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PREFACE TO THE EIGHTH EDITION

This Eighth Edition of the Concrete Manual reflects the Bureau of
Reclamation’s continuing effort to bring to its construction staff members
information on the latest advances in concrete technology which would be
useful to them in administering contracts for construction of the Bureau’s
water resource development projects throughout the western States. Evolv-
ing from a set of loose-leaf, blue-printed instructions, the first tentative
edition of the manual was published in 1936. Since that time, the Bureau
has published seven editions, each recording the many advances in con-
crete technology developed during the intervening years. The Seventh
Edition was published in 1963.

Although fundamental precepts of good concrete practice do not change,
continued research and development of the technology bring about sig-
nificant improvements that keep concrete in the forefront as a versatile,
dependable, and economical construction material. This Eighth Edition
of the Concrete Manual underscores this progress; it embraces substantial
supplemental information relating to many of these improvements in con-
crete control and technology. Chapter III (Concrete Mixes) now includes
compressive strength design criteria for concrete containing water-
reducing, set-controlling agents. Chapter VII (Repair and Maintenance
of Concrete) has been rewritten to describe in detail techniques intro-
duced in the Seventh Edition for using epoxy in concrete repairs. This
latest edition of the manual also includes a brief discussion of concrete-
polymer materials, new composites which have considerable potential in
construction. Information on the manufacture of concrete pipe has been
supplemented and revised. Shotcrete containing coarse aggregate, used
for tunnel support, is discussed, and methods for removing stains from
concrete surfaces are now described in detail. As in the past, new and
helpful suggestions relating to field laboratory sampling and testmg
equipment are included.

The manual, published primarily for use by the Bureau s construction
engineers and inspectors, supplies engineering data and outlines methods
and procedures to be followed in administering construction specifications
and contracts. References in the manual to “laboratories,” ‘“Denver lab-
oratories,” “Denver laboratory,” and “Denver office” designate the
Bureau’s Engineering and Research Center at Denver, Colo. Howard J.
Cohan, Chief of the Division of General Research, provides overall ad-



iv CONCRETE MANUAL

ministrative direction to the many technical research and testing activities,
of which preparation of this manual is but one.

Although issued primarily for Bureau of Reclamation staff use, the
manual has received widespread acceptance throughout the United States
and in many foreign countries. More than 120,000 copies of previous
editions, including 40,000 copies of the Seventh Edition, have been dis-
tributed throughout the world. Indicative of this world-wide recognition
of the technical value of the manual is the fact that it has been translated
into Spanish, Italian, and J apanese.

Some procedures in this manual are directly referred to by Bureau of
Reclamation specifications. When this is done, these referenced proce-
dures have the full effect of specifications requirements. However, there
may be instances where procedures and instructions in the manual are at
variance, in some respects, with specifications requirements. In these in-
stances, it must be understood that the specifications take precedence. It
is also emphasized that each employee of the Bureau of Reclamation is
directly accountable to his supervisor; thus, he should request advice
concerning any doubtful course of action from the proper authority.

This edition of the Concrete Manual and earlier editions represent the
expertise of individuals too numerous to mention. Their substantial con-
tributions are acknowledged with appreciation, for their efforts provided
the foundation on which each succeeding edition has been based.

Engineers in the Concrete and Structural Branch, Division of General
Research, prepared the manuscript for the Eighth Edition. Engineer A.
B. Crosby, under the direction of E. M. Harboe, then Acting Chief of
the Concrete and Structural Branch, coordinated the initial preparation
for this edition and was in charge of the major revisions. Substantial
contributions were made by the present Chief, Concrete and Structural
Branch, J. R. Graham, and engineers H. E. Dickey, N. F. Larkins, L. C.
Porter, and J. D. Richards. H. Johns, Applied Sciences Branch, also
contributed significantly. The assistance of R. N. Hess for his work on
the tables and figures, and his technical review is also acknowledged.
Personnel in the Technical Services and Publications Branch, Division of
Engineering Support, edited the manuscript; the Publications and Pho-
tography Branch in the Commissioner’s Office, Washington, D.C., re-
viewed the manuscript and proofs and arranged for printing. The assist-
ance of these, and many other engineers and technicians, past and pres-
ent, who contributed in various ‘ways to this publication, is gratefully
acknowledged.

This Eighth Edition of the Concrete Manual has had a distribution of .
approximately 17,000 copies, not including the 16,000 coples of this
reprint.



A PERTINENT QUOTATION

Although a concrete manual may fully describe the steps necessary for
the accomplishment of first-class work, such an exposition, no matter how
perfect, will not in itself insure concrete of good quality. This was recog-
nized by Franklin R. McMillan, member of the Concrete Research Board
for Hoover Dam, who, in concluding his “Basic Principles of Concrete
Making” published in 1929, stated:

“* * * one further requirement remains. There must be a recognition
on the part of someone in authority that uniform concrete of good quality
requires intelligent effort and faithfulness to details all along the line—
proper materials, proper design, proper mixing and transporting, and
special care in placing and protecting. It must be recognized that to obtain
the desired results some qualified person must be made responsible for
these details/ and having been made responsible, must be entrusted with
the necessary authority. _

“Too often individuals in ultimate authority have the desire for con-
- crete of the proper quality, but fall short of attaining it through failure to
delegate the necessary authority and to fix the responsibility for results.
It is not uncommon to find a construction superintendent in a position to
ignore the recommendations of the engineer where, in his opinion, they
impede the progress of the work or increase the cost. If, under such
conditions, quality is subordinated to first cost, durable structures cannot
be expected.

“It must not be assumed that because it requires well-directed effort
to produce uniformly good concrete the cost is necessarily increased. There
have been any number of examples in recent years where rigid control of
the concreting operations not only has given concrete of the required
quality but has shown a distinct saving in first cost as compared with
earlier experiences in which only indifferent or unsatisfactory results were
obtained. But even if the first cost is increased by the requirements for
definite quality, the ultimate cost which must include maintenance and
repair charges will be greatly decreased.”
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Chapter |

CONCRETE AND CONCRETE MATERIALS

A. Introduction

1. Concrete Defined.—Concrete is composed of sand, gravel, crushed
rock, or other aggregates held together by a hardened paste of hydraulic
cement and water. The thoroughly mixed ingredients, when properly
proportioned, make a plastic mass which can be cast or molded into a
predetermined size and shape. Upon hydration of the cement by the
water, concrete becomes stonelike in strength and hardness and has utility
for many purposes.

