TECHNICAL NOTES

Computing the Trajectory of Free Jets
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Abstract: In recent years, design floods have increased beyond spillway capacity at numerous large dams. When additional spillway
capacity is difficult or expensive to develop, designers may consider allowing the overtopping of a dam during extreme events. For
concrete arch dams, this often raises issues of potential erosion and scour downstream from the dam, where the free jet initiating at the
dam crest impacts the abutments and the downstream river channel. A recent review has shown that a commonly cited equation for
predicting the trajectory of free jets is flawed, producing jet trajectories that are much too flat in this application. This could lead analysts
to underestimate the amount of scour that could occur near a dam foundation, or conversely to overestimate the extent of scour protection
required. This technical note presents the correct and incorrect jet trajectory equations, quantifies the errors associated with the flawed
equation, and summarizes practical information needed to model the trajectory of free jets overtopping dam crests.

DOI: 10.1061/(ASCE)0733-9429(2008)134:2(256)

CE Database subject headings: Jets; Wave overtopping; Scour; Computation; Open channel flow.

Introduction

In recent years, the increasing magnitude of design floods has
prompted reevaluations of spillway capacity and operational sce-
narios for large dams throughout the world. Many of these inves-
tigations have shown that current spillway capacity is inadequate,
raising the possibility that dams might be overtopped during ex-
treme events. Creating additional spillway capacity is often ex-
pensive and sometimes technically infeasible, and in these cases,
dam owners sometimes consider accepting overtopping as a
planned operation during extreme events. This creates new load-
ing scenarios for the dam and raises questions about erosion and
scour downstream from the dam. For concrete arch dams, scour
may occur along the abutments and in the downstream river chan-
nel, where the jet overtopping the dam impacts upon materials
that provide the foundation for the dam. To evaluate the need for
protection of these areas, a comparison of the potential hydraulic
attack and erosion resistance of these materials is needed (Annan-
dale 2006). The first stage of this analysis is to define the jet
trajectory and impact zones. A recent review of jet trajectory
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equations conducted by the Bureau of Reclamation has shown
that a widely cited equation is flawed and produces jet trajectories
that are much too flat for this application.

Jet Trajectory Equations

Fig. 1(a) shows the flow situation. The reservoir is surcharged to
produce an overtopping head H, A jet with velocity vy is
produced and springs free from the dam crest. If we define the
downstream edge of the crest as the origin of an x-y coordinate
system, the equation of motion in a plane is
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where x and y=coordinates of the bottom edge of the jet,
0p=initial angle of the jet from horizontal (zero in the figure,

positive if the jet issues upward, and negative if the jet is initially

&,
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Fig. 1. Free jets (a) overtopping a dam; (b) issuing from an orifice
through a dam

256 / JOURNAL OF HYDRAULIC ENGINEERING © ASCE / FEBRUARY 2008


Copyright notice
This article was prepared by Bureau of Reclamation employees acting within the scope of their official duties.  Copyright protection under U.S. copyright law is not available for such works.  Although the publication in which the article appears is itself copyrighted, this does not affect works of the U.S. Government, which can be freely reproduced by the public.


inclined downward), v,=velocity of the jet as it leaves the dam
crest, and g=acceleration due to gravity. When the jet issues hori-
zontally, the equation is greatly simplified, becoming

gx’
203

y= 2)

The derivation of these elementary equations is presented in
many physics texts (Halliday and Resnick 1981), and these equa-
tions in a slightly modified form are given also by Chow (1959).
They describe the motion of a projectile unaffected by wind re-
sistance. In reality, projectiles or free jets will always travel an x
distance somewhat shorter than that computed by these equations,
due to wind resistance and jet breakup.

Through algebraic manipulation, the trajectory equation can be
restated in terms of the velocity head h,=v?/(2g)
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One could also compute the trajectory of the top surface of the jet
by simply adding the initial jet thickness #,, assuming that the
velocity and angle of orientation are the same as for the bottom
edge of the jet
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Davis et al. (1999) presented similar equations for computing
the top surface of the nappe at a free overfall. They related the
initial velocity of the jet to the velocity at a section upstream from
the brink. Rouse (1943) related the initial jet thickness to the
Froude number at an upstream section, and showed that the ver-
tical jet thickness is nearly constant as the jet falls.
For convenient application to the situation of flow overtopping
a dam, practitioners prefer an equation that expresses the jet tra-
jectory as a function of the reservoir head. In the case of flow
issuing from an orifice, this can be easily obtained. Fig. 1(b)
shows this case, in which the initial velocity, neglecting losses in
the conduit leading to the outlet, is

