PAP-800 Damage Assessment for the Choke Canyon Dam Outlet Works Stilling Basin September 1998 by Leslie Hanna

WATER RESOURCES
RESEARCH LABORATORY
OFFICIAL FILE COPY

D-8560 RES-3.50

MEMORANDUM

To:

Leon Esparza, OK-ESPARZA

From:

Leslie Hanna

Hydraulic Engineer

Subject:

Choke Canyon Dam Outlet Works Stilling Basin Damage Assessment

The attached report describes the results of our assessment of the cause of damage at the Choke Canyon Dam outlet works stilling basin. Brent Mefford, Technical Specialist at the Water Resources Research Laboratory (WRRL), provided technical expertise in the investigation and peer reviewed the attached document.

Please let us know if you have any questions or comments or if we can be of further assistance. Feel free to contact Leslie Hanna at (303) 445-2146 or Brent Mefford at (303) 445-2149.

Attachment

bc:

D-8560 (Burgi, Hanna, Mefford)

WBR:LHanna:rlc:9/22/98:303/445-2146

(j:\wpfiles\hanna\chokmem.wpd)

Damage Assessment for the Choke Canyon Dam Outlet Works Stilling Basin

Background

The Choke Canyon Dam was examined on October 21, 1997, under the RO&M Program and SEED Program as required by the Reclamation Manual. The Choke Canyon Dam is the principle feature of the Nueces River Project and is located on the Frio River, 4 miles west of Three Rivers, Texas [1].

The river outlet works stilling basin was dewatered so that an inspection of the stilling basin and chute could be performed. The inspection revealed erosion of the concrete floor and side walls of the concrete outlet works chute. The estimated loss of concrete in the floor is 2 to 3 inches maximum and ½ to 1 inch maximum on the side walls. Rebar was exposed in the center energy dissipation block of the right bay.

A consultant was hired to do an evaluation of the cause of the damage so that repairs and necessary modifications could be made to eliminate reoccurrence of damage to the stilling basin. The consultant's report identified cavitation as the primary cause of the damage and recommended modifications that would address prevention of cavitation during future operations [2].

Reclamation's Water Resources Research Laboratory in Denver was requested to review the consultant's report as well as photos, and design and operation information, in order to make an independent assessment of the cause of the damage. The results of this study are presented herein.

Conclusions

- 1) Evidence indicates that the most probable cause of damage to the Choke Canyon Dam stilling basin chute, walls, and invert is abrasion damage. This assessment is based on the following:
 - a) Pressure profiles determined from the finite element program FLOW 3D indicate that the lowest pressure experienced at the chute boundary is about -1.0 lb/in². This is well above the pressure required to produce cavitation damage along a smooth boundary (without regard to negative pressures caused by offsets in the chute).
 - b) A program designed to compute cavitation characteristics was used to determine the cavitation index for the flow [3]. This value can be used to predict the occurrence of cavitation due to low pressures caused by local irregularities in the surface. The results from this program indicate that cavitation damage should not occur along the chute invert; with the possible exception of locations of very abrupt offsets.
 - c) Photos of the damage indicate a pattern of damage that is consistent with that of abrasion damage. It shows a uniformly distributed roughness which is characteristic of this type of damage.

- d) The abrasion high on the curved chute and side walls is characteristic of small flows where an unstable jet lifts off the invert, pulling material up the sides of the chute, then returning material down along the invert.
- e) The removal of 55 gallons of round gravel, up to 1 inch in diameter, from the basin the last time the basin was dewatered demonstrates that a significant amount of material was drawn into the basin. In addition, the history of discharge operations shows that the basin is operated primarily at lower discharges and is rarely operated at high enough discharges to flush material out of the basin.
- f) The high pressure gates are elevated, therefore the discharging jet will initially be aerated. As a result, although it is difficult to predict how far downstream the near-boundary flow remains aerated, our experience at other facilities suggests it is likely that sufficient air remains entrained to prevent cavitation damage.

Discussion of Investigations

Abrasion Characteristics

It is typical of many stilling basins to experience damage caused by rock, gravel, and sand brought into the basin by back flow over the stilling basin end sill. Normal operation of a hydraulic jump energy dissipation basin can cause a reverse flow eddy over the basin end sill and lower apron as shown in figure 1. This counter-rotating eddy is driven by a high velocity jet rising off the basin floor. Riprap placed on the apron downstream of the basin end sill is typically designed to be stable under this condition. However, small material, if available, can be transported into the basin and be trapped where turbulent flow continually moves the material about the surface, eroding the concrete. The photographs of the damage occurring at the Choke Canyon stilling basin (figure 2) show a similar pattern to the damage shown in figure 3 which shows abrasion damage that has occurred at the Hoover Dam spillway.

The following excerpts are paraphrased from Reclamation's Monograph No. 42, "Cavitation in Chutes and Spillways" Chapter 3, under the heading of *Recognition of Cavitation Damage*:

Uniformly distributed roughnesses refer to variations occurring over a relatively wide area. This type of irregularity is caused by erosion of a concrete surface by sand or gravel in the water passing over the surface. The effect of cavitation bubble collapse perpendicular to a concrete surface produces a surface in which the individual pieces of aggregate are cleaned of the cement. However, deep crevices and holes can be found in the matrix. It almost appears as though worms bored into the concrete. The contrast between the texture of damage by cavitation and that caused by erosion with sand laden water is apparent in concrete. With cavitation, individual polished pieces of aggregate are exposed in the damaged zone as shown in figure 4. Whereas with erosion by sandladen water, individual pieces of aggregate are polished, as with cavitation, but the underlying surface is smooth and relatively even as shown on figure 3.

Although we did not have the opportunity to inspect the basin ourselves, the description and photographs of the damage appear to match those of abrasion damage. In addition, the large amount of gravel (55 gallons) previously removed from the basin as well as material noted downstream of the basin indicates that there is an available source of materials to be drawn into the basin.

