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Executive Summary

Analytical studies were performed to estimate the erosion potential of flows
passing through the spillway and over the parapet wall of Thief VValley Dam for
frequency floods ranging from 100-yr to the PMF. These flows are free jets,
relatively thin, high velocity flows that travel through the air from the dam crest
or spillway flip bucket down to the tailwater pool. The jets are influenced by
gravitational acceleration, air entrainment, and turbulent dissipation as they travel
through the air and as they penetrate into the tailwater pool.

Stream power intensities were calculated for jets impinging on areas downstream
from the dam, both above and below the surface of the tailwater pool. Jet
trajectories were calculated and plotted, and spreading of the jets and dissipation
of the jet core were estimated both in the air and in the tailwater pool. The
calculated values of stream power intensity and headcut erodibility index values
of rock in the impact zones of the jets could be used to determine zones of
expected erosion. This study focused on analysis of the jet flows and calculation
of stream power intensities; headcut erodibility index values for the downstream
rock will be estimated separately.

The highest values of stream power intensity occur just above the surface of the
tailwater pool for the 1,000-yr flood. The jets associated with smaller floods are
predicted to break up before reaching the tailwater pool. For larger floods, jets
remain intact, but the tailwater level increases significantly, and stream power
intensity drops off rapidly as the jets penetrate into the tailwater pool. Although
maximum stream power intensity drops for floods larger than the 1,000-yr event,
the overall erosive capability of those floods may still be significant, since the
thicker jets contain more total energy, albeit spread over a larger area. This study
did not specifically analyze the erosive capability of flows outside of the jet
impingement zones.

A brief review of assumptions regarding discharge coefficients of the spillway
and dam crest was made at the outset of this study. That review indicated that
discharge coefficients were probably underestimated in previous studies, leading
to slightly higher predicted maximum water surfaces to pass given floods. This
leads to slightly larger drop heights and greater stream power intensities.



Purpose

This technical memorandum presents the results of analytical studies performed to
partially address the following Safety of Dams (SOD) recommendation for Thief
Valley Dam:

1997-SOD-D Using stream power and erodibility index relationships or
other methods, assess the potential for rock erosion and subsequent
instability under high spillway discharges, within a risk assessment
framework.

Background

Thief Valley Dam is a water storage feature serving the Lower Division of the
Baker Project, located on the Powder River in northeastern Oregon, about 16
miles north of Baker City and 54 river miles downstream from Mason Dam. The
dam, completed in 1932, is owned by the Bureau of Reclamation and operated
and maintained by the Lower Powder River Irrigation District. The dam is a
390-ft long, reinforced concrete, slab and buttress (Ambursen) structure, with a
structural height of 73 ft and a hydraulic height of 48 ft. The original active
storage in Thief VValley Reservoir was 17,400 acre-feet. A sedimentation survey
completed in 1992 estimated the active capacity at 13,300 acre-feet with a surface
area of 685 acres.

The service spillway for the dam is an uncontrolled ogee crest in the center of the
dam with a width of 267.83 ft. Spillway capacity is reported to be between
32,200 ft*/s and 34,000 ft}/s. Dam segments on the right and left sides of the
spillway have lengths of 59.52 ft and 62.65 ft, respectively. Parapet walls at the
upstream edge of the dam crest extend up to elevation 3146.0 ft on both sides of
the spillway, and the downstream edge of the dam crest is equipped with a
handrail. Figure 1 shows a close view of the dam and spillway, and Figure 2
provides a view aligned with the river channel that illustrates some impingement
of spillway flows on outcroppings of rock downstream from the dam. Appendix
C provides original drawings of the dam and spillway.



Figure 2. — Thief Valley Dam and Reservoir on the Powder River, Oregon.

Probable Maximum Flood (PMF) hydrographs for Spring (May) Rain-on-Snow
and Fall (November) General Precipitation events were developed in 1990. A
1992 analysis of hydrologic and hydraulic issues was performed by Harza
Engineering Co. (Schickedanz 1992) and determined that the November PMF



produced the largest peak outflows from the dam. The reservoir routing study
predicted 16 hours of overtopping and a maximum overtopping depth of 11 ft
(maximum reservoir water surface elevation 3156.9 ft). Significant assumptions
of the Harza study included:

e The dam crest parapet wall remains intact throughout the passage of the
PMF. The crest length was assumed to be 120 ft and the discharge
coefficient was 2.64. No adjustment was made for an additional increase
in crest length as the reservoir rises above the top of the parapet walls and
begins to also overflow the sloped abutments above the top of the dam.

e The service spillway rating curve was extended above reservoir elevation
3143.0 ft using a constant discharge coefficient of 4.0, which matches the
coefficient corresponding to a discharge of 34,000 ft*/s at reservoir
elevation 3143.0 ft.