Vo= \yng (5)

where H=total head on the centerline of the opening (assuming
the velocity in the reservoir to be negligible), and the velocity
head is

hy=-2=5"_p 6)

All of the potential energy of the reservoir above the orifice cen-
terline is converted to velocity head. In reality, the velocities at
the top and bottom of the jet may be slightly different due to the
difference in head across the height of the orifice, but this detail is
never considered. Inserting H in place of &, in Eq. (3), we obtain
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This equation is presented in the Bureau of Reclamation’s Design
of Small Dams (3rd Ed., p. 376) (Bureau of Reclamation 1987) to
compute the trajectory of flow issuing through an orifice (or be-
neath a gate) at an angle 6,. (It should be noted that a different
sign convention is used in Design of Small Dams, but the equa-
tion is otherwise the same.)
Returning to the case of flow overtopping a dam, a similar jet
trajectory equation is presented in Design of Small Dams (pp.

385, 387) for use in designing open-channel spillway chutes and
deflector buckets
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where d=depth of flow, and h,=velocity head, as defined previ-
ously. This equation is described as the trajectory of a free jet.
The equation is modified with the factor K, a constant suggested
to have values less than or equal to 1.0 (0.9 and 0.75 are com-
monly suggested) when computing a real jet trajectory. When
designing a spillway chute profile, a value of K=1.5 is suggested
to ensure that the floor of the spillway will fully support the jet to
reduce the possibility of negative pressures and cavitation on the
spillway surface. Eq. (8) is also cited in Reclamation’s Design of
Gravity Dams (Bureau of Reclamation 1976) and Design of Arch
Dams (Bureau of Reclamation 1977), and in a recent treatise on
the subject of scour prediction (Annandale 2006, pp. 146-151),
where it is suggested for use in computing the trajectory of free
jets overtopping dams.

Eq. (8) may not raise suspicion at first glance, because it ap-
pears to be a simple modification of Eq. (7), replacing the total
head acting on the orifice with the total head of the open channel
flow. In the dam overtopping case, this is approximately equal to
the overtopping head if losses are neglected. However, comparing
Eqgs. (8) and (3), which was developed directly from the projectile
motion equation, we see that they are not equivalent, even when
K=1. Eq. (3) contains only the velocity head in the denominator
of the second term, but Eq. (8) contains an additional depth term,
which causes it to compute a flatter trajectory than Eq. (3). Eq. (8)
would be correct if the entire overtopping head were being con-
verted to velocity head, but this does not occur because until the
flow springs free from the crest, a nearly hydrostatic pressure
profile exists in the flow, and part of the energy is in the form of
pressure head. As a first approximation, the flow overtopping the
dam should be near critical depth and velocity, with the depth
being about two-thirds of overtopping head and the velocity head
being the remaining one third. Further confusion is created be-
cause most citations of this equation (including Design of Small
Dams) do not clearly define the terms d and &, in context, leading
some to conclude that the d value used should be the total over-
topping head, with &, then added to it. This causes an even flatter
trajectory to be computed.

The development of Eq. (8) is not well documented. The equa-
tion and accompanying discussion of its use appeared in the 1st
edition of Design of Small Dams (Bureau of Reclamation 1960)
and has appeared essentially unchanged to this date in subsequent
editions and in the other publications already mentioned, includ-
ing many foreign-language translations. It has always been pre-
sented without derivation or citation of its origin, and no
occurrence of it has been found in literature prior to that time.
One can surmise that Eq. (8) was developed by simple inspection,
starting with Eq. (7) for the trajectory of an inclined jet issuing
from an orifice and replacing the total head term H with the total
head of an open channel flow d+#h, and adding the K coefficient
to account for other factors, such as jet breakup and wind resis-
tance. Unfortunately, since a rigorous derivation process was not
followed, the fact was missed that the velocity head was the cru-
cial quantity, not the total head. None of the publications present-
ing this equation make a specific argument for the inclusion of the
depth term. One other Bureau of Reclamation publication ad-
dresses this topic. Engineering Monograph No. 25—Hydraulic
Design of Stilling Basins and Energy Dissipators (Peterka 1958)
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Fig. 2. Jet trajectory error as a function of the Froude number

presents equations for computing the throw distance of tunnel
spillway flip buckets. The equations are based on the velocity at
the bucket entrance and are thus correct. Eq. (8) does not appear
in the monograph.