Cavitation Characteristics

The pressure profiles calculated from FLOW 3D indicate that pressures along the chute boundary are not low enough for cavitation to occur (appendix B). However, this ignores the fact that local irregularities can cause low pressures within the body of flow [3]. Therefore, cavitation can occur even though the boundary pressure is positive. The prediction of cavitation occurring at a boundary can best be accomplished by calculating the flow's cavitation index at the boundary and comparing this to the cavitation indices of surface irregularities which may be anticipated. To calculate the flow's cavitation index, the velocity and pressure conditions in the vicinity of the irregularities must be known. A computer program, published in Engineering Monograph No. 42, was designed to calculate the hydraulic and cavitation properties of free water surface flows. This program was used to model the Choke Canyon Dam outlet works stilling basin to determine the potential for cavitation along the curved chute and basin invert. The four flow conditions modeled were 200 ft³/s, 400 ft³/s, 600 ft³/s, and 1000 ft³/s. Appendix A gives the results from this program. The stations and elevations designated in the results were computed from drawing 1012-D-100 and were converted directly from meters to feet so that station 1152.92 represents station 3+51.5 on the drawing. The initial velocity discharging from the gate was computed from the Choke Canyon Dam outlet works discharge curves (drawing 1012-D-359) based on a reservoir elevation of 65 meters (see appendix C for drawings).

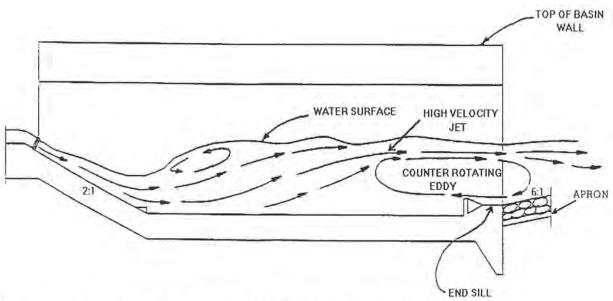


Figure 1. Counter-rotating eddy typical of hydraulic jump stilling basins.

The results indicate that the flow cavitation index is greater than 1.0 for all flows modeled. In general only minor cavitation damage, if any, would be expected to occur at abrupt offsets on the flow boundary for the condition of no air entrainment. FLOW 3D was used to more precisely define the velocity and pressure profiles for the flow conditions modeled (see appendix B). The results from this program concur reasonably with the results computed from the cavitation program.

Adequacy of Curved Chute Design

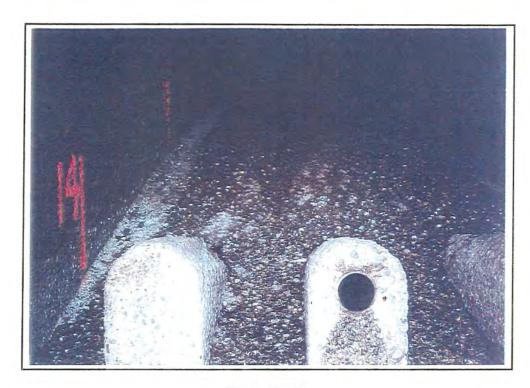
The jet profiles entering the curved section of the chute were estimated based on the trajectory of a free-discharging jet from

-y = x tan Θ + {x²/[k(4*(d+hv)) cos Θ ²]} Where Θ = slope angle of the floor upstream of the curve d = depth of flow hv = velocity head (V²/2g)

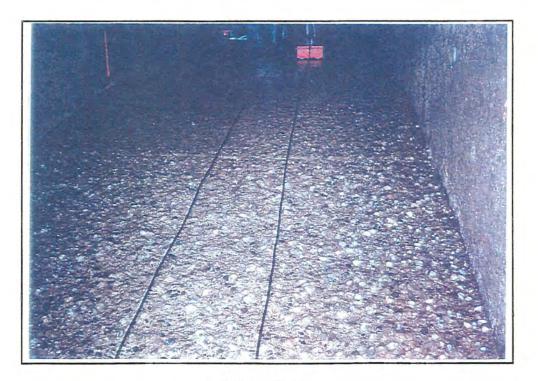
This equation was used to determine the tendency of the jet to lift off the chute invert. Reclamation's "Design of Small Dams" specifies that to avoid the tendency for the water to spring away from the floor the curvature should be made slightly flatter than the trajectory of a free charging jet [4]. To ensure positive pressure along the entire contact surface of the curve, K should be equal to or greater than 1.5. Figures 5a and 5b show the jet profiles calculated with a factor of safety or K value of 1.5 and 2.0 respectively for four discharges ranging from 200 to 1000 ft³/s, compared to the actual invert profile of the curved chute. The velocity head was based on the velocity entering the curved chute (calculated from FLOW 3D). Figure 5a demonstrates that for each case where K=1.5 the invert profile is flatter than the jet profile and therefore meets design criteria. However, figure 5b shows that with a safety factor of K = 2, at the lower discharges the jet no longer lies inside the invert profile. This may indicate the possibility that under certain operating conditions, the jet may become unstable and lift off the chute invert at the lower discharges. This possibility was confirmed with FLOW 3D which shows instability and the breaking up of the jet at 200 ft³/s (figure B-5). Although under this condition pressures are still not low enough to cause a significant amount of cavitation damage, this condition can result in material being pulled up the sides of the chute then returning material down the invert. This will produce abrasion damage in those areas.

Recommendations

Abrasion damage is a common problem associated with hydraulic jump energy dissipation stilling basins. In order to minimize damage to the basin the following steps can be taken:

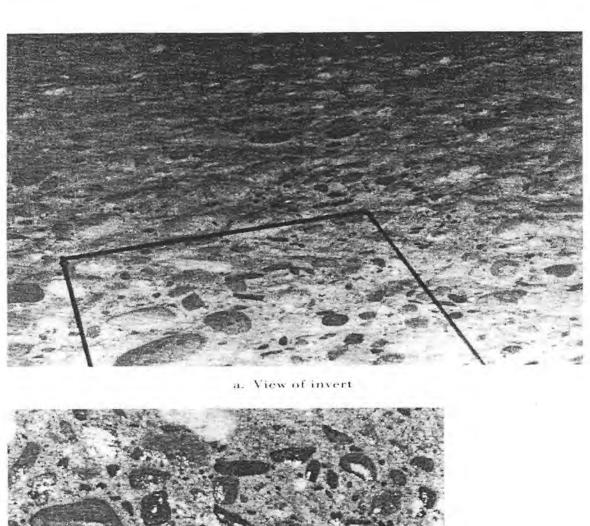

 The source of material entering the basin should be identified and cleaned from the riprap apron downstream of the basin. It may be necessary to remove the existing riprap and have it replaced to meet original design specifications.

