•				•	,	•	•	•		А
Before and after photographs o	f	•	•		•	•	•	•				•	•	В
direct shear test specimens														

ROCK LABORATORY TEST DATA DIRECT SHEAR TEST - LINEAR SOLUTION

EL- 633 (12-85) Bureau of Reclamation Designation:___:__-

Brantley Dam Brantley TABLE: FEATURE: PROJECT: _ __OF__6__ RHK 3-4-87 1 J. Bowen SHEET: CHECKED BY: -PREPARED BY : . SLIDING FRICTION TEST VALUES TEST ZONE FAILURE ENVELOPE SPECIMEN DETERMINED AT Peak DESCRIPTION 4 IDENTIFICATION ORIENTATION OF TEST SURFACE FROM CORE AXIS (degrees) MOISTURE CONDITION WHEN TESTED ISRM JOINT ROUGHNESS COEFFICIENT ANGLE OF SLIDING FRICTION HORIZONTAL DISPLACEMENT CORRELATION COEFFICIENT ROCK CLASSIFICATION 1/ SHEAR STRESS **S**(Ibf/in²) UERTICAL DISPLACEMENT COHESION (lbf/in²) THICKNESS OF FILL MATERIAL 🔀(Ibf/in²) 🔲(kPa) NORMAL STRESS TYPE OF - FILL MATERIAL AREA (kPa) TYPE OF TEST 3/ (degrees) (mm) DRILL NOMINAL / (cm²) 825 .0550 49 9.351 26 94 .1332 51 164 .0714 .9576 110 S BB 46 3195.7 90 B5-4S 102 256 .0469 33 201 342 .0534 68.68 391 302 .0371 104 998 .0714 9.326 25 .0506 49 .9960 49 0398 41 23 75 S BB 90 35-4S 3196.4 .0321 BLE 103 111 103 .0219 100 68.31 1149 200 196 294 .0779 302 698 .0412 9.361 25 231 50 1097 (31ock) .6145 117 297 1449 50 BB 74 3-1 3219.8 S 90 .0706 E. 65 26 68.82 274 1418 149 D-1511 personnel 1. CLASSIFICATION BY 2/ S=SOAKED _______ 3/ BB=BREAKBOND OR INTACT SHEAR STRENGTH; SF=SLIDING FRICTION. ç 4/ ____Mohr-Coulomb CRITERION S GPO 849 - 820

.

.

ROCK LABORATORY TEST DATA

Designation:___:___:

PROJECT: Brantley	FEATURE:Brant1	ey Dam	TABLE:1
D. Bowen	CHECKED BY:	3-4.87	SHEET: <u>2</u> OF6_
SPECIMEN IDENTIFICATION	TEST ZONE DESCRIPTION	TEST VALUES DETERMINED AT Peak,	SLIDING FRICTION FAILURE ENVELOPE 4/
z	L L L L L L L L L L L L L L L L L L L		2

DRILL	DEPTH DEPTH	ROCK CLASSIFICATIO	TYPE OF FILL MATERIAL		MOISTURE CONDI WHEN TESTEI 2/	ISRM JOINT ROUGHNE COEFFICIENT	ORIENTATION OF SURFACE FROM (AXIS (degrees)	TYPE OF TEST 3/	NOMINAL AREA	NORMAL STRES (lbf/in ²) . [(kPa)	ά		VERTICAL DISPLACEMEN (in)	ANGLE OF SLIDING FRICTI (degrees)	COHESION COHESION (Ibf/in ² (RPa)	CORRELATIO
(Block)	3-1 (cor	t.)		ļ					A	100	189	.0890				
1	۲ ۲								9.333	50	758	.0525		1	6	
Block										L				1		
3-2	3222.2				S		90	BB		·				<u>5</u> /		
(i						68.41					{		
									9.359	50	688	.0748				
										28	109	.0556		1		
										50	143	.0816		1		
BRRW-	2020 7				S			BB		102	255	.0595		51	99	.9691
6Т	3,222.7				J		90			199	386	.0416				
									68.79 🔪	304	<u>386</u> 435	.0416 .0387				
	1								9.280	_50	554	.1334		Į i		
										26	48	.0197				
SB-	}				}					50	73	.0152		40	38	.9872
35LM	3163.0				S			BB		101	137	.0188	····	l.		
SOLM	3103.0		1		. 3	í	90	00	59.26	201	223	.0328				1
						1	l			307	_277_	.1190	······································	· .		
1/ CLASSI	FICATION BY	D-1511	person	nei												
2/ S=SOA	(ED 12	-HOURS PRIO	R TO TES	TING; W=	WET, M	-MOIST,	AD=AIR	DRY, O	D=OVEN DRY.							
		INTACT SHEA	RSTRENG	TH;SF=	SLIDING	FRICTIO	ON.									
4/ <u>Moh</u>	r-Coulomb	CRI	TERION.													
5/ Slid	ding resu	ts are no	t vali	d beca	use s	pecime	en bro	ke to	o deeply i	nto its	encaps	ulating	materi	al.		

ROCK LABORATORY TEST DATA DIRECT SHEAR TEST - LINEAR SOLUTION

Designation:

	PROJECT: PREPAREI		ley J. Bowen					FEATU		Brantley RHK 3-						NBLE:	1 3 _{OF} 6
	i	SPECIMEN DENTIFICATIO	N				TEST Z	ONE			DETE	TEST N RMINED A	/ALUES T_Peak	······		ING FRIG JRE ENV 4/	
	ЭNOH DRILL	DEPTH Latit m	ROCK CLASSIFICATION J	TYPE OF FILL MATERIAL	THICKNESS OF FILL MATERIAL (in) (im)	MOISTURE CONDITION WHEN TESTED 2/	ISRM JOINT ROUGHNESS COEFFICIENT	ORIENTATION OF TEST SURFACE FROM CORE AXIS (degrees)	TYPE OF TEST 3/	NOMINAL AREA	NORMAL STRESS [16//in ²] [(kPa)	SHEAR STRESS Stubr/in ²) C(kPa)	HORIZONTAL DISPLACEMENT	VERTICAL DISPLACEMENT (in)	ANGLE OF SLIDING FRICTION (degrees)	COHESION (Ibf/in ²) (kPa)	COEFFICIENT
39	SB- 35A	3165.1				S		90	BB	9.283 67.68	99 31 56 101 200 303	812 61 94 136 229 310	.0397 .0217 .0141 .0207 .0245 .0215		42	40	. 9982
TABLE:	SB- 39A	3165.2				S		90	BB	9.288 67.75	28 28 50 100 211 303	429 56 124 156 278 346	.0351 .0202 .0211 .0335 .0319 .0218		45	54	.9877
1 SHEET:	85- 4S/3S	3195.0				S		90	BB	9.300 67.93	53 22 51 76 101 201	833 60 116 106 131 211	.0447 .0385 .0445 .0423 .0257 .0333		38	55	.9717
3 of 6		RED 12 RED 12 REAKBOND OR Ohr-CouTon	- HOURS PRIO	R TO TES	TING; W=	•			DRY, O	D=OVEN DRY.							GPO 849 - 82

ROCK LABORATORY TEST DATA DIRECT SHEAR TEST - LINEAR SOLUTION

.

Designation:

.

PROJECT: Brantley	FEATURE:	Brantley Dam	TABLE:	1
PREPARED BY : J. Bowen	CHECKED BY:	3-4-87	SHEET: <u>4</u>	OF6

	10	SPECIMEN DENTIFICATIO	N		TEST ZONE DESCRIPTION							TEST N	ALUES			ELOPE		
	. JOH DRILL	DEPTH DEPTH m	ROCK CLASSIFICATION 1	TYPE OF FILL MATERIAL	THICKNESS OF FILL MATERIAL (in) (mm)	MOISTURE CONDITION WHEN TESTED 2/	ISRM JOINT ROUGHNESS COEFFICIENT	ORIENTATION OF TEST SURFACE FROM CORE AXIS (degrees)	TYPE OF TEST <u>3</u> /	NOMINAL AREA	NORMAL STRESS ⊠(Ibf/in ²) □(kPa)	SHEAR STRESS S(lbf/in ²) (kPa)		VERTICAL DISPLACEMENT (in) (mm)	ANGLE OF SLIDING FRICTION (degrees)	COHESION ESI (Ibf/in ²) (kPa)	CORRELATION COEFFICIENT	
40	BRRW- 6T/5T	3214.9				S		90	BB	9.334 68.43	49 27 49 101 205 300	634 77 116 180 308 370	.0470 .0177 .0277 .0397 .0278 .0254		47	62	.9908	
TARI F.	(B1ock) 3-2	3215.2				S		90	BB	9.382 69.13	76 76 50 100 26 149	584 172 121 143 39 151	.0358 .0236 .0261 .0256 .0128 .0313		37	65	.6866	
1 curet.	(Block) 4	3165.0				S		90	BB	6.024 28.50	25 100 50 150 25 75	374 149 82 203 49 108	.0411	0967 0033 0045 0022 0063 0093	51	19	.9978	
4 6	<u>2</u> / S=SOA <u>3</u> / BB=BR		HOURS PRIO		TING; W=				DRY, O	D=OVEN DRY.								

ROCK LABORATORY TEST DATA DIRECT SHEAR TEST - LINEAR SOLUTION

Designation:___:__:

PROJECT: Brantley	FEATURE: Brantley Dam	TABLE: 1
PREPARED BY : J. Bowen	CHECKED BY:	SHEET: 5 OF 6

	SPECIMEN IDENTIFICATION						TEST Z		-		DETE	TEST N RMINED A	values TPeak		SLIDING FRICTION FAILURE ENVELOPE		
	DRILL		ROCK CLASSIFICATION J	TYPE OF FILL MATERIAL	THICKNESS OF FILL MATERIAL (in) (im)	MOISTURE CONDITION WHEN TESTED 2/	ISRM JOINT ROUGHNESS COEFFICIENT	ORIENTATION OF TEST SURFACE FROM CORE AXIS (degrees)	TYPE OF TEST <u>3</u> /	NOMINAL AREA	NORMAL STRESS Stibf/in2) (1kPa)	SHEAR STRESS 20(1bf/in ²) 1(kPa)	HORIZONTAL DISPLACEMENT DISPLACEMENT VERTICAL UERTICAL DISPLACEMENT DISPLACEMENT	ANGLE OF SLIDING FRICTION (degrees)	COHESION (1bf/in ²) (kPa)	CORRELATION COEFFICIENT	
41	(Block) 4	3165.5				S		90	BB	6.014 28.41	50 100 151 75 50 25	700 157 213 126 82 41	.06431226 .03940082 .03460078 .02440083 .01450053 .01030050	54	14	.9934	
	(Block) 9	3185.0				S		90	BB	6.014 28.41	101 25 75 50 100 150	836 79 153 108 172 216	.07230686 .02550155 .02990075 .01500061 .01800046 .02020041		57	.9875	
	(Block) 3-1	3218.9				S		74	SF	9.366 71.68	24 75 150 102 51	139 170 260 162 81	.0237 .0859 .0467 .0256 .0159	48	73	. 8349	
	<u>2</u> / S=SOA <u>3</u> / BB=BF	IFICATION BY KED 12 REAKBOND OR Dhr-Coulon	HOURS PRIC	R TO TES	•	WET, M			DRY, O	D-OVEN DRY.						GPO 849-	

