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Calibration of Free-Flow Radial Gates with Refined Energy Relations 
 

A.J. Clemmens1, Member, ASCE, and T.L. Wahl, Member2, ASCE 
 
Abstract: Laboratory experiments were conducted on a radial gate to evaluate the energy 
equation for free-flow calibration. The experiments were used to develop new equations 
for the radial gate contraction coefficient for free flow. These were compared to 
equations for the contraction coefficient of radial and vertical sluice gates developed from 
prior studies and potential flow theory. The new radial gate free-flow contraction 
coefficient was related to both the gate lip angle and the gate opening relative to energy 
head on the gate. The pressure distribution and velocity distribution coefficients were 
also evaluated. The energy loss through the gate was expressed as a function of the 
velocity head in the vena contracta, with a gate energy loss coefficient that varies with the 
relative gate opening. With the revised energy equations, the free-flow discharge 
predictions were computed for three data sets: 1) the data presented here (USWCL), 2) 
data from Tel (2000), and 3) data from Buyalski (1983). The coefficients were developed 
based on the USWCL data only. The average discharge computation error for the 
combined data sets was 0.37%, and the standard deviation was 1.03%. Submerged flow 
predictions are the subject of future work.  
 
Introduction 
 
Several methods have been developed for the calibration of sluice and radial gates under 
free-flow conditions. Henderson (1966) outlined a basic energy-momentum procedure for 
sluice gates.  For radial gates, Clemmens et al. (2003) developed a calibration procedure 
for both free and submerged flow that used the energy equation on the upstream side of 
the gate and the momentum equation on the downstream side, the E-M method. This 
method included empirical factors to account for upstream energy loss, velocity-
distribution effects, downstream channel wall forces, and submerged hydraulic jumps.  
The method can be used to calibrate gates with any upstream and downstream channel 
size and shape, and thus has advantages over the strictly energy-based methods. This 
paper evaluates use of just the energy equation under free-flow conditions.  
 
Montes (1997) evaluated the contraction coefficient for planar free-flow sluice gates 
based on potential flow theory and showed that it varied with gate angle and relative gate 
opening. Belaud et al. (2009) used momentum balances, with the pressure force exerted 
on the gate given by potential flow theory, to develop contraction coefficients for sluice 
gates in both free and submerged flow. Their results generally followed the relationships 
developed by Montes (1997) and Cassan and Belaud (2012). 
 
Following initial development of the E-M method for radial gates, additional 
experimental data were collected during 2004 and 2005 in the hydraulics laboratory of 
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the U.S. Water Conservation Laboratory before it was closed in 2006. The purpose of 
these experiments was to refine the method presented in Clemmens et al. (2003), 
particularly the various coefficients used to determine discharge. (Clemmens and Wahl 
2012). The analysis by Clemmens et al. (2003) used data reported by Tel (2000). 
 
In this paper, results are presented from analysis of the new experimental data and two 
previously collected data sets. New radial gate contraction coefficient equations are 
developed. The energy equation was also modified to include velocity-distribution and 
pressure-distribution coefficients that account for deviation from hydrostatic pressures 
and uniform velocity profiles. This gives the energy equation a stronger theoretical 
foundation.  
 
Theory 
 
Energy Equation 
The Energy-Momentum method suggested by Henderson (1966) and developed by 
Clemmens, et al. (2003) uses the energy equation upstream from the vena contracta and 
the momentum equation downstream. The energy equation is redeveloped here, 
considering non-uniform velocity distributions and non-hydrostatic pressure distributions. 
The general energy and momentum equations for open channel flow are derived in 
Henderson (1966) without those refinements. For steady flow, the energy equation 
between sections 1 and 2 in Figure 1 is: 

𝐻𝐻1 = 𝜆𝜆𝐸𝐸1𝑦𝑦1 + 𝛼𝛼1
𝑣𝑣12

2𝑔𝑔
= 𝜆𝜆𝐸𝐸2𝑦𝑦2 + 𝛼𝛼2

𝑣𝑣22

2𝑔𝑔
+ ∆𝐻𝐻12 

(1) 

 
where y is flow depth, v is average flow velocity, g is acceleration due to gravity, α is the 
velocity-distribution coefficient, ΔH12 is the energy loss between sections 1 and 2, and 
the λE coefficients account for the effects of a non-hydrostatic pressure distribution in the 
energy equation. Ideally, section 2 is located at the free-flow vena contracta position.  
Relationships for the pressure-distribution coefficient, λE, and the velocity-distribution 
coefficient, α, are discussed below. In Clemmens, et al. (2003), the gate energy loss ΔH12 
was computed as a function of the velocity at section 2.  With this assumption, Eq. (1) 
can be rearranged to read: 