- 2) Cleaning the basin at regular intervals will help to minimize damage caused by abrasion.
- 3) The basin should be monitored to prevent materials from being deposited onto the riprap apron during activities such as construction.
- 4) If it is not possible to clean smaller material out of the area, grouting the material downstream of the basin can help minimize the amount of material being drawn into the basin. The downstream distance affected by the reverse flow can be as great as 50 to 100 ft. A physical model study would be required to determine the exact distance and nature of the hydraulics bringing material into the basin under normal operating conditions.
- 5) Install a flow deflector in the basin to suppress the return flow eddy that moves material into the basin. Previous model studies conducted in our laboratory, and limited field applications have demonstrated that the installation of flow deflectors can improve a basin's flow distribution significantly, greatly reducing the potential for movement of material into a basin. However, this solution would also require a model study to ensure deflector effectiveness and proper deflector design.


Finally, we do recommend the basin be studied with a physical model. A model would help resolve the differing opinions as to the primary cause of the damage and would provide the data necessary to identify the most cost effective alternatives to minimize damage.

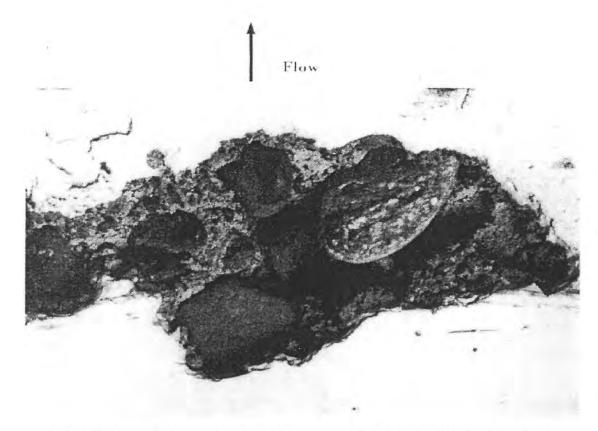
References

- [1] "1997 Periodic Facility Review Report," Choke Canyon Dam Nueces River Project, Texas, Bureau of Reclamation, U. S. Department of the Interior, November 24, 1997.
- [2] "Choke Canyon Dam Outlet Works Investigation," City of Corpus Christi, Russell-Veteto Engineering, Inc., March 1998.
- [3] "Cavitation in Chutes and Spillways," Engineering Monograph No. 42, Bureau of Reclamation, U.S. Department of the Interior, April 1990.
- [4] "Design of Small Dams", Bureau of Reclamation, U.S. Department of the Interior, 1987.




<u>Photo No. 5</u> South chute exposed aggregate/rebar, looking upstream.

 $\frac{\text{Photo No. 6}}{\text{Damaged chute floor slope, looking upstream.}}$


Figure 2. Choke Canyon outlet works stilling basin, dewatered for inspection [2].

b. Invert closeup

Figure 3. Abrasion damage in concrete at the Hoover Dam spillway [3].

a. Cavitation damage produced in a venturi cavitation test facility

h. Hoover Dam, Nevada spillway tunnel — initiation of damage

Figure 4. Cavitation damage in concrete [3].

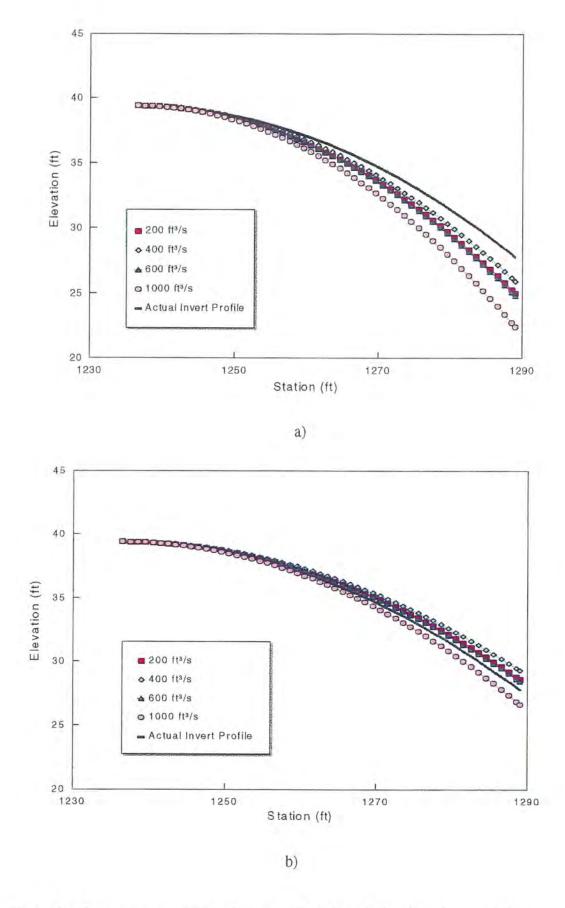


Figure 5. Chute curvature required to prevent jet from lifting from invert with factor of safety of a) K = 1.5 and b) K = 2.0.

