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1. Introduction 

THE GYARMATI PRINCIPLE AND THE THEORY OF 
MINIMUM ENERGY DISSIPATION RATE 

By 

H.C. Hou 

Gyarmati presented his Principle (GP} as shown by a functional integral: 

G = J (a-itr) dV =max 

v 
(1) 

where a = local entropy production rate, which can be assumed as the input of 
energy to the system; ; = dissipation potential rate, which represents the 
"ineffective" output from the system, for it refers to that part of energy 
transferred into heat. 

On the relationship of GP to other principles, include the Hamilton Principle 
(HP), Prigogine Principle (Prigogine, 1963; PP} and the Theory of Minimum 
Energy Dissipation Rate (TMEDR}. Gyarmati himself discussed this problem only 
briefly (1965, 1971). Furthermore, his description was quite abstract. 
Indeed, this problem becomes important not only for the study of the TMEDR, 
but also for criticizing the well-known Clausius prediction about "heat 
death," that is the entropy in universe should trend to maximum (Kestin, 
1976), developed in last century and not satisfactorily answered to date. 

Though in our previous papers (Hou, 1987; 1989) s01111e relations between these 
principles had been analyzed, many problems still need to be clarified, 
especially those relationships between the Gyarmati Principle and the TMEDR 
and the Clausius prediction. The main goal of this paper is the analysis on 
these problems. 

2. Prigogine Principle and TMEDR 

Before the relationship between the GP and the TMEDR is analyzed, the 
relationship between the Prigogine Principle (PP} and the TMEDR needs to be 
analyzed. Basically, the TMEDR can be considered as an alternative 
presentation of the PP in a special form; their similarities, differences, and 
connection can be condensed in the following three points: 

(1) Both in the Prigogine Principle and the TMEDR, only the dissipation 
was concerned. They did not concern the global balance of energy (entropy) in 
the system; that is, they did not need to be concerned with the input and 
output to and from giving system. 
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(2) The Prigogine Principle was concerned with the change of entropy, 
whereas the THEDR was concerned with the change of energy. However, the water 
is an incompressible fluid. Its internal energy should remain unchanged. 
Furthermore, the river should proceed under isothermal condition. In this and 
only in this special case, the entropy and entropy-variance, dS/dt = P, 
should become linearly proportional to the energy and energy-variance, 
respectively. The validity of this transformation can be verified easily from 
the first law of thermodynamics: 

Thus, the TMEDR can be considered as a special case of the Prigogine 
Principle. 

(3) The TMEDR (Song, Yang, 1982; Yang, Song, 1986} concerned only the 
criterion for the equilibrium state, which can be expressed as: 

dE 
dt 

=min 

(2) 

( 3) 

or, for river flow, it takes this special form, known as unit stream power: 

yuS =min 

whereas for the Prigogine Principle, besides the equilibrium state, it 
concerned the nonequilibrium state. In this case, the ~ate of entropy 
production must be less than zero (process damped out with time}: 

dP < O 
dt 

(4) 

(5) 

Because water•flow is isothermal, the entropy production corresponds to the 
rate of energy: 

p - dE 
dt 
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so that the criterion for the change of entropy production with time becomes: 

d2 E<O 
d t 2 

(6) 

Because the time process can be transformed into the course process through 
this operator: 

a 
at 

a 
= u-ax (7) 

instead of equation (5), the criterion of nonequilibrium state, specified for 
the river course process, can be expressed in this form: 

u 2 a~ (yuS) <O 

This characteristic had not been dealt with before. 

3. The Gyarmati Principle and the Prigogine Principle 

From equation (1), we can see, if the input of energy (entropy) remains 
constant, then: 

G = J ( const-1') dV = max 
v 

This should reduce to a minimum value of~: 

J IVdV = const - max = min 
v 

( 8) 

( 9) 

This transformation can be shown explicitly by the geometry in figure 1 (Hou, 
1987). From this characteristic, Gyarmati (1971) concluded that the Prigogine 
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Principle was not an independent principle, but only an alternative form of 
the Gyannati Principle (Onsager, by Gyarmati) in the stationary case. 

However, in our opinion, some concepts need to be distinguished. The 
Gyarmati Principle, equation (1), considered only the state at some giving 
moment, though thoroughly, but did not ~efer to the whole process, whereas the 
Prigogine Principle referred to the whole irreversible process, though simply. 
Hence, we can say that the Gyarmati Principle considered only the 
"cross-sectional" profile of the process, whereas the Prigogine Principle had 
considered the "longitudinal profilen of the process. 

4. Restrictions of the Gyarmati Function 

Though some research concerned with the characteristics and the relationship 
of the Gyarmati Principle to other principles has been carried out since the 
Gyarmati Principle was established, but little attention was paid to its 
restrictions (region for its effectiveness). In our opinion, the 
applicability of the Gyarmati Integral equation (1) has its own range, beyond 
which its usage become meaningless. 