𝜆𝜆𝐸𝐸1𝑦𝑦1 + 𝛼𝛼1
𝑣𝑣12

2𝑔𝑔
= 𝜆𝜆𝐸𝐸2𝑦𝑦2 + 𝛼𝛼2

𝑣𝑣22

2𝑔𝑔
+ 𝜉𝜉2 �

𝑣𝑣22

2𝑔𝑔
� 

(2) 

 
where ξ2 is the gate energy loss coefficient. 
 
For a rectangular gate in free flow, the depth at section 2 is equal to the vena contracta or 
jet depth, yj, which is usually computed with an empirically determined gate contraction 
coefficient, δ, 

𝑦𝑦2 = 𝑦𝑦𝑗𝑗 = 𝛿𝛿𝛿𝛿 (3) 
where w is the gate opening. In Fig. 1, θ is the angle of the gate lip relative to the 
horizontal, r is the gate radius, and T is the height of the trunnion pin. 
Substituting Q/(b2y2) for v2 in Eq. (2) and solving for discharge gives: 
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𝑄𝑄 = 𝑏𝑏2𝛿𝛿𝛿𝛿�
2𝑔𝑔(𝐻𝐻1 − 𝜆𝜆𝐸𝐸2𝛿𝛿𝛿𝛿)

𝛼𝛼2 + 𝜉𝜉2
 

(4) 

 
where b2 is the width of the gate and H1 is determined from the first part of Eq. (1). Eq. 
(4) is similar to that developed by Clemmens et al. (2003). The only difference is the 
addition of the pressure distribution coefficient.  
 
Clemmens et al. (2003) developed relationships for α2 + ξ2 as a function of Reynolds 
number, neglecting the pressure distribution coefficient. Wahl (2005) refined this 
relationship based on data from Buyalski (1983). In those relations, α2 + ξ2 got smaller 
for prototype structures, since ξ2 → 0 as the Reynolds number gets larger. This 
relationship will be examined with the new data and new equations.  
 
Velocity Distribution Coefficient 
Hydraulic theory suggests that the velocity distribution is uniform with an α coefficient 
close to 1.0 after a disturbance, and gradually approaches a slightly non-uniform 
distribution due to channel frictional resistance. A common assumption is that it 
approaches a power-law distribution, where the velocity at a distance y’ from the 
boundary is related to the fraction of the depth, Y=y’/y, raised to a power, typically about 
1/6 to 1/7. When the power is 1/6, the velocity distribution coefficient, α = 1.034. A 
power of 1/7 gives α = 1.03. For measurement flume design, Clemmens et al. (2001) 
suggest α1 = 1.04. In laboratory studies, Belaud et al. (2012) found average values of α1 
=1.045 and α2=1.038, with considerable scatter. For this analysis, 1.04 is used for both α1 
and α2. 
 
Gate Contraction Coefficients 
Tel (2000) developed an equation for the free flow contraction coefficients of sharp-
edged radial gates: 

𝛿𝛿(𝜃𝜃)𝐹𝐹 = 1.001 − 0.2349𝜃𝜃 − 0.1843𝜃𝜃2 + 0.1133𝜃𝜃3 (5) 
where θ is the gate lip angle in radians. He did not consider any variation with relative 
gate opening. 
 
Belaud et al. (2009) used the momentum equation with gate forces determined from 
potential flow theory to determine the contraction coefficient for vertical sluice gates, for 
which the gate lip angle is constant, θ = π/2. The solution varied with the relative gate 
opening, a = w/H1, and as a function of α. (It appears that the same value of α was used 
for all sections. Here, we refer to α2.) Belaud (Gilles Belaud personal communication 
2012) provided tabular data for the free-flow contraction coefficient for various values of 
α2 resulting from the analysis from Belaud et al. (2009). The contraction coefficient at a = 
0 and α2 = 1 was 0.618. But at a = 0 and α2 = 1.04, the contraction coefficient was 0.649. 
The contraction coefficients for α2 = 1.0 and for α2 = 1.04 were approximated with the 
following equations: 