The Harza study also estimated the associated tailwater elevations using a
DAMBRK computer model simulation of the routed PMF through a 1.6 mi reach
of the river downstream from the dam. No tailwater study for lower flow rates is
known.

Additional hydrologic studies (Wright 2004) developed reservoir inflow
hydrographs for return intervals from 100 to 100,000,000 years. A subsequent
routing study (Stowell 2005) produced estimates of peak outflow through the
spillway for each of these floods, assuming an initial reservoir water surface
elevation of 3133.0 ft. This study also assumed the discharge coefficient of the
dam crest to be 2.64. Results from this study are summarized in Table 1, along
with the results from the PMF study by Harza. These provide basic input data
required to analyze the flow conditions over the spillway and the dam crest with
the objective of characterizing the potentially erosive jet flows that are produced
downstream from the dam in different flood scenarios.

Table 1. — Flood routing results.

Return period, yr MWSE Peak routed Q, cfs

100 3135.56 3828
500 3136.17 5306
1,000 3136.47 6033
10,000 3137.51 9040
100,000 3138.59 12670
1,000,000 3139.75 17187
100,000,000 3142.31 28795

PMF 3159.99 136926*

* Spillway discharge for the PMF is approximately 120,000 ft*/s and discharge overtopping the
dam is about 16,900 ft*/s.



Discharge Coefficients

A brief review of the previous studies raises some questions about the discharge
coefficients used for the spillway and dam crest. The discharge coefficient of
2.64 used for the dam crest in the 1992 and 2005 studies is discussed in the 1992
Harza report. The report states that this discharge coefficient corresponds to a
weir breadth of 10 ft, but the total dam crest width is 7.5 ft and the parapet wall
thickness is only 1.5 ft. The low C value was also said to account for “turbulence
introduced by flow through the hand railing and the short drop from the sharp-
crested upstream wall to the parapet deck.” This explanation is inconsistent with
several characteristics of the flow situation:

1) The hand rail is likely to fail and be removed by the flow and associated
debris during a large event,

2) The hand rail is located downstream from the parapet wall and the critical
depth location and thus cannot regulate the flow, and

3) The trajectory of flow over the parapet wall will completely miss the
entire concrete deck for any head greater than about 5 ft (Hulsing, 1967).

Given these observations, it is likely that flow will spring free from the upstream
edge of the parapet wall and the parapet wall will function as a sharp-crested weir
with a discharge coefficient in the range of 3.3 or higher.

Figure 3 shows the spillway discharge curves used in the 1992 Harza study and
for the 2005 flood routing study by Reclamation. For reservoir elevations below
3143.0 ft, both studies used the discharge curve provided on original design
drawings. For higher elevations, the Harza study assumed a constant discharge
coefficient of 4.0, while the 2005 study used a discharge curve that implies
reduced discharge coefficients for higher reservoir elevations. However, past
research on the performance of ogee crest spillways at high heads suggests that
the discharge coefficient of this spillway will increase as the operating head
exceeds the design value because of suction beneath the nappe that draws
additional flow over the crest (Vermeyen 1992). This increase will typically
continue for heads as high as 3 to 5 times the design head. The design head for
this spillway was estimated at 10.33 ft by matching the shape to idealized ogee
crest shape equations given in Design of Small Dams (Reclamation, 1987). Thus,
the spillway discharge coefficient should continue to increase up to at least
reservoir elevation 3164.0 ft (3 times the design head).



Spillway Discharge Curves - Thief Valley Dam
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Figure 3. — Spillway discharge curves used in previous hydrologic and hydraulic studies
of Thief Valley Dam.

These issues make it likely that the capacity of both the spillway and the dam
crest were probably underestimated in the 2005 flood routings, and the 2005 study
thus predicts higher reservoir elevations for each given flood event than would
actually occur. However, because the volume of the floods considered is much
greater than the storage volume of Thief VValley Dam, reservoir attenuation effects
were probably small in the routing study, and predicted maximum discharges are
probably close to the values that would be obtained if the study were repeated
with revised discharge coefficients.

For the purposes of this study, the results of the 2005 flood routing study were
considered to be conservative, since they indicate higher reservoir levels for a
given flood flow, and these higher reservoir levels and greater drop heights will
produce higher-energy jet flows over the spillway and dam. The 2005 flood
routing study results were thus accepted and used as the basis for this study of the
erosion potential of spillway and dam overtopping flows.