Physically, the input a and the dissipated part ~ in equation (1) can be 
bounded in this range. It may be that a is much greater than ~' that is, 

o>>t (10) 

or, in the giving process, the dissipation part is negligible; that is: 

"' • 0 
(11) 

In these cases, the Gyarmati Principle should transform into the Hamilton 
Principle, suitable for the reversible process. 

The second limit case is that a occurs close to the magnitude of~, that is, 

0 • "' 
(12) 

Another limit case would be impossible, for example, a<~. Physically, any 
irreversible process could be maintained only under these conditions: when an 
energy input was supplied continuously from outside on one hand, and on the 
other hand, the value of input was sufficiently great to cover entirely the 
whole dissipation. Otherwise, the giving process could not be sustained. 
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Any irreversible process could not sustain all the time (and over the course) 
with such an inequality a>>;. In another words, it could not remain in a 
state far away from the equilibrium state all the time (and over the course). 
It would evolve spontaneously from a state farther from the equilibrium state 
to one nearer to the equilibrium state. And finally, it would be closed 
tangentially to this equilibrium state. In the later case, the energy 
dissipation rate should take a minimum value, ; ~ min. On the other hand, the 
input of rate of energy would take a minimum value also, if this process 
should proceed spontaneously and the input of energy should be supplied not 
from a man-made energy source, but from the process itself. 

The input energy of surface water flow is the· effective component of the 
potential energy in a gravitational field. In the upper reach, the input of 
potential energy would be greater or much greater than that of the dissipated 
one through the friction, that is, a > ; or a >> ; . 

However, as the river flowed toward the lower reach, the input of energy 
(effective component of potential energy) would be dissipated entirely and 
locally, as for the case of laminar flow. In this limit case, a - ;. 

Thus, an irreversible process would be established dynamically under two 
cond it i ens: 

v =min 

a - v = O 

(13) 

(14) 

However, if the process should reach that moment, when a was close to~, as 
shown by equation (12), from equation (1), we would have: 

G = f (a - V) dV = f ( -0) dV-0 (15) 
v v 

Thus, in this case, the function G could not be sustained with a maximum value 
once more. 

Hence, we can conjecture that the Gyarmati Principle would be invalid in the 
region very close to the equilibrium state. In our case, when the surface 
water flowed to the lower reach of the river, its flow pattern would follow 
solely the TMEDR; the input of energy should almost be dissipated directly and 
wholly. Thus, the mathematical value of G can be changed within this range: 
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0 < G <00 (16) 

Meanwhile, the numerical value of G could be diminished along the time {and 
course). 

5. Natural and Man-Made Irreversible Processes 

These two different concepts about the process must be strictly distinguished. 
Gyarmati {1971) stated that the Prigogine Principle can be considered a 
special case of the Gyarmati Principle under the stationary state, that is, 
under the constraint a = canst. In this case, the relationship between a, G, 
¢was shown in figure 1. This form of irreversible process can be referred to 
as the man-made process, for the input of energy could be sustained with a 
constant value with time only under artificial conditions {as if a constant 
water head were pumped for maintaining this process). However, such a maneuver 
could be excluded and the process allowed to proceed spontaneously with time 
and/or along the course. Most processes in nature belong to this category. 
An important feature of natural irreversible processes, which should be 
distinguished from the man-made one, was that for the previous case, not only 
the energy dissipation rate~ could be diminished with time {and along the 
course), but sometimes the input of energy a could be diminished also. An 
obvious example is a river in an alluvial bed. As is well known, the surface 
slope S, and mean velocity u of any river should always diminish along the 
course. This means that not only should the unit streami power diminish along 
the course, but the effective component of the potentia1 energy of the river 
should be diminished along the course simultaneously. This specific feature 
of the river process is caused by the fact that the water is a dissipative 
medium, and also a dense fluid. Due to its "dense effect," the elevation of a 
river should be lowered progressively along the course. Meanwhile, due to its 
"viscous effect," the energy dissipation rate would be diminished along the 
course accordingly. How should both of these effects be coupled? This is a 
very profound problem for which many features remain to be clarified. 
Nevertheless, this coupling seems to be flexible. It constitutes an unified 
system, by which not only the mechanical energy of water mass should decrease 
continuously along the course, but the energy dissipation rate should decrease 
continuously along the course also. 

Figure 1 was presented only for analysis of the relationship between G, -· and 
a. In the real world, the upward tendency of; would be impossible due to the 
irreversibility of the process; it ought to be diminished monotonically with 
time. Thus, if the process were a natural one, then instead of figure 1, we 
would predict the variance of these parameters for man-made processes shown in 
figure 2. Thus, as with ~. the value of G would be changed with time. But 
contrary to ~. which should attain a maximum value at t = 0, the value of G 
should gain a minimum value at t = 0. 