𝛿𝛿 �
𝜋𝜋
2

,𝑎𝑎�
𝐹𝐹

= 𝛿𝛿 �
𝜋𝜋
2

, 0�
𝐹𝐹
− 0.06𝑎𝑎 + 0.026𝑎𝑎2 + 0.026𝑎𝑎3 α2 = 1.0 (6a) 
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𝛿𝛿 �
𝜋𝜋
2

,𝑎𝑎�
𝐹𝐹

= 𝛿𝛿 �
𝜋𝜋
2

, 0�
𝐹𝐹
− 0.056𝑎𝑎 + 0.039𝑎𝑎2 + 0.056𝑎𝑎3

+ 0.026𝑎𝑎4 + 0.025𝑎𝑎5 − 0.021𝑎𝑎6 − 0.675𝑎𝑎7
+ 0.970𝑎𝑎8 

α2 = 1.04 (6b) 

where δ(π/2,0)F is the free flow contraction coefficient for a vertical gate (δ = 0.618 for α2 
= 1.00 or  δ = 0.649 for α1 = 1.04). The eighth order function was necessary to fit the data 
provided by Belaud for α2 = 1.04, allowing the relationship to curve more sharply upward 
at higher values of a. These equations will be discussed in the results section, where the 
experimental data collected in this study will be used to determine an equation for the 
free-flow contraction coefficient δF as a function of both θ and a, namely δ(θ,a)F. 
 
Combined Coefficient 
The previous analysis by Clemmens et al. (2003) suggested that their combined velocity 
distribution and energy loss coefficient, α2 + ξ2, was related to the Reynolds Number for 
the flow approaching the gate, Re, where 

 𝑅𝑅𝑅𝑅 =
𝑣𝑣𝑔𝑔𝑅𝑅ℎ1
𝜐𝜐

 
(7) 

where vg is the velocity through the gate opening (Q/w/b2), Rh1 is the hydraulic radius of 
the approaching flow, and υ is the kinematic viscosity. The new laboratory data will 
determine whether a similar relationship exists after incorporating the refinements 
introduced above.  
 
 
Laboratory Experiment 
 
Laboratory experiments on a model radial gate were conducted in 2004 and 2005 at the 
U.S. Water Conservation Laboratory before it was closed in 2006. Experiments were 
conducted in two configurations: 1) a downstream channel with the same width as the 
gate; and 2) a wider downstream channel. A plan view of this experimental setup is 
shown in Figure 2. 
 
A 1.219-m (4-foot) wide (b0), 0.610-m (2-foot) high, 15.24 m (50-ft) long glass-sided 
flume was used to perform the tests. Water was supplied from a constant head tank and 
discharges were weighed in a large weigh-tank and scale system. The radial gate was 
0.457 m wide (b1 = b2) and had a radius (r), of 0.457 m, with a 3-mm-thick leaf and sharp 
metal edge gate lip. The gate was set between two 17.5-mm-thick by 1.219-m-long 
plexiglass side walls. Two quarter-circle pieces of sheet metal were used to narrow the 
channel by roughly 0.38 m on each side. The layout was modified by adding a 1.22 m 
long approach section, with the same width as the gate, between the gate chamber and the 
rounded transition. Surface waves were observed in the approach channel, so a floating 
surface skimmer was placed immediately downstream from the rounded transition to 
remove them before the upstream pressure measurement. The trunnion pin height, T, was 
0.366 m, located 0.091 m upstream from the downstream end of the side walls, which, if 
scaled, is typical of installations at the Salt River Project in Phoenix, AZ, from whom the 
experimental gate was obtained. The gate seat was located 0.854 m downstream from the 
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gate chamber entrance.  Downstream water depths were measured 4.6 m downstream 
from the trunnion pin. Additional details of the hydraulics lab facility can be found in 
Clemmens et al. (2003). 
 
The upstream and downstream water levels were measured with point gauges in stilling 
wells outside the glass flume. The pressure was siphoned from 2-cm diameter static tubes 
set near the floor. Upstream water levels were measured in both the full-width channel 
(Section 0) and in the gate chamber (Section 1).   The water levels at Section 2 were 
measured with the static side of a 5 mm-diameter Prandtl tube placed in the middle of the 
stream. The depth of water at Section 2 under free-flow conditions was also measured 
with a point gauge. All water levels and pressures were registered to the channel invert 
elevation immediately under the gate. The floor of the glass sided flume was stainless 
steel. The floor was set to a level position. The point gauge precision was 0.1 mm. 
 