2. Progress in Concrete.—Concrete has found use in hearly all types of
construction—from highways, canal linings, bridges, and dams to the
most beautiful and artistic of buildings. With the addition of reinforce-
ment to supply necded tensile strength, advances in structural design, and
the use of prestressing and posttensioning, it has become the foremost
structural material. The growing popularity of concrete in the United
States is attested by the phenomenal growth of the portland cement
industry; although it produced less than 2 million tons of cement a year
in 1900, it produced at an estimated rate of about 80 million tons of
cement per year in 1971. 4

Concrete technology has progressed and evolved with the times and
with new discoveries. In the latter part of the 19th century, concrete was
ordinarily placed nearly dry and compacted with heavy tampers. Vir-
tually no reinforcement was used at that time. With the development of
reinforced concrete in the early part of this century, very wet mixes
became popular and much of the concrete was literally poured into the
forms and had neither good strength nor durability. This practice con-
tinued until investigations began to emphasize the importance of using
scientifically designed mix proportions to produce a uniform concrete of
improved workability, durability, and strength. Notable among the early
investigations were those of Abrams, who formulated the “water-cement

1
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ratio law” and demonstrated the importance of restricting this ratio for
a given cement content to the lowest value consistent with the required
workability of concrete for the particular work. The development of
vibration to consolidate concrete aided materially in the placement of lower
slump mixes and eliminated the necessity for sloppy mixes.

The development of special cements, such as high-early-strength cement
for use where the concrete is put to early service, low-heat cement for
massive construction, sulfate-resisting cement for use in sulfate soils and
waters, and the introduction of expansive cement and set-controlled cement
have all increased the versatility of concrete. In recent years, the
introduction of pozzolanic materials reduced the costs of some concretes.
The processing of aggregates to remove undesirable constituents by such
methods as heavy media separation, hydraulic jigging, and elastic
fractionation, in some instances permits making sound and durable concrete
with aggregates which were otherwise unsuitable. Under investigation in
the laboratories now is the impregnation of concrete with different
monomers followed by polymerization, or hardening, of the monomer. This
process increases manyfold the compressive, tensile, and flexural strengths,
moduli of elasticity, and other physical properties of the concrete.

About 1938, an outstanding contribution to good concrete was made
when it was discovered that small amounts of well-dispersed entrained
air not only improved workability of concrete but also multiplied several
times its resistance to freezing and thawing. This led to current widespread
use of air-entraining agents, both as introduced at the mixer and as
incorporated in air-entraining cements. Whereas it was once thought that
all desirable properties of concrete depended on securing a maximum of
solid substance, it is now recognized that the most dense concrete is not
necessarily the most durable. Other admixtures, such as water-reducing,
set-controlling agents and nonionic polymeric pumping aids to improve
placeability, are now frequently used.

Concrete ingredients were once batched by volume with attendant
inaccuracies and nonuniform results. Batching by weight has now
superseded this practice, with resulting improvement in the uniformity
and economy of concrete. The separation of coarse aggregates into two
or more sizes was another improvement in practice, minimizing segregation
during handling and bettering concrete quality. Thus, whereas concrete
was once considered to be a simple mixture of coarse aggregate, sand,
cement, and water, mixed and placed in any convenient manner, the
modern concept is a carefully proportioned mixture combining admixtures
as needed to obtain the optimum quality and economy for any use.

3. Making Good Concrete.—Improved practices and techniques have
added greatly to our ability to produce good concrete, and engineers are
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in close agreement on the practical needs for producing it. They recog-
nize that, in addition to proper ingredients, a modern formula for suc-
cessful concrete production would include common sense, good judg-
ment, and vigilance.

There is still some concrete which, through carelessness or ignorance
in its manufacture and placement, fails to give the service that would
otherwise be expected. It is the responsibility of those in charge of con-
struction to make sure that concrete is of uniformly good quality. The
extra effort and care required to achieve this objective are small in rela-
tion to the benefits. Good engineering dictates acceptance of only the
best. This axiom is especially true of concrete, for the best usually costs
no more than the mediocre. In fact, good concrete practices result in
better quality concrete and often lower costs by reducing placing diffi-
culties. All that is required to achieve the best is an understanding of the
basic principles of making good concrete and close attention to proven
practices during construction.

B. Important Properties of Concrete

4. General Comments.—The characteristics of concrete discussed in the
following sections should be considered on a relative basis and in terms
of the degree of quality that is required for any given construction pur-
pose. A concrete that is durable and otherwise satisfactory under condi-
tions which give it protection from the elements might be wholly unsuited
in locations of severe exposure to disintegrating influences. Watertight-
ness is essential for a hydraulic structure, but strength and rigidity are
obviously the primary structural requisites for an office building. It is
apparent that the closest practicable approach to perfection in every
property of the concrete would result in poor economy under many con-
ditions and that the most desirable structure is one which meets all
reasonable requirements for serviceable life, safety, and appearance. In
other words, a structure must be adequately designed and properly con-
structed of concrete strong enough to carry the design loads and also
economical, not merely in first cost but in terms of ultimate service.

The principal properties of good concrete, their interrelationships, and
the elements which control these properties are summarized in figure 1.

5. Workability.—Workability has been defined as the ease with which
a given set of materials can be mixed into concrete and subsequently
handled, transported, and placed with minimum loss of homogeneity. The
importance of plasticity and uniformity is emphasized because these es-
sentials to workability have marked influence on the serviceability and
appearance of the finished structure.

Workability is dependent on the proportions of the ingredient ma-
terials, as well as on their individual characteristics. The degree of work-
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ability required for proper placement and consolidation of concrete is
governed by the dimensions and shape of the structure and by the spacing
and size of the reinforcement. For example, concrete having suitable
workability for a pavement slab would be difficult to place or would even
be unusable in a thin, heavily reinforced section. Over the years many
devices for measuring workability of concrete have been developed. How-
ever, none of the methods evaluates all of the characteristics involved.
These characteristics include ease of placing, finishing qualities, and
bleeding or other forms of segregation. The use of entrained air has
minimized effects of harshness in a concrete mix, but the determination
of workability is still dependent somewhat upon judgment developed by
experience.