Trajectory Calculation Errors

The error introduced into a trajectory calculation by using Eq. (8)
rather than Eq. (3) depends upon the initial Froude number of the
jet. Wahl (2001) showed that the fraction of the specific energy
associated with the flow depth is 2/(2+F?), where F=Froude
number [F=v,/(gD)"*], with D being the hydraulic depth. Simi-
larly, the fraction of the specific energy associated with the veloc-
ity head is F?/(2+F?). This information can be used in this case
to show that the ratio of the erroneous d+#h, to the correct &, is
(2+F?)/F?. The range of the jet at any point on the trajectory x is
proportional to the square root of the head term in the denomina-
tor of the trajectory equation, so the ratio of the range computed
by Eq. (8) and that computed by Eq. (3) is proportional to (2
+F?)%5/F and the percentage error in range prediction is [(2
+F2)05/F-1]X(100%). Fig. 2 shows the variation of these ra-
tios and the range prediction error.

The errors shown in Fig. 2 are dramatic for low Froude num-
bers and still significant for Froude numbers as high as 10. Given
the context within which Eq. (8) is presented in Design of Small
Dams, it was probably developed initially from analysis of flows
having large Froude numbers, where the error is relatively small.
It would have been difficult to detect the small error in experi-
mental results because of the greater effects of aeration, jet
spread, and air resistance, and the difficulty of precisely measur-
ing the trajectory of a jet during an experiment. The factor K was
used to account for these effects and also unknowingly adjusted
for the error caused by the erroneous equation. The use of K
values as low as 0.75 may have arisen from an attempt to obtain
agreement with measured trajectories of flows with lower Froude
numbers.

Modeling Jets Overtopping Dam Crests

Considering the jet arising from overtopping of a dam with a
horizontal crest, the flow should pass through critical depth on the
crest and spring free from the crest as a slightly supercritical flow.
Rouse (1936) concluded from experimental work that the flow
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Fig. 3. Ratio of brink depth to critical depth for sloped (Delleur et al.
1956) and horizontal (Rouse 1936) free overfalls

depth at the brink of a free overfall is y,=0.715y,., and this result
has since been confirmed with only slight variation by many in-
vestigators. Henderson (1966) presents an excellent summary of
the early work in this area, including results from Delleur et al.
(1956) for the case of an overfall that is sloped (Fig. 3). More
recently, Rajaratnam et al. (1976) examined the effects of rough-
ness on the brink depth and Davis et al. (1998) explored the
combined effects of roughness and slope. One should take note
that much of the work on free overfalls is targeted at the use of
free overfalls for discharge measurement in canals and assumes a
long crest (i.e., a canal) leading up to the overfall; when the crest
is narrower than about 3H,,, the situation tends toward the case
of a sharp-crested weir, and the brink depth will begin to ap-
proach the critical depth.

In practice, to determine the brink depth and velocity, we
would compute the discharge Q using a weir equation Q
=CLH'’ where C=discharge coefficient of the crest, L=crest
length, and H=overtopping head. We could then compute the
corresponding critical depth for that discharge y,=(q*/g)"* where
g=discharge per unit of crest length. The brink depth could then
be determined using the relationships given by Rouse (1936) or
Delleur et al. (1956), and the brink velocity can be determined
from the continuity equation. It should be noted that because criti-
cal flow produces the minimum specific energy for a given dis-
charge, if one were to compute the specific energy at the brink,
where flow is supercritical, it will be greater than the specific
energy at the critical section. This seems contradictory, but be-
cause the pressure distribution at the brink is no longer hydro-
static, the specific energy at the brink is no longer the simple sum
of y,+v;/(2g).

Let us now perform a general analysis of the flow regime
overtopping a dam with a horizontal crest and evaluate the errors
caused by using the incorrect trajectory equation. We will assume
no losses, so that the critical depth is two-thirds of the overtop-
ping depth y,=(2/3)H,,,. The critical velocity head is thus the
remaining  (1/3)H,,,, and the critical velocity is v,
=(2¢H yy10p/3)". The discharge is Q=y.v, L. If the flow over this
dam were being computed with a traditional weir equation Q
=CLH??, the discharge coefficient would be C=(2/3)"(g)%.
Applying Rouse’s relation for the brink depth yields

V5= 0.715y, = 0.715(2/3) Hoprop = 0.47THoiop (9)

The continuity equation at the critical section and the brink re-
quires v y,=v.y, so the brink velocity is v,=(1/0.715)v,
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Fig. 4. Comparison of computed jet trajectories and ogee crest
profile representing experimental data

=1.399v,.. The brink velocity expressed in terms of the overtop-
ping head is

vy =1.399v, = 1.399(2gH y10/3)" = 0.808(2gH yy10p) ™
(10)

The velocity head at the brink is thus v/ (2¢)=0.652H > and
the Froude number at the brink is F=v,/(gy,)*>=1.65. From Fig.
2, the resulting overprediction of the range of the jet with Eq. (8)
is about 32%. For comparison, if the depth at the brink were
exactly critical depth (F=1), then Fig. 2 shows that Eq. (8) would
overestimate the range of the jet trajectory by about 70%. One
other consideration is the effect of streamline curvature at the
brink. In truth, only the bottom streamline of the jet actually
parallels the crest; the middepth streamline is deflected about
7 deg downward at the brink [see Henderson (1966)], further
shortening the real trajectory, but only by a small amount, as
shown in the next section.