All depth and flow measurements were collected each time a pressure measurement was 
taken within the vena contracta. Thus, those measurement conditions were observed 
multiple times. Slight variations were noted, even though conditions should have been 
stable. These measurements were generally different by fractions of a millimeter, but 
some larger deviations were noted. The results for each set of measurement conditions 
were pooled, and the average value of all measurements was treated as a single “Run.” 
This helped remove some of the random noise in the results. 
 
Tel (2000) used this same facility to conduct a limited number of free-flow tests, at one 
gate opening. Clemmens et al. (2003) used the data set from Tel (2000). The tests 
reported here were conducted with a wider range of conditions.  
 
Table 1 shows the conditions that were established for each free-flow run. These were 
chosen to give a wide range for w/H1. Each run was repeated several times. Before each 
test, standing water was used to register point gauges to one another and to the bottom of 
the channel. Machined blocks of the desired thickness were used to set the gate position, 
and the gate was clamped in place. The weir at the downstream end of the glass-sided 
flume was lowered to eliminate tailwater on the gate. The flow was turned on and the 
supply valve was opened to provide the desired upstream depth under free gate-controlled 
flow. Flow was stabilized for at least 20 minutes. All depth and pressure measurements 
were made. Several weight-tank measurements of flow were made while collecting these 
data.  
 
During initial tests, more extensive measurements of the pressure in the vena contracta 
were made. One issue was to determine the location of the vena contracta downstream 
from the gate. Another issue was the pressure distribution within the vena contracta. The 
depth and pressure at the vena contracta were measured at 3 locations across the width of 
the channel, roughly at ¼, ½, and ¾ of the width. These pressures were taken at roughly 1 
cm below the free surface and 1 cm above the floor, and at roughly 2 cm intervals in 
between, at the same width locations described above. This was done for several tests.  
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Calibration 
 
The data collected from the USWCL during 2004 and 2005 were used to determine the 
pressure distribution coefficients, energy loss coefficients, and contraction coefficients 
for free flow. The energy equation with these coefficients was used to compute the free-
flow discharge for the data collected in 2004 and 2005 (USWCL data), the data collected 
by Tel (2000) at the same facility, and the data collected by Buyalski (1983) for a sharp-
edged gate.  
 
The Buyalski data was collected from a gate and half-pier that were placed in a channel 
that was slightly wider than the gate, both upstream and downstream. Buyalski measured 
water levels in the full width channel but reported the downstream water levels as if the 
channel was the same width as the gate. Wahl (2005) computed the velocity head 
difference to adjust the downstream depths back to the actual channel width, assuming no 
head losses were applied in Buyalski’s adjustment process. The energy equation relates 
the head in the full-width upstream channel, H0, to the conditions in the gate chamber 
upstream from the gate (section 1)  

𝐻𝐻0 = 𝜆𝜆𝐸𝐸0𝑦𝑦0 + 𝛼𝛼0
𝑣𝑣02

2𝑔𝑔
= 𝜆𝜆𝐸𝐸1𝑦𝑦1 + 𝛼𝛼1

𝑣𝑣12

2𝑔𝑔
+ 𝜉𝜉01 �

𝑣𝑣12

2𝑔𝑔
−
𝑣𝑣02

2𝑔𝑔
� 

(8) 

where ξ01 is the energy-loss coefficient. The Buyalski layout had a more abrupt transition 
than the USWCL layout. The USWCL layout had a width of 1.231 m contracting to a 
0.452 m wide gate and a curved transition with a radius of about 0.38 m. The Buyalski 
channel was 0.76 m wide and the gate was 0.71 m wide. The transition geometry was not 
described in detail but appears in his figures to have a radius equal to the width change, 
or 0.05 m. This smaller radius transition probably functioned more like a blunt transition 
with ξ01 = 0.5. The upstream depths reported by Buyalski were converted to water depth 
in the gate chamber with Eq. 8 using the measured discharge and ξ01 = 0.5. 
 
Tel measured the water depth in the gate chamber (y1). The depths he reported were the 
depths in the approach (full-width) channel (y0), adjusted to account for the difference in 
velocity head between sections 0 and 1. We used the same procedure to convert back to 
the original gate chamber depth (y1). No energy correction needs to be applied to the 
measured gate chamber depth.  
 