Consistency or fluidity of concrete is an important component of work-
ability and can be measured with reasonable accuracy by means of the
slump test. The standard slump test is used on Bureau of Reclamation
work but is conducted in such a manner (see fig. 2 and designation 22 in
the appendix) as to provide additional assistance in judging workability
of the concrete. Figure 2 shows slump specimens from two mixes having

Figure 2.—Slump test for consistency as performed by the Bureau. By tapping
the side of a slump specimen with the tamping rod (see views at
right), additional information as to the workability of the concrete is obtained.
PX-D-20717.
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the same slump. In the two views at the right, the specimens have been
tapped with the tamping rod as prescribed in designation 22. The con-
crete in the upper view is a harsh mix, with a minimum of fines and
water. It may be efficient for use in slabs, pavements, or mass concrete
where it can readily be consolidated by vibration, but it would be quite
unsuitable for a complicated and heavily reinforced placement. The con-
crete in the lower view is a plastic, cohesive mix; the surplus workability
is needed for a difficult placement. However, if it is used where it can be
easily placed and vibrated, such a mix would be inefficient because it
contains excesses of cement, fines, and water. Thus, it is evident that,
while measurement of slump gives a valuable indication of consistency,
workability and efficiency of the mix can be judged only by how the
concrete goes into place in each part of the structure and how it responds
to consolidation by good vibration. Efficient mixes do not have much
surplus workability over that needed for good results with thorough
vibration.

The influence of temperature on the slump of concrete is indicated in
figure 3.

For Bureau of Reclamation work, the maximum permissible slump of
concrete, after the concrete has been deposited but before consolidation,

7 T T T T T T
\\ Each point represents the average obtained
6 N~ with 12 cements
SN |
\~ i 1 .
5 \.\,/-\hth 1/, -inch max. aggregate
Ty
(] N
w ~
x ~J ~
2 4 Mo ~
— .
] [~~~
[- % \\
= 3 =N -
=] \D~~
* \ -
2 With 6-inch max, aggregate S —
\\
1
Mix proportions maintained constant for all temperatures
0 1 | 1 I | | 1
40 50 60 10 80 90 100

TEMPERATURE. DEGREES FAHRENHEIT

Figure 3.—Relationship between slump and temperature of concrete made
with two maximum sizes of aggregates. As the temperature of the ingredients
increases, the slump decreases. 288-D—1080.
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is restricted by specifications to 2 inches for concrete in tops of walls,
piers, parapets, curbs, and slabs that are horizontal or nearly horizontal;
4 inches for concrete in arch and sidewalls of tunnels; and 3 inches for
concrete in other parts of structures and in canal linings. The slump of
mass concrete is usually restricted to a maximum of 2 inches. If concrete
cannot be placed without exceeding specified slump limitations, it may be
concluded that the mix proportions are in need of adjustment. The mini-
mum slump that can be used, commensurate with desired workability,
requires the least amount of cement and water. In general, the wetter the
consistency, the greater the tendency toward bleeding and segregation of
coarse aggregate from the mortar.

6. Durability.—A durable concrete is onc that will withstand, to a sat-
isfactory degree, the effects of service conditions to which it will be sub-
jected, such as weathering, chemical action, and wear. Numerous labora-
tory tests have been devised for measurement of durability of concrete,
but it is extremely difficult to obtain a direct correlation between service
records and laboratory findings.

(a) Weathering Resistance.—Disintegration by weathering is caused
mainly by the disruptive action of freezing and thawing and by expansion
and contraction, under restraint, resulting from temperature variations
and alternate wetting and drying. Concrete can be made that will have
excellent resistance to the effects of such exposures if careful attention
is given to the selection of materials and to all other phases of job control.
The purposeful entrainment of small bubbles of air, as discussed in
section 14(b), has also helped to improve concrete durability by de-
creasing the water content and improving placeability characteristics. It
is also important that, where practicable, provision be made for adequate
drainage of exposed concrete surfaces.

Much has been learned regarding the resistance of air-entrained con-
crete to frost action, especially with respect to the influence of internal
pore structure on durability. Dry concrete, with or without entrained air,
sustains no damaging effects from freezing and thawing. Non-air-en-
trained concrete with high cement content and low water-cement ratio
(0.36+) develops good resistance to freezing and thawing primarily
because of its relatively high density and attendant high impermeability
(or watertightness) which reduce the free (or freezable) water available
to the capillary system and/or through inflow under pressure. However,
within the usual range of water-cement ratio specified for exposed struc-
tural concrete (maximum 0.47 to 0.53), greatly increased resistance to
freezing and thawing is effected by the purposeful entrainment of air.
This entrainment, in the form of multitudinous air bubbles ranging in
size from less than 20 micrometers (submicroscopic) to about 3,000
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Figure 4.—Typical pattern cracking on the exposed surface of concrete affected
by alkali-aggregate action. PX-D—-32049.

micrometers (macroscopic), provides relief for pressures developed by
free water as it freezes and expands.

(b) Resistance to Chemical Deterioration.—Concrete deterioration,
attributable in whole or in part to chemical reactions between alkalies in
cement and mineral constituents of concrete aggregates, is characterized
by the following observable conditions: (1) Cracking, usually of random
pattern on a fairly large scale (see fig. 4); (2) excessive internal and
overall expansion; (3) cracks that may be very large at the concrete
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surfaces (openings up to 1%2 inches have been observed) but which
extend into the concrete only a distance of from 6 to 18 inches; (4)
gelatinous exudations and whitish amorphous deposits, on the surface
or within the mass of the concrete, especially in voids and adjacent to
some affected pieces of aggregate; (5) peripheral zones of reactivity,
alteration, or infiltration in the aggregate particles, particularly those
particles containing opal and certain types of acid and intermediate
volcanic rocks; and (6) lifeless, chalky appearance of the freshly fractured
concrete.