The statement above is valid for the case with constant input. ·For the 
natural irreversible process, a= canst, it should change in time also, as for 
G and¢. The limitation of a is that it ought to be e~~al to the dissipated 
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part of system, so that the system should sustain not only a stationary, but 
also an equilibrium condition. Corresponding to this, the value of G should 
approach zero eventually. Therefore, the natural irreversible process can be 
expressed by the geometry in figure 3. 

In his monograph, Gyarmati (1971) had stated the relationship between ~' a, 
and G only formally, but did not predict how they should interrelate to each 
other even for any specific irreversible process. Though the Brussel's school 
(Glansdorff, 1971) did not predict an explicit relationship between a, ; and 
G, as was done by Gyannati, an alternative concept, the so-called "kinetic 
potential" or "local potentialn as a locomotive force of irreversible process, 
was accepted. However, it is difficult to realize and measure this parameter. 
In neither the Hungarian nor the Brussel's school was the concrete 
relationship between input and output of energy in any irreversible process 
studied. 

In our opinion, in any natural spontaneous irreversible process, the input and 
output could not be isolated from each other, they are mutually interrelated 
in the evolutional process of a system. In the limiting case, the input may 
follow the output, when the process should approach the equilibrium stage. In 
another words, the energy dissipation within the system should result in the 
input being diminished along the course (and with time), as with the energy 
dissipation itself. Any irreversible process attempts to approach and 
establish its own dynamic equilibrium state. Even this •potential energy" 
leads the input to be diminished along the course together with the output. 

However, in some cases, the output may follow to the input, when the process 
is far away from the equilibrium stage, as in, for ex~mple, the river at an 
upper reach with a very steep slope and high velocity, or the runoff formed 
from heavy precipitation on a steep slope of a barren mountain, or the water 
fall over a weir. In these limiting cases, the friction, inherent in the 
system, can be neglected and the water process can be approximated to a 
"reversible" one. They would in turn follow the Hamilton Principle. 

A free waterfall can be considered as such a category of surface flow, by 
which the constraints (friction) have been excluded entirely, so that a 
surface water flow would flow down with quasi-infinite (vertical!) slope and 
velocity, even under such a change the water flow could undergo a 
transformation from the finite rate of energy to the maximum rate. 

Those regions, in which the energy dissipation plays a dominant role, can be 
referred to simply as the "Prigogine region• (or TMEDR region), and that 
region, where the potential energy plays a dominant role, can be called the 
Hamilton region. If the giving process should stay in the Prigogine region, 
then the process should proceed with a decelerated with time (and/or along the 
course); and if this process should stand in the Hamilton region, then the 
process becomes an accelerating one. For both of these processes belonged to 
different category, then intermediate region would exist, in which both 
principles mentioned should played an equal-dominant role. In another words, 
there would possibly exist a critical and/or transitional region, beyond which 
the system ought be followed to HP and PP simultaneously. 
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This turning point (or turning region) for transformation actually exists in 
some natural processes, for example, on a certain loess-plateau with serious 
soil erosion in China, there were not only widely developed rills/gullies, but 
also, on.many slopes some slight foot prints of meanders could be found. This 
phenomenon can be explained by the following: During intense precipitation, 
the surface runoff should follow the Hamilton principle; hence the runoff 
should be accelerated. Due to this effect, an intense soil erosion would 
follow, and as its byproduct, a rill/gully would be formed. However, as the 
intensified precipitation diminished gradually, the accelerated surface runoff 
would be transformed into a decelerated one; it in turn should follow the 
Prigogine Principle instead of the Hamilton Principle. As its result, the 
surface runoff would turn into meanders on the slope. To diminish the energy 
dissipation rate, an outcome would be the formation of a network looking like 
slight strikes over the whole slope. 

6. Evidence of Accelerated and Decelerated Processes 

The system of criteria for irreversible processes (processes with friction) 
had been derived earlier by Prigogine (1963); however, the original 
formulation of this system was expressed by the entropy production P, for 
evidence it has been replaced in terms of energy. The system by the Prigogine 
Principle is shown in table 1: 

State 

Noneq~il ibrium 

Equilibrium 
(Dynamic) 

Equilibrium 
(Static) 

Table 1 

Prigogine Principle Hamilton Principle 

Qf > 0 dt 

Qf . 
dt = min 

~ 
dt = 0 

dE.> O 
dt 

Qf ::r max dt 
dE 
dt = co 

E ,,,. min 

Accordingly, the system of criteria for reversible processes can be formulated 
based on equation (1) (Hou, 1989). The last column in table l refers to the 
static equilibrium, which corresponds to the minimum mechanical energy. 
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The question of the conditions, under which the surface flow becomes an 
accelerating or decelerating process, remains to be studied. But the question 
of whether a free-falling body in a gravitational field without consideration 
of its ambient friction belongs to an accelerating process is addressed by 
elementary physics: 

(17) 

from which we have: 

E = yy = y ( V
0

t + gg2
) 

E = =y(V
0 

+ gt) )Q 
(18) 

E = yg = pg2 >O 

furthermore, when t .. «>, then E ... .,, 

Whether the irreversible process is a decelerating one for the river process, 
is quite evident, though the analytical prediction remains to be done. 