 
Results 
 
Entrance losses 
The entrance contraction energy-loss coefficient was computed for all runs of the 
USWCL data set where water depths were measured in both Sections 0 and 1. The results 
are shown in Figure 3. There is considerable scatter in the data. The average value of  ξ01 
was 0.23.  
Because standing waves sometimes occurred in the gate chamber, the pressure measured 
there was not always reliable. There were cases where the depth in the gate chamber was 
greater than the depth in the upstream channel. The water surface in the upstream channel 



  

09 March 2022 7 

was always relatively tranquil. Where a depth was measured in the upstream channel, a 
depth was computed in the gate approach channel from Eq. (8) with ξ01 = 0.23. Using this 
depth did not significantly reduce the scatter in the data and did not resolve any outliers 
in prediction of discharge. Results from the recalculated depth in the gate approach 
channel are not reported. 
 
 
Pressure-Distribution Coefficients (λE2) 
Static pressures measured in the laboratory demonstrated that the pressure distributions in 
the jet downstream from a radial gate are not hydrostatic, with much higher pressures at 
greater distances below the free surface. This is consistent with the effects of streamline 
curvature. The observed behavior was essentially the same at all horizontal locations.  
Pressure distribution coefficients were obtained by numerically integrating the observed 
pressures. Figure 4 shows values of λE2 from the experimental data. For many data sets, 
only two pressures were taken: one near the surface and one near the bottom. These gave 
only approximate values of λE2, based on three line segments: hydrostatic pressure at the 
surface to upper pressure reading, upper to lower pressure readings, and lower pressure 
reading extended as a constant value to the floor.  These are labeled as “USWCL Free 2 
pt.”  
 
The equation fit to the data is: 

𝜆𝜆𝐸𝐸2 = 1.06 − 0.21 
𝑦𝑦2
𝐻𝐻1

+ 0.15 �
𝑦𝑦2
𝐻𝐻1
�
2
 

(9) 

Examples of the measured pressure distributions are shown in Figure 5, for different 
values of y2/H1. This graph shows the measured static pressure relative to the measured 
water depth. If the pressures are hydrostatic, the relative pressure would be 1. Note that at 
low values of relative depth (y2/H1) where free flow exists, the pressures are above 
hydrostatic at all vertical locations. As y2/H1 increases, the pressures start to drop below 
hydrostatic just below the water surface.  The relative depth is 0 at the floor and 1 at the 
water surface. 
 
 
No measurements were taken for the pressure distribution upstream from the gate, so 
hydrostatic pressure is assumed, with λE1 = 1.0. 
 
Gate Contraction Coefficient, δ 
Based on the USWCL data, a best fit relationship was found for the gate contraction 
coefficient δ(θ,a)F as a function of the gate lip angle θ and a = w/H1. These coefficient 
values were found manually to minimize the sum of squares of deviations between 
measured and predicted gate openings. The resulting relationship is: 

𝛿𝛿�𝜋𝜋 2� , 0�
𝐹𝐹

= 0.682 (10a) 
𝛿𝛿(𝜃𝜃, 0)F = 1 − 0.3179𝜃𝜃 + 0.007𝜃𝜃2 + 0.0494𝜃𝜃3 − 0.0045𝜃𝜃4 (10b) 

𝛿𝛿(𝜃𝜃, 𝑎𝑎)F = 𝛿𝛿(𝜃𝜃, 0)F + [1− 𝛿𝛿(𝜃𝜃, 0)F]�−0.397𝑎𝑎 − 0.035𝑎𝑎2 + 0.34𝑎𝑎3 + 0.675𝑎𝑎4� (10c) 
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Eq. (10) gives a value of 1.0 for the gate contraction coefficient at θ = 0; i.e., like a 
perfectly streamlined nozzle. The results for δF as a function of θ are shown in Figure 6. 
The best fit line is from Eq. (10b). This equation is an extrapolation to a = 0. It does not 
fit the data directly since there are no measured values at a = 0. Note that the value of δF 
at π/2 (0.682) is higher than the value of 0.611 suggested by Montes (1997) for ideal flow 
and slightly higher than the value of 0.649 determined by Belaud et al. (2009) for a value 
of α2 = 1.04. Tel (2000) did not consider the effect of w/H1, so the fit is quite different.  
 
