

R-01-02

ARROWROCK DAM MID-LEVEL OUTLET WORKS REHABILITATION 48-INCH CLAMSHELL GATE CONCEPT

1:10.67 SCALE PHYSICAL MODEL STUDY

July 2001

U.S. DEPARTMENT OF THE INTERIOR Bureau of Reclamation Technical Service Center Water Resources Services

Contraction of the second s			
LIBRARY			· · · · · · · · · · · · · · · · · · ·
NOV 1.1.200			
REPORTBOOCUMENT	ATION PAGE	<u> </u>	Form Approved OMB No. 0704-0188
Reclamation Service Cente Public reporting burden for this collection of info	f formation is estimated to average 1 hour pr	er response, including the time for review	ing instructions, searching existing data sources.
gathering and maintaining the data needed, and collection of information, including suggestions f	I completing and reviewing the collection of for reducing this burden to Washington Heat	of information. Send comments regarding adquarters Services. Directorate for Inform	this burden estimate or any other aspect of this nation Operations and Reports, 1215 Jefferson
Davis Highway, Suit 1204, Arlington VA 22202-43 1. AGENCY USE ONLY (Leave Blank)			
I. AGENCT USE UNLT (Leave blank)	July 2001	3. REPORT TYPE AND Final	DATES COVERED
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Arrowrock Dam Mid-Level Out	let Works Rehabilitation Pl	nysical Model Study	
6. AUTHOR (S)	· .		
Joseph P. Kubitschek			
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
Bureau of Reclamation			REPORT NUMBER
Water Resources Research Labor	atory		
Technical Service Center			R-01-02
Denver, CO			
9. SPONSORING/MONITORING AGEN Bureau of Reclamation	ICY NAME(S) AND ADDRESS(ES		10. SPONSORING/MONITORING AGENCY REPORT NUMBER
Denver Federal Center			AGENOT HEFORT NOMBER
PO Box 25007			
Denver CO 80225-0007		ч.	9
11. SUPPLEMENTARY NOTES	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
	· · · · ·	· · ·	
12a. DISTRIBUTION/AVAILABILITY S			12b. DISTRIBUTION CODE
Available from the National Tech		perations Division,	
5285 Port Royal Road, Springfiel	ld, Virginia 22161		
13. ABSTRACT (Maximum 200 words			
The Bureau of Reclamation Wate	r Resources Research Labora	tory in Denver, Colorado, co	onducted a 1:10.67 Froude-scale
physical model study of the Arrow	wrock Dam outlet works clar	ishell gate concept. Hydros	tatic and hydrodynamic loading
on the proposed gate-house struct pressure differential across any p	art of the structure did not ex	reed 2.5 feet of water (1.2 lb	(in^2) The near external dynamic
			pressure differential of 3.5 feet of
water (2.0-lb/in ²) represents an ac	dequate design value for the g	ate-house structure. Interna	pressure differentials were also
determined. The maximum intern	nal static pressure did not exc	eed 0.75 foot of water (0.32	lb/in ²) and the peak internal
dynamic pressure differential did			
the gate-house structure is not exp			
model operation submergences of are not expected to influence prot			undesirable, such conditions
		×	
14. SUBJECT TERMS Arrowroc		uctures, hydrostatic,	15. NUMBER OF PAGES
hydrodynamic, pressures, cl	amshell gates		40
	•		16. PRICE CODE
	8. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICA	
of REPORT	OF THIS PAGE	OF ABSTRACT	ABSTRACT
UL	UL	UL	UL
NSN 7540-01-280-5500	······································	k	Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18298-1

R-01-02

ARROWROCK DAM MID-LEVEL OUTLET WORKS REHABILITATION 48-IN CLAMSHELL GATE CONCEPT

1:10.67 SCALE PHYSICAL MODEL STUDY

By Joseph P. Kubitschek

Water Resources Services Resources Research Laboratory Technical Service Center Denver, Colorado

July 2001

ACKNOWLEDGEMENTS

This study was funded by the Arrowrock Dam Outlet Works Rehabilitation Project, Bureau of Reclamation, Pacific-Northwest (PN) Region. K. Warren Frizell, Research Hydraulic Engineer, provided technical direction and peer review. Neal Armstrong, Principle Craftsman, constructed the physical model. Thaxson Patterson, Electronics Technician, set up the instrumentation.

Mission Statements

U.S. Department of the Interior

The mission of the Department of the Interior is to protect and provide access to our Nation's natural and cultural heritage and honor our trust responsibilities to tribes.

Bureau of Reclamation

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

Disclaimer

Information contained in this report regarding commercial products or firms was supplied by those firms. It may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

Table of Contents

	Page
Purpose	
Application	
Introduction	
Background	
Prototype Operation	
Clamshell Gate Concept Description	
Conclusions	
Physical Model	
Description	
Similitude	
Methods	
Results	
Static Pressure Results	
Dynamic Pressure Results	
Surface Vortex Formation	
References	
Appendix A	
Appendix B	

Tables

Table		Page
1	Peak measured dynamic pressure differentials for three-gate simultaneous	U
	operation at 100-percent gate openings	
2	Peak measured dynamic pressure differentials for three-gate simultaneous	
	operation at 50-percent gate openings	•••••

Figures

Figure		Page
1	Boise Project general location map showing location of Arrowrock Dam	-
	and Reservoir	2
	General plan and section details for Arrowrock Dam	
	1	

Table of Contents - continued

Figures

Figure		Page
3	Photograph of Arrowrock Dam illustrating proposed mid-level outlet	
	works modifications	
4	Elevation view of clamshell gate concept	5
5	Plan view layout of outlet works modifications	
6	1:10.67 scale physical mode of three adjacent 48-in clamshell gates and	
	associated gate-house structure	8
7	Slide gate arrangement used to model 48-in clamshell gates at 1:10.67	
	scale	9
8	Piezometer tap locations where static measures were measured	11
9	Configuration 1: Gates located back from face of gate-house structure	13
10	Configuration 2: Gates located forward in gate-house structure such that	
	gate lips are flush with inside face	13
11	Configuration 3: Gate-house structure shortened with gate lips protruding	
	from structure	
12	HDCOW results for 48-in clamshell gates	14
13	Comparison of 10-percent single gate operation results for configuration 1	
14	Comaprison of 50-percent single-gate operation results for configuration 1	17
15	Comparison of 50-percent single gate operation results for configuration 2	17
16	Comparison of 100-percent single gate operation results for	
	configuration 2	18
17	Results comparison plot for configuration 1, three gate simultaneous	
	operation at 10, 50, and 100-percent gate openings	18
18	Results comparison plot for configuration 2, three gate simultaneous	
	operation at 10, 50, and 100-percent gate openings	19
19	Results comparison plot for configuration 3, three-gate simultaneous	
	operation at 10, 50, and 100-percent gate openings	19
20	Typical dynamic pressure time series plot	
21	Typical dynamic pressure histogram plot	
22	Power verses Frequency plot of time series data	23

PURPOSE

This report documents the results of physical model investigations associated with the Arrowrock Dam mid-level outlet works rehabilitation concept. The concept consists of replacing the existing 10 mid-level ensign valves with 7 48-in and 3 66-in clamshell gates to be located on the downstream face of Arrowrock Dam. The results of this study establish proof-of-concept.

APPLICATION

The information included in this report is intended for site-specific application to Arrowrock Dam. Hydrostatic and hydrodynamic loading on the proposed clamshell-gate house structure under submerged operating conditions was determined specifically for the proposed configuration and associated operating conditions.

INTRODUCTION

BACKGROUND

Arrowrock Dam is a 350-foot-high concrete gravity-arch dam with a crest length of 1,150 feet. Figure 1 is a general location map of the project. The dam is located on the Boise River, approximately 42 miles downstream from Anderson Ranch Dam and at the upstream end of Lucky Peak Reservoir. The appurtenances include a concrete side-channel spillway, 20 outlet conduits through the dam, and 5 sluice outlets. Figure 2 is a general plan and section layout. The spillway has a maximum capacity of 40,000 ft³/s and is regulated by six 62-foot-long by 6-foot-high drum gates. Of the 20 outlet conduits, 10 are located in an adjacent arrangement at elevation 3018 feet (mid-level). The remaining, outlets are located at elevation 3105 feet (upper-level). Each of the existing outlets is independently regulated by 58-inch ensign valves, each having a maximum capacity of 960 ft³/s. The five sluice outlets are located at elevation 2967 feet and are independently regulated using 5-foot-wide by 5-foot-high pressure gates.