Deterioration of concrete also results from contact with certain chem-
ical agents. The chemical action of a number of substances on unprotected
concrete is shown in table 1. The table is intended to provide general
guidance only, and salts listed as having no action might be aggressive at
high concentrations or at high temperatures. Attack may assume one of
several forms:

(1) Erosion of concrete results from the formation of soluble
products which are removed by leaching. Attack by organic and in-
organic acids is in this class. Attack by acids is seldom encountered
at sites of Bureau work. This is a fortunate circumstance because
no type of portland ccment ofters resistance to the forms of acid cor-
rosion listed in table 1. Where likelihood of acid corrosion is in-

Table 1.—Effects of various substances on hardened concrete

Substance Effect on unprotected concrete
Petroleum oils, heavy, light, and volatile ............. None.
Coal-tar distillates . ....... ...t None, or very slight.
Inorganic acids . ...... ... ... i Disintegration.
Organic materials:
Acetic acid ... ... e Slow disintegration.
Oxalic and dry carbonic acids .. ................ None.
Carbonicacidinwater ........ ... Slow attack.
Lactic and tannic acids .. .......... .. oo Do.
Vegetable oils .. .......... ... Slight or very slight at-
tack.

Inorganic salts:
Sulfates of calcium, sodium. magnesium, potassium, | Active attack.
aluminum, iron.

Chlorides of sodium, potassium ................ None.

Chlorides of magnesium, calcium ............... Slight attack.
Miscellaneous:

MK e e Slow attack.

Silage juices . ...l Do.

Molasses, corn syrup, and glucose .............. Slight attack.

Hot distilled water ... Rapid disintegration.
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dicated. an appropriate surface covering or treatment should be
employed.

When cement and water combine, one of the compounds formed
is hydrated lime, which is readily dissolved by water (often made
more aggressive by the presence of dissolved carbon dioxide) passing
through cracks, along improperly treated construction planes, or
through interconnccted voids. The removal of this or other solid ma-
terial by leaching may seriously impair the quality of concrete. The
white deposit, or efflorescence, commonly seen on concrete surfaces
is the result of leaching and subsequent carbonation and evaporation.

(2) Certain agents combine with cement to form compounds
which have a low solubility but which disrupt the concrete because
their volume is greater than the volume of the cement paste from
which they were formed. Disintegration may be attributed to a com-
bination of chemical and physical forces. In dense concretes this
type of attack would be largely superficial. Porous concrete would be
affected throughout the mass. Most prominent among aggressive sub-
stances which affect Bureau concrete structures are the sulfates of
sodium, magnesium, and calcium. These salts which are known as
white alkali are frequently encountered in the alkali soils and ground
waters ¢f the western half of the United States.

The stronger the concentration of these salts the more active the
corrosion. Sulfate soluticns increase in strength in dry seasons when
dilution is at a minimum. The sulfates react chemically with the
hydrated lime and hydrated calcium aluminate in cement paste to
form calcium sulfate and calcium sulfoaluminate, respectively, and

Figure 5.—Disintegration of concrete caused by sulfate attack. PX—D-32050.
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Table 2.—Attack on concrete by soils and waters containing various
sulfate concentrations

Relative degree of sulfate Percent water-soluble sulfate mg/1 sulfate (as SO,)
attack (as SO,) in soil samples in water samples
Negligible . ............. 0.00 to 0.10 0to 150
Positive* ............... 0.10 to 0.20 150 to 1,500
Severe? ................ 0.20 to 2.00 1,500 to 10,000
Very severe® ........... 2.00 or more 10,000 or more

! Use type 1l cement.

2 Use type V cement, or approved combination of portland cement and pozzolan which has been shown
by test to provide comparable sulfate resistance when used in concrete.

3 Use type V cement plus approved pozzolan which has been determined by tests to improve sulfate
resistance when used in concrete with type V cement.

these reactions are accompanied by considerable expansion and dis-
ruption of the paste. Figure 5 illustrates the effect of sulfate attack
on concrete in a canal lining and a turnout wall. Concrete contain-
ing cement with a low content of the vulnerable calcium aluminate is
highly resistant to attack by sulfate-laden soils and waters. (See sec.
15(b).) The relative degrees of attack on concrete by sulfates from
soils and ground waters are given in table 2.

(3) Where concrete is subjected to alternate wetting and drying,
certain salts, such as sodium carbonate, may cause surface disin-
tegration by crystallizing in the pores of the concrete. Such action
appears to be purely physical. Y

(4) In environments such as flash distillation chambers of de-
salination plants where concrete is exposed to condensing cool-to-
hot water vapors or the resulting flowing or dripping of- distilled
water, the concrete is rapidly attacked by this mineral-free liquid.
The liquid rapidly dissolves available lime and other soluble com-
pounds of the cement matrix. Subsequent rapid deterioration and
eventual decomposition result. The only palliative known at this
time is complete insulation of the concrete from the mineral-free
water by coatings or lining materials which are not affected by the
water.

(5) Concrete in desalination plants is adversely affected by the
feed water, sea water, or brine from wells. At these plants, high-
quality concrete has been found unsuitable for use in brine exposures
at temperatures of 290° F but suitable at 200° to 250° F provided
adequate sacrificial concrete is made available for surface deteriora-
tion. Below about 200° F no provisien for sacrificial concrete is gen-
erally required. Deterioration such as occurs at the higher tempera-
ture is a chemical alteration of the peripheral concrete paste which
results in extensive microfracturing with resultant reduction of com-
pressive strength, effective cross-sectional area of the member, and
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cventual structural integrity. ' The rate of deterioration has been
found to vary directly with temperature. Furthermore, since chemi-
cal alteration occurs when the hot sea water brine comes in contact
with the concrete, the rate of deterioration could be expected to vary
directly with permeability.

(¢) Resistance to Erosion.—The principal causes of erosion of con-
crete surfaces are: cavitation, movement of abrasive material by flowing
water, abrasion and impact of traffic, wind blasting, and impact of floating
ice.

Cavitation is one of the most destructive of these causes and one to
which concrete or any other construction material offers very little re-
sistance regardless of its quality. On concrete surfaces subjected to high-
velocity flow, an obstruction or abrupt change in surface alinement causes
a zone of severe subatmospheric pressure to be formed against the sur-
face immediately downstream from the obstruction or abrupt change. This
zone is promptly filled with turbulent water interspersed with small fast-
moving bubblelike cavities of water vapor. The cavities of water vapor
form at the upstream edge of the zone, pass through it, and then collapse
from an increase in pressure within the waterflow at a point just down-
stream. Water from the boundaries of the cavities rushes toward their
centers at high speed when the collapse takes place, thus concentrating a
tremendous amount of energy. The entire process, including the forma-
tion, movement, and collapse or implosion of these cavities, is known as
cavitation.