Figure 7 shows the value of δF as a function of a = w/H1 from Eq. (10c), for θ = π/2 
(roughly 1.57). The fitted curve lies slightly above the Belaud et al. (2009) curve for α2 = 
1.04. The Belaud curve for α2 = 1.00 is even lower. The data used to develop the 
relationship was collected for the range of θ from roughly 0.8 to 1.2, but the curve 
represents an extrapolation of the measured data to θ = π/2 (roughly 1.57). Thus, the 
deviation from the Belaud et al. (2009) relationship is not surprising. The data for each 
value of gate opening, and thus θ, are shown in Figure 7 along with the predicted 
relationship (Line). The error in predicted δF for Eq. (10) is shown in Figure 8. One data 
point was found to be an outlier (more than 5 standard deviations from mean). 
 

Gate Energy Loss Coefficient, ξ2 
Eq. (4) can be rearranged to solve for ξ2.The value of ξ2 can be determined from Eq. (4) 
with measured values of b2, Q and yj (δw), a known value for g = 9.807 m/s2, an assumed 
value of α2 = 1.04, and λ2E from Eq. (9). Two different methods were explored for 
determining the energy loss for flow through the gate, ΔH12. These include: 

∆𝐻𝐻12 = 𝜉𝜉2 �
𝑣𝑣22

2𝑔𝑔
� 

(11a) 

∆𝐻𝐻12 = 𝜉𝜉12 �
𝑣𝑣22

2𝑔𝑔
−
𝑣𝑣12

2𝑔𝑔
� 

(11b) 

  
  

The first method is that used by Clemmens et al. (2003) and used to develop Eq. (4). The 
second method is attempting to determine loss as a function of change in velocity head. 
This approach did not prove to be more useful than the first method and the energy 
equation is slightly more complicated. Based on this analysis, the energy loss is predicted 
based only on the vena contracta velocity, as in Clemmens et al. (2003). 
 
The data from Buyalski (1983) did not include measurement of the vena contracta depth. 
Thus, the energy loss cannot be estimated from measured data. To overcome this, the 
contraction coefficient from the observed USWCL data was used. Using this method for 
all three data sets provided more refined estimates of the loss coefficient, as shown in 
Figure 9. This analysis showed that δF(w/H1) or y2F/H1 provided a better estimate of ξ2 
than Reynolds number. The resulting relationship is 

𝜉𝜉2 = 𝐾𝐾𝜉𝜉 𝛿𝛿𝐹𝐹𝛿𝛿 𝐻𝐻1⁄  (12) 
The value of Kξ is 0.195 for the raw USWCL data. Using Eq. 10 to define the contraction 
coefficient gave values of Kξ of 0.199 for the USWCL data and 0.210 for all three data 
sets combined.  Figure 9A shows the results from the raw data while Figure 9B shows the 
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results when δ is determined from Eq. 10 for all three data sets. The slope of the line is 
Kξ. There were two outliers (more than 3 standard deviations from regression estimate) in 
the USWCL data. 
 
Free-Flow Discharge Prediction 

Once values for δ, λE1, λE2, α1, α2 and ξ2 are known, the discharge under free flow can be 
computed from Eq. (4) with measured values of b2, y1 and w. The value of θ is found 
from gate opening, w, and gate geometry. The value of δ is found from Eq. (10). The 
following values were used for the other parameters; λE1 = 1, α1 =1.04, α2 =1.04, λE2 is 
computed from Eq. (9), and ξ2 is computed from Eq. (12). Solution of Eqs. (4), (9), (10) 
and (12) is iterative since the velocities are dependent on the discharge. Iterations start 
with any discharge, even Q=0. Then the velocity v1 is calculated followed by the energy 
head H1 and the rest of the terms from Eqs. (9), (10) and (12), Solving Eq. (4) gives a 
discharge and the process is repeated until the discharge converges. These equations were 
solved for free-flow runs from the USWCL laboratory data, Tel (2000) data and Buyalski 
(1983) data. The results are shown in Figure 10 and Table 2. The accuracy values are 
(predicted-measured)/(free-flow) value. Table 2 shows simple numerical averages and 
standard deviations. 
 