Modeling Spillway and Overtopping Jet
Flows

Spillway and dam overtopping flows will produce free jets emanating from the lip
of the spillway flip bucket and the crest of the dam parapet wall. These planar or
rectangular jets will travel through the air, undergoing changes in thickness and



velocity due to gravitational forces, and experiencing air entrainment due to
turbulence induced free surface disturbances and interaction with the surrounding
air. Figure 4 shows a schematic diagram of the primary physical processes that
occur in a free jet as it travels through the air and into a plunge pool. The diagram
shows an idealized jet issuing vertically down that is assumed to be initially
intact, composed of 100% water with no entrained air. In the case of the Thief
Valley Dam spillway, the jet will initially leave the spillway lip at an angle related
to the flip bucket geometry. There is some possibility for air entrainment into the
spillway flow before the jet leaves the flip bucket, but this will be neglected. As
the jet travels through the air, it will entrain air at the edges and the thickness of
the “black water” core of the jet will diminish. Eventually the jet may break up
fully into clumps and droplets of water with no black water core. Upon entering
the tailwater pool, the jet will undergo additional changes as it penetrates into the
pool. The core of the jet will diminish rapidly in size and the edges of the jet will
experience turbulent mixing as air and water from the tailwater pool are entrained
in the shear zone created by the jet as it plunges.

The objective of the analysis described in this section is to estimate the
characteristics of the jets associated with spillway and dam overtopping flows that
are related to the potential for erosion of soil and rock surfaces downstream from
the dam (e.g., abutments, the bottom of the tailwater pool, etc.). The
characteristics of the jet that will be the focus of this study are the trajectory
(position), the thickness (to map the areal extent of the impingement zone), the
velocity, and the associated energy content of the jet. To enable an evaluation of
erosion potential, the energy and areal extent of the jet will be combined to
determine the amount of energy per unit area being applied at the point of flow
impingement. The analysis described in the sections that follow was carried out
for the spillway flows associated with each of the frequency flood events shown
in Table 1, and for the dam overtopping flow associated with the November PMF
event. The spillway flows during the November PMF were not modeled because
the predicted tailwater elevation during the PMF submerges the spillway crest by
more than 3 ft, and the spillway flip bucket lip is submerged by more than 15 ft.
This negates the assumptions made in the analysis of the free jet flows.
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Figure 4. — Schematic representation of a free jet traveling through air and entering a

plunge pool (Ervine and Falvey 1987).

Previous studies of similar flow situations have been undertaken for other

Reclamation dams. These include:

e Overtopping of Gibson Dam (Frizell 2006);

e Overtopping of Owyhee Dam (Frizell 2006);

e Overtopping of Arrowrock Dam (Frizell 2007); and
[ ]

Overtopping of Yellowtail Dam (Frizell 2009).



This study used similar procedures as the previous studies, with consideration of
the effects of the spillway chute and flip bucket and new literature published since
2009 relating to the modeling of jet flows.

Jet Trajectory

Jet trajectories were calculated using equations that describe the free-fall motion
of a projectile neglecting aerodynamic effects. Ina form that is convenient for
this application, the elevation of the jet, y, at a given horizontal distance from the
take-off point (x = 0) is (Wahl et al. 2008):

x2

y = xtan6 4h,(cosf)?

where y is the elevation below the takeoff point (y=0 at takeoff), x is the
horizontal distance from the takeoff point, 6 is the initial angle of the jet from
horizontal at the takeoff point, and h, is the initial velocity head at the takeoff
point. This equation was applied to the underside of the nappe and the position of
the top side of the nappe was computed relative to the underside based on the jet
thickness (see below). For jets overtopping the parapet wall the initial takeoff
angle was assumed to be zero (horizontal), and for the jets issuing from the
spillway the takeoff angle was assumed to be -25.1°, the angle of the flip bucket
lip. The initial flow depth for dam overtopping was computed as (Wahl et al.
2008)

dbrink:0-477Hovtop

and the initial velocity and velocity head were determined by continuity. For jets
issuing from the spillway, the flow depth and velocity at the takeoff point were
determined by applying the energy equation from the reservoir pool to the flip
bucket lip, with a conservative assumption of zero energy loss due to friction
down the approximately 25-ft long spillway chute. Pfister et al. (2014) showed
that the actual jet takeoff angle from a flip bucket is typically less (lower angle)
than the physical bucket lip angle, causing the actual jet throw distance to be
shorter than one would compute based on the bucket lip angle. However, all of
their data were obtained from buckets with larger angles than the Thief Valley
spillway and when their equations are extended to the Thief Valley case they
predict a takeoff angle that is actually greater (higher) than the flip bucket angle.
Since this seems implausible, the bucket lip angle was used here without
modification.