Appendix A

Cavitation Characteristics Results

Q = 200.0 CFS INITIAL DEPTH = .30 FT RUGOSITY = .001500 FT N = .0112 R = 135.6

							ENERGY			DE	PTH	THICKNESS
ST	PT	INVERT ELEV	SLOPE	DEPTH FT	VELOCITY FT/SEC	PIEZ	GRADE LINE FT	Q AIR/Q WATER	PROFILE	NORMAL FT	CRITICAL FT	BOUNDARY LAYER FT
1	1152.9	129.23	.0100	.300	66.667	.300	172.890	.000	53	1.479	2.316	.003
1	1175-9	129.00	.0100	.378	52 935	.378	172.890	-000	S3	1.479	2.316	.229
3	1205.9	128.70	.0100	.481	41.547	-481	156.965	-000	83	1.479	2.344	.481
1	1236.6	128.39	.0101	.584	34.222	.584	148.978	.000	53	1.473	2.391	. 584
13	1245.6	127.97	.0420	.602	33.238	.434	147.274	.192	83	.915	2.377	.602
1	1256.6	126.70	.1270	-606	32,998	.435	145.733	.000	S3	.639	2.383	.606
1	1266.6	124.59	.2110	.598	33.461	.416	144.131	.000	S2	-545	2.394	. 598
3	1276.6	121.63	.2960	.580	34.479	.382	142.318	.000	S2	.492	2.410	.580
1	1286.6	117.83	,3800	.557	35.915	.340	140.202	.000	S2.	.458	2.430	. 557
1	1289.0	116.76	.4315	.551	36.325	.323	139.621	.000	S2	.443	2.445	.551

ENERGY GRADE LINE AT BEGINNING OF BOUNDARY LAYER 198.544

Choke Canyon Stilling Basin

Q = 200.0 CFS INITIAL DEPTH = .30 FT RUGOSITY = .001500 FT N = .0112 R = 135.6

		SIGMA OF	DAMAGE POTENTIAL									
			REQUIRED			IRCULAR AR	C	90-DE	GREE OFFSE	T		
STATION	FLOW	UNIFORM	CH	CHAMPER TO		1/4-IN	1/2-IN	1-IN	1/4-IN	1/2-IN 1-IN	1-IN	TURBULENCE
	SIGMA	ROUGHNESS	STOP	CAV	ITATION	5-MM	10-MM	25-MM	5-MM	10-MM	25-MM	INTENSITY
1152.92	.488	.089	1	TO	7	.103E+02	.251E+02	.577E+02	.110E+03	.251E+03	.559E+03	.0928
1175.92	-775	.084	1	TO	4	-100E-01	.221E+00	.117E+01	.379E+00	-168E+01	.501E+01	-0383
1205 92	1.262	.080	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.235E-01	.0349
1236.56	1.866	.077	1	TO	1	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0341
1246.56	1-970	.076	1	TO	1	,100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0340
1256.56	1.998	.076	1	TO	1	-100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0340
1266-56	1.943	.076	1	TO	1	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	,0340
1276 56	1.828	.077	1	TO	1	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0342
1286.56	1.683	.077	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0343
1289-04	1-644	.077	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0344

Q = 400.0 CFS INITIAL DEPTH = .70 FT RUGOSITY = .001500 FT N = .0116 R = 135.6

r							ENERGY			DE	PTH	THICKNESS
	STATION FT	INVERT ELEV	SLOPE	DEPTH FT	VELOCITY FT/SEC	PIEZ	GRADE LINE FT	Q AIR/Q WATER	PROFILE	NORMAL FT	CRITICAL FT	BOUNDARY LAYER FT
	1152.9	129.23	.0100	.700	57.143	-700	172.123	.000	83	2.391	3.676	.003
i.	1175.9	129.00	.0100	.766	52.228	.766	172.123	.000	S3	2.391	3.676	.229
г	1205.9	128.70	.0100	.854	46.829	.854	163.911	.000	53	2.391	3.687	.485
J.	1236.6	128.39	.0101	-948	42,191	.948	157.868	.000	\$3	2.381	3.715	.728
	1246.6	127.97	.0420	.973	41.123	.573	156.349	.000	S3	1.453	3-714	.806
	1256.6	126.70	.1270	.979	40.841	.572	154.949	.000	S3.	1.005	3.734	.883
ľ	1266.6	124.59	.2110	.974	41.087	.546	153.479	.000	52	.854	3.765	.959
ı.	1276 - 6	121.63	2960	.958	41.774	.498	151.858	-000	S2	.769	3.809	. 958
,	1286.6	117.83	.3800	-928	43.117	.433	150.017	-000	S2	.715	3.844	.928
	1289.0	116.76	.4315	.919	43.521	.405	149.518	.000	52	:690	3.867	.919

ENERGY GRADE LINE AT BEGINNING OF BOUNDARY LAYER 180.634

Choke Canyon Stilling Basin

Q = 400.0 CFS INITIAL DEPTH = .70 FT RUGOSITY = .001500 FT N = .0116 R = 135.6

		SIGMA OF	DAMAGE POTENTIAL									
			REQUIRED				IRCULAR AR	C	90-DE	GREE OFFSE	T	
STATION	FLOW	UNIFORM	CHA	AMFE	R TO	1/4-IN	1/2-IN	1-IN	1/4-IN	1/2-IN	1-IN	TURBULENCE
	SIGMA	ROUGHNESS	STOP	CAV	NOITATI	5-MM	10-MM	25-MM	5-MM	10-MM	25-MM	INTENSITY
1152.92	.672	.074	1	TO	5	.152E+01	.453E+01	.115E+02	.239E+02	.566E+02	.129E+03	.0919
1175.92	.805	.072		TO	4	.100E-01	.127E+00	.892E+00	.255E+00	.132E+01	.407E+01	.0383
1205.92	1.005	.071		TO	3	.100E-01	.100E-01	.136E-01	.100E-01	.306E-01	.558E+00	.0349
1236.56	1.241	.069	1	TO	2	.100E-01	.100E-01	,100E-01	-100E-01	:100E-01	100E-01	-0332
1246.56	1.292	.069	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0329
1256.56	1.310	.069	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0325
1266.56	1.293	.069	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0322
1276.56	1.250	.069	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0322
1286.56	1.171	.070	1	TO	2	.100E-01	-100E-01	.100E-01	.100E-01	.100E-01	.166E-02	-0323
1289.04	1.148	-070	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.229E-01	.0324