7. Surface Flow as an Accelerating Flow 

If a surface water flows along a long rigid boundary with a small or moderate 
hydraulic gradient, eventually it should flow uniformly. This is a byproduct 
of constant rate of dissipated energy, when the dynamic equilibrium has been 
established, as shown in table 1. 

If the surface flow is proceeding along an alluvial bed, then it should form a 
concave longitudinal profile to follow the Prigogine criteria in the 
nonequilibrium state (table 1) . 

. Both of these cases belong to the process with friction. Imagine now the 
friction within a surface flow along a rigid or movable bed can be neglected; 
the input of energy to the system should be much greater than the output. 
This case is for a surface flow with a very steep hydraulic gradient. This 
surface flow should begin to follow the Hamilton Principle. In this case, the 
surface flow becomes an accelerating one. In the following, an appropriate 
approach to this flow is presented: At x = 0, V = V

0
; the effective component 

of gravity should be gsin0; then instead of equation (17) for vertical motion, 
the equation of motion for a single fluid particle along a slope can be 
written as: 
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V = V
0 

+ g s in0 t; 
~2 

y = V
0

t + g sine ... 
2 

Let the unit discharge q be constant, 

q = Vh = Vh = const 0 0 

(19) 

(20) 

where h0
, h are the depths for respective cross sections. In whatever case, 

both V, y are variable, they are functions oft, or of l; 1 ~course-length. 
For: 

1 = Vt, dl = tdV + Vdt 

From equation (19), 

then 

dl = 

V- V
0 t = dV = g sin dt 

g sine' 

V - Vo dV + V dV 
g sine g sin 0 

= 2V - V0 dV 
g sine 

if 9, remained a constant value, then: 

JL f v 2V- v ."2 vvo Iv - V
2 

- vvo 
L = dl = 0 dV = I v- - v - ---...,,.... 

o v0 gsin8 gsin0 gsin0 ° gsin0 

Substituting equation (20) into equation (23), we get: 
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L= q' (hho)2 (ho-h) =Fr(hho)2 (ho-h) (24) 
h~ g sin e 

where: 

FI = __ q' ____ _ 

h~ g sin a 
(25) 

But equation (24) should remain valid within this range: 

(26) 

where he = critical depth, corresponding to the minimum mechanical energy. 

Equation (24) represents the waterfall curve along a steep slope when the 
friction can be neglected. Thus, the depth h should decrease along the 
course. The mechanical energy should increase along the course also, but this 
in the form of an analytical expression is quite cumbersome. 

Similar to equation (18) for the case of free-falling body, for the present 
case, we have: 

E = yy = y (vat + g si~ 0 t) 
E = "f(Vo + g sin a t)>O, when t>O 
E = y g sin 0 >O 

(27) 

Thus, the time.rate of energy should increase linearly with time, similar to 
the case of equation (18) for the case.of a body falling. 

8. Turning Point of Surface Flow 

When the surface flow is proce-eding along a channel with moderate slope, it 
would tend to follow the Prigogine Principle. In another words, the rate of 
energy in the system should be diminished with time (and along the course), as 
shown by the family of curves • 111 in figure 5. However, when this fl ow 
proceeds along a channel with a very steep slope, then the rate of energy 
tends to increase with time (and along the course), as shown by the family of 
straight lines "2." Obviously, when the Froude number Fr increases in an 
a 11 uv i al reach, then the curve "1" tends upwards as was shown by arrow P in 
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figure 5. On the other hand, when Fr decreases on a steep slope, then the 
straight line goes downwards as shown by arrow Hin figure 5. Both of these 
families would meet each other at some point Ton the axis t = 0. This 
intersection T can be named as the •turning point• due to its neutrally stable 
character. 

Formally, for T is a function of E when t = 0, 

T = 1{Elc-o) (28) 

and from equation (27) we have: 

(29) 

then 

( 30) 

The turning point exists not only in surface water flow, but also in outer 
flow. But contrar to the previous case, a body would be statically established 
at low or zero speed. Their comparison can be shown in table 2: 

Table 2 

Speed of motion (rate of energy) 
Motion 

High Low 

Surf ace fl ow H p 

Motion of body p H 

where P,H = Prigogine and Hamilton Principles, respectively. 