The velocity of the free-falling jet was calculated initially by assuming no
dissipation or spreading of the jet. Applying the energy equation to the jet, the
average velocity at any elevation along the free-fall trajectory can be computed as



V= |v2+29z

where V; is the initial average velocity, g is the acceleration due to gravity, and Z
is the fall distance. A spreadsheet was used to compute the jet velocities and
trajectory coordinates at incremental elevations from the takeoff point to the
location at which the jet impacted the tailwater surface. The tailwater elevation
for each flow rate was estimated from

TW = (Q/207.4)(1/165) + 3085

This equation was generated by fitting two data points to an assumed equation
form:

e tailwater at zero discharge equal to the estimated downstream channel
bottom elevation = 3085 ft, and

e estimated PMF tailwater elevation at 138,000 ft*/s = 3136.4 ft
(Schickedanz 1992).

The exponent of 1.65 was based on experience and consideration of the channel
shape; it is an estimate that should yield reasonable values for the purpose of this
study.

The thickness of the jet neglecting spreading due to breakup was computed by
recognizing that for a rectangular jet experiencing no change in its width as it
falls, the unit discharge must be the product of the jet thickness and the jet
velocity to satisfy continuity. This leads to the equation:

t]:tl

SIS

where tj is the jet thickness at any point along the trajectory.

Two useful characteristics for any point along the trajectory are the angle of flight
and the total distance traveled along the trajectory arc. The flight angle 6 from
horizontal can be determined from

tan 0 =

S|SS

with V, being the horizontal component of velocity and Vy the vertical component.
The horizontal velocity is constant since there is no gravitational acceleration and
aerodynamic effects that might reduce Vy are neglected. The vertical velocity is
computed from

10
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Finally, the length of the trajectory arc can be calculated from the takeoff point to
any horizontal position as:

X=X 2

d
=0 dx

This integration is accomplished by making the following substitutions satisfying
the initial conditions:

A = 2h,cos%(6,)
B = dy/dx = tan(6,)-x/A

where h, is the initial velocity head at the takeoff point and 6, is the takeoff angle.
Then,

Li(x) == [BVBZ+1+ In(B + VBZ + 1)

If the initial takeoff is horizontal (6,=0), then L;(0)=0 and the integration function
must only be evaluated at the final x position. If the takeoff angle is non-zero,
then L;(0) is also non-zero and the net trajectory length is Lj(x)-L;(0).

The calculations described above were carried out until the centerline of the jet
reached the estimated tailwater elevation. Below the tailwater surface, the jet was
assumed to penetrate into the tailwater pool at a uniform velocity and angle equal
to the conditions at entry through the tailwater surface (i.e., no further
gravitational acceleration occurs in the tailwater pool).

Jet Changes in the Air

In addition to the thinning of the jet core under the influence of acceleration due
to gravity, as the jet travels through the air it will begin to spread near the edges as
air becomes entrained into the surface of the jet. This further reduces the
thickness of the jet core. The trajectory calculation spreadsheet was used to
calculate the gradual spreading of the jet and the further reduction of the jet core
thickness using equations developed by Ervine et al. (1997):

tspread = tj + 2¢

1.141,v2 | [ 2L,
e = 411
g tiFT'

L

11



2L
tcore = tj - m

where Fr; is the Froude number Vi/(gD;)®* at the initial takeoff point and T, is a
turbulence intensity factor that varies from 0.00 to 0.03 for free overfalls and 0.03
to 0.05 for ski jump (flip bucket) outlets (Bollaert 2002). The initial depth D; is
either the brink depth for dam overtopping or the depth calculated at the spillway
flip bucket lip using the energy equation as described in the Jet Trajectory section.
A value of T,=0.02 was assumed in this study for flow over the dam parapet wall
and a value of T,=0.04 was assumed for flow leaving the spillway flip bucket.
The equation for the thickness of the jet core merely reflects the observation by
Ervine et al. (1997) that in addition to the gravitationally-induced thinning,
diffusion of the jet causes the core to diminish at each edge at a rate of about 0.5%
to 1.0% of the travel distance. The lower value was assumed for a conservative
estimate.

Most formulas describing free jet behavior, including those above, were
developed for circular jets. Castillo (2006) in a non-peer reviewed publication
provides jet spread formulas for rectangular jets, but they are poorly documented
with some questionable assumptions made in their development. A new peer-
reviewed paper by Castillo et al. (2014) was published after the bulk of the
calculations had been performed for this study; that paper provides slightly
modified equations compared to Castillo (2006), and quick checks showed that
the results are not dramatically different from those obtained with the Ervine et al.
(1997) equations.

Jet Break-up Distance

Full break-up of the jet core is implied when the calculated jet core thickness
reaches zero. With the conservative assumptions made in the previous section,
the jet core is estimated to have an intact core for the 1,000-year flood events and
larger.