It may seem surprising that the collapse of a small vapor cavity can
create an impact sufficiently severe and concentrated not only to dis-
integrate concrete but to indent the hardest metals; however, there is
abundant evidence to prove that this is possible and of common occur-
rence. The impact of the collapse has been estimated to produce pressures
as high as 100,000 pounds per square inch. Repetition of these high-energy
blows eventually forms the pits or holes known as cavitation erosion.
Cavitation may occur in clear water flowing at high velocities when the
divergence between the natural path of the water and the surface of the
channel or conduit is too abrupt, or when there are abrupt projections or
depressions on the surface of the channel or conduit, such as might occur
on coxcrete surfaces becausc of poor formwork or inferior finishing of the
concrete. Cavitation may occur on horizontal or sloping surfaces over
which water flows or on vertical suifaces past which water flows. Figure
6 is an illustration of cavitation erosion on surfaces on and adjacent to a
stilling basin dentate. The collapse of the cavities is accompanied by
popping and crackling noises (crepitation).

Data from model studies and from field operation records have en-
abled designers to eliminate cavitation in most structures, and progress in
this direction is still being made.

'
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Figure 6.—Cavitation erosion of concrete on and adjacent to a dentate in the
Yellowtail Afterbay Dam spillway stilling basin. Fast-moving water during a
flood flow caused a pressure phenomenon at the concrete surface which
triggered the cavitation damage shown here. P459-D—-68902.
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Figure 7.—Abrasion erosion of concrete in the dentates, walls, and floor of the
Yellowtail Afterbay Dam sluiceway stilling basin. The “ball-mill” action of
cobbles, gravel, and sand in turbulent water abraded the concrete, thus
destroying the integrity of the structure. P459—-D—-68905.

Where low pressures cannot be avoided, critical areas are sometimes
protected by facing with mctal or other appropriate materials which have
better resistance to cavitation than concrete. Introduction of air into the
streamflow at an upstream point has also been effective in reducing the
occurrence of cavitation and diminishing its eflects on some structures.

Erosion damage to concrete caused by abrasive materials in water can
be as severe as cavitation damage but generally would not cause a cata-
strophic failure as cavitaticn can so casily do. The hydraulic jump sec-
tions of spillway and sluiceway stilling basins, where turbulent flow con-
ditions occur, are particularly vulnerable to abrasion damage. The water
uction in these areas tends to swecp cobbles, gravel, and sand from the
downstrecam riverbed back into the concrete-lined stilling basin where
the action becomes onc of a grinding ball mill. Even the best concrete
cannot withstand this severe wearing action. Figure 7 shows the abra-
sion erosion that occurred to the dentates, walls, and floor areas of
the Yellowtail Afterbay Dam sluiceway stilling basin. Characteristic of
this type of erosion is the badly worn reinforcing steel and aggregate.
Contrast this with cavitation damage (fig. 6) which reflects little or no
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wearing of the aggregate particles. Although the most severe cases of
abrasion damage occur in the areas just described, similar damage could
be expected in diversion tunnels, canals, and pipelines carrying waste-
water. .

Use of concrete of increased strength and wear resistance offers some
relief against the forces of erosion brought about by movement of abra-
sive material in flowing water, abrasion and impact of traffic, sandblast-
ing, and floating ice. However, as is evident with cavitation erosion, the
most worthwhile relief from these forces is prevention, elimination, or re-
duction of the causes by the proper design, construction, and operation of
the concrete structures.

7. Watertightness.—Hardened concrete might be completely watertight
if it were composed entirely of solid matter. However, it is not practicable
to produce concrete in which all spaces between the aggregate particles
are filled with solid cementing medium. To obtain workable mixes, more
water is used than is required for hydration of the cement. This excess
water creates voids or cavities which may be interconnected and form
continuous passages. Furthermore, the absolute volume of the products
of hydration is less than the sum of the absolute volumes of the original
cement and water. Thus, as hydration proceeds, the hardened cement
paste cannot occupy the same amount of space as the original fresh paste;
consequently, the hardened paste contains additional voids. Purposefully
entrained air and entrapped air also produce voids in the concrete,
although the former, as will be explained, contributes to the watertightness
of the concrete rather than to its permeability.

From the foregoing discussion, it is evident that hardened concrete is
inherently somewhat pervious to water which may enter through capillary
pores or be forced in by pressure. Nevertheless, permeability may be so
controlled that construction of durable, watertight structures is not a
serious problem.

The inherent perviousness of concrete can be visualized by considering
the internal structure of plastic concrete. Immediately after concrete place-
ment, the solids, including the cement particles, are in unstable equili-
brium and settlement forces water upward, thereby commencing the
development of a series of water channels, some of which extend to the
surface. Gradually the larger pieces of aggregate assume stabilized posi-
tions, through point contact or otherwise, and form a skeleton structure
within which settlement continues. The mortar settlement forces addi-
tional water upward, and part of it comes to rest below the larger pieces of
aggregate. Finally, between the sand grains, the cement tends to settle
out of the water-cement mixture (a water-cement ratio as low as about
0.30 by weight being required before the cement particles cease to be in
suspension) and to leave water voids above the settled cement paste. At



16 CONCRETE MANUAL

the completion of this stage in the mixed concrete, the initial water (the
principal contributor to objectionable voids) is no longer homogeneously
distributed in the paste but fills (1) relatively large spaces under aggregate
particles, (2) the fine interstices among settled cement particles, and (3)a
network of threadlike, interconnecting water passages. For air-entrained
concrete the internal pore structure is somewhat different because the
noncoalescing and separated spheroids of air reduce bleeding considerably
and also reduce the water channel structure. As hydration of the cement
proceeds (assuming that water is supplied as necessary) gel development
reduces the size of the voids and thereby greatly increases the
watertightness of the concrete. For this reason, prolonged thorough curing
is a significant factor in securing impermeable, watertight concrete.