600.0 CFS INITIAL DEPTH = 1.30 FT RUGOSITY = .001500 FT N = .0119 R = 135.6

i							ENERGY			DE	PTH	THICKNESS
	STATION	INVERT ELEV	SLOPE	DEPTH	VELOCITY	PIEZ	GRADE LINE	Q AIR/Q WATER	PROFILE	NORMAL	CRITICAL	BOUNDARY LAYER
,	FT	FT		FT	FT/SEC	FT	FT			FT	FT	FT
	1152.9	129.23	.0100	1.300	46.154	1.300	160.495	.000	S3	3.201	4.817	.003
r	1175.9	129.00	.0100	1.362	44.052	1.362	160.495	-000	S3	3.201	4.817	.237
ı	1205.9	128.70	.0100	1.444	41.539	1.444	157.019	.000	S3	3.201	4-822	.499
ı	1236.6	128.39	.0101	1.532	39.175	1.532	154.036	.000	83	3.187	4.837	.745
	1246.6	127.97	.0420	1.536	39.067	.985	153.216	.000	S3	1.919	4.797	.824
	1256.6	126.70	,1270	1.526	39.320	.958	152.357	,000	S2	1.317	4.817	-902
r	1266.6	124.59	.2110	1.495	40.142	:892	151.377	.000	52	1.116	4.848	.979
ı	1276.6	121.63	.2960	1.448	41.442	.794	150.236	.000	S2	1.004	4.894	1.056
ļ.	1286.6	117.83	.3800	1.392	43.108	.677	148.897	.000	S2	.932	4.951	1.132
	1289.0	116.76	4315	1.384	43.366	.635	148.530	.000	S2	.899	5.000	1.152

ENERGY GRADE LINE AT BEGINNING OF BOUNDARY LAYER 163.607

Choke Canyon Stilling Basin

Q = 600.0 CFS INITIAL DEPTH = 1,30 FT RUGOSITY = .001500 FT N = .0119 R = 135.6

				DAMAGE POTENTIAL										
		SIGMA OF	REQUIRED			TRCULAR AF	C	90-DE	GREE OFFSE	T				
STATION	FLOW	UNIFORM	CHAMFE	R TO	1/4-IN	1/2-IN	1-IN	1/4-IN	1/2-IN	1-IN	TURBULENCE			
	SIGMA	ROUGHNESS	STOP CAVITATION		5 - MM	10-MM	25-MM	5-MM	10-MM	25-MM	INTENSITY			
1152.92	1.048	.065	1 TO	3	.100E-01	.156E+00	.846E+00	.231E+01	.633E+01	,157E+02	.0906			
1175.92	1.152	.065	1 TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.399E+00	.0381			
1205.92	1.299	.064	1 TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0347			
1236.56	1.464	.064	1 TO	2	:100E-01	.100E-01	.100E-01	-100E-01	.100E-01	-100E-01	.0331			
1246.56	1.449	.064	1 TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	-100E-01	.0328			
1256.56	1.429	.064	1 TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0324			
1266.56	1.369	.064	1 TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0321			
1276.56	1-281	.064	1 TO	2	-100E-01	-100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0319			
1286.56	1.180	.065	1 TO	2	-100E-D1	-100E-01	-100E-01	.100E-01	-100E-01	-100E-01	.0316			
1289.04	1.164	.065	1 TO	2	-100E-01	-100E-01	.100E-01	.100E-01	.100E-01	-100E-01	.0316			

Q = 1000.0 CFS INITIAL DEPTH = 2.50 FT RUGOSITY = .001500 FT N = .0122 R = 135.6

ì	STATION	INVERT ELEV	SLOPE	DEPTH	VELOCITY	PIEZ	ENERGY GRADE LINE	O AIR/O WATER	PROFILE	NORMAL	PTH CRITICAL	THICKNESS BOUNDARY LAYER
ŀ	FT	FT	SHOPE	FT	FT/SEC	FT	FT	Q ALE/Q MAILE	PROFILE	FT	FT	FT
	1152.9	129,23	.0100	2,500	40.000	2.500	155.236	.000	S3	4,686	6,772	.003
١	1175.9	129.00	-0100	2.561	39-047	2.561	155.236	.000	S3	4-686	5.772	.243
ı	1205-9	128.70	.0100	2.641	37.861	2.641	153.619	.000	S3	4.686	6.774	-509
ı	1236.6	128.39	.0101	2.725	36.701	2.725	152.108	.000	S3	4.665	6.780	.759
	1246.6	127.97	.0420	2.679	37.323	1.815	151.584	.000	S3	2.753	6.678	. 839
	1256 6	126.70	.1270	2.634	37.966	1.735	151.037	.000	S2	1,867	6.698	.917
γ.	1266.6	124.59	.2110	2.549	39.236	1.584	150.369	-000	S2	1.575	6.733	.995
ı	1276 - 6	121.63	.2960	2.437	41.033	1.383	149.555	.000	S2	1.413	6.785	1.071
J.	1286.6	117.83	.3800	2.313	43.235	1.153	148.570	.000	S2	1.310	6.851	1.148
	1289.0	116.76	.4315	2.285	43.756	1.072	148.294	.000	52	1.263	6.902	1.167