Several investigators have offered equations for directly estimating the jet break-

up distance. Ervine et al. (1997) derived an equation from first principles for
round jets:

€% = (1.14T,Fr?)? =

2

2L, 2L,
1 1-1

L, can be determined with this equation by trial. Following the procedure used by
Ervine et al. (1997), a similar equation for rectangular jets can be developed:

12
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2L, 2L,
1-1

Ervine et al. (1997) also provided an empirical equation fitted to experimental
data for round jets:

C = L14T,Fr} =

L. = 1.05DiFTi2
P (1.14T,Fr?)os2

Castillo (2006) developed a similar empirical equation for rectangular jets:

_ 08 5 tiFTiz
- 0.82
(K,T,Fr?)

b

with K, having a value of 1.07. Castillo et al. (2014) proposed the same equation,
but with K,~1.02 for two-dimensional (rectangular) jets and K,~1.24 for three-
dimensional rectangular jets. One other commonly referenced equation is due to
Horeni (1956), L,=6(q)**, where L, is in meters and q is unit discharge in m?/s.
This equation predicts much longer breakup distances than the others and the
basis for its development is not well understood. The reference is cited by many,
including Ervine et al. (1997) and Castillo et al. (2014), but the original document
(Horeni’s Ph.D. thesis) was only obtained by this author after the bulk of this
study was complete; furthermore the document is written in the Czech language
with only a brief technical summary in English. Given its significantly different
results compared to newer works, this equation was not considered further.

Results of applying the break-up length equations are shown in Table 2. For the
spillway flows associated with the 10,000-yr event or smaller, the equations
predict that the jet will be fully broken up before it reaches the tailwater pool. For
the overtopping of the dam during the PMF and for the spillway flows during the
1- and 100-million year events the jets are likely to have an intact core when they
reach the surface of the tailwater pool. For the 100-thousand year event the
spillway jet is predicted to be close to full breakup when it reaches the tailwater
pool.

Jet Dissipation in the Tailwater Pool

Upon entering the tailwater pool a free jet will undergo additional spreading of its
outer extents and dissipation of the core. The most common case is a highly
turbulent plunging jet like that shown in Figure 5(d). The inner core contracts at
about an 8° angle on each edge while the exterior of the jet spreads at an angle of
about 14°.

13



Table 2. — Computed jet break-up distances compared to the length of the flow trajectory
to the tailwater surface.

Ervine et al. (1997)

Flood event
frequency and  theoretical  theoretical empirical  Castillo (2006) -  Trajectory arc length at
flow type round jet rectangular  (round jet) rectangular tailwater, L
years ft ft Ft ft ft
Dam overtopping
PMF 401 161 168 143 25.4

Spillway operations

100 10.5 9.2 13.1 111 41.9
500 14.4 12.3 16.9 14.5 40.6
1,000 16.3 13.8 18.8 16.0 40.0
10,000 24.0 19.5 25.9 22.0 37.9
100,000 333 26.0 33.7 28.8 35.6
1,000,000 44.8 33.6 42.9 36.6 32.9
100,000,000 73.9 51.7 64.2 54.8 27.0

Plunging jet almost
laminar, no air
entrainment at plunge
paint

Zone of flow
establishment

Zone of
eslablished
flow

(@) (B)

Smooth turbulent High turbulence
plunging jet — small intensity jet (v 5%)
degree of air with large concentrations
entrainment of air entrainment

i
|

Low air concentration
(" 2%)

Air concentration
v 40%
‘,745”\1 0-11°

Figure 5. — Characteristics of jet dissipation in a plunge pool (Ervine and Falvey 1987)
for: (a) submerged jet in a pool with lid (no aeration of jet boundaries); (b) almost laminar
plunging jet (almost never encountered in a prototype flow; (c) smooth turbulent plunging
jet (rare in a prototype flow); and (d) highly turbulent plunging jet (typical of almost all
prototype flows and most models).
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Pressure Fluctuations Produced by Impinging Jets

The erosive capability of an impinging jet can be evaluated based on either the
pressures produced against a rock surface and in fissures penetrating that surface,
or the rate of energy dissipation that takes place in the near field of that surface.
This study focuses on the latter, but for those interested in the pressure-based
approach, the newly published work of Castillo et al. (2014) is suggested. That
study provides experimental data and equations for estimating the mean and
maximum dynamic pressures occurring at plunge pool boundaries for a variety of
jet configurations. A significant finding of that study is that the maximum
dynamic pressures occur when the drop height from reservoir to tailwater pool is
about 1.0 to 1.2 times the jet breakup length (i.e., the jet core breaks up in the air
shortly before hitting the tailwater pool) and the pool is shallow (pool depth <
5-5tspread)-

Stream Power Calculations

For each modeled flow condition the stream power of the jet was calculated along
its travel path to determine its erosive capability. The total power of the jet was
calculated as

P = yQh,

where g is the unit weight of water, Q is the discharge, and h, is the velocity head
at the point of impact. The erosive power of the jet is related to the stream power
intensity which is the power divided by the area over which it is applied.