8. Volume Change.—Excessive volume change is detrimental to
concrete. Cracks are formed in restrained concrete as a result of
contraction because of temperature drop and drying at early ages before
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sufficient tensile strength has developed. Cracking is not only a weakening
factor that may affect the ability of concrete to withstand its designed loads,
but also may seriously detract from durability and appearance. Durability is
adversely affected by ingress of water through cracks and consequent
accelerated leaching and corrosion of the reinforcement steel. Further
disintegration occurs when cracked concrete is exposed to freezing and thawing.
Concrete is also subject to disintegration when it contains alkali-reactive
aggregates and high-alkali cement (cement containing in excess of 0.60 percent
of equivalent soda) or is subjected to water bearing soluble sulfates. Differential
stresses in concrete occasioned by differences in volume change characteristics
of ingredients (see sec. 18 (d)) tend to break down the internal structure and
the bond between cement paste and aggregate particles and may cause
disintegration of the concrete particularly after repeated expansion and
contraction. Expansion of concrete, under restraint, may cause excessive
compressive stress and spalling at joints.

Drying shrinkage is affected by many factors which include, in order of
importance, unit water content, aggregate composition, and duration of initial
moist curing (see fig. 8). The principal drying shrinkage of hardened concrete
is usually occasioned by the drying and shrinking of the cement gel that is
formed by hydration of portland cement. Aggregate size, mix proportions, and
richness of mix, among other factors, affect drying shrinkage principally as they
influence the total amount of water needed in the mix. Additions of certain
pozzolans may increase the drying shrinkage and others may decrease it. This
effect is proportional to the pozzolan’s relative water requirement. Fly ash
typically reduces the drying shrinkage; natural pozzolans are variable in this
respect. Initial drying shrinkage, which is somewhat greater than the expansion
caused by subsequent rewetting, ranges from less than 200 millionths for dry,
lean mixes with good quality aggregates to over 1,000 millionths for rich mortars
or some concretes containing poor quality aggregate.

Concrete withstands compressive stress but allowable tensile strength of
concrete should seldom exceed 10 percent of the compressive strength.
. Concrete restrained to the extent that high tensile stresses are produced
through shrinkage will invariably crack. Total restraint could theoretically
produce tensile stresses ranging between 600 and several thousand pounds per
square inch, depending upon the shrinkage characteristics and elastic properties
of the particular mix.

Autogenous volume change, although it may occasionally be an
expansion, is usually shrinkage and is entirely a result of chemical reaction
within the concrete and aging. Furthermore, it is in no way related to
volume change resulting from drying or any other external influence. The
magnitude of autogenous shrinkage varies widely, ranging from an in-
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significant 10 millionths, the lowest value observed to date, to somewhat
in excess of 150 millionths. Autogenous shrinkage, in contrast to drying
shrinkage, is relatively independent of water content but highly dependent
upon the characteristics and amount of the total cementing material; it
is greater for rich mixes than for lean mixes. Portland cement-pozzolan
concretes always produce greater autogenous shrinkage than do similar
mixes without pozzolan. Usually the most significant autogenous shrinkage
takes place within the first 60 to 90 days after concrete is placed.

The thermal coefficient of expansion is the change (thermal expansion
or contraction) in a unit length per degree of temperature change. The
thermal coefficient of concrete varies mainly with the type and amount of
coarse aggregate and is slightly affected by richness of mix, water content,
and other factors. Various mineral aggregates may range in thermal coef-
ficients from below 2 millionths to above 7.5 millionths per degree F.
The coefficient for concrete is usually estimated to be the weighted average
of the coefficients of the various constituents; thus, the coarse aggregate
has the greatest effect.

The neat cement paste (gel) has a minor effect on thermal expansion.
The coefficients of neat cement pastes vary from below 6 millionths to
above 12 millionths depending upon saturation, age, degree of hydration,
and chemical composition. Usual values are between 5 and 8 millionths
for well-cured specimens in either dry or saturated condition; however,
intermediate moisture contents result in higher thermal expansions.

Normally, concrete aggregates, except crushed materials, are hetero-
genous mixtures of different rocks and act as an average of the more
common materials. Hence, average concrete, for estimating purposes,
changes about 5.5 millionths of its length for cach degree Fahrenheit of
temperature change. Volume changes resulting from temperature vari-
ations involve both aggregate and cement paste, and volume changes
caused by wetting and drying are usually considered to be principally
related to the cement paste. However, volume changes caused by thermal
and moisture changes can produce the same disintegrating effect. Dete-
rioration can also be produced by volume changes resulting from chemical
reactions between reactive constituents in the aggregate and the alkalies
(Na.O and K.,O) in the cement and also between soluble sulfates occur-
ing in the soil or ground water in contact with a concrete structure and
the tricalcium aluminate (C.A) compound in the cement.

Formation of cracks caused by volume change is largely dependent
on the degree to which contraction is resisted by internal and external
forces. An example of internal restraint conducive to exterior cracking
is a large block of concrete, the surfaces of which are drying or cooling
while the interior of the mass is not so affected. Concrete canal lining
is a good example of concrete subject to both internal and external re-
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straint. The external restraint varies with the type and condition of sub-
grade. Unreinforced lining on a subgrade such as sand is not greatly re-
strained, and cracks resulting from drying shrinkage are relatively far
apart and wide. On a rough, tight earth subgrade or on rock, where re-
straint is high, the cracks in unrcinforced lining are more closely spaced
and narrower. Reinforcement in the lining, through its bond to the con-
crete, distributes stresses and thereby reduces the spacing and width of
cracks. Difference between moisture contents of the exposed and back
faces may produce curling and eventual cracking.

Chemical combination of cement and water (hydration) is accompa-
nied by generation of considerable heat which, under certain conditions,
has an important bearing on the volume change of concrete. In small
structures heat of hydration is generally of little consequence as it is
rapidly dissipated. In massive structures heat of hydration may cause a
temperature rise of as much as 50° to 60° F, which may constitute all
or a large part of the difference between the maximum and minimum
temperatures of the concrete. Much of the heat is generated during the
carly age of the concrete, when compressive stress developed by restraint
of the expansion that accompanies temperature rise is relatively low. Two
conditions are responsible for this low stress: at early age the modulus of
elasticity is low; and creep, being greater, affords considerable relief of
stress. '

When heat is dissipated or removed, there is a decrease in the temp-
erature and consequent contraction of the concrete. This volume change
occurs at later age, when the modulus of elasticity is greater and stress
relief by creep is less. Tensile stress induced when contraction is re-
strained will cause cracking if the stress exceeds the tensile strength of
the concrete.