Figure 10A shows the results when ξ2 is found from the USWCL raw data, with Kξ = 
0.195. Table 2, column 2 shows the numerical results. As expected, the USWCL errors 
are minimized. Figure 10B shows the results when ξ2 is found from all data sets, with δ 
from Eq. (10), which is required for the Buyalski data since contraction coefficients were 
not measured. Table 2, column 4 shows the numerical results. A value of ξ2 = 0.210 gives 
the minimum value of the mean square error in discharge. With both methods, the 
Buyalski errors are almost 1% higher than the USWCL errors.  

 
Discussion 
The range of a = w/H1 observed in this data set was 0.110 to 0.713. Attempts to obtain 
higher values of a were unsuccessful. At the lower upstream water depths associated with 
higher values of a, flow passed under the gate. No attempt was made to define the 
conditions under which this occurred. 
 
The location of the vena contracta was measured during several of  the early runs by 
locating the point of minimum depth. The commonly used value is 2 times the gate 
opening downstream from the gate lip. In some cases, measurements showed it to be as 
much as 3 or 4 times the gate opening downstream. It is possible that the location of the 
vena contracta is a function of gate angle and/or w/H1, but this was not examined in 
detail. Further evaluation of this length should be investigated in future research.  
 
The results for free flow are sufficiently accurate to meet typical flow-measurement 
objectives. The empirical, best-fit results for the contraction coefficient gave better 
results than use of relationships from Belaud et al. (2009). Further improvements in these 
equations might be possible. Submerged flow has proven to be more challenging. The 
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results for submerged flow will be presented in a future paper using a method starting 
from the free-flow approach presented here. 
Earlier versions of this method (Clemmens et al., 2003 and Wahl, 2005) have been 
programmed into a software package for determining check structure discharges (with 
multiple gates) to make these result easier to use in practice. This software package is 
described in Wahl and Clemmens (2012). The software will be updated with these new 
relationships. 
 

Conclusions 
 
Pressure-distribution, velocity-distribution, energy loss, and contraction coefficients were 
developed for free flow radial gates. The pressure distribution coefficient was a function 
of the ratio of vena contracta depth to upstream energy head, y2/H1. The contraction 
coefficient was a function of both gate lip angle, θ, and relative gate opening a = w/H1. 
The energy loss through the gate chamber to the vena contracta was effectively modeled 
as a function of vena contracta velocity. A relationship was developed for the gate loss 
coefficient as a function of relative gate opening.   
 
Laboratory data from three sources were used to compare observed flow rates to solution 
of the energy equation, with the coefficients derived from the USWCL laboratory data. 
The prediction accuracy (95% confidence interval) with these results was within roughly 
± 2%. Submerged flow will be examined in a future paper.  
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Acknowledgement 
This research was supported by the USDA Agricultural Research Service and the US 
Bureau of Reclamation.  
 
References 
 
Belaud, G., Cassan, L., and Baume, J-P. 2009. Calculation of contraction coefficient 
under sluice gates and application to discharge measurement. Journal of Hydraulic 
Engineering, 135(12):1086-1091. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000122 
 
Belaud, G., Cassan, L. and Baume, J.-P. 2012 Contraction and correction coefficients for 
Energy-Momentum balance under sluice gates. Proceedings of the 2012 World 
Environmental & Water Resources Congress, Albuquerque, NM, May 20-24, 2012, 
ASCE, Reston, VA, 2116-2127. https://doi.org/10.1061/9780784412312.212 
 
Buyalski, C.P.  1983.  Discharge Algorithms for Canal Radial Gates.  U.S. Department of 
the Interior, Bureau of Reclamation, Research Report REC-ERC-83-9, Denver, CO. 
 

https://doi.org/10.1061/(ASCE)HY.1943-7900.0000122
https://doi.org/10.1061/9780784412312.212


  

09 March 2022 11 

Cassan, L. and Belaud, G. 2012. Experimental and numerical investigation of flow under 
sluice gates. Journal of Hydraulic Engineering, 138(4):367-373. 
https://doi.org/10.1061/(ASCE)HY.1943-7900.0000514 
 
Clemmens, A.J. and Wahl, T.L. 2012. Computational procedures used for radial gate 
calibration in WinGate. Proceedings of the 2012 World Environmental & Water 
Resources Congress, Albuquerque, NM, May 20-24, 2012, ASCE, Reston, VA, 2106-
2115. https://doi.org/10.1061/9780784412312.211 
 
Clemmens, A.J., Wahl, T.L., Bos, M.G., and Replogle, J.A. 2001. Water Measurement 
with Flumes and Weirs. Publication No. 58, International Institute for Land Reclamation 
and Improvement, Wageningen, The Netherlands. 382 pp. 
 