,_ YQhy
P=y

An intact jet core may impinge on a solid boundary either on an abutment above
the tailwater surface, or in the tailwater pool. For an intact jet core, the stream
power intensity in the core will be equal to that which would be calculated for the
jet with no spread or turbulent dissipation of the core thickness, i.e., the impact
area is considered to be the jet thickness, tj, calculated considering only the
thinning effect of gravitational acceleration. Depending on local topography, the
jet may impinge against the boundary at an oblique angle, but the maximum
stream power intensity will be realized when the jet strikes normal to the solid
boundary. The stream power intensity for that case is

p = Yqhy
t
For a jet that is completely broken up in the air or in the tailwater pool, the
average stream power intensity over the full extent of the spread jet envelope can
be calculated from

15



. Yqhy

tspread

However, this does not account for the fact that a non-uniform velocity
distribution persists for some distance even after the jet core has been dissipated
(Figure 6). The peak velocity of the jet for distances beyond the end of the jet
core diminishes in proportion to the ratio of the total distance traveled by the jet
compared to the length of the jet core (Hanson et al. 1990), and thus the peak
stream power intensity of the fully developed jet can be expressed as

_ Yah, (%)

tj

!

p

where Lcore IS the length of the core of the jet and Ly, is total distance traveled by
the jet into the tailwater pool. In the spreadsheet used to model the jet flows for
Thief Valley Dam, the maximum of the two previous expressions was used as the
stream power intensity for the fully developed jet in the tailwater pool.

It should be emphasized that these calculations of stream power intensity consider
the impact area of the jet against a horizontal surface and do not reflect any
reduction due to slope of the abutments.

|'|'I |
e __._II‘_,_.*,._,I_,_I,I_:DR__ ; —

Figure 6. — Velocity profile at the end of the zone of flow establishment (Ervine and
Falvey 1987).
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Stream Power Estimates

Appendix A provides charts showing the predicted spillway and dam overtopping
jet flows for each flood event. For locations above the tailwater surface the
stream power intensity of the jet core is plotted and for locations below the water
surface the maximum stream power intensity is plotted for the jet core or the fully
developed jet. There is uncertainty about where the jet breaks up in the air. The
conservative application of the jet thickness and jet spread equations indicates that
the jet core retains a finite thickness at impact with the tailwater surface, while the
direct jet breakup equations indicate full breakup for the 10,000-yr flood event
and smaller. To illustrate the effect of this, each plot also includes a line showing
the average stream power intensity if the full power of the jet is evenly distributed
over the calculated spread thickness of the jet.

In general, smaller flood events have the potential to produce greater stream
power intensity because of the lower tailwater elevations and larger drop heights,
but the extent of the area that experiences the high intensity flow impingement
will also be small. Larger flood events produce thicker jets with a greater chance
for an intact jet at impact, but with lower stream power intensity due to the
protection provided by the associated high tailwater levels. Although the focus of
SOD Recommendation 1997-SOD-D was on spillway flows, the November PMF
which overtops the dam was also modeled. Only the dam overtopping jet
trajectory is plotted for that event, since the spillway crest and the entire spillway
flip bucket chute will be below the tailwater level.

Table 3 summarizes the jet characteristics and stream power intensities computed
for each flood event. The smaller flood events have a wide range of possible
stream power intensities, but also the narrowest jets at impact and a good potential
that the jets are fully broken up; the peak values of stream power intensity are
conservative upper estimates.

Table 3. — Jet thickness and stream power intensities at impact with tailwater.

Stream power intensity at

Jet core thickness, ft tailwater impact, kW/mz
Flood event frequency (years) minimum maximum Average peak /
and flow type (at tailwater impact)  (at takeoff)  (broken up jet) maximum
Dam overtopping
PMF 3.65 6.02 525 628
Spillway operations
100 - 0.47 205 1457**
500 - 0.65 272 1889**
1,000 0.03 0.73 303 2076
10,000 0.27 1.07 419 1980
100,000 0.57 1.46 535 1880
1,000,000 0.95 1.94 649 1768
100,000,000 1.98 3.12 830 1536

**  Jet core is broken up at tailwater level according to all modeling methods; value shown is peak stream power
intensity at the point of predicted jet breakup based on trajectory and jet core thickness equations
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Jet Impingement Areas

Each of the computed trajectories was used to develop an estimate of the
impingement zone on the downstream topography. The jet core and spread jet
profiles were used to create polylines in AutoCAD that were then intersected with
the downstream topographic surface to generate plan view maps of the impact
zones. Tailwater levels for each flood event were also illustrated so that zones of
direct vs. submerged impingement can be readily seen. Appendix D provides
maps depicting the impingement zones for each flood event.