PROTOTYPE OPERATION

Arrowrock Dam is one in a series of three storage reservoirs on the Boise River, including Anderson Ranch and Lucky Peak Dams. Figure 3 is a photograph of Arrowrock dam during operation of the upper-level outlets. Each of these structures provides both storage and flood control and is operated in accordance with seasonal

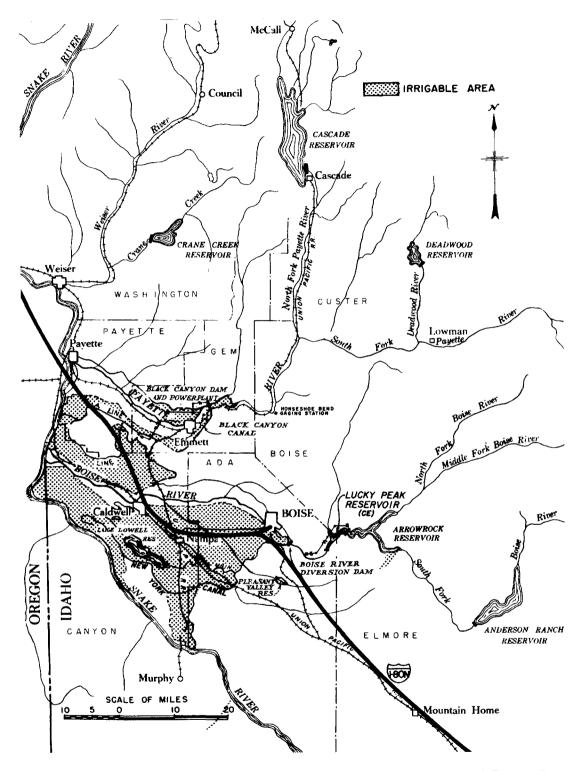


Figure 1. – Boise Project general location map showing location of Arrowrock Dam and Reservoir.

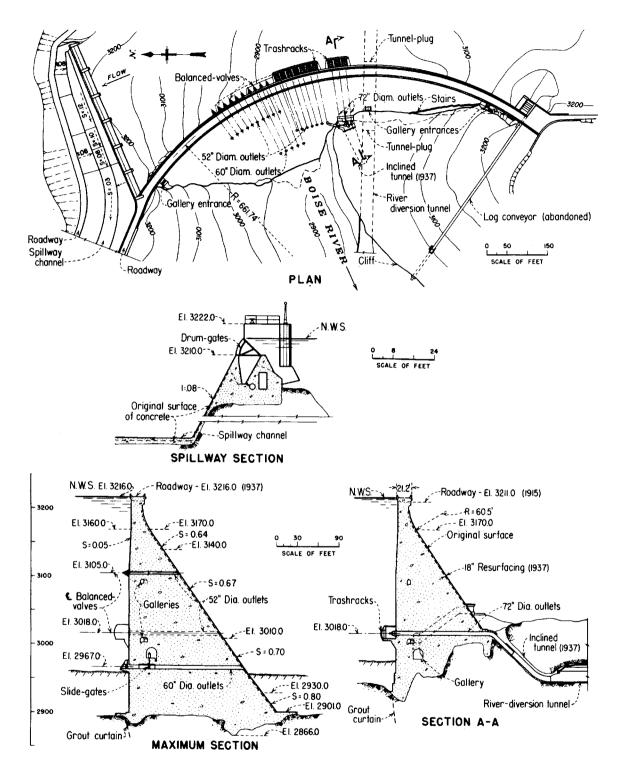


Figure 2. - General plan and section details for Arrowrock Dam.

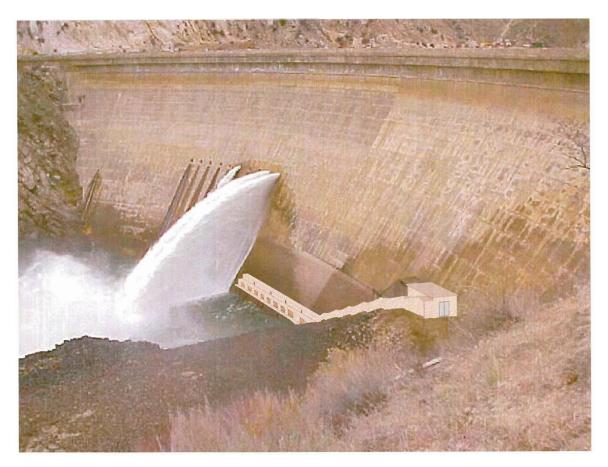


Figure 3. – Photograph of Arrowrock Dam illustrating proposed mid-level outlet works modifications.

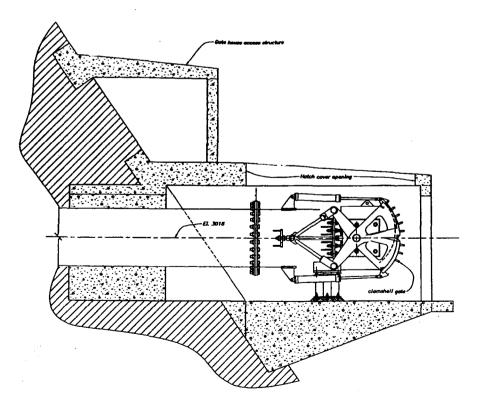
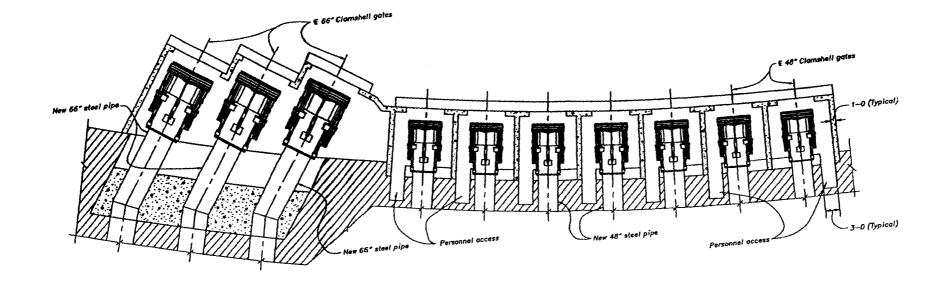
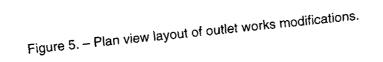
needs in those respects. During a normal irrigation season, each reservoir is filled to its typical operating water surface elevation and releases are made from Anderson Ranch and Arrowrock Reservoirs to meet irrigation demand at Lucky Peak Reservoir. The normal operating water surface elevation at Lucky Peak Reservoir is between elevations 3050-3055 feet, which is above the existing Arrowrock Dam mid-level outlets elevation of 3018 feet.

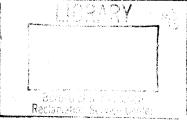
Currently, all the outlets except outlets 1, 2, and 3 are operational. These outlets were locked out of service in 1990 because of extensive cavitation damage in the conduits downstream from the ensign valves. All the conduits have experienced cavitation damage throughout their service. Various concepts have been identified for improving the cavitation problems inherent to ensign valves and the operating conditions at Arrowrock Dam. Mefford [2] conducted physical model investigations of submerged jet flow gates to assess application potential at Arrowrock Dam. However, the clamshell gate modification alternative was selected. This concept moves the release control for these outlets to the downstream end of the outlet conduits and, by doing so, eliminates the cavitation potential associated with the existing upstream control configuration using ensign valves. A complete description of the various conceptual alternatives and the selected clamshell concept has been documented during the feasibility phase of this

project as "Arrowrock Dam Outlet Works Rehabilitation Final Conceptual Design," March 2000 [3]. Although the clamshell gate concept is relatively new, it has been used before. One example of such use is Grassy Lake, for which physical model investigations were conducted by Fitzwater and Frizell [2]. However, the clamshell gate concept has yet to be used under submerged operating conditions, and hence this physical model study was recommended to demonstrate proof of concept.

CLAMSHELL GATE CONCEPT DESCRIPTION

The clamshell gate concept consists of replacing the existing 10 mid-level outlet ensign valves located upstream of the outlet conduits with 7 48-in and 3 66-in clamshell gates located downstream from the outlet conduit. In addition, the existing outlet conduits will be reinforced with steel liners of the same size, and bulkhead gates will be installed at the upstream end of the conduits. A gate-house structure will be constructed on the downstream face of the dam to support and house the new clamshell gates. The gate-house will consist of a concrete enclosure and access structure. The clamshell gates themselves consist of a cylindrical valve body and two radial-gate leafs. The gate leafs are actuated using hydraulic cylinders and can be positioned from fully closed to 100-percent open. Figures 4 and 5 show the conceptual profile and plan view layout for the proposed outlet works modification at Arrowrock Dam. The primary advantages of these gates include increased flow capacity and reduced cavitation potential. Furthermore, the location of the gates affords improved accessibility for inspection and maintenance.


Figure 4. - Elevation view of clamshell gate concept.

CONCLUSIONS

- In general, all three configurations tested appear to perform adequately. However, locating the clamshell gates in each gate-house such that the issuing jet is entirely outside of the structure (configuration 3) appears to produce the lowest static and dynamic pressure differentials across the structure as well as reduced surface vortex action. Thus, a configuration similar to configuration 3 is recommended for the final design.
- Static and dynamic pressure differentials may be internal or external depending on which gates are operated and in what manner. Although the maximum static pressure differential observed was 2.5 feet of water (1.2 lb/in²) in all cases tested, the results of the dynamic testing indicate that a larger design value of 3.5 feet of water (2.0-lb/in²) total differential loading is required because the dynamic loading will be superimposed on the static loading.
- Internal pressure differentials were also determined for design of the access hatches located above each gate bay on top of the gate-house structure. The results indicate that the maximum internal static pressure across the top of the gate-house structure did not exceed 0.75 foot of water (0.32 lb/in²), and the measured peak dynamic pressure differential did not exceed 1.0 foot of water (0.44 lb/in².) Thus, the total internal differential across the access hatches is not expected to exceed 1.75 feet of water (0.75 lb/in²) during submerged operation.
- Submergences below tailwater elevation 3035 feet produced significant surface vortex action that was air entraining, in some cases. Such operating conditions are not expected to influence clamshell performance, but are generally considered undesirable.
- Tailrace flow patterns, in all cases tested, were observed to be upwelling from below and in front of the gate-house structure. Surface recirculation was observed to be directed laterally along the gate-house structure, toward the operating gates. In both cases, this feature resulted from recirculation to the shear zone produced by the issuing jet. The recirculation strength will probably diminish in the prototype because there is a much larger tailrace extent than was modeled for this study.
- Submergence produced by tailwater elevations at the outlet centerline elevation 3018 feet resulted in unsteady slugflow and large "roostertails" downstream from the gate-house for all cases tested. During free release (nonsubmerged) conditions, no jet impingement on the gate-house structure was observed for configuration 3. Configurations 1 and 2 produced some jet impingement on the gate-house caused by the lateral spray created by the jet.