Clemmens, A.J., Strelkoff, T.S., and Replogle, J.A. 2003. Calibration of submerged 
radial gates. Journal of Hydraulic Engineering, 129(9):680-687. 
https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(680) 
 
Henderson, F.M. 1966. Open Channel Flow. MacMillan Publishing Co., Inc., New York. 
 
Montes, J.S. 1997. Irrotational flow and real fluid effects under planar sluice gates. 
Journal of Hydraulic Engineering, 123(3):219-232. https://doi.org/10.1061/(ASCE)0733-
9429(1997)123:3(219) 
 
Tel, J. 2000. Discharge Relations for Radial Gates. MSc Thesis, Delft Technical 
University, Delft, The Netherlands, 86 pp. plus Appendices. 
 
Wahl, T.L. 2005. Refined energy correction for calibration of submerged radial gates. 
Journal of Hydraulic Engineering, 131(6):457-466. https://doi.org/10.1061/(ASCE)0733-
9429(2005)131:6(457) 
 
Wahl, T.L. and Clemmens, A.J. 2012. WinGate software for discharge calibration of 
gated check structures. Proceedings of the 2012 World Environmental & Water 
Resources Congress, Albuquerque, NM, May 20-24, 2012, ASCE, Reston, VA, 2206-
2212. 
Notation 
a – w/H1 
b – bottom width 
g – acceleration of gravity 
H – energy head 
K – empirical constant 
Q – discharge 
r – gate radius 
Rh – hydraulic radius 
Re – Reynolds Number 
T – trunnion-pin height 
v – velocity 
w – gate opening 

https://doi.org/10.1061/(ASCE)HY.1943-7900.0000514
https://doi.org/10.1061/9780784412312.211
https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(680)
https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(219)
https://doi.org/10.1061/(ASCE)0733-9429(1997)123:3(219)
https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(457)
https://doi.org/10.1061/(ASCE)0733-9429(2005)131:6(457)


  

09 March 2022 12 

y – water depth 
α – velocity distribution coefficient 
Δ - change 
δ – contraction coefficient 
ξ – energy loss coefficient 
λ – pressure distribution coefficient 
π – ratio of circumference to diameter of circle 
θ – gate lip angle 
Subscripts 
0 – upstream section 
1 – gate chamber upstream from gate 
2 – location of the gate vena contracta  
3 - measurement location downstream from gate 
E – associated with energy equation 
F – free-flow conditions 
ξ - associated with energy loss 
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Table 1. Experimental free-flow test conditions. 

Upstream 
head 

y1 
(m) 

Gate Opening  
w 

(m) 

Expected 
y2 for free 
flow (m) 

0.45 0.05 0.0375  
0.48 0.10 0.0709  
0.48 0.15 0.1013  
0.40 0.05 0.0375  
0.40 0.20 0.1299  
0.33 0.05 0.0375  
0.33 0.10 0.0709  
0.33 0.20 0.1299  
0.30 0.15 0.1013  
0.30 0.20 0.1299  
0.25 0.05 0.0375  
0.15 0.10 0.0709  
0.13 0.05 0.0375  
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Table 2. Free-flow discharge accuracy 

 When ξ2 fit to 
USWCL Data 

with measured δ 

When ξ2 fit to 
USWCL data with 

Cc from Eq. 10 

When ξ2 fit to 
All data with Cc 

from Eq. 10 

 Kξ = 0.195 Kξ = 0.199 Kξ =0.210 

Overall    

Average Error 0.37% 0.32% 0.20% 

Standard Deviation 0.96% 0.97% 0.99% 

Mean Square Error 1.03% 1.02% 1.01% 

USWCL    

Average Error -0.04% -0.09% -0.25% 

Standard Deviation 0.88% 0.87% 0.85% 

Mean Square Error 0.88% 0.87% 0.88% 

Tel    

Average Error 0.07% 0.01% -0.15% 

Standard Deviation 1.19% 1.19% 1.20% 

Mean Square Error 1.19% 1.19% 1.21% 

Buyalski    

Average Error 0.68% 0.64% 0.54% 

Standard Deviation 0.85% 0.86% 0.90% 

Mean Square Error 1.25% 1.24% 1.22% 
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