ENERGY GRADE LINE AT BEGINNING OF BOUNDARY LAYER 156.575

Choke Canyon Stilling Basin

Q = 1000.0 CFS INITIAL DEPTH = 2.50 PT RUGOSITY = .001500 FT N = .0122 R = 135.6

			DAMAGE POTENTIAL										
		SIGMA OF	RI	EQUI	RED	C	IRCULAR AR	C	90-DE	GREE OFFSE	T		
STATION	FLOW	UNIFORM	CHA	AMFE	R TO	1/4-IN	1/2-IN	1-IN	1/4-IN	1/2-IN	1-IN	TURBULENCE	
	SIGMA	ROUGHNESS	STOP	CAV	ITATION	5-MM	10-MM	25-MM	5-MM	10-MM	25 - MM	INTENSITY	
1152.92	1.443	.059	1	TO	2	.100E-01	.100E-01	.100E-01	.263E+00	.107E+01	308E+01	.0898	
1175.92	1.517	.059	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0380	
1205-92	1.617	,059	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0346	
1236.56	1.725	.058	1	TO	2	.100E-01	.100E-01	.100E-01	,100E-01	.100E-01	.100E-01	:0331	
1246.56	1.626	.058	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	-100E-01	.100E-01	.0327	
1256.56	1.568	.059	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0324	
1266.56	1.462	.059	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0321	
1276.56	1.329	.059	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0318	
1286.56	1.189	.060	1	TO	2	-100E-01	.100E-01	100E-01	-100E-01	-100E-01	-100E-01	.0316	
1289.04	1.158	.060	1	TO	2	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.100E-01	.0315	

Appendix B

FLOW 3D Results

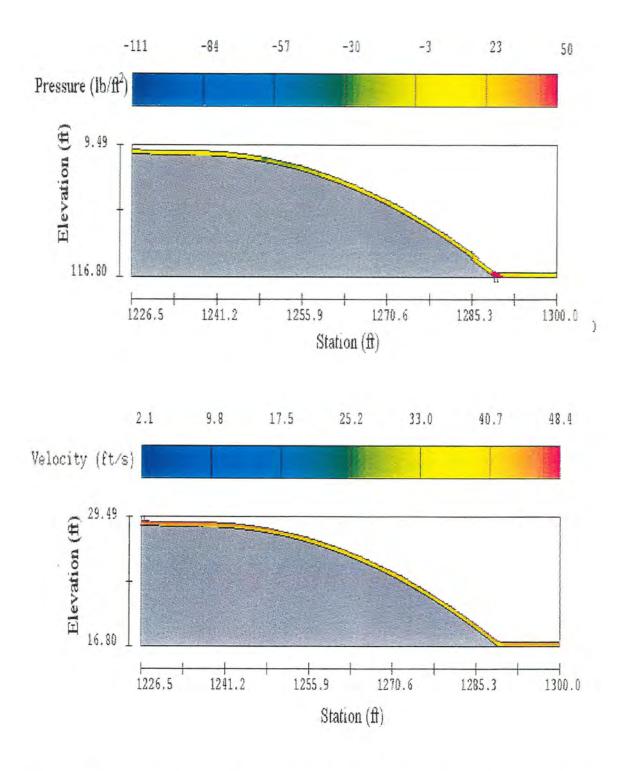


Figure B-1. Pressure and velocity profiles along the curved chute for a discharge of $200 \text{ ft}^3/\text{s}$ (from FLOW 3D)

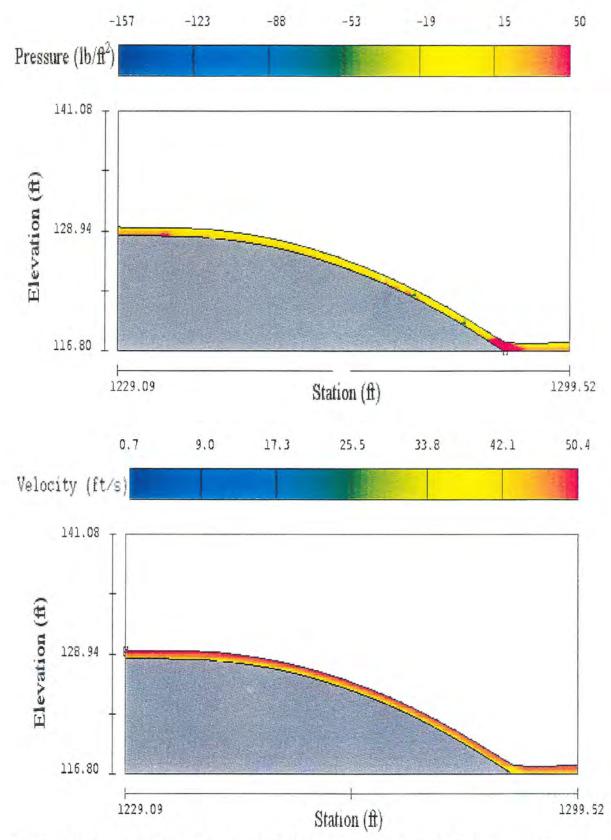


Figure B-2. Pressure and velocity profiles along the curved chute for a discharge of $400 \text{ ft}^3/\text{s}$ (from FLOW 3D).

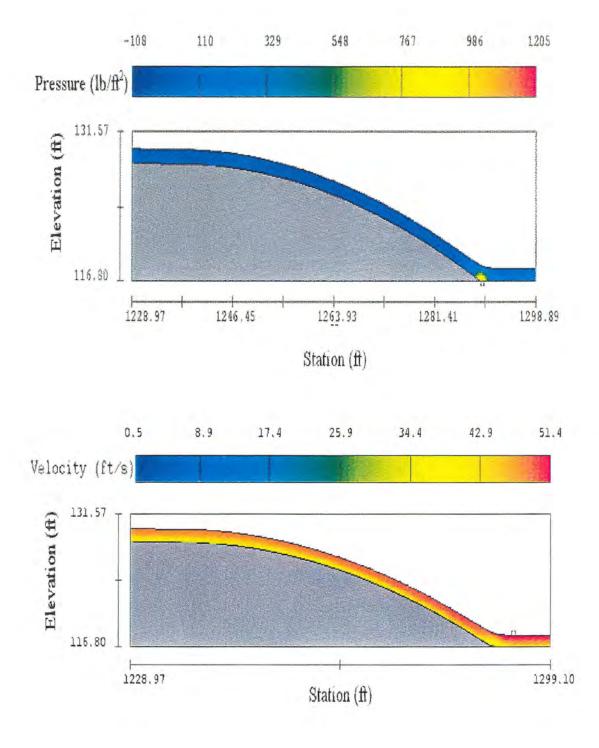


Figure B-3. Pressure and velocity profiles along the curved chute for a discharge of 600 ft³/s (from FLOW 3D)