PHYSICAL MODEL

DESCRIPTION

A 1:10.67 Froude-scale physical model of three adjacent, mid-level, 48-in clamshell gates was constructed at Reclamation's Water Resources Research Laboratory in Denver, Colorado. Figure 6 is a photograph of the model as constructed in the laboratory. The scale was chosen such that a standard diameter pipe could be used and to achieve sufficiently large Reynolds numbers (i.e. $\text{Re}_d > 5 \times 10^5$) such that scaling effects with respect to viscosity are negligible. The modeling of three adjacent gates was selected as the minimum spatial extent to determine adjacent gate interaction for multiple outlet operation (e.g. this allowed for operation of a single gate, operation of two adjacent gates, operation of two gates separated by a non-operating gate, and operation of three adjacent gates). The tailrace was modeled using a 10-foot-deep by 10-foot-wide by 30-foot-long tail box. This approach allowed for adequate spatial extent to achieve desired submergence while minimizing lateral effects of the model boundaries. No tailrace topography was modeled during this study.



Figure 6. – 1:10.67 scale physical model of three adjacent 48-inch clamshell gates and corresponding gate-house structure.

The clamshell gates were modeled using a simplified angled-slide gate arrangement to facilitate model construction and operation while representing similar jet geometry and hydrodynamics of the prototype clamshell gates (i.e., prototype gate performance was represented without the design complexity of the prototype gates). Figure 7 is a photograph of the slide gate configuration used to represent the clamshell gates. The three gates modeled represent prototype gates 8, 9, and 10. The discharge coefficient (C_d) for the slide-gate configuration was compared with those for the clamshell gates and found to be within 2.0-percent for the full range of gate settings (10- to100-percent open). The slide gate configuration was found to have slightly higher discharge coefficients over this range as compared with the clamshell gate. This result was determined to be because of gate geometry that produced slightly larger gate openings at each 10-percent incremental gate setting, shifting the discharge coefficient curve slightly to the left.

Figure 7. – Slide gate arrangement used to model the 48-in clamshell gates at 1:10.67 scale.

SIMILITUDE

To adequately represent prototype performance, the physical model must achieve geometric and kinematic similarity to the prototype. Geometric similarity is achieved with the ratios of all geometric lengths between the model and the prototype being equal, thus producing similarity in form. Kinematic similarity is achieved with the ratios of all velocities at geometrically similar points being equal. This approach presumes that gravitational forces predominate; hence kinematic similitude is achieved solely by maintaining equal Froude numbers between model and prototype. The Froude number is defined as:

$$Fr = \frac{\text{Inertial Forces}}{\text{Gravitational Forces}} = \frac{U}{\sqrt{gL}}$$
(1)
where:
$$U = \text{characteristic velocity}$$

 $U \equiv$ characteristic velocity $L \equiv$ characteristic length $g \equiv$ gravitational acceleration

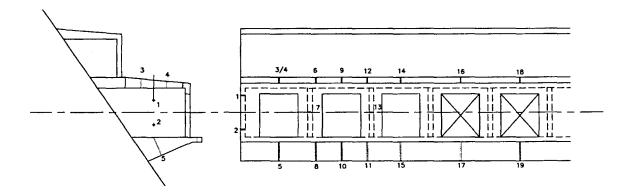
Based on this approach, the geometric and kinematic scale relationships are determined as

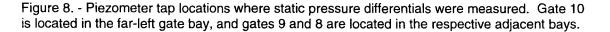
<u>Geometric</u> $L_r = \text{length ratio} = L_p/L_m = 10.67$ $A_r = \text{area ratio} = (L_r)^2 = 113.78$ $V_r = \text{volume ratio} = (L_r)^3 = 1,213.63$

<u>Kinematic</u> T_r = time ratio = $(L_r)^{1/2}$ = 3.27 U_r = velocity ratio = $(L_r)^{1/2}$ = 3.27 a_r = acceleration ratio = 1.0 Q_r = discharge ratio = $(L_r)^{5/2}$ = 371.60

<u>Dynamic</u> $F_r = \text{force ratio} = (L_r)^3 = 1,213.63$ $P_r = \text{pressure ratio} = L_r = 10.67$ $E_r = \text{energy ratio} = (L_r)^4 = 12,945.38$

Because viscous forces are also expected to have some influence in the physical model for this application, it is necessary to define the relationship between inertial forces and viscous forces to ascertain the degree of influence of viscous effects. The Reynolds number based on pipe diameter provides this indication and is defined as:


$$Re_{d} \equiv \frac{inertial \ forces}{viscous \ forces} \equiv \frac{UL}{v}$$
(2)


where

 $U \equiv$ characteristic velocity (pipe average velocity in this case) $L \equiv$ characteristic length (pipe diameter in this case) $v \equiv$ kinematic viscosity of water (1.217 x 10⁻⁵ ft²/s @ 60°F) It is important to note that the Reynolds number based on pipe diameter was found to be on the order of 8.4×10^4 for the smallest gate opening (i.e., 10 percent) and 8.8×10^5 for the largest gate opening (i.e., 100 percent). A Reynolds number of 5×10^5 is generally considered to be sufficient to neglect viscous effects in scaling between model and prototype. Thus, at lower gate settings (e.g., 10-50 percent openings), some viscous effects are inherent to this model. Such effects are manifest in how vortex formation and downstream jet diffusion characteristics scale between model and prototype. Thus, prototype surface vortices in the tailrace will be stronger and jet diffusion will be reduced as compared with model observations. However, model observations for larger gate openings (e.g., 60-100 percent) are expected to correspond closely with prototype characteristics.

METHODS

Static and dynamic pressures were measured during submerged operating conditions. Static pressures were acquired in and around the gate-house structure at 38 locations using piezometer taps attached to a single-end manometer board from which differential pressures were calculated at corresponding locations. Figure 8 is a schematic of the gatehouse structure. The schematic identifies static pressure measurement locations. Following static pressure testing for all three configurations, dynamic pressures were measured for configuration 3 that represented the lowest static pressure differentials. The largest static pressure fluctuations were used to determine locations for dynamic pressure measurements. Three Kistler 30-psi 606A high-impedance dynamic pressure transducers were flush-mount installed at those selected locations; one was internal and one external to the gate bay for gate 9, and the remaining transducer external to the gate bay for gate 8. The sensors have 0.436-inch-diameter heads and measure the fluctuating pressure component about the mean or static pressure. An IOTech[®] 1-MHz, 16-bit data acquisition system was used to simultaneously sample dynamic pressures at a rate of 20 Hz over a period of 5 minutes.

A total of three gate configurations were evaluated. Each configuration is distinguished by gate position in the gate-house structure. Configuration 1 represents clamshell gates set back from the face of the gate-house structure opening as illustrated in figure 10. Configuration 2 represents clamshell gates located such that the gate lips were flush with the inside face of the end of the gate-house structure as illustrated in figure 11. And, configuration 3 represents clamshell gates located such that the gate lips protrude outside of the gate-house structure as illustrated in figure 12. For all three configurations, three gate settings (10, 50, and 100-percent gate openings) were tested under two submergence conditions representing tailwater elevations 3025.5 feet (top of gate-house structure) and 3035 feet (top of access structure). Gate settings of 10, 50, and 100 percent open were deemed adequate to span the range of possible prototype operations. Furthermore, gate operations were tested in various combinations of single, 2-gate, and 3-gate operation. The required prototype clamshell gate discharges were established for each gate opening from the results of a numerical analysis (Appendix A: Head-Discharge Curves for Outlet Works, HDCOW) completed during the model design phase of this study. For that analysis, the Arrowrock Dam operating reservoir elevation was chosen as elevation 3210 feet and corresponds with the spillway crest elevation. This reservoir elevation represents the maximum discharge conditions expected for the prototype. The headdischarge results are plotted as figure 13 for the full range of reservoir elevations 3050-3210 feet.

The influence of submergence on performance was also evaluated. Submergence, in this case, is defined as the depth of tailwater above the outlet conduit centerline (elevation 3018 feet). For all tests, submergence conditions were evaluated in the range of tailwater elevations 7.25 -10 feet (model) that corresponds to tailwater elevation 3025.25 - 3055 feet (prototype). Elevation 3025.25 feet is the top elevation of the gate-house (figures 10, 11, and 12) and, therefore, was used as a lower limit of submergence for these tests. Similarly, elevation 3055 feet is the normal reservoir elevation for Lucky Peak and typical tailwater elevation for Arrowrock Dam and, therefore, was taken as the upper limit of submergence.