Comparing Trajectory Equations

To demonstrate the differences between the correct and incorrect
trajectory equations in a real-world case, trajectories were com-
puted with Egs. (3) and (8) for an example dam being analyzed
recently by the Bureau of Reclamation. In addition, an ogee crest
spillway profile was computed for the same overtopping head.
The ogee crest shape closely matches a real nappe profile; equa-
tions describing the shape are based upon large bodies of experi-
mental data compiled by the Bureau of Reclamation Design of
Small Dams, pp. 365-367 (Bureau of Reclamation 1987) and U.S.
Army Corps of Engineers (Hydraulic Design Criteria, Sheets
111-1 to 111-2/1) (U.S. Army Corps of Engineers 1987). Fig. 4
shows the ogee crest shape compared to the trajectories computed
with Egs. (3) and (8) for an overtopping head of 4.54 m. The
Froude number at the brink is 1.65, as in the previous general
analysis. As expected, the ogee crest profile closely matches Eq.
(3), while the trajectory computed by Eq. (8) is much flatter.
Including an approximate 7 deg downward deflection of the flow
at the brink has only a small effect on the computed trajectories.
Eq. (3) also produces results identical to a dimensionless equation
provided by the U.S. Army Corps of Engineers (1964) for com-
puting flip bucket throw distances

h1=sin290+2cosem/sin290+hl (11)

v v

Eq. (8) can be brought into reasonable agreement with Eq. (3)
by utilizing a K factor significantly less than 1.0. A value of 0.75
has been suggested by Annandale (2006), but a value of K
=0.652 produces the best agreement, since we found earlier that
the velocity head at the brink is 0.652H,,, for a horizontal crest
assuming no losses. The established practice of designing spill-
way chute profiles using Eq. (8) with K=1.5 is still acceptable,
since the large K value ensures that the jet is fully supported.
However, for correctness, the (d+#5,) term in Eq. (8) should be
replaced with just h,. In spillway applications where the Froude
number is large, the effect of this change is minor.

Conclusions

The computation of the trajectory for a free jet should always
utilize either the initial velocity of the jet itself [Eq. (1)], or the
initial velocity head hvzvg/ (2g) of the flow as it springs free into
the atmosphere [Egs. (3) and (11)]. For jets overtopping dams, the
initial velocity can be estimated with reasonable accuracy using
relationships first offered by Rouse (1936) for determining the
brink depth of the flow.

The flawed Eq. (8) presented in several Bureau of Reclamation
manuals and other literature should not be used to model a free
jet. It predicts a flatter trajectory than is theoretically possible,
which may lead analysts to underestimate the potential for scour
near hydraulic structures or overestimate the extent of scour pro-
tection required. The distance traveled by the jet is overpredicted
with Eq. (8) by 10% to 70% when the initial Froude number of
the jet is between 4 and 1, respectively, as is the case for most
flows overtopping dam crests. In practice, Eq. (8) has traditionally
been adjusted with a K factor varying from 0.75 to 1.0. This has
helped to reduce the errors, but the physical basis for different
values of K has never been established. In reality, when the cor-
rect trajectory equations are used, the value of K should be nearly
1.0 (i.e., K should not be included) for analysis of flows overtop-
ping dams. For modeling high velocity jets that might be subject
to greater aeration and wind drag, modification of Eq. (3) with a
K factor such as that included in Eq. (8) may be appropriate, but
further research is needed to determine appropriate values for K.

Notation

The following symbols are used in this technical note:
= discharge coefficient;
hydraulic depth, equal to flow area divided by
top width;
= flow depth;
= Froude number;
gravitational acceleration;
= total head;
H,,, = overtopping head;
», = velocity head;
K = coefficient in jet trajectory equation;
L = weir crest length;
0
q

(ol
Il

Too T
Il

= discharge;

= discharge per unit crest length;
vy = initial jet velocity;
v, = velocity at brink of free overfall;
v. = critical velocity;
x = horizontal position of jet trajectory;
y = vertical position of jet trajectory;
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vy, = flow depth at brink of free overfall;
Ve critical depth; and
0, = initial angle of inclination of jet.
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