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INTRODUCTION

The response of a rock joint to shear loading in-situ depends on the
joint surface properties but also on the boundary conditions that are
applied across the joint surfaces. These boundary conditions can take
multiple forms and vary as the rock mass is subject to cycles of loading and
unloading. For instance, in rock slope stability, the moving block above a
critical joint surface is free to move upward. In this case, the normal
stress across the joint remains essentially constant. On the other hand, a
block constrained between dilatant joints in the roof or sidewalls of an
underground excavation does not move as freely as in the previous case. As
the block moves, joint dilation is restricted by the surrounding rock and is
controlled by the deformability (or stiffness) of the rock mass. Hence, the
normal stress across the joint planes along which sliding takes place, is no
longer constant but increases. In general, joint shear strength under
increasing normal stress will be different from its shear strength under
constant normal stress.

The range of joint normal loading conditions in-situ and the importance
of properly modeling rock joint behavior have been emphasized by Goodman
(1976), Heuze (1979), Leichnitz (1985) and Goodman and Boyle (1985) among
others. Lam and Johnston (1982) also recognized the importance of properly
modeling the joint interface between concrete and rock when assessing the
side resistance induced in concrete piles in rough rock sockets as the pile
is loaded and displaced vertically.

The range of joint normal loading conditions can best be represented by
assuming that the deformability of the surrounding rock mass is modelled by
a spring with normal stiffness K = do,/dv where do, and dv are the

changes in joint normal stress and displacement, respectively. The stiffness



K varies between zero for a joint under constant normal stress (as in slope
stability problems) and infinity if the rock mass is very stiff for which no
change in joint normal deformation is allowed. The stiffness 1s constant if
the change in joint normal stress remains proportional to the change in
normal displacement. The stiffness may also vary with the load history of
the rock mass as it undergoes cycles of loading and unloading.

A large amount of experimental work is available in the literature on the
behavior of rock joints under normal loading and unloading and on their

shear response under constant normal stress. Knowing this behavior, Goodman

(1980) proposed a method to predict the shear response of rock joints under
gé;gEgntwnonmalﬂdisplacement. Although counstant or variable normal
stiffness boundary conditions are more likely to exist across joint surfaces
in situ rather than constant normal stress or displacement, joint response
under constant or variable normal stiffness has not received much attention
in the literature. Test data are limited (Leichnitz,1985; Hutson, 1987; Lam
and Johnston, 1982) since constant normal stiffness shear tests on rock
joints are difficult and require complicated computer controlled equipment.
The purpose of this note is to present a simple and complete method to
predict the shear response of a dilatant rock joint under constant or

variable normal stiffness knowing its behavior under constant normal

stress.

PRESENTATION OF THE METHOD
Consider the behavior of a joint under increasing normal stress (with zero
shear stress) and its behavior under increasing shear stress (with constant

normal stress). The idealized joint response curves shown in Figure la, lb



and lc illustrate this behavior. These curves were proposed by Goodman and
Boyle (1985) and are used to introduce the present method.

Figure la shows a typical hyperbolic joint closure versus normal stress
curve for a joint tested in the laboratory. The joint has a maximum closure
Vpee Figure 1b shows the shear stress versus shear displacement curves for
the joint under different constant normal stresses varying between A and 20A
where A is an arbitrary number. The peak and residual joint shear strengths
increase as the joint normal stress increases. Finally, Figure lc shows the
normal displacement versus shear displacement curves for the shear tests of
Figure 1lb. These curves show a decrease in joint dilatancy as the normal
stress increases and assume that, for each level of normal stress, there is
no change in joint normal displacement once the peak shear strength has been
reached for a shear displacement equal to u,.

The method consists of using the curves in Figures la-lc to plot the
variation of the joint normal stress o, versus the joint normal
displacement v for different values of the shear displacement u. This is
shown in Figure 2a for the data of Figure l. Each curve u = uy (i=0,4) in
Figure 2a is constructed using the values of o, and v at the points of
intersection between each line u = uj and the normal displacement versus
" shear displacement curves in Figure lc. The following remarks can be made
about Figure 2a: (1) The curve u = u, is identical to the joint closure
versus normal stress curve in Figure la, (2) All the curves u = uy
(i=1,4) become closer to the curve u = u, as oy increases since joint
dilatancy decreases as the joint normal stress increases, (3) For the joint
response shown in Figure lc, for which there is no further dilatancy for
values of u larger than u,, all curves u = uj (1 > 4) coincide with the

curve u = u,, hence, the joint response is admissible if it is contained in



the domain limited by the curves u = u, and u = u,, (4) Each curve
u = uy represents the behavior of the joint under normal loading after
being mismatched by a shear displacement equal to uj.

Figures 2a and 1b can be used to predict the shear strength of the joint
for any load path. Starting with zero normal stress, assume that a normal
stress opo = 4A is first applied across the joint without any shearing.