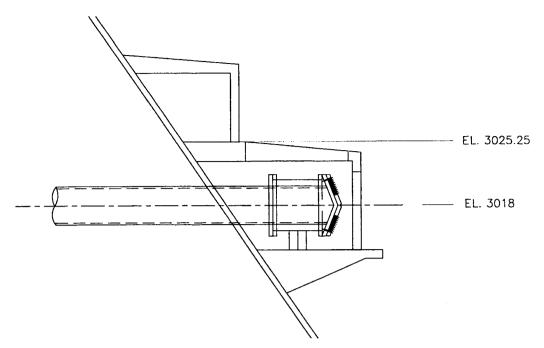


Figure 9. - Configuration 1: Gates located back from end of gate house-structure such that gate lips are inside the structure.

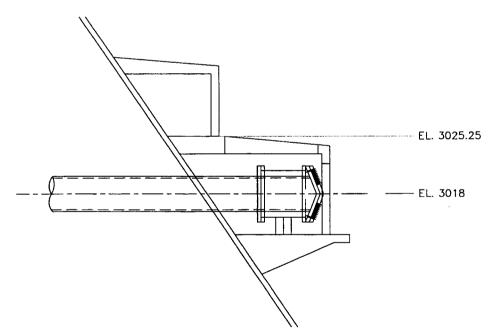


Figure 10. - Configuration 2: Gates located forward in gate house-structure such that gate lips are flush with inside of end wall.

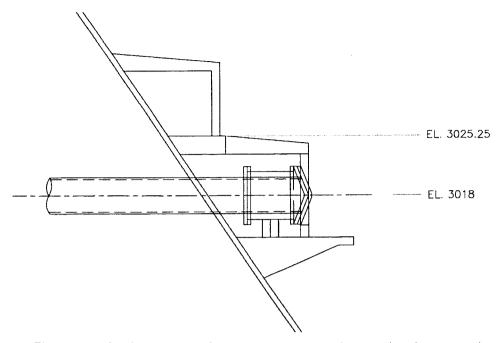


Figure 11. - Configuration 3: Gate house-structure shortened and gates set back such that gate lips protrude from structure.

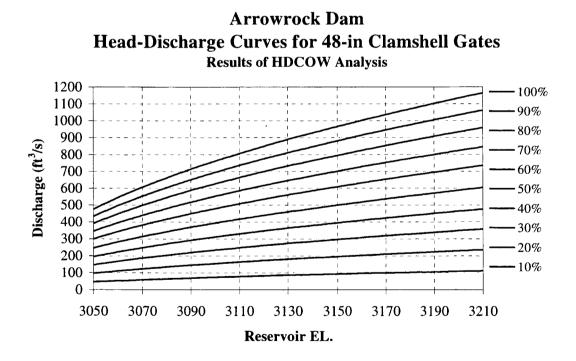


Figure 12.—HDCOW results for 48-in clamshell gates under various Arrowrock reservoir elevations.

RESULTS

STATIC PRESSURE RESULTS

The results indicate that a gate location inside the gate-house has a slight influence on static pressure differentials at certain locations. In all cases tested, the maximum static pressure differential across any part of the gate-house structure was 2.5 ± 0.3 feet of water for configuration 1. Configuration 2 produced a maximum static differential of 1.5 ± 0.2 feet of water, and configuration 3 produced the lowest maximum static differential of 1.0 ± 0.2 foot of water. All measured differentials approaching these upper limits were observed for 2- and 3-gate simultaneous operation. Single-gate operation produced the lowest static pressure differentials.

The results of the static testing are plotted for each test as static pressure differentials at each of the measurement locations. The heading indicates the configuration identification and the number of gates operated. The respective measurement locations correspond with those identified in figure 4. Static pressure differentials along the end wall are given by measurement locations 1 and 2, and the pressure differentials along the divider walls between gate bays 10 and 9 and 9 and 8 are given by measurement locations 7 and 14, respectively. Positive pressure differentials at locations 7 and 14 represent loading across the divider walls in the direction from bay 10 and 9 and 8 and 8, respectively. Negative differentials represent loading in the opposite direction. Positive differentials at all other locations represent external loading, and negative differentials represent internal loading. In general, the results indicate:

- Different operating configurations influence the maximum static pressure locations. For example, under single-gate operation, the measured differentials are higher in and around a particular bay in which the gate is operating. Figures 13 and 14 represent a comparison of pressure differentials for configuration 1 during single gate operation at 10- and 50-percent gate openings. These results demonstrate that the localized effect of gate operation manifests as higher static pressure differentials around the gate that is operating. Similarly, figures 15 and 16 represent the comparison of results at 50- and 100-percent gate openings for configuration 2. It can be seen that the local effect of gate operation on static pressure differentials is reduced with increased gate openings.
- For all cases tested, 50-percent gate openings generally represented the largest static pressure differentials. This is most likely a result of increased strength of the shear zone immediately above the issuing jet of rectangular geometry produced by 50-percent gate openings as compared with the circular geometry of the jet produced by 100-percent gate openings. This increased shear produces increased recirculation strengths and patterns around the gate-house structure and thereby alters the corresponding static pressure field.

- Operation of three gates tended to produce the largest overall static pressure differentials. Figures 17 through 19 represent the comparison of results for all three configurations under operation of three gates at 10-, 50-, and 100-percent gate openings, respectively. Furthermore, comparison of figures 17 through 19 shows that configuration 3 represents generally lower static pressure differentials under the same operating conditions as compared with configurations 1 and 2.
- At lower submergence conditions, recirculation appears to produce a local drawdown above the gate-house structure. This drawdown produces elevated internal static pressures in nonoperating gate bays and results in occasional negative pressure differentials.

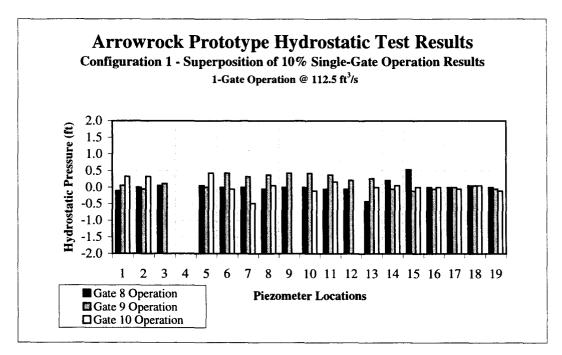


Figure 13. - Comparison of 10-percent single-gate operation results for configuration 1 demonstrating the local influence of gate operation on static pressure differentials.

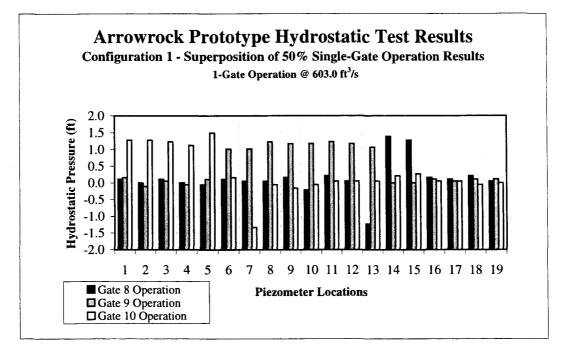


Figure 14. - Comparison of 50-percent single-gate operation results for configuration 1 also showing local influence of gate operation on static pressure differentials.

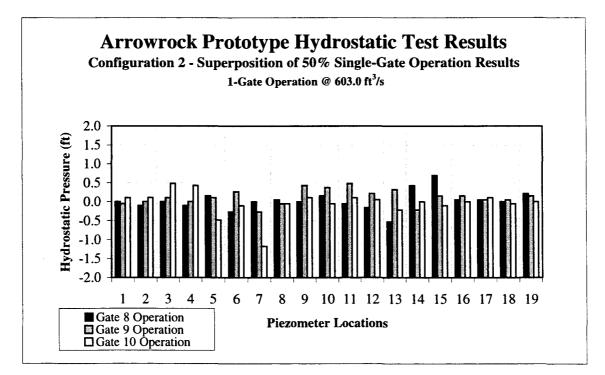
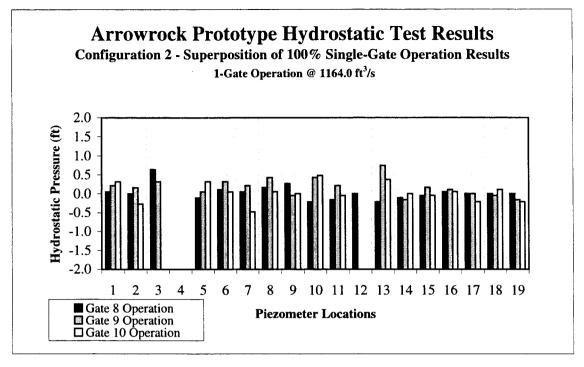
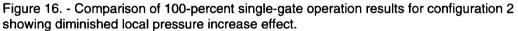




Figure 15. - Comparison of 50-percent single-gate operation results for configuration 2 illustrating lower overall pressure differentials in comparison with configuration 1, but similar local increased pressure differentials caused by gate operation.

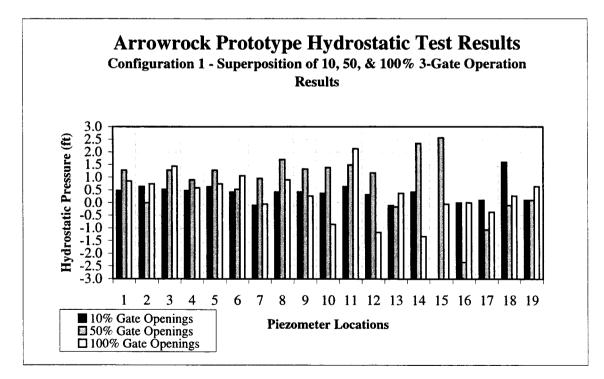


Figure 17. – Results comparison plot for configuration 1, three-gate simultaneous operation at 10-, 50-, and 100-percent gate openings.