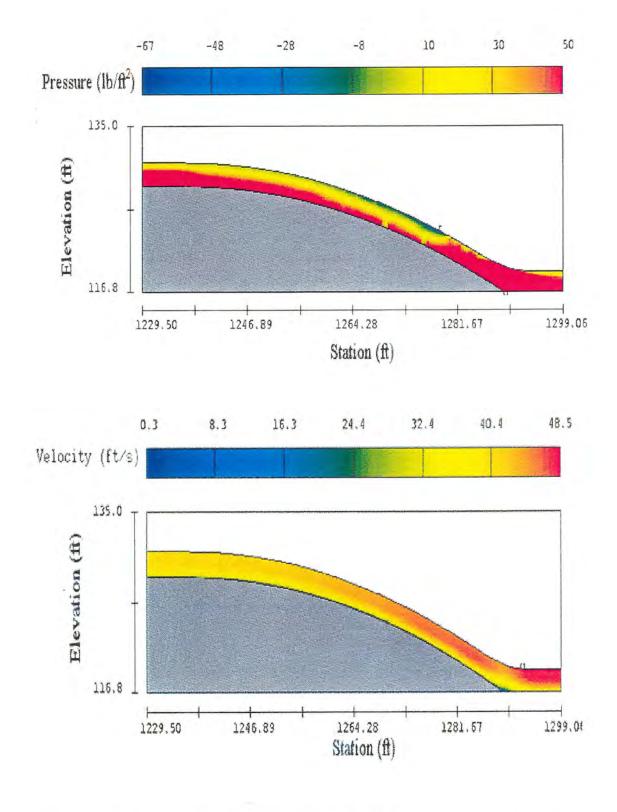


Figure B-4. Pressure and velocity profiles along the curved chute for a discharge of $1000 \text{ ft}^3/\text{s}$ (from FLOW 3D)