Discussion: Use of Stream Power
Estimates for Erosion Analysis

The estimates of stream power intensity developed in this study can be used to
evaluate the potential for erosion of the areas impacted by the spillway jet flows.
Annandale (1995) established a curve to define the threshold for erosion as a
function of stream power intensity and the headcut erosion index of soil and rock
materials. The headcut erosion index can be evaluated using a combination of
field evaluations and laboratory tests that incorporate the effects of rock mass
strength, particle block size, discontinuity and interparticle bond strength, and
block structure/orientation to the flow. Wibowo et al. (2005) extended this work,
using logistic regression to establish lines of equal probability of erosion on the
stream power-headcut index diagram (Figure 7).

Estimates of headcut erodibility index for rock in the jet impact areas have not
been developed at this time, but the high values of maximum stream power
intensity shown in Table 3 suggest that where jets impact on the stream channel or
abutments above the tailwater surface, there is high potential for erosion, even of
resistant materials. However, the thickness of the intact jet is relatively small, so
the capacity to erode extensive areas seems limited. Additionally, the charts of
stream power intensity in Appendix A show that stream power intensity drops
rapidly once the jets penetrate below the tailwater level, so the potential for deep
erosion is also limited.

Tailwater has a significant effect on the erosion potential of spillway and
overtopping flows. The highest stream power intensities occur in zones just
above the tailwater pool water surface for the 1,000-yr frequency flood. The jets
associated with smaller floods are predicted to break up before reaching the
tailwater pool. For larger floods, jets remain intact, but the tailwater level
increases significantly, which reduces the maximum drop height of the jets and
the maximum stream power intensity. Although the maximum stream power
intensities are smaller for these larger floods, the thickness of these jets is greater,
so they may cause less intense erosion, but over a more extended area.

18



1E+004 =
& d
i . .
o~ 1E+003 — ool g
= = * o 4
— = * y 4
- AV
. . Fn O
S * 'ﬁ—fﬂ -
o  1E+002 * 1
= & * #
uJ = & & i
3 - * * P
O - . v 4L
o T N
1E+001 ==} *—4»—’— $ -~ 41
= g * 3 | :ﬂ,ﬁf' r o
L im [P t + &%lﬂ o o g
m & P .
1 82, $nY /n u
- *le B¢/ =um o
(7] 1E+000 ——$5*—- = o
= o 7 7 B o
mo : s 7 RE 5&; =
- + A s
i se ¥/ p @@ pga |® %o
- 0 = -]
s ——l-n'i‘mff—rn'nnq—rrnmﬁ-rnmﬁ-mmﬁ-mm

1E-002 1E-001 1E+000 1E+001 1E+002 1E+003 1E+004

EROSION INDEX

Figure 7. — Probability of erosion as a function of Ky, (headcut erosion index) and stream
power per unit area (Wibowo et al. 2005). The upper line indicates 99% chance of
erosion, the lower line 1% chance, and the middle (orange) line 50% chance. The middle
(green) line is the original threshold for erosion proposed by Annandale (1995). Orange
data points are case studies with no erosion; blue points are case studies with erosion.

Summary and Conclusions

Estimates of stream power intensity were made for jet flows produced by flow
through the spillway or overtopping the parapet wall of Thief VValley Dam for
frequency floods ranging from the 100-yr event to the PMF.

Although estimates of headcut erodibility index have not been developed at this
time, high values of stream power intensity are present, but with a limited areal
extent due to the thinning of the jets as they travel through the air down to the
tailwater pool. Potential for erosion of rock and soil above the tailwater level is
high, but only in the limited areas impacted by the intact jet. Potential for deep
erosion below the level of the tailwater surface seems limited by the fact that
stream power intensity drops rapidly when these thin jets penetrate below the
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tailwater level. The highest flood flows are capable of producing thicker jets
whose erosive power could penetrate further into the tailwater pool, but the
erosion potential of these jets is limited by the fact that very high tailwater pool
levels accompany such high flows and the net head drop is reduced, so stream
power intensities at the tailwater surface are actually lower than for smaller flow
rates combined with low tailwater levels.
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Appendix A —Jet Trajectory and Stream
Power Intensity Charts
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100-yr: Routed Spillway Q = 3,828
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Figure A - 1. — Jet trajectory and stream power intensity for peak spillway flow during the
100-yr frequency flood, Thief Valley Dam, Oregon. Gray lines show the approximate
dam and spillway cross section. Light dashed lines indicate the extent of the spread jet,
while solid thin lines illustrate a conservative estimate of the thickness of the jet core.
Heavy, dashed green lines show the stream power intensity. The upper line is the