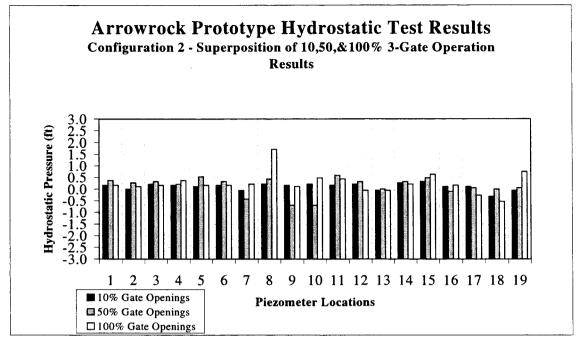


Figure 18. – Results comparison plot for configuration 2, three-gate simultaneous operation at 10-, 50-, and 100-percent gate openings.

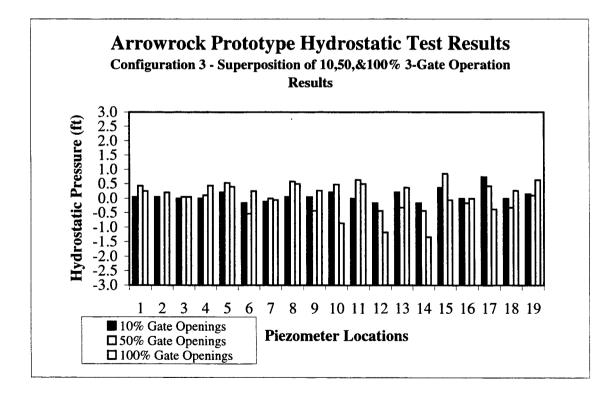


Figure 19. – Results comparison plot for configuration 3, three-gate simultaneous operation at 10-, 50-, and 100-percent gate openings.

DYNAMIC PRESSURE RESULTS

100-noroont gate cottings

Peak dynamic pressures were observed to increase with reduced tailwater elevations. The maximum measured external dynamic pressure differential across the top of the gatehouse structure was 0.9 foot of water (0.38 lb/in^2). This result occurred for single-gate operation of Gate 9 at 50-percent open under tailwater elevation 3025.5 feet (top of gatehouse structure). It is interesting to note that, in general, single-gate operation produced the largest peak dynamic pressure differentials. Furthermore, as was the case for the static pressure differentials, the 50-percent gate openings produced the largest dynamic pressure differentials. The maximum measured internal dynamic pressure differential 1.0 foot of water (0.44 lb/in^2) and occurred for single gate operation of Gate 9 under tailwater elevation 3035 feet.

Table 1 summarizes the results obtained from 100-percent gate settings under single and multiple gate operation at tailwater elevations 3025.5 feet and 3035 feet. Table 2 summarizes the results obtained from 50-percent open gate settings under single and multiple gate operation at tailwater elevations of 3025.5 general peak dynamic pressures internal and external to the gate-house structure were in phase (i.e., minimum and maximum internal and external pressure fluctuations occurred at the same instant in time). It appears from these results that dynamic pressures will probably peak in and around the gate that is operating, and dynamic pressure differentials across the top of the gate-house structure above those gates that are not operating will probably diminish. Also, similar to the static pressure results, peak dynamic pressures generally diminish with increased tailwater elevation.

Tailwater Elevation = 3025.5 feet	MAX	MIN	SDEV
Differential (Simultaneous External-Internal)	[lb/in ²]	[lb/in ²]	[lb/in ²]
Gate 8	0.26	-0.27	0.05
Gate 9	0.28	-0.23	0.05
Gate 10	0.24	-0.22	0.05
Gates 8, 9, and 10	0.22	-0.22	0.06
Tailwater Elevation = 3035.0 feet	MAX	MIN	SDEV
Differential (Simultaneous External-Internal)	[lb/in ²]	[lb/in ²]	[lb/in ²]
Gate 8	0.27	-0.24	0.07
Gate 9	0.27	-0.30	0.07
Gate 10	0.23	0.22	0.05
Gates 8, 9, and 10	0.27	-0.23	0.06

Table 1. – Peak dynamic pressure differentials for 100-percent gate openings and various combinations of gate operation. Data acquired across top of the gate-house structure above Gate 9.

50-percent Gate settings			
Tailwater Elevation = 3025.5 feet	MAX	MIN	SDEV
Differential (Simultaneous External-Internal)	[lb/in ²]	[lb/in ²]	[lb/in ²]
Gate 8	0.21	-0.19	0.05
Gate 9	0.44	-0.36	0.09
Gate 10	0.22	-0.23	0.06
Gates 8, 9, and 10	0.32	-0.30	0.08
Tailwater Elevation = 3035.0 feet	MAX	MIN	SDEV
Differential (Simultaneous External-Internal)	[lb/in ²]	[lb/in ²]	[lb/in ²]
Gate 8	0.32	-0.35	0.05
Gate 9	0.35	-0.43	0.09
Gate 10	0.25	-0.33	0.05
Gates 8, 9, and 10	0.31	-0.33	0.08

Table 2. – Peak dynamic pressure differentials for 50-percent gate openings and various combinations of gate operation. Data acquired across top of the gate-house structure above Gate 9.

50 novement Coto pottingo

Figure 20 represents a typical time-series plot of the dynamic pressure measurements for operation of Gate 9 under tailwater elevation 3035 feet. Figure 21 is the same data plotted as a histogram illustrating the distribution of occurrences for the measured dynamic pressure differentials. And figure 22 shows the power spectrum of the time series data. Apparently, based on figures 21 and 22, the dynamic pressure fluctuations are essentially random and, therefore, the occurrence of the peak dynamic pressure is likely captured in the time series obtained. This, too, may be interpreted to indicate that long-time scale, large-magnitude peak pressure events are not likely. Although this analysis provides no indication of the eddy size responsible for generating pressure fluctuations, it does increase the level of confidence that the peak measured dynamic pressures represent a conservative design value.

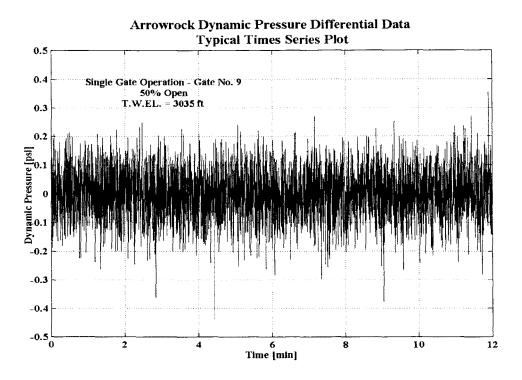
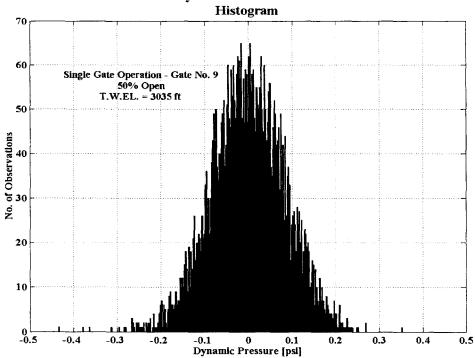



Figure 20. - Typical time series plot of dynamic pressure data.

Arrowrock Dynamic Pressure Differential Data Histogram

Figure 21. - Typical histogram plot of dynamic pressure differential data.

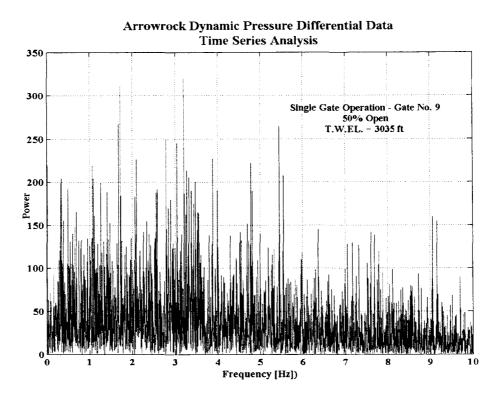
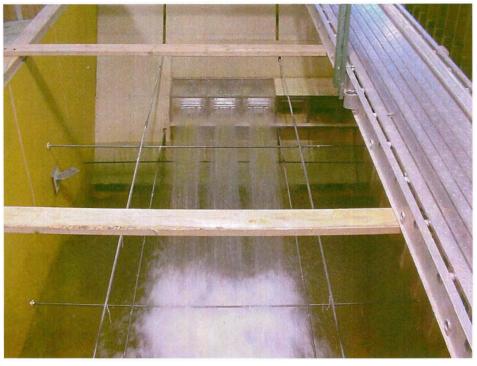
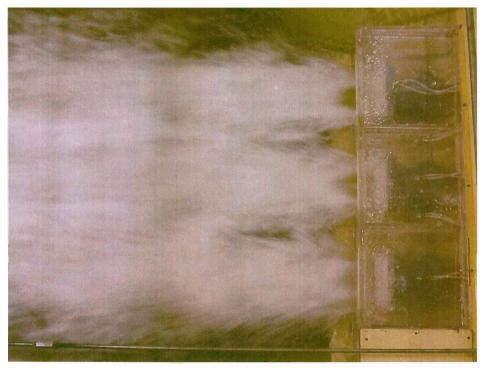


Figure 22. - Power verses Frequency plot of time series data.