>) production and the state of t

1

ROCK LABORATORY TEST DATA DIRECT SHEAR TEST - LINEAR SOLUTION

Designation:

PROJECT: Brantley	FEATURE: Brantley Dam	1
PREPARED BY : J. Bowen	CHECKED BY:	SHEET:OF6

	SPECIMEN TEST ZONE IDENTIFICATION DESCRIPTION					•	DET	TEST V	/ALUES TPeak		SLIDING FRICTION FAILURE ENVELOPE					
DRILL	OEPTH T T T T	ROCK CLASSIFICATION 1	TYPE OF FILL MATERIAL	THICKNESS OF FILL MATERIAL (in) (mm)	MOISTURE CONDITION WHEN TESTED 2/	ISRM JOINT ROUGHNESS COEFFICIENT	ORIENTATION OF TEST SURFACE FROM CORE AXIS (degrees)	TYPE OF TEST <u>3</u> /	NOMINAL AREA (in ²) NOMINAL (cm ²) DIAMETER	NORMAL STRESS [3](1bf/in ²) [(kPa)	SHEAR STRESS Stear Stress (kPa) (kPa)	HORIZONTAL DISPLACEMENT M(in)	VERTICAL DISPLACEMENT (in) (inn)	ANGLE OF SLIDING FRICTION (degrees)	COHESION (1bf/in ²) (kPa)	CORRELATION COEFFICIENT
(Block) 3-1	3214.9				S		90	SF	9.362 68.84	50 75 26 150 100	186 124 29 142 93	.0457 .0160 .0078 .0242 .0130		23	80	.3483
(Block) 3-2	3220.0				S		90	SF	9.355 68.74	5/151 150 101 77 51 31	562 173 122 90 62 33	.0428 .0230 .0159 .0151 .0152 .0179		49	0	.9988
(B1ock) 3-2	3217.2				S		90	SF	9.366 68.90	101 28 76 50 156	301 66 166 80 210	.0356 .0146 .0227 .0153 .0365		55	47	.7295

ROCK LABORATORY TEST DATA COMBINED DIRECT SHEAR RESULTS - LINEAR SOLUTIONS

Designation: ____:____

PROJECT: Brantley	FEATURE:Brantley Dam	TABLE:2
PREPARED BY : J. Bowen	CHECKED BY : PHK 3-4-87	SHEET: OF

				DIRECT SHEAR RESULTS							
		SPECIMEN TEST SUITES		Į.	NTACT SHEAR STRENG	TH	SLIDIN	G FRICTION SHEAR STR	RENGTH		
				SOLUTION BY	Mohr-Coulomb	CRITERION	SOLUTION BY	Mohr-Coulomb	CRITERION		
	ROCK			ANGLE OF	COLLEGION	•	· ANGLE OF	COHESION			
		DRILL HOLE	DEPTH	INTERNAL FRICTION (degrees)	COHESION CORRELATION COEFFICIENT (kPa)		SLIDING FRICTION (degrees)	(kPa)	CORRELATION COEFFICIENT		
	Parent	B5-45 B5-45	3195.7 3196.4					91			
43	(no con- struction joint)		3219.8 3222.2	76	573	.9081	45		.8079		
	joint)	BRRW-6T	3222.7								
	Intact	SB-35LM SB-35A	3163.0 3165.1								
BL	Construc- tion Joints	SB-39A B5-4s/3s	3165.2 3195.0	78	359	.7649	44	48	.9509		
2	E	RRW-6T/5T 3-2	3215.2								
SHEET		4	3165.0 3165.5 3185.0								
іт. 1			5165.0								
	1/ GROUPIN	_{G BY}	11 personn	el	·····			1			
οŗ				specimen were n	ot used.						
2	<u> </u>	-				-					
· I									GB0 849 - 821		

GPO 849 - 821

TABLE:

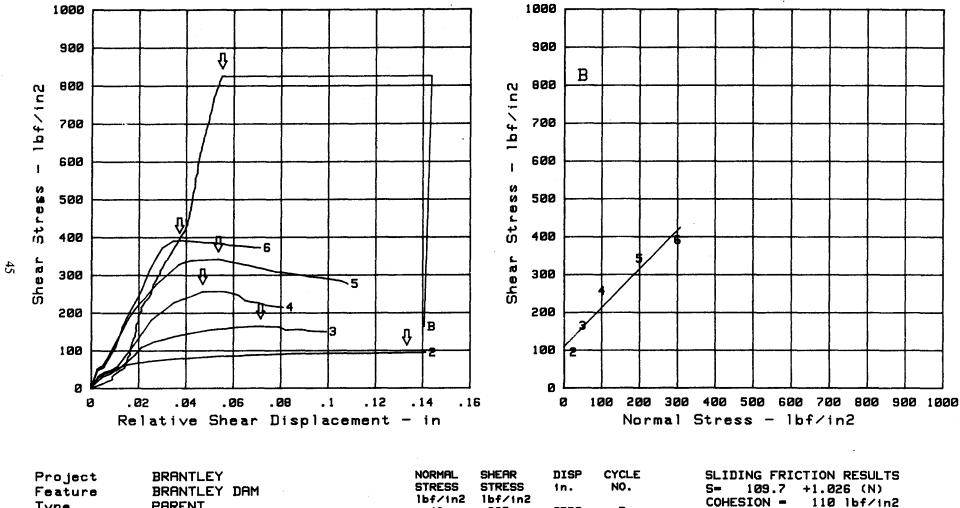
SHEET

ę

ROCK LABORATORY TEST DATA COMBINED DIRECT SHEAR RESULTS - LINEAR SOLUTIONS

.

Designation: ____:____


.

PROJECT:	Brantl	ey	FEATURE:	Brantley Dan	n	TABLE	22
PREPARED BY	J. Bowen	•	CHECKED BY			SHEET	OF2
[DIRECT SHE			
1	SPECIMEN TEST SUITES		NTACT SHEAR STRENG	тн	SLIDIN	NG FRICTION SHEAR ST	RENGTH
-	1231 301123	SOLUTION BY	Mohr-Coulomb	CRITERION	SOLUTION BY	Mohr-Coulomb	CRITERIO
ROCK GROUPING 1/	SPECIMEN IDENTIFICATION DRILL DEPTH HOLE	ANGLE OF INTERNAL FRICTION (degrees)	COHESION (lbf/in ²) (kPa)	CORRELATION COEFFICIENT	ANGLE OF SLIDING FRICTION (degrees)	COHESION (Ibf/in ²)	CORRELATION
		(degrees)			(305,000)		
Open Joints	3-1 3218.9 3-1 3214.9 2/ 3-2 3220.0				46	50	.6391
Joints	3-2 3217.2	1	· ·		10		
		1					
		1					
	_{G BY} D-1511 person	nel	,, ,, ,, I ,	······································			
<u>2</u> / The fi	rst cycle of this t	est was not inc	luded in the comb	oined results be	ecause of break	age through inta	ct material.
L							GPO 849 - 8

.....

Figure 1 DIRECT SHEAR TEST

49

26

51

102

201

302

825

94

164

256

342

391

.0550

.1332

.0714

.0469

.0534

.0371

В

2

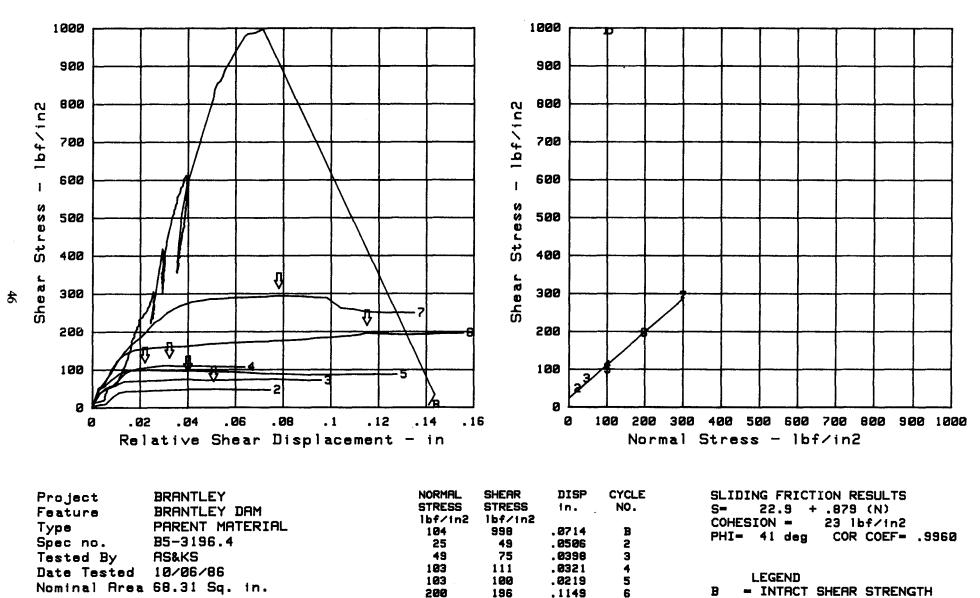
3

4

5

6

FeatureBRANTLEY DAMTypePARENTSpec no.B5-3195.7Tested ByAS&BS&RHDate Tested10/14/86Nominal Area68.68 Sq. in.


LEGEND

B = INTACT SHEAR STRENGTH No. = SLIDING FRICTION TEST

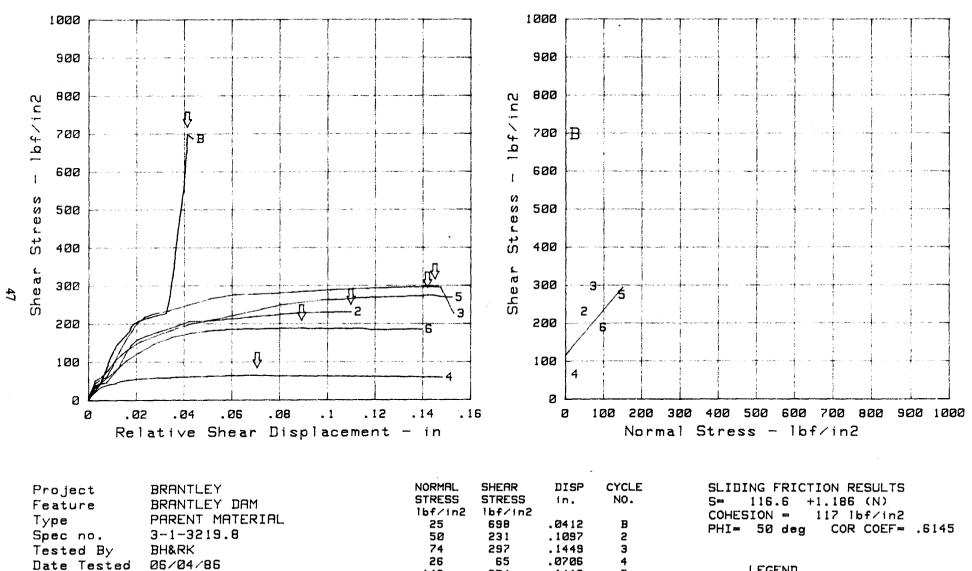
PHI= 46 deg COR COEF= .9576

Figure 2

302

.