The joint closes and follows path OA in Figure 2a. Then, as shearing occurs,
the joint can follow different paths depending on the boundary conditions
across its surfaces. Under constant normal stress, the joint follows path
ABCDE. It follows path AFGHI under constant normal stiffness K and path
AJKLM when no change in joint normal displacement is allowed. In Figure 2a,
the constant normal stress path (K=0) and the constant displacement path
(K==) clearly appear as two special cases of the constant normal stiffness
path.

The shear stress versus shear displacement gurves for the three paths
mentioned above can be constructed by first recording in Figure 2a the
values of o, and u at the points of intersection of each path with the
curves u= uy (i=0,4). Then, these values are transferred to the family of
shear stress versus shear displacement curves in Figure lb. For the present
example, the shear stress versus shear displacement curve for the constant
normal stress path corresponds to the curve labelled 4A in Figure 1b. The
curves for the constant normal displacement and stiffness paths are shown as
dashed lines in Figure 2b. The method illustrated in Figure 2a can also be
used to predict the variation of the joint normal displacement and normal
stress versus shear displacement for each one of the three paths. This is

shown as dashed lines in Figures 2c and 2d, respectively.



In view of Figures 2a-2d, the constant normal stress path leads to the
lowest peak shear strength (point E) whereas the constant normal
displacement path leads to the highest peak shear strength (point M) due to
an increase in joint normal stress. For the constant normal stiffness path,
both joint normal displacement and normal stress increase during shearing.
This results in a peak shear strength lying in between the two previous
extremes (point I).

Figure 2a is not limited to joints with constant normal stiffness. The
stiffness may vary and the path in Figure 2a may be stepwilse or non-linear
such as path ANPQR corresponding to a joint in a rock mass with an
increasing normal stiffness. The corresponding shear stress versus shear
displacement curve, the normal displacement versus shear displacement curve
and the normal stress versus shear displacement curve for o,, = 4A are
also shown in Figures 2b,2c and 2d, respectively.

The previous example shows that joint shear response is controlled by its
dilatant behavior. The same method was applied for a more dilatant joint for
which the normal displacement versus shear displacement curves in Figure 3
were substituted for those in Figure lc. Figure 2a is now replaced by Figure
4a., Compared to Figure lc, the new set of dilation curves is such that joint
dilation continues beyond the shear displacement u, necessary to mobilize
the peak shear strengths in Figure 1lb. Also, for shear displacements larger
than u,,;, the joint ceases to dilate and contracts. Because of this
behavior, the response curves u = uy (1 >11) in Figure 4a will always be
below the curve u = u;,. Indeed, for the present example, curves u = u, and
u = u;3 coincide. The same applies to curves u = ug and u = ujj.

For the dilation curves in Figure 3, the shear stress versus shear dis-

placement curves for the constant normal displacement path (AJKIM...), the



constant normal stiffness path (AFGHI...) and the variable stiffness path
(ANPQR...) of Figure 4a are shown in Figure 4b. Compared to the shear
response for the constant normal stress path ABCDE... (curve g, = 4A in
Figure 4b), these curves show two distinct peak shear strengths. The second
peak is associated with joint dilation for shear displacements less than u,
followed by joint contraction. The normal displacement versus shear
displacement and the normal stress versus shear displacement response curves

for the different paths are shown in Figures 4c and 4d, respectively.

SUMMARY

A simple method is presented in this technical note. It can be used to
predict the response of a dilatant rock joint under a wide variety of
loading conditions such as constant normal stress, constant normal
displacement and constant or variable normal stiffness. Constant normal
stiffness tests on rock joints that require complicated servo-controlled
equipment do not have to be conducted since, using the proposed method, the
response of joints under constant or variable stiffness can be derived from
the results of constant normal stress tests.

The response of a rock joint under constant or variable stiffness is
strongly dependent on its dilatant behavior. It is shown that a second peak
in the shear stress versus shear displacement curve can occur under such
boundary conditions. This second peak strength takes place beyond the peak
strength for the constant normal stress path. This has been observed
experimentally by Lam and Johnston (1982) in the testing of artificial
joints under constant normal stiffness (Figure 5). The existence of two peak

shear strengths suggests that more than one set of strength parameters is



needed to describe the shear strength of dilatant rock joints under constant

or variable normal stiffness boundary conditions.
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LIST OF FIGURES

Joint Response Curves for Normal Stresses g, Ranging Between O
and 20A. (Goodman and Boyle, 1985)
(a) Joint closure under increasing normal stress,
(b) Shear stress vs. shear displacement curves at different
normal stresses,
(c) Normal displacement vs. shear displacement curves at
different normal stresses.