stream power intensity of the jet core; the lower line is the average stream power across

the width of the spread jet. Empirical equations suggest that the jet will be fully broken up
after about 10 to 15 ft of flight through the air.
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500-yr: Routed Spillway Q = 5,306
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Figure A - 2. — Jet trajectory and stream power intensity for peak spillway flow during the
500-yr frequency flood, Thief Valley Dam, Oregon. Heavy, dashed green lines show the
stream power intensity. The upper line is the stream power intensity of the jet core; the
lower line is the average stream power across the width of the spread jet. Empirical

equations suggest that the jet will be fully broken up after about 15 ft of flight through the
air.
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1,000-yr: Routed Spillway Q = 6,033
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Figure A - 3. — Jet trajectory and stream power intensity for peak spillway flow during the
1,000-yr frequency flood, Thief Valley Dam, Oregon. Heavy, dashed green lines show
the stream power intensity. The upper lines are the stream power intensity within the jet
core; the lower lines are the average stream power across the width of the spread jet.
Empirical equations suggest that the jet will be fully broken up after about 15 to 20 ft of
flight through the air.
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10,000-yr: Routed Spillway Q = 9,040
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Figure A - 4. — Jet trajectory and stream power intensity for peak spillway flow during the
10,000-yr frequency flood, Thief Valley Dam, Oregon. Heavy, dashed green lines show
the stream power intensity. Empirical equations suggest that the jet will be fully broken
up after about 20 to 25 ft of flight through the air.
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100,000-yr: Routed Spillway Q =12,670
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Figure A - 5. — Jet trajectory and stream power intensity for peak spillway flow during the
100,000-yr frequency flood, Thief Valley Dam, Oregon. Heavy, dashed green lines show
the stream power intensity. Empirical equations suggest that the jet will be fully broken
up after about 25 to 35 ft of flight through the air. The length of the trajectory arc to the
tailwater pool is 35.6 ft.
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1,000,000-yr: Routed Spillway Q =17,187
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Figure A - 6. — Jet trajectory and stream power intensity for peak spillway flow during the
1,000,000-yr frequency flood, Thief Valley Dam, Oregon. Heavy, dashed green lines
show the stream power intensity. The jet is expected to have an intact core when it
reaches the tailwater surface.
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100,000,000-yr: Routed Spillway Q = 28,795
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Figure A - 7. — Jet trajectory and stream power intensity for peak spillway flow during the
100,000,000-yr frequency flood, Thief Valley Dam, Oregon. Heavy, dashed green lines
show the stream power intensity. The jet is expected to have an intact core when it
reaches the tailwater surface.
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Dam Overtopping in PMF: Total Q = 136,922
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Figure A - 8. — Jet trajectory and stream power intensity for peak dam overtopping flow
during the November PMF event, Thief Valley Dam, Oregon. Discharge overtopping the
dam is 16,900 ft*/s, and discharge through the spillway is 120,000 ft*/s. Heavy, dashed
green lines show the stream power intensity. The spillway crest is at elevation 3133.0 ft,
so the tailwater is above the crest, but is probably not sufficient to reduce flow through
the spillway. A sketch of the spillway flow profile is also shown for illustration, but stream
power intensities are not calculated for the spillway flow, since the spillway lip is
submerged. Note that at the dam and spillway crests there is significant drawdown of the
water surface from the reservoir elevation of 3159.99 ft.
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Appendix B — Jet Trajectory and
Stream Power Calculation
Spreadsheets
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Thief Valley Dam - Spillway Plunge Pool Jet
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Appendix D — Jet Impingement Maps

Maps that follow show the calculated impingement area for free jets discharged
from the spillway flip bucket for frequency flood events ranging from 100 yr to
100,000,000 yr. Line definitions are illustrated on the example chart below:

e The axis of the dam is indicated by a straight blue line.

e A pair of jagged blue lines indicates the upper and lower nappe boundaries
of the jet core at impingement on the downstream topography. Where the
two lines are coincident, the jet core is calculated to be broken up and the
single blue line indicates the center of the spread jet.

e A pair of jagged bright green lines indicates the upper and lower
boundaries of the spread jet at impact with the downstream topography.

e Red contours highlight the expected tailwater elevation for each flood
event.

e Note rapid diminishment of the jet core thickness and increasing width of
the spread jet where impingement occurs below the tailwater elevation.

: X
! EXAMPLE .
3 AN
N
W o ol o / zone of jet
axis of dam “ impact above
g tailwater
: P : / zone of jet /
P / impact below
g tailwater |
,..// 3 . 57/l ; o
- // . o i
o '

The final map in this appendix shows the calculated impingement area of free jets
overtopping the dam parapet wall during the November PMF. The impingement
area for associated spillways flows is not shown for the PMF case.
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