9. Practical Significance of a Turning Point Study 

In the area of soil conservation, this study seems of basic importance: The 
soil erosion on a slope in a period of heavy precipitation is caused directly 
by the concentrated surface runoff, and intensive erosion could be caused by 
these combined conditions: 
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(I) Barren, long, and steep slopes with easily erodible material for a 
surface mantle; 

(2) Temporary heavy precipitation. 

Under these conditions, the runoff at some moment could exceed the value 
corresponding to the turning point, so that intensified soil erosion would be 
caused. 

An effective solution for soil conservation is a thick sublayer of low 
vegetation. The main function of a thick vegetation layer on the slope would 
be that this layer would distribute, disperse and delay the surface runoff so 
that the flow pattern would drop into the region of the Prigogine Principle. 
Once the surface runoff fell into this region, the flow would spontaneously 
diminish its energy dissipation rate, so that the goal of soil conservation 
were achieved. 

The turning point is a critical point. The real flow regime could be in 
either the subcritical region, or the supercritical region. If the flow 
pattern should be within the subcritical region, then the flow would be 
established automatically in time and course. This is even the main goal of 
soil conservation. However, if the surface flow is within the supercritical 
region, then the flow would accelerate with time and along the course 
automatically. In this case, the quantity of released water energy would be 
increased with time and along the course. This released water energy, 
increasing in time and space, becomes the energy source of soil erosion on the 
slope. 

Besides the sub or supercritical regions, another factor, which influences the 
rate and intensity of soil erosion~ is the concentration process of surface 
runoff. Basically, the deeper the surface flow depth, the lower the center of 
gravity of the water mass, so that the surface flow with shallow depth should 
trend to join the deeper one. After this concentration, the unit energy of 
surface runoff would be doubled. Hence, the concentration of surface flow 
should cause a phenomenon of "stress concentration" on the slope. It leads · 
the surface erosion to become a localized one (rill-or-gully), and to 
intensify this erosional process along the course. 

10. Maximum Entropy and Minimum Dissipation 

As mentioned before, in the nineteenth century Clausius predicted that the 
entropy of the universe would approach a maximum, whereas in recent years, the 
Prigogine school predicted that the irreversible process would spontaneously 
minimize its energy dissipation rate with time. Do these concepts conflict 
with each other? Furthermore, are Gyarmati's maximum and Clausius' maximum 
the same or different? These problems are of basic importance and need 
thorough analysis. 

In above paragraphs those processes with constant input were being referred as 
manmade processes. In fact, if the radiation from the sun to our Earth 
surface can be considered constant, then the compound dissipation process on 
Earth can be considered an irreversible process under constant input. 
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The Clausius' maximum was concerned with dissipated energy (heat) from the 
Earth back to the universe attaining a maximum value. The accumulating 
precess of "useless heat" into the universe ought be of actual, it could not 
be avoided. But the Clausius' maximum is maintained in •approaching," 
whenever the attended onto the Earth solar-radiation has not been changed. 
Therefore, the Clausius' concept applied only with this unavoidable 
phenomenon. 

The "minimum energy dissipation rate" is concerned with the overall tendency 
of any individual process; in most of these processes, the state with minimum 
dissipation rate really exists. 

The concept of "minimum energy dissipation rate" ought not be confused with 
that of "maximum entropy." The former is concerned with the tendencies of 
individual processes, whereas the latter is concerned with the "accumulation• 
of these though minimum (greater than zero) but infinitely added waste energy. 
An infinite accumulation of minimum is equal to maximum! 

11. Gyarmati Principle and TMEDR 

Figures 2, 3, and 5 are summed up in figure 6 as (a), (b), (c), in which (a) 
represents the case when the surface fl ow dropped into the region of the 
Ha~ilton Principle. In this case, the rate of input energy should increase 
with time ind/or along the course. Case ·(c) represents that case when the 
su~face flow dropped into the region guided by the Prigogine Principle. In 
this case, not only should the output gradually decrease in time (and the 
ca~rse}, but also the input would be forced to decrease. Case (b} is the case 
of constant input. 

From figure 6, we can see that for any case, the function G does not represent 
an independent variable, but one related to the dissipated energy. 
Furthermore, G would approach a maximum only for the '(a)' and '(b)' cases, 
whEn the process has reached the equilibrium state. There are some 
distinguishing features: For case (a), the value of G still would increase 
with time, even though the dissipation rate of energy has attained a constant 
value already. For case (b), the value of G should approach not only a 
ma.ximum, but a constant value also. For case (c), the Gyarmati Principle 
cauld not remain valid, for in this case. G should approach zero, but not a 
maximum. 

Basically, any irreversible process would approach the state with minimum 
er.ergy dissipation rate, irrespective of the case, whether the input should 
ef ther increase, decrease or remain a constant with time. But the GP should 
remain valid only with constant input. 