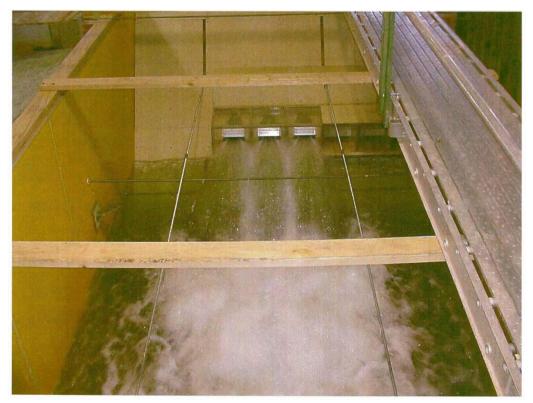

SURFACE VORTEX FORMATION

Qualitative observations during testing indicated a slight difference in the degree of surface vortex action between the three configurations. Configurations 2 and 3 (figures 6 and 7) appear to produce reduced vortex action as compared with configuration 1 (figure 5). This is probably a result of moving the issuing jet outside the gate-house structure, thereby reducing the near-field recirculation velocities along the shear zone and consequently reducing vortex strength. In all cases, the vortices were air entraining up to elevation 3035 feet. However, these observations are qualitative and caused by scaling relationships between model and prototype; vortex action (extent and strength) will probably increase for the prototype, and air entrainment will probably result at greater depths of submergence. These conditions will not affect prototype gate performance, but they are generally considered to be undesirable.


REFRENCES

- Fitzwater, J. R. and K. W. Frizell. 1990. Laboratory Tests on the 30-inch Clamshell Gate for Grassy Lake. U.S. Department of the Interior, Bureau of Reclamation Report No. R-90-16.
- [2] Mefford, B.W. 1987. Hydraulic Model Study of Submerged Jet Flow Gates for Arrowrock Dam Outlet Works Modification. Bureau of Reclamation Report No. PAP-511.
- [3] U.S. Bureau of Reclamation, Technical Service Center. March 2000. Arrowrock Dam Outlet Works Rehabilitation Final Conceptual Design.

APPENDIX A: Photographs of 1:10.67 Scale Physical Model


Three gates operated at 10-percent open in free-discharge mode.

Three gates operated at 10-percent open under partial submergence.

Three gates operated at 10-percent open under partial submergence.

Three gates operated at 50-percent open in free-discharge mode.

Three gates operated at 50-percent open under partial submergence.

Three gates operated at 50-percent open under full submergence.

Single gate operated at 100-percent open in free-discharge mode.

Single gate operated at 100-percent open under partial submergence.

APPENDIX B: HEAD-DISCHARGE CURVES FOR OUTLET WORKS (HDCOW) RESULTS

ARROWROCK 48-in CLAMSHELL GATE MODIFICATION

Single Outlet Rating J. Kubitschek 01/12/2000 fn = arrock48.xls Head-discharge curves for outlet works (HDCOW) English Units Colebrook-White Formula used with friction factor, f = 0.01

Max. Res. El. = 3220.0 feet Min. Res. El. = 3050.0 feet Outlet El. = 3018.0 feet

Input Data File

(fn = arrowrck.dat):

`#	J		К	Structure Name		Parameters					
1	1	5	0	Intake Structure		Trashrack	0.55	144.00			
2	1	6	1	Intake Structure	Circular Bellmouth	Entrance	5.67	4.00	0.10		
3	2	4	1	Conveyance Structure	Circular	Conduit	4.00	135.00	0.01		
4	3	6	8	48-inch Clamshell Gate			12.57	12.57			

Note: See user manual for description of input file format (Wittler, 1990)

% GATE OPENING											
RES. EL.	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
(feet)	Cd =										
	0.08	0.17	0.26	0.35	0.45	0.56	0.66	0.77	0.88	1.00	
3050.0	46	96	146	195	246	299	345	391	433	475	
3050.5	46	97	147	196	248	302	348	394	437	479	
3051.0	46	98	148	198	250	304	350	397	440	483	
3051.5	47	99	150	199	252	306	353	400	443	486	
3052.0	47	99	151	201	254	309	355	403	447	490	
3052.5	47	100	152	202	255	311	358	406	450	493	
3053.0	48	101	153	203	257	313	361	409	453	497	
3053.5	48	102	154	205	259	315	363	412	457	501	
3054.0	48	102	155	206	261	318	366	415	460	504	
3054.5	49	103	156	208	263	320	368	418	463	508	
3055.0	49	104	157	209	265	322	371	421	466	511	
3055.5	49	104	158	211	266	324	373	423	469	514	
3056.0	50	105	159	212	268	326	376	426	472	518	
3056.5	50	106	160	213	270	328	378	429	475	521	
3057.0	50	106	161	215	272	331	381	432	478	525	
3057.5	51	107	162	216	273	333	383	435	482	528	
3058.0	51	108	163	217	275	335	386	437	485	531	
3058.5	51	108	164	219	277	337	388	440	488	535	
3059.0	52	109	165	220	278	339	390	443	491	538	
3059.5	52	110	166	222	280	341	393	445	494	541	

RES. EL. 10% 20% 30% 40% 50% 60% 70% 80% 60% 70% (ret) Cd = Cd = </th <th colspan="10">SINGLE OUTLET DISCHARGE RATING (CFS): % GATE OPENING</th>	SINGLE OUTLET DISCHARGE RATING (CFS): % GATE OPENING											
	RES EI	10%	20%	30%				70%	20%	00%	100%	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ieer)											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3060.0											
3061.0 53 112 169 225 285 347 400 453 502 551 3062.5 53 112 170 227 287 349 402 456 505 554 3062.5 54 114 172 229 290 353 407 461 511 560 3063.0 54 114 173 231 292 355 409 464 514 5664 3063.5 54 115 174 232 293 357 411 466 517 567 3064.0 55 116 176 234 297 361 416 471 522 573 3065.0 55 117 177 236 298 363 418 474 525 576 3066.5 56 119 180 239 303 369 425 482 534 585 3067.0 56 119 180 239 303 369 425 482 534 585 3067.0 56 119 181 241 304 371 427 484 536 588 3067.0 58 122 185 247 312 386 494 547 500 3068.0 57 121 184 244 309 376 433 491 544 597 3068.0 58 122 185 247												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3072.0	59										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3072.5	59										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3073.0	60	126									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3073.5	60	127									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3074.0	60	128	193	257							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3074.5	61	128	194	258	327						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3075.0	61	129	195	260	328	400	460				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3075.5	61	129	196	261	330	401	462	524	581	637	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3076.0	61	130	197	262	331	403	464	527	584	640	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3076.5	62	130	198	263	333	405	466	529	586	643	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				199	264	334	407	468	531	589	645	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					265	335	408	470	533	591	648	
3079.0 63 133 202 269 340 413 476 540 598 656 3079.5 63 134 203 270 341 415 478 542 601 659 3080.0 63 134 203 271 342 417 480 544 603 661 3080.5 64 135 204 272 344 419 482 547 606 664 3081.0 64 135 205 273 345 420 484 549 608 667 3081.5 64 136 206 274 347 422 486 551 611 669					266	337	410	472	536	593	651	
3079.5631342032703414154785426016593080.0631342032713424174805446036613080.5641352042723444194825476066643081.0641352052733454204845496086673081.564136206274347422486551611669							412	474	538	596	653	
3080.0631342032713424174805446036613080.5641352042723444194825476066643081.0641352052733454204845496086673081.564136206274347422486551611669							413	476	540	598	656	
3080.5641352042723444194825476066643081.0641352052733454204845496086673081.564136206274347422486551611669							415	478	542	601	659	
3081.0 64 135 205 273 345 420 484 549 608 667 3081.5 64 136 206 274 347 422 486 551 611 669								480	544	603	661	
3081.5 64 136 206 274 347 422 486 551 611 669										606	664	
											667	
3082.0 64 136 207 275 348 424 488 553 613 672												
				207	275	348	424	488	553	613	672	
3082.5 65 137 208 276 349 425 490 555 615 675												
3083.0 65 137 208 277 351 427 492 557 618 677												
3083.5 65 138 209 278 352 428 493 560 620 680												
3084.0 65 138 210 279 353 430 495 562 622 682												
3084.5 66 139 211 280 355 432 497 564 625 685	3084.5	66	139	211	280	355	432	497	564	625	685	