294


.0779

7

 \sim

No. - SLIDING FRICTION TEST

Figure 3 DIRECT SHEAR TEST

149

100

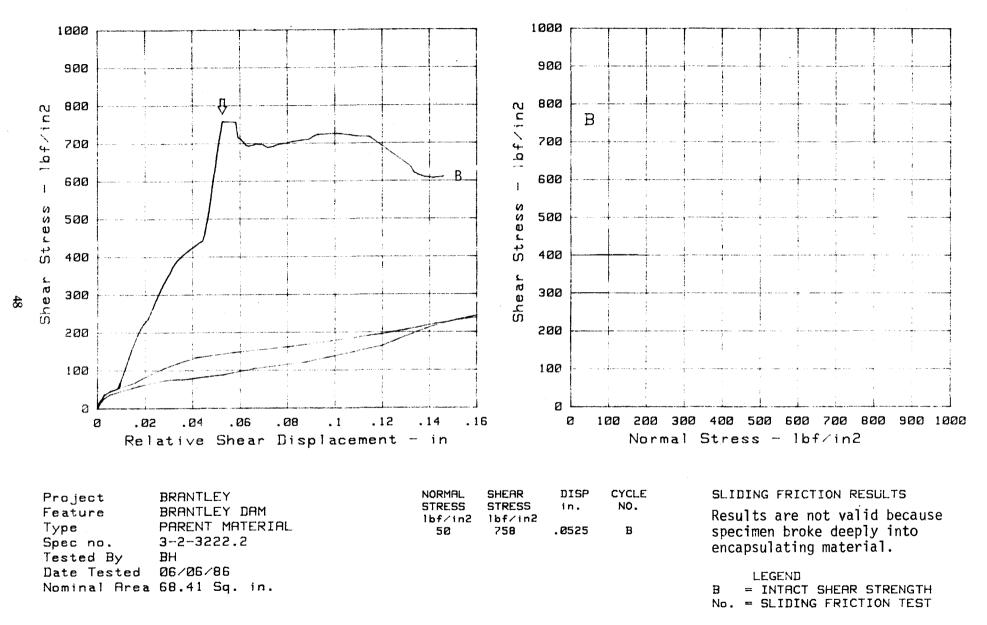
Nominal Area 68.82 Sq. in.

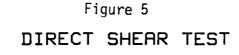
274

189

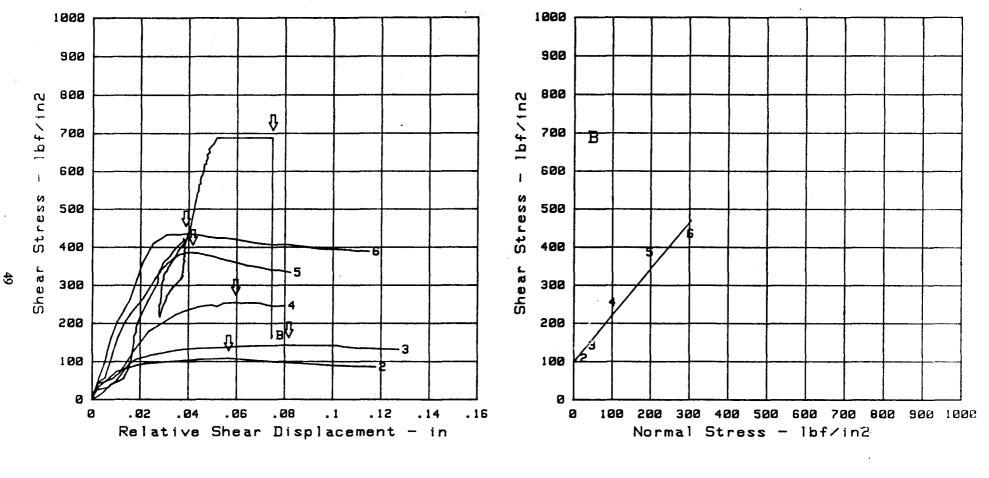
.1418

.0890


5

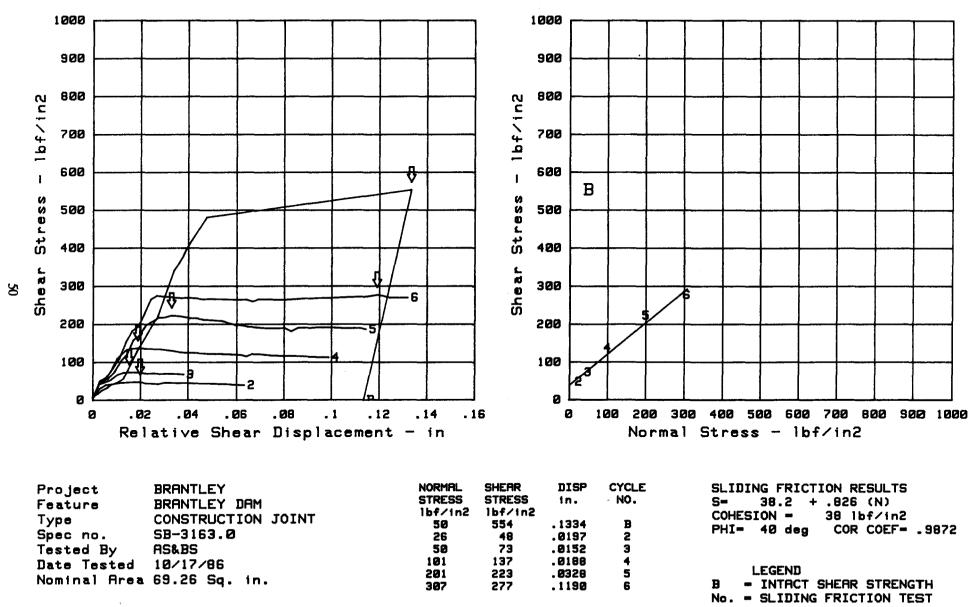

6

LEGEND B = INTACT SHEAR STRENGTH No. = SLIDING FRICTION TEST

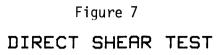

Figure 4

•

Project BRANTLEY Feature BRANTLEY DAM Туре PARENT Spec no. BRW-3222.7 Tested By AS&BS&RH Date Tested 10/14/86 Nominal Area 68.79 Sq. in.


DISP CYCLE NORMAL. SHEAR SLIDING FRICTION RESULTS STRESS STRESS NO. in. 98.9 +1.220 (N) S= 1bf/in2 1bf/in2 COHESION -50 688 .0748 B 2 28 109 .0566 50 143 .0816 Э 102 255 .0595 4 LEGEND 199 386 .0416 5 B 304 435 .0387 6

99 lbf/in2 PHI= 51 deg COR COEF= .9691


- INTRCT SHEAR STRENGTH

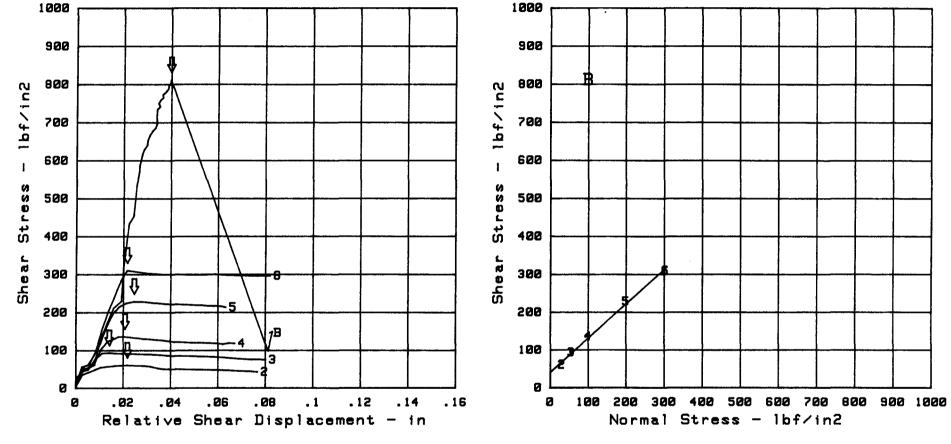

No. - SLIDING FRICTION TEST

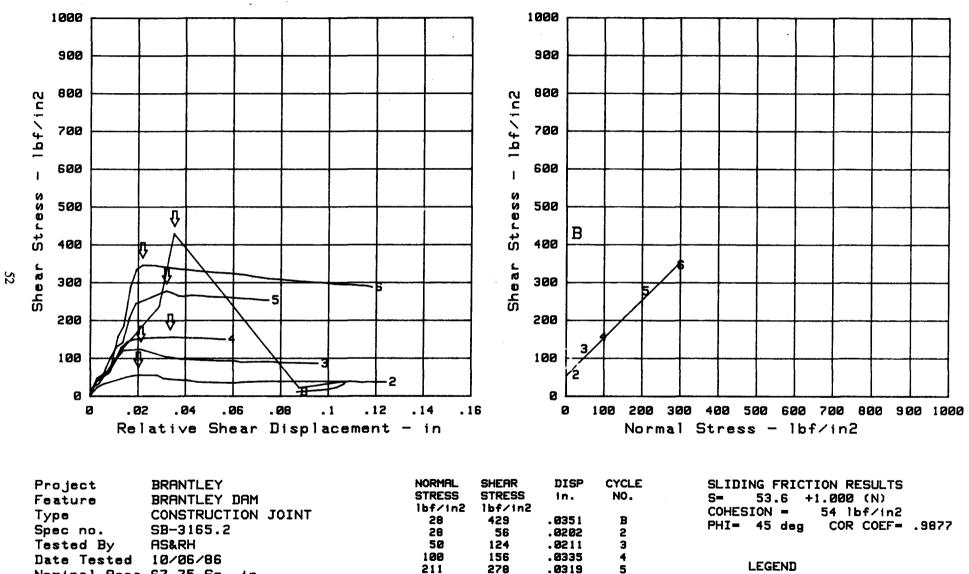
Figure 6 DIRECT SHEAR TEST

ł

ProjectBRANTLEYFeatureBRANTLEY DAMTypeCONSTRUCTION JOINTSpec no.SB-3165.1Tested ByAS&BSDate Tested10/10/86Nominal Area67.68 Sq. in.