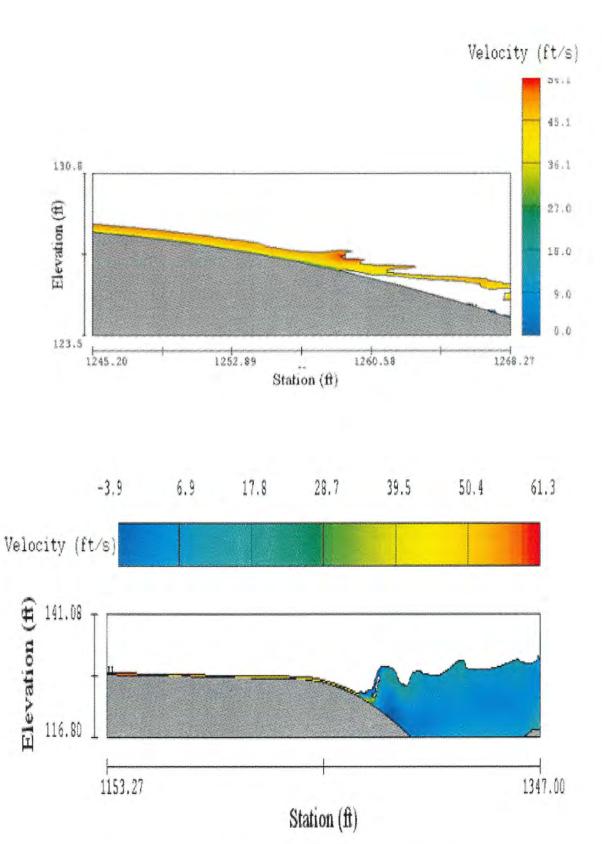
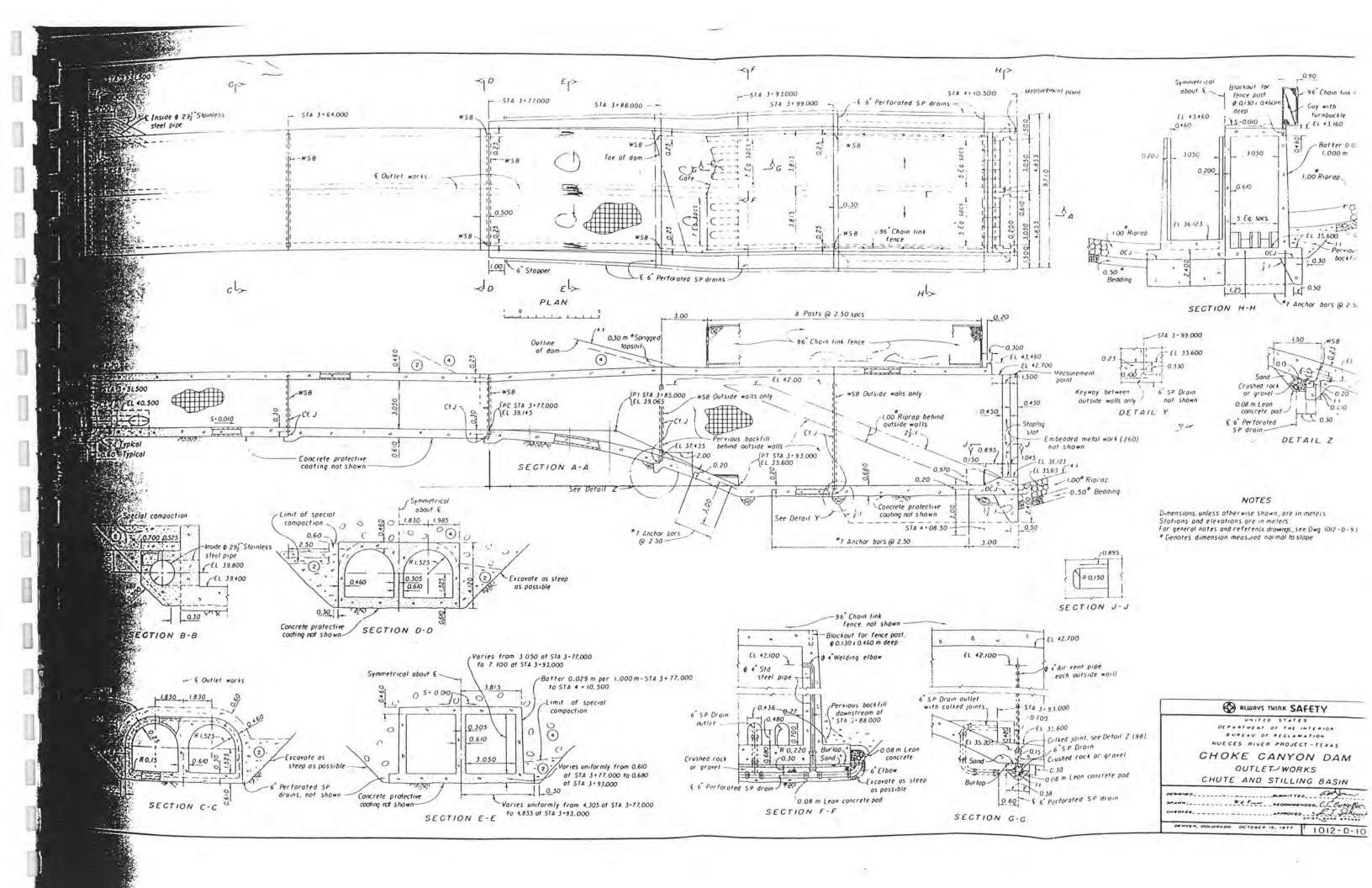
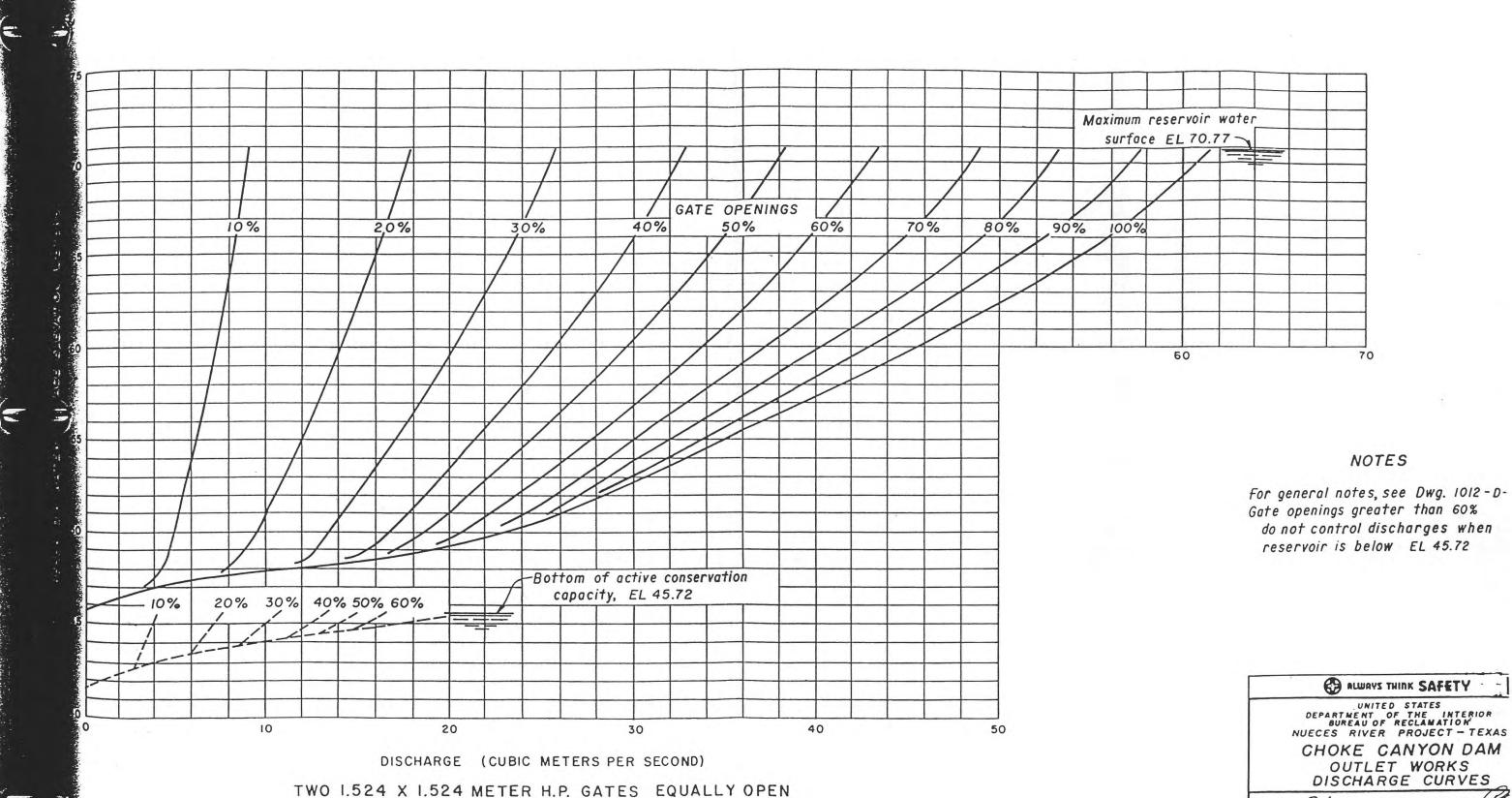




Figure B-5. Jet shown lifting from chute invert during early tme step, then shown with upstream velocities along chute invert with tailwater at conjugarte depth, for a discharge of 200 ft³/s (from FLOW 3D)

Appendix C

Choke Canyon Drawings

DESIGNED S. LAW __ TECHNICAL APPROVAL APPROVAL APPROVAL APPROVED C. C. P. S.S. CHIEF, DAMS BR.

DENVER, COLORADO MAR. 27, 1981 1012 - D-