% GATE OPENING											
RES. EL.	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
(feet)	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	
	0.08	0.17	0.26	0.35	0.45	0.56	0.66	0.77	0.88_	1.00	
3085.0	66	139	212	281	356	433	499	566	627	688	
3085.5	66	140	212	283	357	435	501	568	630	690	
3086.0	66	141	213	284	359	437	503	570	632	693	
3086.5	67	141	214	285	360	438	505	572	634	695	
3087.0	67	142	215	286	361	440	506	574	636	698	
3087.5	67	142	215	287	363	441	508	576	639	700	
3088.0	67	143	216	288	364	443	510	578	641	703	
3088.5	68	143	217	289	365	445	512	581	643	705	
3089.0	68	144	218	290	366	446	514	583	646	708	
3089.5	68	144	219	291	368	448	516	585	648	710	
3090.0	68	145	219	292	369	449	517	587	650	713	
3090.5	69	145	220	293	370	451	519	589	652	715	
3091.0	69	146	221	294	372	452	521	591	655	718	
3091.5	69	146	222	295	373	454	523	593	657	720	
3092.0	69	147	222	296	374	455	524	595	659	723	
3092.5	70	147	223	297	375	457	526	597	661	725	
3093.0	70	148	224	298	377	458	528	599	664	728	
3093.5	70	148	225	299	378	460	530	601	666	730	
3094.0	70	149	225	300	379	462	531	603	668	732	
3094.5	70	149	226	301	380	463	533	605	670	735	
3095.0	71	150	227	302	382	465	535	607	672	737	
3095.5	71	150	228	303	383	466	537	609	675	740	
3096.0	71	150	228	304	384	468	538	611	677	742	
3096.5	71	151	229	305	385	469	540	613	679	744	
3097.0	72	151	230	306	387	471	542	615	681	747	
3097.5	72	152	230	307	388	472	544	616	683	749	
3098.0	72	152	231	308	389	474	545	618	685	751	
3098.5	72	153	232	309	390	475	547	620	687	754	
3099.0	73	153	233	309	391	476	549	622	690	756	
3099.5	73	154	233	310	393	478	550	624	692	758	
3100.0	73	154	234	311	394	479	552	626	694	761	
3100.5	73 70	155	235	312	395	481	554	628	696	763	
3101.0	73 74	155	235 236	313	396	482	555	630	698	765	
3101.5		156		314	397	484	557	632	700	768	
3102.0 3102.5	74 74	156 157	237 238	315	399	485	559 560	634	702	770	
3103.0	74	157	238	316 317	400	487	560 562	636 637	704	772	
3103.5	74	157	230	317	401 402	488	562 564		706	774	
3103.5	75 75	158	239	319	402	490 491	565	639 641	708	777	
3104.5	75 75	158	240 240	319	403	491	565 567	643	711 713	779 781	
3105.0	75	159	240	320	404	492 494	569	645	715	784	
3105.5	75 75	159	241	322	400	494 495	509 570	645 647	715	784 786	
3106.0	76	160	242	323	407	493 497	570	649	719	788	
3106.5	76	160	242	323	408	497 498	572	650	719	788	
3107.0	76	161	243	323	409	498 499	575	652	721	790 792	
3107.5	76	161	244	325	411	499 501	575	654	725	792	
3108.0	76	162	245	326	413	502	578	656	725	793	
3108.5	77	162	246	320	413	502 504	580	658	729	799	
3109.0	77	163	247	328	415	505	582	660	731	801	
3109.5	77	163	247	329	416	505	583	661	733	804	
0.0010			- • •	0-0		000	000	001	100	004	

SINGLE OUT	LET DIS	CHARGE	ERATIN								
				% GATE	E OPENI	NG					
RES. EL.	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
(feet)	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	
	0.08	0.17	0.26	0.35	0.45	0.56	0.66	0.77	0.88	1.00	
3110.0	77	163	248	330	417	508	585	663	735	806	
3110.5	78	164	249	331	418	509	586	665	737	808	
3111.0	78	164	249	332	419	511	588	667	739	810	
3111.5	78	165	250	333	421	512	590	669	741	812	
3112.0	78	165	251	333	422	513	591	670	743	814	
3112.5	78	166	251	334	423	515	593	672	745	817	
3113.0	79	166	252	335	424	516	594	674	747	819	
3113.5	7 9	167	253	336	425	517	596	676	749	821	
3114.0	79	167	253	337	426	519	597	677	751	823	
3114.5	79	167	254	338	427	520	599	679	753	825	
3115.0	79	168	255	339	428	521	600	681	755	827	
3115.5	80	168	255	340	429	523	602	683	757	829	
3116.0	80	169	256	340	431	524	604	684	759	832	
3116.5	80	169	256	341	432	525	605	686	760	834	
3117.0	80	170	257	342	433	527	607	688	762	836	
3117.5	80	170	258	343	434	528	608	690	764	838	
3118.0	81	170	258	344	435	529	610	691	766	840	
3118.5	81	171	259	345	436	531	611	693	768	842	
3119.0	81	171	260	346	437	532	613	695	770	844	
3119.5	81	172	260	346	438	533	614	697	772	846	
3120.0	81	172	261	347	439	535	616	698	774	848	
3120.5	82	173	262	348	440	536	617	700	776	850	
3121.0	82	173	262	349	441	537	619	702	778	853	
3121.5 3122.0	82 82	173	263	350	442	539	620	703	779	855	
3122.0	82	174 174	264 264	351	444	540	622	705	781	857	
3122.5	82 83	174	264 265	352	445	541	623	707	783	859	
3123.5	83	175	265 265	352 353	446 447	542 544	625 626	708 710	785	861	
3124.0	83	175	265	353	447	544 545	628	710	787 789	863 865	
3124.5	83	176	267	355	449	545 546	629	712	789	865 867	
3125.0	83	176	267	356	450	548	631	715	793	869	
3125.5	84	177	268	357	451	549	632	717	794	871	
3126.0	84	177	269	357	452	550	634	719	796	873	
3126.5	84	177	269	358	453	551	635	720	798	875	
3127.0	84	178	270	359	454	553	637	722	800	877	
3127.5	84	178	270	360	455	554	638	724	802	879	
3128.0	85	179	271	361	456	555	639	725	804	881	
3128.5	85	179	272	361	457	556	641	727	805	883	
3129.0	85	180	272	362	458	558	642	728	807	885	
3129.5	85	180	273	363	459	559	644	730	809	887	
3130.0	85	180	274	364	460	560	645	732	811	889	
3130.5	85	181	274	365	461	562	647	733	813	891	
3131.0	86	181	275	366	462	563	648	735	814	893	
3131.5	86	182	275	366	463	564	650	737	816	895	
3132.0	86	182	276	367	464	565	651	738	818	897	
3132.5	86	182	277	368	465	566	652	740	820	899	
3133.0	86	183	277	369	466	568	654	741	822	901	
3133.5	87	183	278	370	467	569	655	743	823	903	
3134.0	87	184	278	370	468	570	657	745	825	905	
3134.5	87	184	279	371	469	571	658	746	827	907	

% GATE OPENING											
RES. EL.	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
(feet)	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	Cd =	
	0.08	0.17	0.26	0.35	0.45	0.56	0.66	0.77	0.88	1.00	
3135.0	87	184	280	372	470	573	659	748	829	909	
3135.5	87	185	280	373	471	574	661	749	831	911	
3136.0	88	185	281	374	472	575	662	751	832	913	
3136.5	88	185	281	374	473	576	664	753	834	914	
3137.0	88	186	282	375	474	578	665	754	836	916	
3137.5	88	186	283	376	475	579	666	756	838	918	
3138.0	88	187	283	377	476	580	668	757	839	920	
3138.5	88	187	284	377	477	581	669	759	841	922	
3139.0	89	187	284	378	478	582	671	761	843	924	
3139.5	89	188	285	379	479	584	672	762	845	926	
3140.0	89	188	285	380	480	585	673	764	846	928	
3140.5	89	189	286	381	481	586	675	765	848	930	
3141.0	89	189	287	381	482	587	676	767	850	932	
3141.5	90	189	287	382	483	588	678	768	851	934	
3142.0	90	190	288	383	484	590	679	770	853	935	
3142.5	90	190	288	384	485	591	680	771	855	937	
3143.0	90	191	289	384	486	592	682	773	857	939	
3143.5	90	191	290	385	487	593	683	775	858	941	
3144.0	90	191	290	386	488	594	684	776	860	943	
3144.5	91	192	291	387	489	595	686	778	862	945	
3145.0	91	192	291	388	490	597	687	779	863	947	
3145.5	91	192	292	388	491	598	688	781	865	949	
3146.0	91	193	292	389	492	599	690	782	867	950	
3146.5	91	193	293	390	493	600	691	784	869	9 52	
3147.0	92	194	294	391	494	601	692	785	870	954	
3147.5	92	194	294	391	495	602	694	787	872	956	
3148.0	92	194	295	392	496	604	695	788	874	958	
3148.5	92	195	295	393	497	605	696	790	875	960	
3149.0	92	195	296	394	498	606	698	791	877	961	
3149.5	92	195	296	394	499	607	699	793	879	963	
3150.0	93	196	297	395	500	608	700	794	880	965	
3150.5 3151.0	93 93	196	297	396	501	609	702	796	882	967	
3151.5	93 93	197 197	298 299	397	502	611	703	797	884	969	
3151.5	93 93	197	299 299	397 398	502	612	704	799	885	971	
3152.5	93	197	300	398	503 504	613 614	706	800	887	972	
3153.0	93 94	198	300	400	504 505	615	707 708	802	889 890	974 076	
3153.5	94 94	198	301	400	505 506	616	708	803 805	890 892	976 078	
3154.0	94 94	198	301	400 401	508 507	617	710	805	892 894	978	
3154.5	94	199	302	401	508	619	712	808	895	980 981	
3155.0	94	199	302	402	509	620	712	808	895	983	
3155.5	94	200	303	403	510	620	715	811	898	985 985	
3156.0	95	200	304	400	511	622	716	812	900	983 987	
3156.5	95	200	304	404	512	623	717	814	900 902	987 989	
3157.0	95	201	305	405	512	624	719	815	902 903	989 990	
3157.5	95	201	305	405	513	625	720	817	903 905	990 992	
3158.0	95	202	306	400	515	626	720	818	905 907	992 994	
3158.5	96	202	306	407	515	628	723	820	907 908	994 996	
3159.0	96	202	307	408	516	629	723	821	908 910	990 997	
3159.5	96	203	307	409	517	630	725	822	911	999	
					017	000	, 20		011	000	