NORMAL	SHEAR	DISP	CYCLE	SLIDING F
STRESS	STRESS	1n.	NO.	5= 40.
lbf/in2	lbf∕in2			COHESION
99	812	.0397	B	PHI= 42
31	61	.0217	2	1.11- 46
56	94	.0141	3	
181	136	.0207	4	
200	229	.0245	5	LEGE
303	310	.0215	6	B = INT
+			-	

SLIDIN	GΓ	RICTI	ON RESULTS	
5=	40.	5 +	.908 (N)	
COHESI	ON	-	40 1bf/in2	
PHI=	42	deg	COR COEF=	.9982


LEGEND B - INTACT SHEAR STRENGTH No. - SLIDING FRICTION TEST

51

ì

346

.0218

6

303

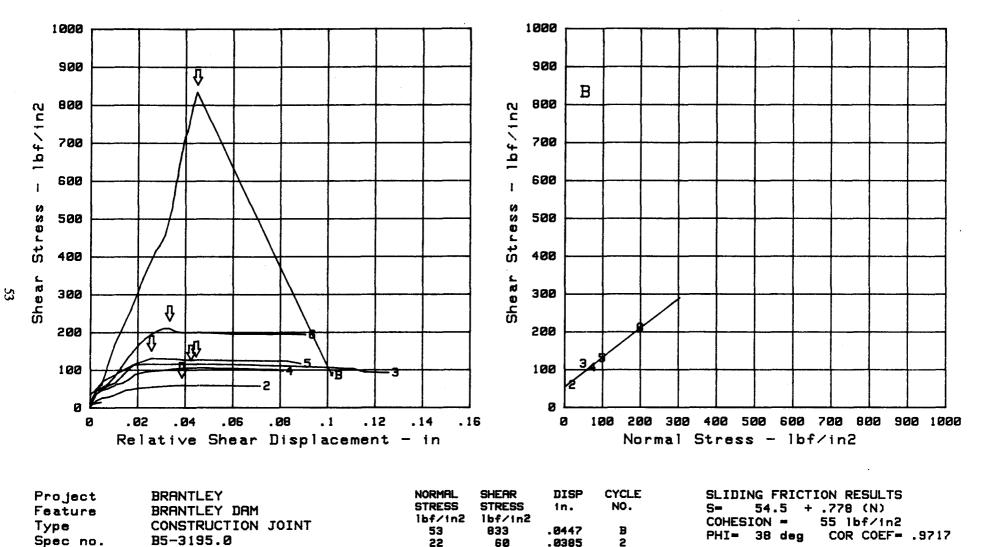
Date Tested 10/06/86 Nominal Area 67.75 Sq. in.

. L	_EGEND		
-	INTACT	SHEAR	STRENGTH

B No. - SLIDING FRICTION TEST

Figure 9

.


Tested By

AS&RH

Date Tested 10/06/86

Nominal Area 67.93 Sq. in.

116

106

131

211

51

76

101

201

Э

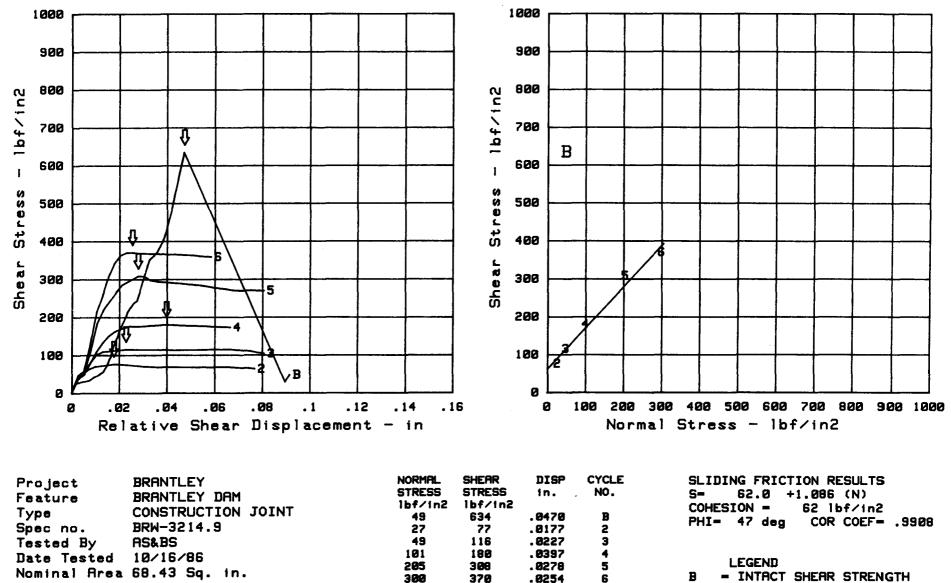
4

5

6

.0445

.0423


. 0257

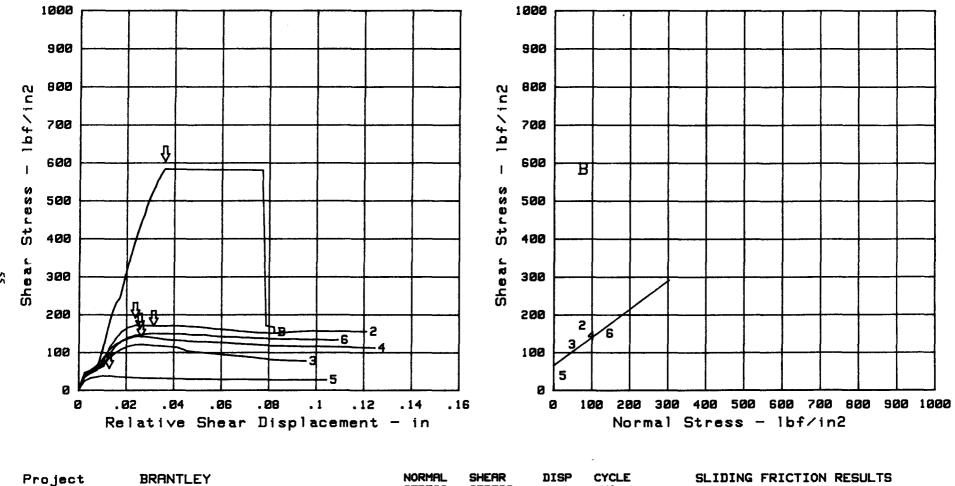
.0333

	L				
В	-	INTRCT	SHEAR	STRE	NGTH
No.	-	SLIDING	FRIC	TION	TEST

Figure 10

DIRECT SHEAR TEST

. 8254

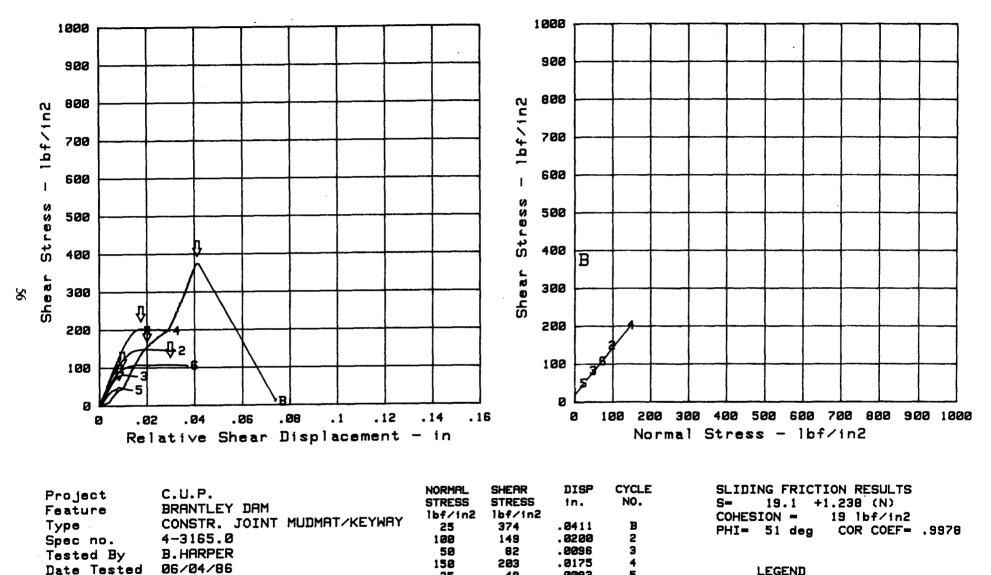

300

- INTACT SHEAR STRENGTH
- No. = SLIDING FRICTION TEST

¥

,

Figure 11 DIRECT SHEAR TEST



Project Feature	BRANTLEY DAM	STRESS	STRESS	in.	NO.	S = 65.4 + .746 (N)
Type	CONSTRUCTION JOINT	lbf/in2	1bf/1n2		-	COHESION = 65 1bf/in2
• •	3-2-3215.2	76	584	.0358	B	PHI= 37 deg COR COEF= .6866
Spec no.		76	172	.0236	2	Ū
Tested By	BH&RK	50	121	.0261	3	
Date Tested	06/05/86	100	143	.0256	4	
1		26	39	.0128	5	LEGEND
Nominal Frea	69.13 Sq. in.	149	151	.0313	6	B = INTACT SHEAR STRENGTH
					-	No SLIDING FRICTION TEST

55

146

Figure 12 DIRECT SHEAR TEST

25

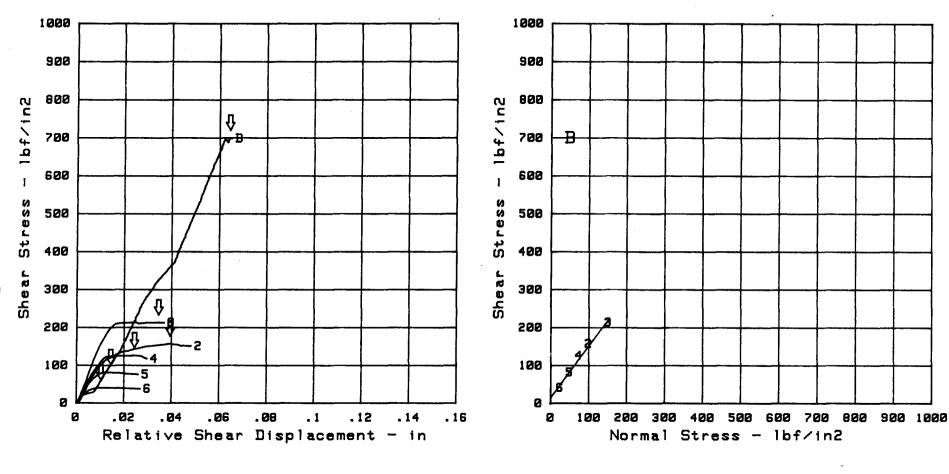
75

Nominal Area 28.50 Sq. in.