B~t the most important difference between the Gyarmati Principle to the TMEDR 
is that the Gyarmati Principle was concerned only with the "lateral profile• 
of the giving process, that is, the relationship between relevant parameters, 
wren the equilibrium state of the open or closed system has been established 
already; whereas the TMEDR was concerned with its "longitudinal" profile. In 
another words, the TMEDR deals with the transition from the nonequilibrium 
state to the equilibrium state. 
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12. Further Relationship of the THEDR to the Prigogine Principle 

Both of these principles are basically the same, but with some differences: 
(1) The criteria of the PP have been expressed only in general form, whereas 
for the TMEDR, the criteria for open channel flow have been expressed in a 
concrete form. (2) Prigogine predicted that when the system should stay in a 
nonequilibrium state but very close to an equilibrium state, then it would · 
approach this state with decreasing entropy production, whereas the TMEDR 
referred to the system under an equilibrium condition only, though Yang (1986) 
had indicated: "If a system is not at dynamic equilibrium, its rate of energy 
dissipation is not at its minimum value. However, the system will adjust 
itself in such a manner that the rate of energy dissipation can be reduced to 
a minimum value and regain equilibrium.", but this statement was qualitative 
only. 

In the common case, when the system was in a nonequilibrium condition, the 
input of energy needs not equal to the output; the input would be greater than 
the output. But if the ·system of a natural process had evolved spontaneously 
into the equilibrium state, then the input and output would approach the 
output. At this moment, the input and output should coincide with each other, 
similar to the laminar flow (for laminar flow, the input of energy should be 
dissipated directly and wholly into heat through the effect of viscosity to 
the velocity distribution). 

13. Concluding Remarks 

Water is a viscous medium, so that water flow should unavoidably be 
accompanied by energy dissipation, which should become heat and transfer back 
into the surroundings. Hence, the water flow belongs to a thermal system, and 
it can be analyzed on background of thermodynamics. 

However, classic thermodynamics is concerned with isolated systems with 
"static" equilibrium only, so.that it could not be used for explaining water 
flow phenomena. 

Though the nonequilibrium thermodynamics have been concerned with closed and 
open systems before, so that they became an useful tool for studying the water 
process. However, the main attention in this field before had been paid to 
the dissipative structure of the system (Prigogine, 1983; Glansdorff, 1971), 
that is, to its external form of expression, its mathematical description, 
etc., and not to the input and output of the energy of the system. Perhaps 
Gyarmati and his school have primarily attacked this important problem, though 
many problems remain to be studied, especially in the area of surface water 
flow. 

In this paper, only a qualitative analysis for surface flow is presented. 
Some of predictions remain for further experimental verification. 
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Figure 6. - Different conditions of input for water flow: (a) Flow follows 
the Hamilton Principle (steep slope); (b) Flow with constant input; (c) Flow 
follows the Prigogine Principle (alluvial bed). 
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HISTORICAL ACCOUNT 

Velocity distribution for both pipe and open channel water flow is a classic 
problem in fluid mechanics, for which many experimental results have been 
accumulated (Nikuradse, 1932; 1933; Keulegan, 1938; Vanoni, 1946). 
Comparison of those experiments to the classic theories showed that the 
Prandtl-Karman's logarithm law seemed to fit the experiments very well in the 
core region, but some deviation still occurred at the boundary. Van Driest 
(1956) revised this classic model to include the viscous effect at the 
boundary, but the basic feature of the ~mixing-length theory" was not changed. , 
The study of velocity distribution has gone on for a long time, but concerning 
its physical modeling, great achievements have not been attained. Perhaps, 
prior to the 1960's, the problems of velocity distribution still had not been 
related to the energy and energy dissipation rate (Malkus, 1956; Song, 
Yang, 1979). 

In recent years, even though the concept that velocity distribution must 
relate to energy dissipation and entropy has been commonly accepted (Song, 
Yang, 1979, 1986; Hou, 1987, Chiu, 1989, 1990), many problems remain to be 
studied. 

This paper is devoted to analysis of the following problems: 

(1) Relation between energy dissipation and velocity distribution 

(2) How the energy dissipation rate should distribute along the cross 
section 

(3) The difference between the energy dissipation for laminar velocity 
distribution and for turbulent flow 

(4) Regions governed by different laws (i.e., the region for laminar 
flow, the region for semilog turbulent flow, and the region for 
accelerating high speed flow) 

(5) How the velocity distribution should relate to the longitudinal 
profile of surface water flow 

(6) Experimental evidence and analysis 

(7) Practical application 

LOG VELOCITY DISTRIBUTION AND ENERGY DISSIPATION 

Though in recent times velocity distribution has been related to the energy­
dissipation rate, many aspects still need to be clarified. 