9. Strength.—Experience on Bureau work has demonstrated that con-
crete properly placed and cured will usually develop adequate compres-
sive strength when the maximum permissible water-cement ratio has
been established on the basis of durability requirement. Where greater
strength is required for structural members, it may be necessary to use
a lower water-cement ratio.

Tests of drill cores of more than 28 days’ age taken from structures al-
“most invariably show greater strengths than those obtained from control
cylinders that are standard cured for 28 days. The extent of such excess
strength generally varies with the age of the cores and the conditions
contributing to continued hydration of the cement. (See table 3.)

Routine compressive strength tests of specimens subjected to standard
moist curing give valuable indications of the uniformity and potential
quality of the concrete in a structure. Tests of cylinders which have been
cured out of doors, exposed to the weather, have no value and may be
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Figure 9.—Compressive strength of concrete dried in laboratory air after
preliminary moist curing. 288—-D-2644.

entirely misleading. The test results cannot be correlated with those for
standard-cured specimens and, because of their high surface-to-volume
ratio, the specimens do not simulate conditions in the structure. To de-
termine the adequacy of curing and strength development of concrete
representing that in precast pipe or other units, test cylinders are fabri-
cated and cured in a manner similar to that used in the manufacture and
cure of the units. In the manufacture of these precast concrete units,
steam curing is most generally used to accelerate production.

Figure 9 indicates that development of strength stops at an early age
if the concrete specimen is exposed to dry air with no previous curing.
Concrete exposed to dry air from the time it is placed is about 50 percent
as strong at 6 months’ age as concrete moist cured 14 days before being
exposed to dry air.

Curing temperatures have a pronounced effect on strength develop-
ment. Tests indicate that longer periods of moist curing are required at
lower temperatures to develop a given strength than are necessary at higher
temperatures. Continued curing at higher temperatures for the full 28-day
period (see fig. 10) resulted in strength development which varied directly
with temperature, the highest strength being developed by the highest
temperature at this age. However, at later ages this trend was reversed, the
specimens made and cured at lower temperatures developing the higher
strengths.

Curves shown in figure 11 represent concrete that was cured at 70° F
after the specimens were held at the casting temperature for 2 hours.
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Figure 10.—Effect of curing temperature on compressive strength of concrete.
288—-D—-2645.

Under such treatment, the specimens made at the lowest temperature
attained the highest strengths. These results agree with those obtained on
some Bureau projects where the strengths of field control cylinders were
higher during the cooler months than during summer months even though
all cylinders were moist cured at about 70° F soon after fabrication.

Compressive strength, tensile strength, flexural strength, and shearing
strength of concrete are all more or less directly related, and an increase
or decrease in one is generally reflected similarly in the others, though
not in the same degree. Where flexural strength is an important consid-
eration, as in the construction of road pavement, beam tests are fre-
quently employed for control purposes.

On a few occasions projects have reported significant reductions in
concrete compressive strengths at early ages, unexplainable by curing
conditions or testing procedures; the lower strengths were the result of
change in composition of the cement and/or a decrease in fineness. Lower
total amounts of C;A and C,S (see sec. 15a) will reduce early strength,
but variations in cement fineness cause greater fluctuations than vari-
ations in the usual ranges of C.A and C,S amounts. These fluctuations are
apparent in mill test reports of cube strengths. However, the compressive
strength at later ages is usually much closer. (See comparison between
types I and 11l cements with type IV in fig. 23.) Variations in cement
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Figure 11.—Effect of initial temperature on compressive strength of concrete.
288-D-2646.

fineness occur more frequently, exert more influence on concrete compres-
sive strengths, and affect the uniformity of concrete control since pri-
mary control is based on concrete strengths at 28 days’ age. In either
case, the ultimate strength of the concrete is minimally affected. Where the
cement used shows slow strength development, precautions may be neces-
sary to assure adequate strength before subjecting the structure to service
loads.

The degree of uniformity of concrete strength is a measure of success
or failure in attaining adequate field control. Without adequate quality
control of concrete manufacturing operations, wide variations in strength
will occur and extra cement will be needed to ensure that the quality of
the concrete will meet minimum requirements. Also, for concrete of a
given average strength, expectation of wide variations in strength neces-
sitates use of lower working stresses in design. Lack of reasonable uni-
formity in desirable properties, as indicated by strength variations, can be
expected to manifest itself eventually in objectionable variations in dur-
ability and higher cost of maintenance.

10. Elasticity.—Concrete is not a truly elastic material, and the graphic
stress-strain relationship for continuously increasing loading is generally
represented by a curve. For concrete that has hardened thoroughly and
has been moderately preloaded, the stress-strain curve is, for all practical
purposes, a line of constant slope within the range of usual working
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Figure 12.—Typical stress-strain diagram for thoroughly hardened concrete that
has been moderately preloaded. The stress-strain curve is very nearly a
straight line within the range of usual working stresses. 288-D—799.

stresses. The stress-strain ratio determined from the virtually straight
portion of the stress-strain curve is called the “modulus of elasticity.”
When the loads are increased beyond the working range, the stress-strain
curve may deviate considerably from a straight line, indicating that stress
and strain are no longer proportional (see fig. 12). However, the stress-
strain ratio is fairly uniform for compressive stresses up to 75 percent of
the 28-day breaking strength, as indicated in the figure. Usually, concretes
of higher strength have higher elastic values, although modulus of elas-
ticity is not directly proportional to strength. The elastic modulus for
ordinary concretes at age of 28 days ranges from 2 million to 6 million
pounds per square inch.