49

108

. 0083


.0297

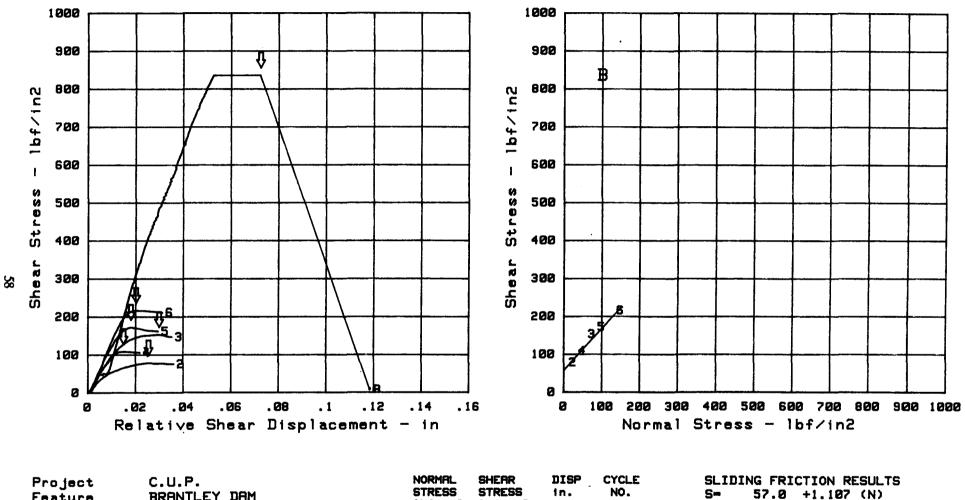
5

6

```
LEGEND
= INTACT SHEAR STRENGTH
```

B No. = SLIDING FRICTION TEST

F۰	igure 13	
DIRECT	SHEAR	TEST


Project	C.U.P.		NORMAL	SHEAR	DISP	CYCLE	SLIDING FRICTION RESULTS
Feature	BRANTLEY DAM		STRESS	STRESS	in.	NO.	S= 14.3 +1.368 (N)
Туре	CONSTR. JOINT	1-M∕MUDMAT	1bf∕in2 50	1bf/tn2 700	. 2643	в	COHESION = 14 lbf/in2
Spec no.	4-3165.5		100	157	.0394	2	PHI= 54 deg COR COEF= .9934
Tested By	B.HARPER		151	213	.0346	3	
Date Tested			75	126	.0244	4	
	28.41 Sq. in.		50	82	.0145	5	
			25	41	.0103	6	B - INTRCT SHEAR STRENGTH
							No. = SLIDING FRICTION TEST

57

.

,

Feature BRANTLEY DAM Type CONSTR. JOINT 3-S/2-S Spec no. 9-3185.0 Tested By B.HARPER Date Tested 08/06/86 Nominal Area 28.41 Sq. in.

NORMAL	SHEAR	DISP	CYCL
STRESS	STRESS	in.	NO.
lbf/1n2	1bf/in2		
101	836	. 0723	B
25	79	. 0255	2
75	153	. 6299	3
50	128	.0150	4
100	172	. 0180	5
150	216	. 0202	6

SLIDING FRICTION RESULTS S= 57.0 +1.107 (N) COHESION = 57 lbf/in2 PHI= 48 deg COR COEF= .9875

LEGEND B - INTACT SHEAR STRENGTH No. - SLIDING FRICTION TEST

1000 1000 900 900 800 800 1bf/in2 1bf/in2 700 700 600 600 Stress Stress 500 500 400 400 Shear Shear 300 300 59 3 3 200 200 2⁄ 2 1 100 100 5 Ø Ø .02 .04 .06 .08 . 1 .12 100 200 300 400 500 600 700 800 900 1000 Ø .14 .16 Ø Relative Shear Displacement - in Normal Stress - 1bf/in2

SHEAR

139

170

260

162

81

STRESS

lbf/in2

DISP

in.

.0237

.0859

.0467

.0256

.0159

CYCLE

NO.

1

2

З

4

5

NORMAL

STRESS

24

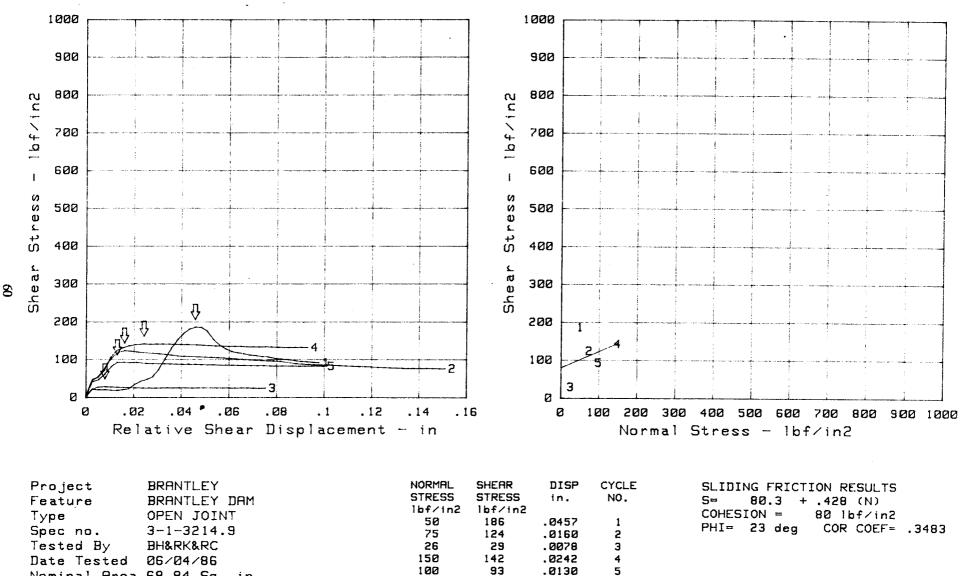
75

150

102

51

lbf/in2


Figure 15 DIRECT SHEAR TEST

ProjectBRANTLEYFeatureBRANTLEY DAMTypeOPEN JOINTSpec no.3-1-3218.9Tested ByBH&RKDate Tested06/04/86Nominal Area71.68 Sq. in.

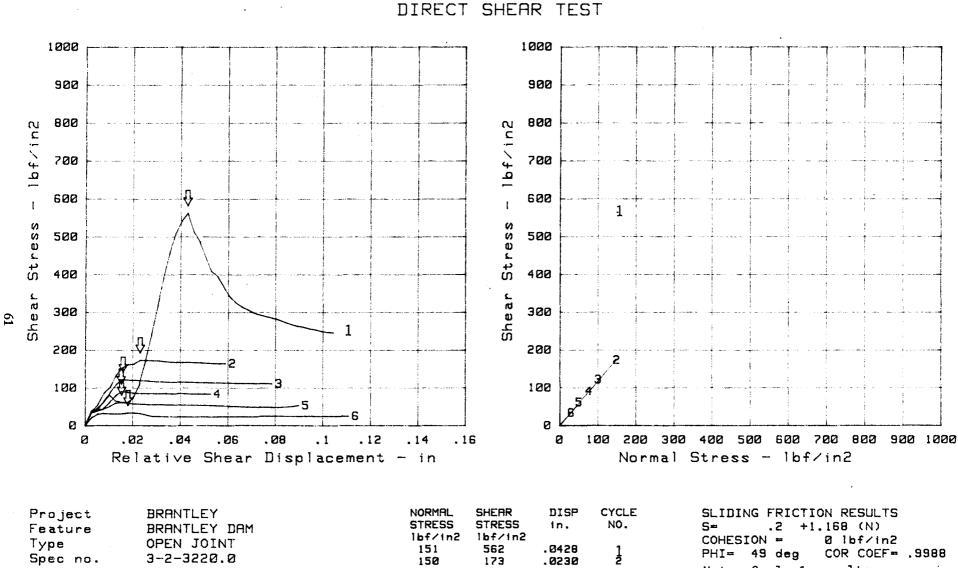

SLIDING FRICTION RESULTS S= 72.9 +1.116 (N) COHESION = 73 lbf/in2 PHI= 48 deg COR COEF= .8349

Figure 16

DIRECT SHEAR TEST

Nominal Area 68.84 Sq. in.

150

101

77

51

31

173

122

90

62

33

1

Э

4

5

6

.0159

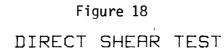
.0151

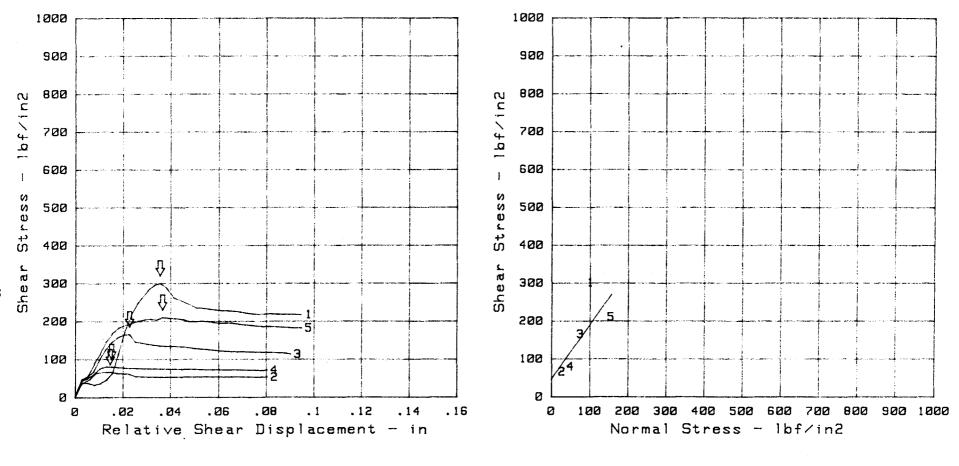
.0152

.0179

PHI= 49 deg COR COEF= .9988 Note: Cycle 1 results were not included in this equation.

Date Tested 06/06/86 Nominal Area 68.74 Sq. in.

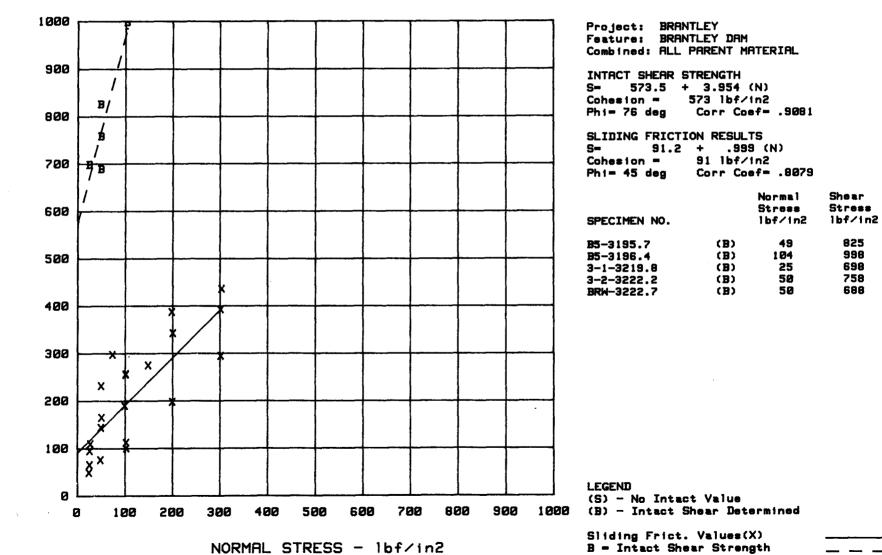

3-2-3220.0


BH&RC

Spec no.