Response Curves for a Joint Following a Constant Normal Stress
Path (ABCDE), a Constant Normal Displacement Path (AJKLM), a
Constant Normal Stiffness Path (AFGHI) and a Variable Normal
Stiffness Path (ANPQR) for the Behavior Shown in Figure 1.
Initial joint normal stress opo = 4A.

(a) Normal stress vs. normal displacement curves at different

shear displacement levels,

(b) Shear stress vs. shear displacement curves,

(c) Normal displacement vs. shear displacement curves,

(d) Normal stress vs. shear displacement curves.

Normal Displacement vs. Shear Displacement Curves for Normal
Stresses o, Ranging Between 0 and 20A. The curves show joint
dilation followed by contraction.

Response Curves for a Joint Following a Constant Normal Stress
Path (ABCDE), a Constant Normal Displacement Path (AJKLM), a
Constant Normal Stiffness Path (AFGHI) and a Variable Normal
Stiffness Path (ANPQR) for the Behavior Shown in Figures la-1b and
3. Initial joint normal stress op, = 4A.

(a) Normal stress vs. normal displacement curves at different

shear displacement levels,

(b) Shear stress vs. shear displacement curves,

(c) Normal displacement vs. shear displacement curves,

(d) Normal stress vs. shear displacement curves.

Response Curves for Artificial Joints Tested by Lam and Johnston
(1982). All tests were conducted under constant normal stiffness
K = 85 kPa/mm and at different initial stress levels ogpge
(Curves 1) opo = 111 kPa, (Curves 2) opo = 192 kPa, (Curves
3) opo = 236 kPa.

(a) Variation of shear stress with shear displacement

(b) Variation of dilation with shear displacement

(c¢) variation of normal stress with shear displacement



Normal
Stress

4+ 20 A
+ 18 A

16 A

14 A

12 A
4+ 10A

>

\"/
Closure me Opening

FIGURE 1a



Shear
Stress

26 A }-

24 A}

22 AL

20 A} , I , _O0p = 20A

18 A}

16 AL — 16A

14 A}

12 A 12A

10 A 10A

8 A 8A
7A

6 A A

""" — 5A

4 A AA
3A

2A 2A
A

i ] ] i i 1 § i [
U §) U U U U U U
0 2 4 6 8 10 12 14

Shear Displacement

FIGURE 1b

10



2A

3A

4A

5A

B6A

7A

8A

10A

12A

16A

20A

14

12

10

FIGURE 1c

11



a1

A

Normal
Stress

Y

mcC

Closure

FIGURE 2a

Opening



Shear
Stress
26 A}
24 A}
22 A |-
20 AL , - Op = 20A

18 A}

16 A} 16A
14 A

12 A

10 Al

8 A

6 A

4 A

2A

Shear Displacement

FIGURE 2b

13



2A

3A

Opening 4A

6A

7A

8A

10A
/ 12A
16A
20A

0 2 4 6 8 10 12 14

FIGURE 2c

14



4

Normal
stress

20 A}
18 A |-
16 A}
14 A}
12 A}
10 A}

Shear Displacement

FIGURE 2d

15



oA 3A

Openine /

Onp =
\

- 12A

- 16A
20A

4A

S5A

6A

7A

8A

10A

mc

FIGURE 3

16



L1

4

Normal
Stress

4 20A

4 18A

4 16A

4 14A

mc

Closure

FIGURE 4a

Opening



Shear
Stress

26 A
24 A

22 At

20 A
18 A
16 A
14 A
12 A
10 A
8 A
6 A
4 A

2A

0

Onp = 20A

16A

Shear Displacement

FIGURE 4b

18



Opening

mc

—
amam—

2A

3A

Op =

4A

5A

6A

7A

8A

10A

12A

16A

FIGURE 4c

19



Normal
Stress

20 A
18 A
16 A
14 A
12 A
10 A
8 A
6 A
4 A

2A

Shear Displacement

FIGURE 4d

20



SHEAR STRESS. kPa

DILATION, mm

NORMAL STRESS, kPa

900 T T T T

0 4 [] 12 16 20
SHEAR DISPLACEMENT, mm

1 1 Il l
0 4 8 12 18 20

SHEAR DISPLACEMENT, mm

800 T T T T

1

i . 1
0 4 8 12 18 20

SHEAR DISPLACEMENT, mm

FIGURE 5

21

Co



S\LC{\H’l\a{ @»ugl\ Strh &9 ﬂorm{ Steecs

O

Bl 8.7 2

£l el 1 S o

£l 30l.9 LoD

By 304 L 15 oo

[

725 ts

O polile each {/om/
@ 5h

.

U
umhormnj h

®
/Z/j waxloln‘e-cl PLU"{:S b\i Grev ps 19\4—(-

\lVX‘L“LLeL/p erM Stress Vq(uag, @ml\/.

Us



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