For most materials, the modulus of elasticity does not vary with age,
and the elastic recovery at the time of load removal is equal to the elastic
deformation at the time the load was applied regardless of the duration
of load application. In concrete, however, the modulus normally increases
with age so long as the concrete remains sound; therefore, both initial
deformation and subsequent elastic recovery depend on age. The increase
in modulus of elasticity as concrete ages accounts for a large part of the
tensile stress which develops when concrete that is restrained from ex-
panding and contracting freely is heated at an early age and cooled at a
later age.
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In addition to the static method of determining stress-strain relation-
ships, in which strains corresponding to test load stresses are measured
directly, the modulus of elasticity may be determined by dynamic
methods involving either measurement of the natural frequency of vibra-
tion of a specimen or measurement of the velocity of sound waves through
the material. Dynamic methods are used to determine the extent of de-
terioration of concrete specimens subjected to freezing and thawing tests
or affected by alkali-aggregate reaction. They provide simple and rapid
means for frequently determining the modulus of elasticity without
damage to the specimen. A decrease in the modulus, measured by a
lower natural frequency or wave velocity, indicates deterioration of the
concrete,

11. Creep and Extensibility.—When concrete is subjected to a constant
sustained load, the deformation produced by the load may be divided into
two parts: elastic deformation, which occurs immediately but would en-
tirely disappear on immediate removal of the load; and creep, which
develops gradually. In most concrete structures, dead loads that act con-
tinuously constitute a large part of the total load; thus, both immediate
strain and gradual yielding must be considered when computing deforma-
tions of such structures. Gradual yielding also has an important effect on
the development of stresses caused by slow temperature changes or dry-
ing shrinkage. This behavior has often been called plastic flow, but the
term creep is preferred to distinguish it from plastic action of a different
sort which may result in stress adjustments when a part of a structure or
member is overstressed. Plastic action of concrete, like the plastic flow
of metals, is irrecoverable and may be considered to be a type of incipient
failure; creep, however, is at least partly recoverable and occurs even at
very low stress.

Extensibility is the property of concrete that enables it to withstand
tensile deformation without cracking. Extensibility differs from strength
in that it involves limiting deformations rather than limiting loads. Elas-
ticity, creep, and extensibility are interrelated properties of considerable
importance.

(a) Creep.—Under sustained load the creep of concrete continues for
an indefinite time. In a long-term test, two concrete specimens under
sustained load were still showing deformation after 20 years. However,
creep proceeds at a continuously diminishing rate. The Bureau now de-
termines by a computer program the exact relationships of creep variables
from values determined in laboratory tests on the same maximum size
aggregate as that in the structure.

The following equation can be applied to experimental data from creep
tests to obtain an approximate value for the creep function.
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e=i+f(K) loge (¢+1)
E

where:

e=total deformation,

E = instantaneous elastic modulus,

f(K)=a function representing the rate of creep information with

time, and
= time under load in days.

The function f(K) is large when concrete is initially loaded at an early
age and small when concrete is loaded later in time. The function log.
(t+ 1) indicates that concrete continues to deform with time at a dimin-
ishing rate but with no apparent limit. Although tests made thus far ap-
pear to support the view that concrete will creep without limit, it is
generally assumed that there is an upper limit to creep deformation.

Figure 13 illustrates the deformation record of a typical laboratory test
specimen loaded at the relatively early age of 1 month but removed 6
months later. Because of the increased age of the concrete at the time
of unloading, the elastic and creep recoveries are lower than the deforma-
tions under load, the result being a nonrecoverable shortening if the load
were compression or a nonrecoverable elongation if the load were tensile.
The typical curves in figure 14 for 4- by 8-inch cylinders give a general
conception of the rate at which creep develops and of the effects of
changes in water-cement ratio and intensity of load. The curves show
that creep is increased with increasing water-cement ratio and that creep
is approximately proportional to load intensity. Most of the factors which
increase strength and modulus of elasticity reduce the creep. Generally,
concretes made with aggregates of loosely cemented granular structure,
such as some sandstones, creep more than those made with dense, com-
pact aggregates such as quartz or limestone. From a 10-year study of the
creep properties of five mass concretes, tests indicate that there is a de-
finite relationship between creep and elasticity and that if a creep-
strength relationship exists for concrete, it is small and hidden by the
effects of type of aggregate, type of cement, cement-aggregate ratio, in-
clusion of pozzolans, and possibly other conditions.

Creep is often taken into account approximately in design by using a
reduced value of the modulus of elasticity. When more exact relationships
are needed, such as in the computation of stress from strain measurements
in mass concrete, creep is susceptible to mathematical analysis and pre-
diction through the following general properties:

(1) Creep is a delayed elastic deformation involving no changes
corresponding to crystalline breakdown or slip and is not the plastic
flow of a viscous solid.

(2) At working stress creep is proportional to stress, but when
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Figure 13.—Elastic and creep deformations of mass concrete under constant
load followed by load removal. 288-D-1519.

stress approaches the ultimate strength of concrete, creep increases
much more rapidly than stress.

(3) When the effect of age on changing the properties of con-
crete is taken into account, all creep is recoverable.

(4) Creep is independent of sign; it bears the same proportion
to either positive or negative stress.

(5) The principle of superposition applies to creep.

(6) Poisson’s ratio is the same for creep strains as for elastic
strains.

(b) Extensibility—Measurements have been made of the extensions
(strains) on the tension faces of beams which were loaded progressively
until the first cracks became visible and of the extensions of direct tension
specimens to the point of failure. Extensibility is evidently a function of
elasticity, creep, and tensile strength, and its value depends not only on
the properties of the concrete but on the rate at which the tensile load is
applied. Under fairly rapid loading (too rapid to permit creep), plain
concrete beams have been extended about 150 to 190 millionths before
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Figure 14.—Rate of creep in concrete as affected by variation in water-cement
ratio and intensity of applied load. 288-D—800.
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the appearance of cracks visible to the unaided eye (open about 0.0015
inch). Sealed cylinders of concrete have been subjected to direct tension
in increments of 50 pounds per square inch at intervals of 28 days until
failure occurred. The total extension at time of failure ranged from 70
to 110 millionths. These values were from 1.2 to 2.5 times as great as
the extensions shown by direct-tension specimens under rapid loading.

The Bureau performed a series of tests on extensibility in which concrete
cylinders 6 inches in diameter and 24 inches long were cast at 70° F and
hermetically sealed in soft copper jackets, with strain gages embedded on
the longitudinal axes. The length of cylinders was held constant by spring
tension frames while the cylinders were taken through a rising and falling
temperature cycle simulating the temperature cycle in the interior of mass
concrete. During the first few days, temperatures reached maximums of
100° to 110° F, and the specimens were in compression. As temperatures
dropped, the stresses changed to tension. Specimens made with type I and
I cement ruptured under tensile stresses of 210 to 225 pounds per square
inch before the initial starting temperature of 70° F was reached.
Specimens made with type IV cement or a combination of 70 percent
type 11 cement and 30 percent pozzolan ruptured under ten