Tested By

Figure 17


ProjectBRANTLEYFeatureBRANTLEY DAMTypeOPEN JOINTSpec no.3-2-3217.2Tested ByBH&JM&SCDate Tested06/06/86Nominal Area68.90 Sq. in.

NORMAL STRESS	SHEAR STRESS	DISP in.	CYCLE NO.
lbf/in2	lbf/in2		
101	301	.0356	1
28	66	.0146	2
76	166	.0227	3
50	80	.0153	4
156	210	.0365	5

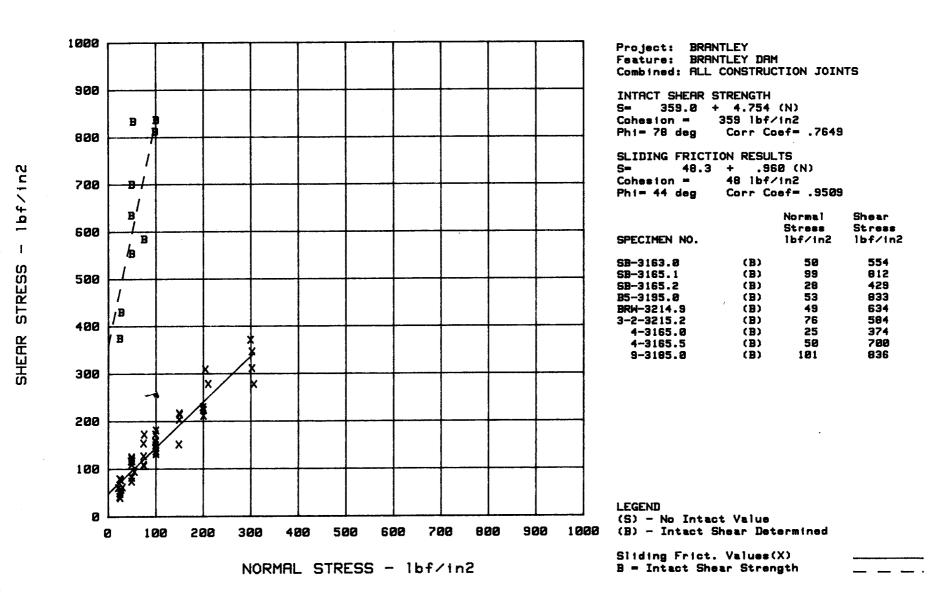
SLIDING FRIC	TION RESULTS	
S= 47.4	+1.424 (N)	
COHESION =	47 1bf⁄in2	
PHI= 55 deg	COR COEF=	.7295

62

DIRECT SHEAR TEST CONCRETE - PARENT

NORMAL STRESS - 1bf/in2

ස

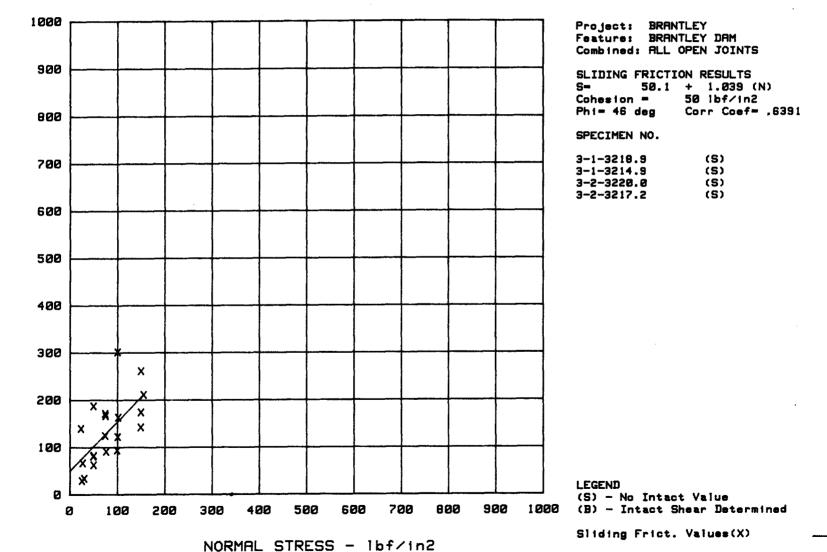

1 STRESS

SHERR

lbf/in2

,

DIRECT SHEAR TEST CONCRETE - CONSTRUCTION JOINTS



2

-

Figure 21

DIRECT SHEAR TEST CONCRETE - OPEN JOINTS

S

lbf∕in2

I

SHEAR STRESS

.

Appendix A

Direct Shear Test Procedure

ROCK AND CONCRETE DIRECT SHEAR TEST

The direct shear test is usually performed to determine shear strength along a preexisting surface in an intact specimen. Intact specimens typically contain some feature such as a healed joint, a bedding plane or foliation, a rock contact, or a concrete construction joint. Sliding friction tests can be performed following determination of intact shear strength. Other types of features tested for sliding friction are open rock joints or bedding planes, weak planes broken during drilling, or presawn shear surfaces.

Two laboratory direct shear machines are available for testing rock or concrete specimens. The small machine has 10,000-lbf normal and 20,000-lbf shear capacity and is used for specimens of approximately 2 to 6 inches in diameter. The standard gap or "d" distance between the upper and lower halves of the shear box is 1/4 inch. The large direct shear machine has 100,000-lbf normal and 240,000-lbf shear capacity. It can accommodate specimen sizes of 4 to 10 inches in diameter. The distance between the upper and lower halves of the shear box can be varied from 1/2 to 1 inch.

To perform the direct shear test in the laboratory, normal force and shear force are applied to the specimen using either pneumatic or hydraulic control. Forces are measured with dual-bridge load cells.

Shear (horizontal) displacement is measured using a single LVDT (linear variable differential transformer). This displacement is determined by measuring movement of the lower half of the shear box while the upper half is held stationary. Normal (vertical) displacement is currently measured only on the small machine using four LVDT's which register movement of the upper half of the shear box.

The same automatic data acquisition system is used with both laboratory machines. It provides a printout and plot of data as the test proceeds and also records the data for additional analyses following testing. Shear force, normal force, and displacements are measured and recorded simultaneously at preselected load or displacement increments. Loads are manually controlled, and small variations can occur in normal force and in shear force rate during testing.

Both intact shear strength and sliding friction tests are performed similarly. Data are recorded at predefined shear force intervals during the intact shear strength test and at given shear displacement intervals during sliding friction tests.

The following is a description of the testing sequence:

1. A specimen is encapsulated in gypsum cement in upper and lower holding rings such that the specimen test feature is centered and aligned within the gap between the rings. 2. The encapsulated specimen is inserted into the test machine by slipping the bottom holding ring into the lower half of the shear box.

3. The upper half of the shear box is lowered over the top holding ring.

4. The shear box is moved until the upper half of the shear box comes into contact with rollers fixed to the direct shear apparatus, after which the two shear box halves are backed off slightly to ensure that no shear force is being applied to the specimen.

5. Bolts used to minimize specimen disturbance during handling are removed from the holding rings.

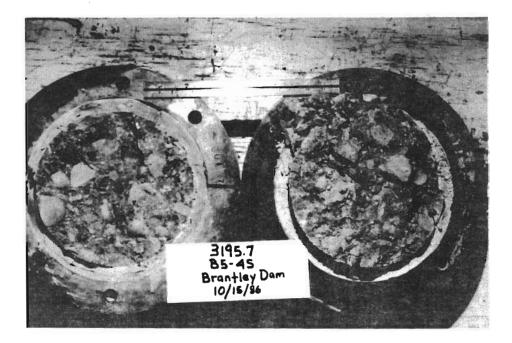
6. Normal force necessary to provide required normal stress is applied to the upper half of the shear box.

7. The upper half of the shear box is held in place in the horizontal direction while shear force is applied to the lower half of the shear box until a peak shear force is reached or until significant displacement occurs with no change in shear force.

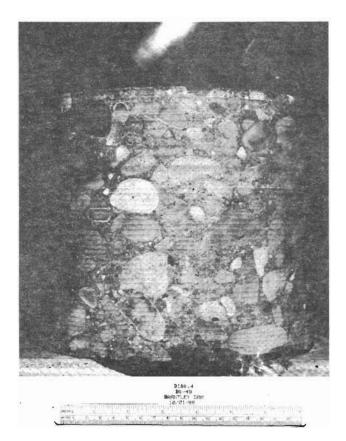
8. The lower half of the shear box is backed off until the upper half of the shear box just moves away from the rollers.

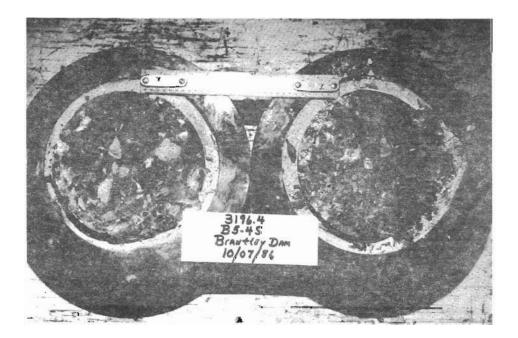
9. The specimen is inspected in the test machine to determine if subsequent testing may proceed. If an intact specimen has been sheared, the shear profile is examined to determine if sliding friction tests can proceed without interference from the encapsulating material. Sliding friction test specimens must be inspected to determine if excessive shear displacement has occurred. If it is deemed necessary to rotate or realign the specimen, the specimen must be removed and the procedure continued beginning at step 2.

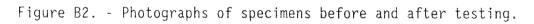
10. Normal force is adjusted to the next required normal stress, and the shear box is moved until the upper half of the shear box makes contact with the rollers.

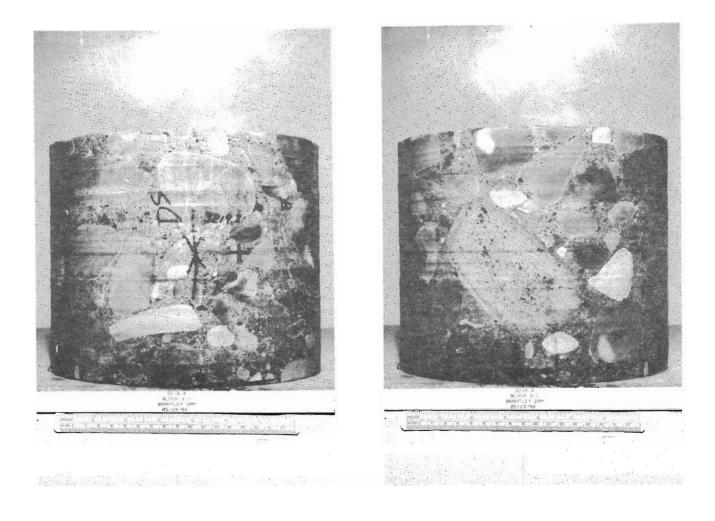

11. Steps 7 through 10 are repeated for all required normal stresses.

A Mohr-Coulomb failure envelope is determined for each sliding friction test specimen. A visual best-fit line may be drawn through the data points, or a linear regression calculation may be performed to obtain a best-fit line. If several intact shear tests are performed on similar specimens at various normal stresses, an intact shear strength failure envelope can be determined using the combined data. Sliding friction test results may also be combined for similar specimens to provide a sliding friction failure envelope for multiple specimens.