Although turbulent velocity distribution is referred to as the fluctuation of 
a fluid mass, and the fluctuation of individual particles seems to be quite 
random, as predicted by Prandtl/Karman's model, in our opinion, the overall 
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tendency of fluctuation could not be "random" and "spontaneous•. It is guided 
by mechanical and thenmodynamic laws. 

Water is a dense fluid on one hand; on the other hand, it is also a viscous 
fluid. Because it is dense, water flow must follow the Hamilton principle 
(HP); because it is viscous, it ought to follow the Prigogine principle (PP), 
or the theory of minimum energy dissipation rate (TMEDR). Ir. some limited 
cases, the water flow ~ay follow only one of these principles. For example, 
when water flows on a steep slope, the viscous effect becomes second order, 
and the water flow is guided basically by the HP. But when the surface flow 
is proceeding along a flume with a very small hydraulic gradient, then its 
dense effect can be neglected, and the water flow follows solely the PP or 
TMEDR. But in the comnnon case, for the surface flow in the intermediate 
hydraulic condition, both of these principles ought to guide the water flow 
simultaneously; the dense effect and the viscous effect ought to be coupled. 
The coupling phenomenon leads the problem of water flaw to become quite 
cumbersome. But first of all, water flow guided by the PP or HP ought to be 
strictly distinguished: the laws for them occur quite different. 

If the surface water flow is located in the region governed by the PP, it 
eventually establishes the state with minimum energy dissipation rate 
(irrespective of whether the boundary is rigid or erodible). Once the water 
flow has attained this state, the rate could not be further lowered (for it 
could not be less than "min"), nor increased (because of the irreversibility 
of the process). The only possible outcome ought to ~e that this minimum rate 
of dissipated energy should remain the same value along the course. In 
another words, if the surface water flow should drop into the region governed 
by the PP, then the energy dissipation rate would remain at a constant value 
along the course. In this case, the water flow should stand in the 
equilibrium state. The constant energy dissipation rate should become 
uniform flow pattern, such that: 

(1) The hydraulic gradient should be unchanged along the course and 
parallel to the flu~e boundary slope. 

(2) The hydraulic elements, mean depth, and velocity sho~ld be unchanged 
along the course. 

(3) Accordingly, the form of velocity distribution should be unchanged 
along the course. 

Thus, the semilog velocity distribution should satisfy the requirement for 
minimizing the energy dissipation rate. 

For the Prandtl/Kannan's semilog law for the core, together with the linear 
law for the laminar sublayer occurred fit well with the rea1 distribution, 
then in following a thorough analysis of the dissipated energy along the cross 
section will be analyzed upon this type of velocity distribution. 

3 



ENERGY DISSIPATION IN UNIFORM TURBULENT FLOW 

As was mentioned, the whole cross section can be divided into two regions, 
that is, the core and the laminar sublayer. Corresponding to this, the 
dissipation can also be divided into two parts. 

It needs to be emphasized that the energy dissipation picture for turbulent 
flow and that for laminar flow are quite different. For laminar flow, the 
energy should be dissipated wholly and directly through its velocity 
distribution; whereas, for turbulent flow, only a part of energy should be 
dissipate~ directly through its time-mean velocity distribution (see Hinze, 
1975). In any case, the form of velocity distribution still can be used for 
conjecturing the physical picture concerned with the energy dissipation. 

(1) Dissipation in Laminar Sublayer. - Because in this layer the energy is 
dissipated entirely through the Newtonian viscous effect, the rate of 
dissipated energy can be decomposed into two parts: 

Ediss = f oh µ ( ~~r dy = I: µ ( ~~r dy + fah µ ( ~~r dy = Ediss,l + Ediss,2 

( 1) 

In the sublayer region, the velocity distribution follows to the linear law: 

then 

au = 
ay 

u~ 
....._I 

v 

Substituting (2) into (1), the first term on the right-hand side, we get: 

fa ( au)2 J a 
o µ ay dy = o µ 

u! µu!o µu! 
dy = = 

v2 v2 v 

where u* = shear velocity and 1 a ~IP 

4 

u.o • 3 = p u• u. 
v 

(2) 

(3) 



~· = u.a 
= 11. 6 (4) 

v 

then 

tdlss.1 = J: µ ( ~~)2 dy = 11. s pu; (5) 

(2) Dissipation in the Core. - Energy is dissipated partly through the 
Newtonian viscous effect. The velocity distribution follows the semilog law, 
that is, 

( 
yu. ) u· = A ln y• + B, u = u. A ln-v- + B 

where A,B remained to be determined by experiments, but for a first 
approximation, let A = 2.5, B = 5.5. For: 

u.y 
·-, 

v 
= Au. ay· = u. 

y+ I ay -V- I 

then 

au = ay 
Au! 