SINGLE OUTLET DISCHARGE RATING (CFS):											
% GATE OPENING											
RES. EL.	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
(feet)	Cd =	Cd =	Cd =	Cd =							
. ,	0.08	0.17	0.26	0.35	0.45	0.56	0.66	0.77	0.88	1.00	
3160.0	96	203	308	410	518	631	727	824	913	1001	
3160.5	96	203	309	410	519	632	728	825	915	1003	
3161.0	96	204	309	411	520	633	729	827	916	1005	
3161.5	97	204	310	412	521	634	730	828	918	1006	
3162.0	97	204	310	413	522	635	732	830	919	1008	
3162.5	97	205	311	413	523	636	733	831	921	1010	
3163.0	97	205	311	414	524	637	734	833	923	1012	
3163.5	97	206	312	415	525	639	735	834	924	1013	
3164.0	97	206	312	416	525	640	737	835	926	1015	
3164.5	98	206	313	416	526	641	738	837	927	1017	
3165.0	98	207	313	417	527	642	739	838	929	1019	
3165.5	98	207	314	418	528	643	740	840	931	1020	
3166.0	98	207	314	418	529	644	742	841	932	1022	
3166.5	98	208	315	419	530	645	743	843	934	1024	
3167.0	98	208	315	420	531	646	744	844	935	1025	
3167.5	99	208	316	420	532	647	745	845	937	1027	
3168.0	99	209	317	421	533	648	747	847	938	1029	
3168.5	99	209	317	422	534	649	748	848	940	1031	
3169.0	99	209	318	423	534	651	749	850	942	1032	
3169.5	99	210	318	423	535	652	750	851	943	1034	
3170.0	99	210	319	424	536	653	752	852	945	1036	
3170.5	100	210	319	425	537	654	753	854	946	1037	
3171.0	100	211	320	425	538	655	754	855	948	1039	
3171.5	100	211	320	426	539	656	755	857	949	1041	
3172.0	100	211	321	427	540	657	757	858	951	1042	
3172.5	100	212	321	427	541	658	758	859	952	1044	
3173.0	100	212	322	428	541	659	75 9	861	954	1046	
3173.5	100	212	322	429	542	660	760	862	955	1048	
3174.0	101	213	323	429	543	661	761	864	957	1049	
3174.5	101	213	323	430	544	662	763	865	959	1051	
3175.0	101	214	324	431	545	663	764	866	960	1053	
3175.5	101	214	324	432	546	664	765	868	962	1054	
3176.0	101	214	325	432	547	665	766	869	963	1056	
3176.5	101	215	325	433	548	666	768	870	965	1058	
3177.0	102	215	326	434	548	668	769	872	966	1059	
3177.5	102	215	326	434	549	669	770	873	968	1061	
3178.0	102	216	327	435	550	670	771	875	969	1063	
3178.5	102	216	327	436	551	671	772	876	971	1064	
3179.0	102	216	328	436	552	672	774	877	972	1066	
3179.5	102	217	328	437	553	673	775	879	974	1068	
3180.0	103	217	329	438	554	674	776	880	975	1069	
3180.5	103	217	329	438	554	675	777	881	977	1071	
3181.0	103	218	330	439	555	676	778	883	978	1072	
3181.5	103	218	330	440	556	677	780	884	980	1074	
3182.0	103	218	331	440	557	678	781	885	981	1076	
3182.5	103	219	331	441	558	679	782	887	983	1077	
3183.0	104	219	332	442	559	680	783	888	984	1079	
3183.5	104	219	332	442	559	681	784	889	986	1081	
3184.0	104	220	333	443	560	682	786	891	987	1082	
3184.5	104	220	333	444	561	683	787	892	989	1084	

% GATE OPENING											
RES. EL.	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
(feet)	Cd =	Cd =									
	0.08	0.17	0.26	0.35	0.45	0.56	0.66	0.77	0.88	1.00	
3185.0	104	220	334	444	562	684	788	893	990	1086	
3185.5	104	221	334	445	563	685	789	895	992	1087	
3186.0	104	221	335	446	564	686	790	896	993	1089	
3186.5	105	221	335	446	565	687	791	898	995	1090	
3187.0	105	222	336	447	565	688	793	899	996	1092	
3187.5	105	222	336	448	566	689	794	900	998	1094	
3188.0	105	222	337	448	567	690	795	901	999	1095	
3188.5	105	223	337	449	568	691	796	903	1000	1097	
3189.0	105	223	338	450	569	692	797	904	1002	1099	
3189.5	106	223	338	450	570	693	798	905	1003	1100	
3190.0	106	223	339	451	570	694	800	907	1005	1102	
3190.5	106	224	339	452	571	695	801	908	1006	1103	
3191.0	106	224	340	452	572	696	802	909	1008	1105	
3191.5	106	224	340	453	573	697	803	911	1009	1107	
3192.0	106	225	341	454	574	698	804	912	1011	1108	
3192.5	106	225	341	454	574	699	805	913	1012	1110	
3193.0	107	225	342	455	575	700	807	915	1014	1111	
3193.5	107	226	342	456	576	701	808	916	1015	1113	
3194.0	107	226	343	456	577	702	809	917	1016	1114	
3194.5	107	226	343	457	578	703	810	919	1018	1116	
3195.0	107	227	344	457	579	704	811	920	1019	1118	
3195.5	107	227	344	458	579	705	812	921	1021	1119	
3196.0	108	227	345	459	580	706	813	922	1022	1121	
3196.5	108	228	345	459	581	707	815	924	1024	1122	
3197.0	108	228	346	460	582	708	816	925	1025	1124	
3197.5	108	228	346	461	583	709	817	926	1027	1125	
3198.0	108	229	347	461	583	710	818	928	1028	1127	
3198.5	108	229	347	462	584	711	819	929	1029	1129	
3199.0	108	229	348	463	585	712	820	930	1031	1130	
3199.5	109	230	348	463	586	713	821	931	1032	1132	
3200.0	109	230	349	464	587	714	822	933	1034	1133	
3200.5	109	230	349	465	588	715	824	934	1035	1135	
3201.0	109	231	350	465	588	716	825	935	1037	1136	
3201.5	109	231	350	466	589	717	826	937	1038	1138	
3202.0	109	231	351	466	590	718	827	938	1039	1139	
3202.5	109	231	351	467	591	719	828	939	1041	1141	
3203.0	110	232	352	468	592	720	829	940	1042	1143	
3203.5	110	232	352	468	592	721	830	942	1044	1144	
3204.0 3204.5	110	232	352	469	593	722	831	943	1045	1146	
3204.5	110 110	233 233	353 353	470	594	723	833	944	1046	1147	
3205.5	110	233	353 354	470 471	595 505	724	834	945	1048	1149	
3205.5	110	233	354 354	471	595 506	725	835	947	1049	1150	
3206.5	111	234 234	354 355	471 472	596 597	726 727	836 837	948 949	1051	1152 1153	
3200.5	111	234 234	355 355	472	597 598	727	838	949 951	1052		
3207.5	111	234 235	355	473	596 599	728	839	951 952	1053	1155	
3208.0	111	235	356	473	599 599	729 730	839 840	952 953	1055 1056	1156 1158	
3208.5	111	235	350 357	474	600	730	840 841	953 954	1056	1158	
3209.0	111	235	357	475	601	732	843	954 956	1058	1161	
3209.5	112	235	358	475	602	732	844	956 957	1059	1162	
020010	•••	200	000	-10	002	100		557	1000	1102	

% GATE OPENING											
RES. EL.	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%	
(feet)	Cd =										
	0.08	0.17	0.26	0.35	0.45	0.56	0.66	0.77	0.88	1.00	
3210.0	112	236	358	476	603	734	845	958	1062	1164	
3210.5	112	236	359	477	603	735	846	959	1063	1166	
3211.0	112	237	359	478	604	735	847	961	1064	1167	
3211.5	112	237	359	478	605	736	848	962	1066	1169	
3212.0	112	237	360	479	606	737	849	963	1067	1170	
3212.5	112	238	360	480	607	738	850	964	1069	1172	
3213.0	113	238	361	480	607	739	851	966	1070	1173	
3213.5	113	238	361	481	608	740	852	967	1071	1175	
3214.0	113	239	362	481	609	741	854	968	1073	1176	
3214.5	113	239	362	482	610	742	855	969	1074	1178	
3215.0	113	239	363	483	610	743	856	970	1075	1179	
3215.5	113	239	363	483	611	744	857	972	1077	1181	
3216.0	113	240	364	484	612	745	858	973	1078	1182	
3216.5	114	240	364	484	613	746	859	974	1080	1184	
3217.0	114	240	365	485	613	747	860	975	1081	1185	
3217.5	114	241	365	486	614	748	861	977	1082	1187	
3218.0	114	241	365	486	615	749	862	978	1084	1188	
3218.5	114	241	366	487	616	750	863	979	1085	1189	
3219.0	114	242	366	488	617	751	864	980	1086	1191	
3219.5	114	242	367	488	617	751	865	981	1088	1192	
3220.0	115	242	367	489	618	752	867	983	1089	1194	