Appendix B


Before and After Photographs of Direct Shear Test Specimens





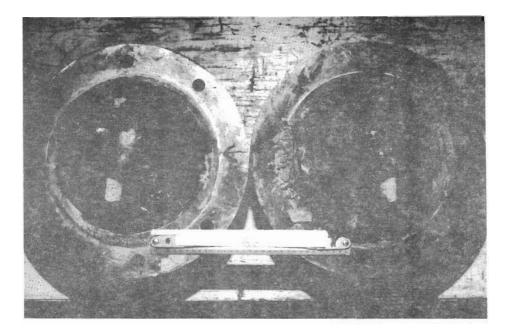
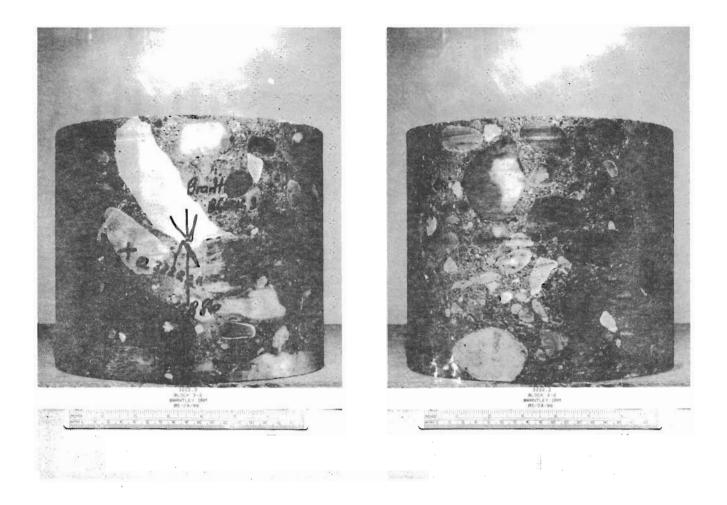
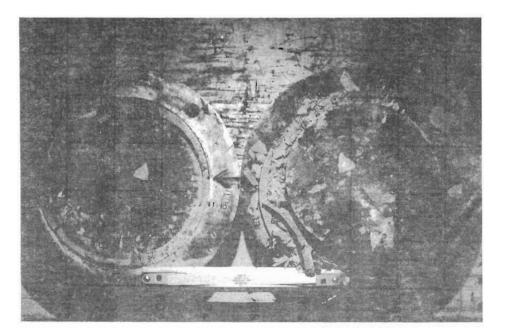
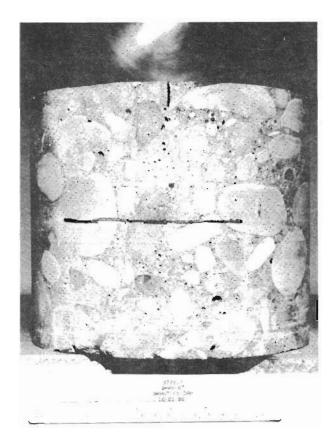





Figure B3. - Photographs of specimens before and after testing.

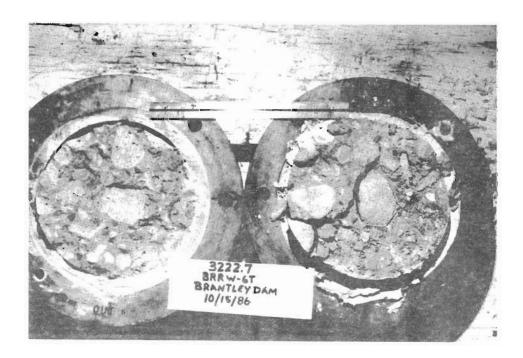
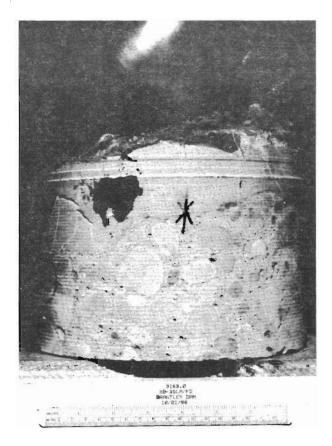



Figure B5. - Photographs of specimens before and after testing.

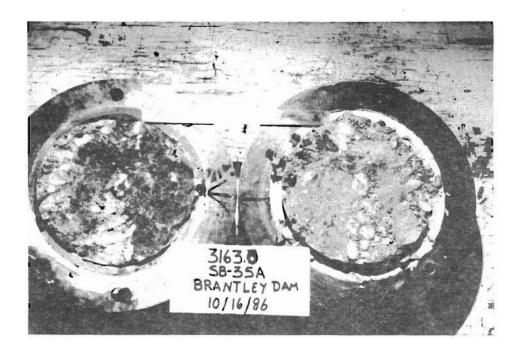


Figure B6. - Photographs of specimens before and after testing.

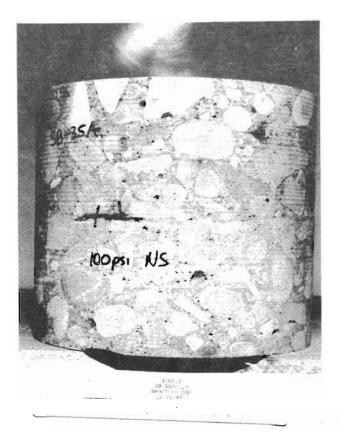
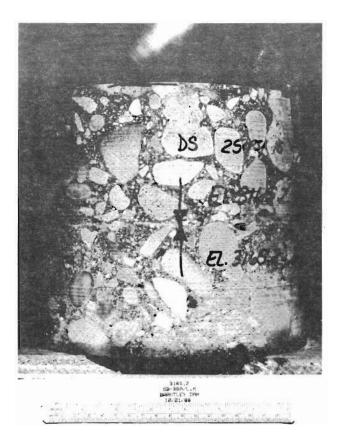



Figure B7. - Photographs of specimens before and after testing.

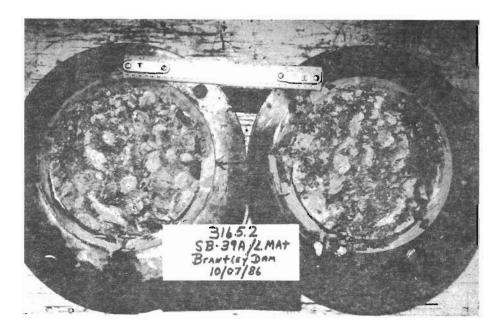


Figure B8. - Photographs of specimens before and after testing.

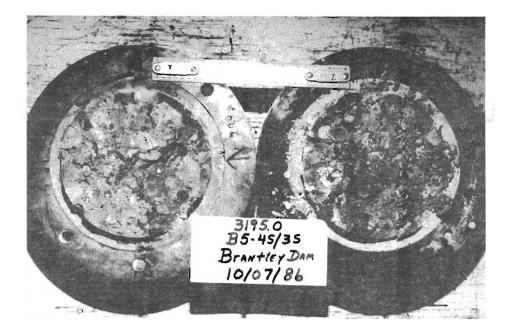
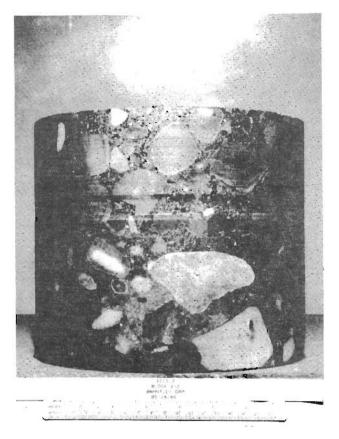
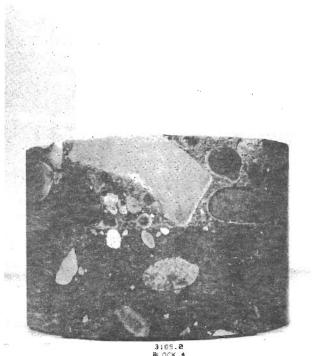
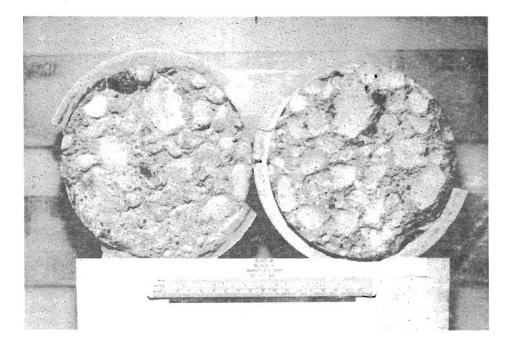
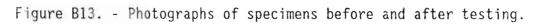


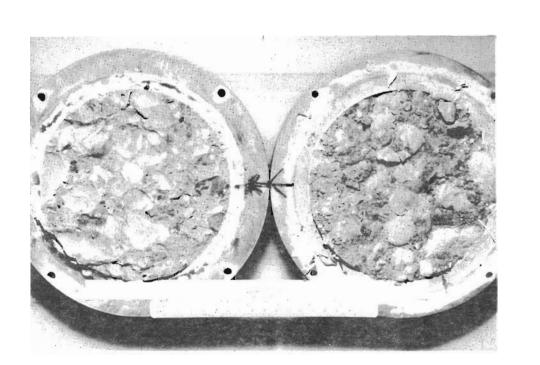
Figure B9. - Photographs of specimens before and after testing.

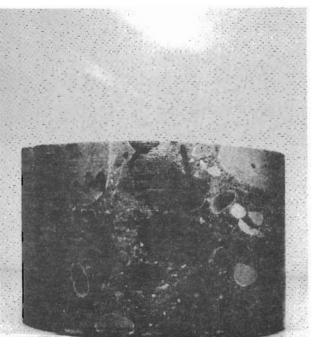
3214.9 BRRW-6T BRANTLEYDAM 10/16/86

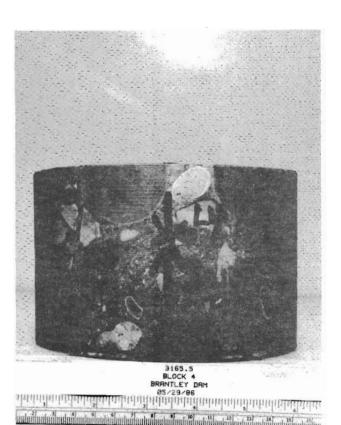
Figure Bl0. - Photographs of specimens before and after testing.

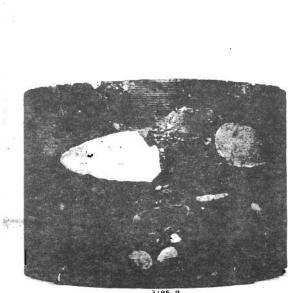







Figure Bll. - Photographs of specimens before and after testing.


3155.8 BLOCK 4 BRANTEY DAM 05/29/86





3195.0 BLOCK 9 BRANTLEY LAN 05/23/86

3185.8 BLOCK 9 BRANTLEY DAM 85/29/86 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15

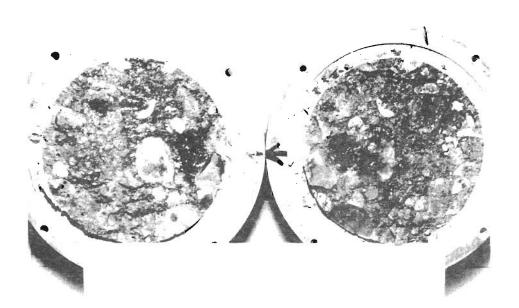


Figure B14. - Photographs of specimens before and after testing.

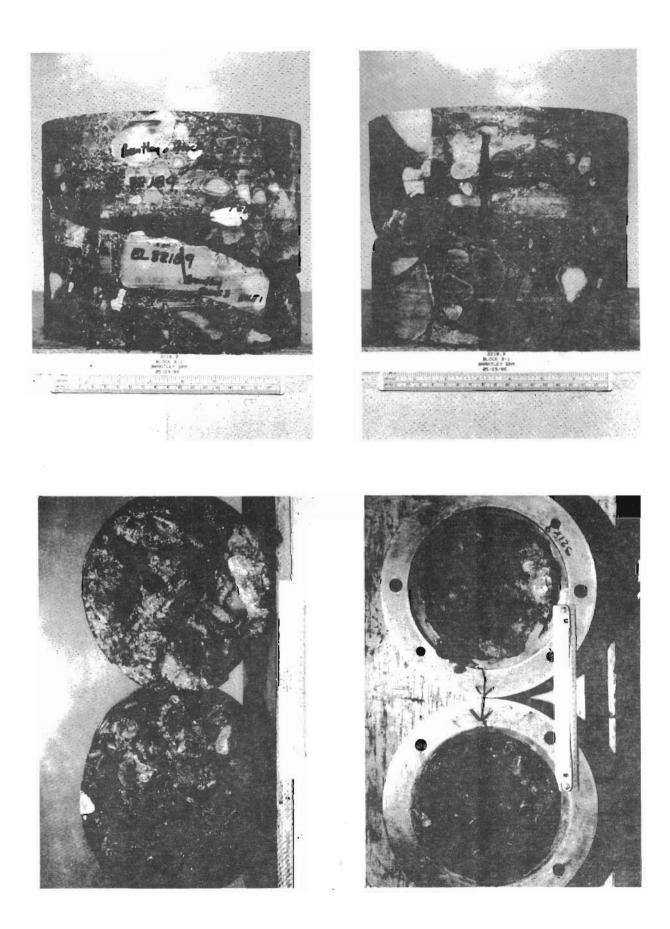


Figure B15. - Photographs of specimens before and after testing.

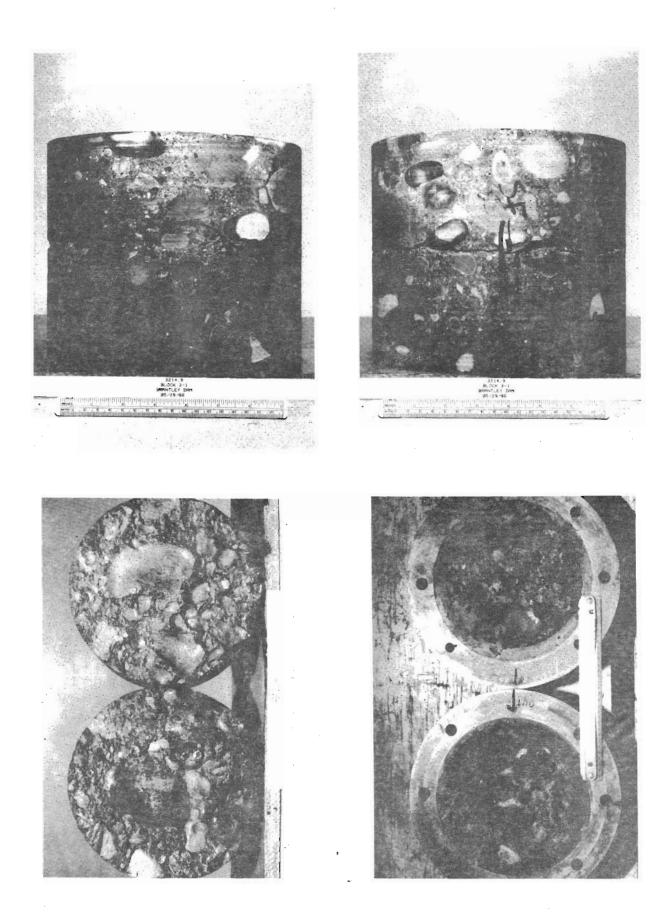
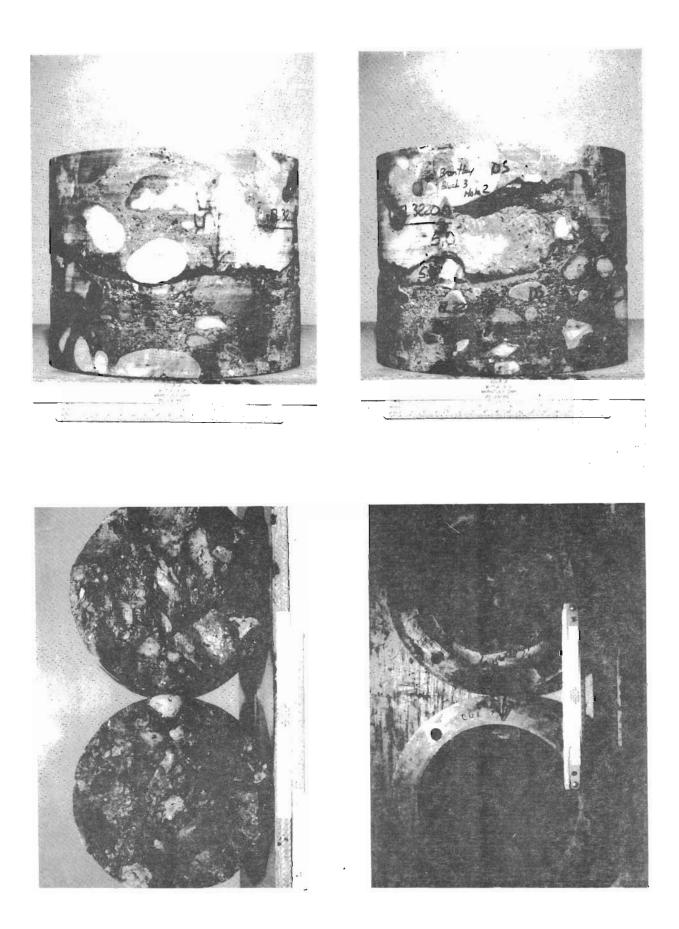
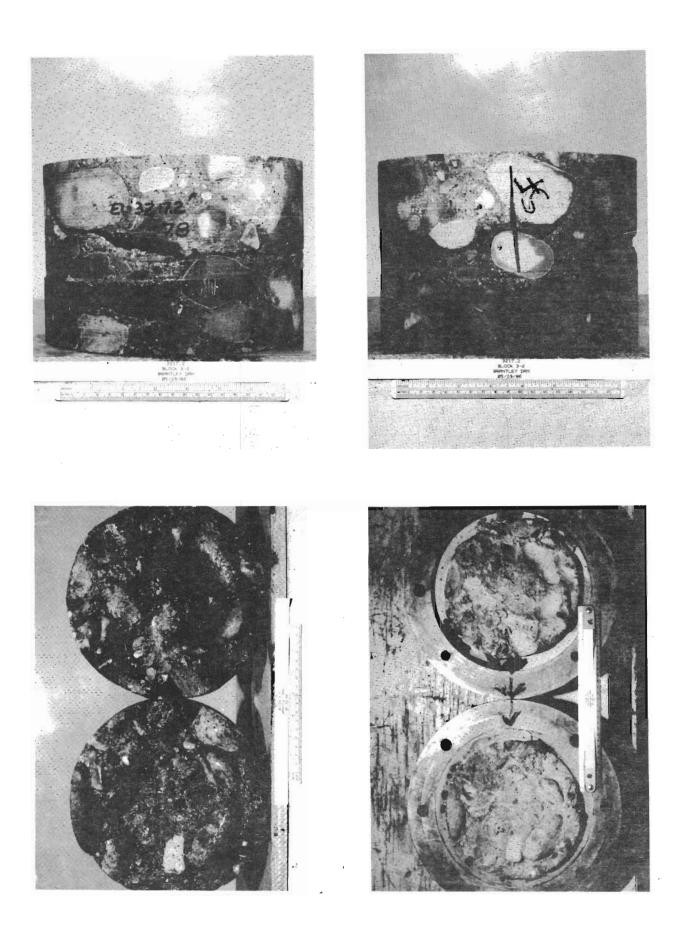




Figure B16. - Photographs of specimens before and after testing.

¢.

Figure B17. - Photographs of specimens before and after testing.

(

Figure B18. - Photographs of specimens before and after testing.

Mission of the Bureau of Reclamation

The Bureau of Reclamation of the U.S. Department of the Interior is responsible for the development and conservation of the Nation's water resources in the Western United States.

The Bureau's original purpose "to provide for the reclamation of arid and semiarid lands in the West" today covers a wide range of interrelated functions. These include providing municipal and industrial water supplies; hydroelectric power generation; irrigation water for agriculture; water quality improvement; flood control; river navigation; river regulation and control; fish and wildlife enhancement; outdoor recreation; and research on water-related design, construction, materials, atmospheric management, and wind and solar power.

Bureau programs most frequently are the result of close cooperation with the U.S. Congress, other Federal agencies, States, local governments, academic institutions, water-use organizations, and other concerned groups.

A free pamphlet is available from the Bureau entitled "Publications for Sale." It describes some of the technical publications currently available, their cost, and how to order them. The pamphlet can be obtained upon request from the Bureau of Reclamation, Attn D-7923A, PO Box 25007, Denver Federal Center, Denver CO 80225-0007.