(~~r = 

Substituting equation (7) into the second term of right-hand side of 
equation (1), we get: 
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( 6) 
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~. 1: µ ( ;~,~: l 

If the depth h is much greater than 6, then h+ >>&•, and equation (8} can be 
approximated as (if A= 2.5, = 11.6): 

Ed1ss, 2 = P A 2 u; ( :. ) = 0. 54 p u; (9) 

Comparing equation (5} to equation (9) we can see that the rate of energy, 
dissipated at the boundary, occurs much higher than that in the core: 

Ed1ss, 1 = 
Ediss,2 

11.6 p u: 
o. 54 p u; = 21 (10) 

Therefore, most of the energy of the surface water flow was dissipated in the 
region near the boundary. 

The numerical result of equation (1) is: 

Ediss = Ediss. 1 +Ediss. 2 =11.6 p u; + o.54 p u; = 12.14 p u! (11) 

For surface water flow, the shear-velocity is measured by the depth h and the 
h:draulic gradient S: 

(12) 

where r0 is the shear stress at the boundary, then: 
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. - 3/2 Ediss - 12. 14 p (ghS) 

Therefore, if h,S are given, then the rate of dissipated energy can be 
calculated from equation (13). 

(13) 

Because the core constitutes most of the depth, and the amount of dissipated 
energy in it should constitute only a small part of the total dissipated 
energy, it can be conjectured that the semilog distribution is the most 
energy-saving distribution. In another words, the secilog distribution is a 
distribution for minimum energy dissipation rate (because most of the energy 
is dissipated in a thin layer at the channel bed, not in the core). This does 
not mean that the rate of dissipated energy in the laminar sublayer should 
exhibit a "maximum" value. This is only the comparison of the rate between 
the core and the laminar sublayer. If we consider solely the energy 
dissipation in the laminar sublayer, then the dissipation rate for the linear 
velocity distribution is still a distribution with minimum dissipation rate 
comparative to any other form of velocity distribution (Hou, 1987). 
Therefore, the dissipation of energy in the laminar sublayer is still a 
minimum rate of dissipation but under its own constraint condition. 

Thus, we can conjecture that the total energy dissipation rate of the core 
plus the laminar sublayer exhibits a minimum value. 

A traditional concept about open channel flow was: At the boundary, the 
viscous effect must be included, and far from the boundary, the viscous effect 
could be neglected, as if in the core, the flow became ideal fluid flow in 
whatever case. But the above analysis indicated that the formation of a 
semilog velocity distribution did not mean that the flow in the core was 
ideal, but of quasiminimum (greater than zero!) energy dissipation rate. 

(2) Calculation of input. - The above conclusion should remain valid 
only for energy dissipation, that is, the output of surface flow. It would be 
incorrect to predict that if the input can be divided into the laminar 
sublayer part and the core part, then the laminar sublayer part should 
constitute the majority of the input. On the contrary, the input attributed 
to the core should constitute a majority in whatever case. This conjecture 
can be verified in following: The input (called "unit stream power" by Yang, 
1976) can be divided into two parts: 

. . . !6 re 
Ein = Ein,l + Ein,2 = 0 (yuS) dy +Jr, (yuS) dy (14) 

For 
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u:y 
v 

Substituting (15) into (14), the first term becomes: 

. - Ja u!y d - ysU: (y2) la 
Ein.1 - yS o -v- y - -.v- 2 o = 

= syv &·J = 67 .28 yvs 
2 

In the core, 

u· = A ln y• + B, u = u. (A ln y• + E) 

Substituting (17) into the second term of equation (14), we get: 

(15) 

(16) 

(17) 

Because h• should be much greater than o· the value in brackets would be much 
greater than· '67.28' in equation (16). 

ENERGY DISSIPATION IN LAMINAR FLOW 

Proceeding now to the question: Whether the dissipation rate for the laminar 
regime would be greater than that for the turbulent one under the same 
hydraulic conditions? The criterion 

yuS = min (19) 
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itself remains valid both for laminar and turbulent flow, though for different 
flow patterns its own value ~f 'min' would be different one from another. 
Furthermore, the turbulence can be considered as a fluctuation of the laminar 
flow. It ought to further diminish the energy dissipation rate. Thus, we 
have: 

( y us) 1 > ( y uS) c (20) 

which, under the same hydraulic condition, that is, S,q (~uh), should remain 
unchanged for both cases. 

For larinar flow in an open channel, as is well known, the velocity 
distribution should follow to the parabolic law: 

then 

au 
ay 

u = .9§. (yh - .r:.) 
v 2 

...... 52 
= '::J (h - y) 2 

y2 

The dissipated energy over the whole depth can be expressed by: 

( 21) 

(22) 

In the common case, h• >> o· = 11.6. For example, if h = 50 cm, and o - 1 mm, 
then h • = 500 o• :::: 5, 000, and the energy is occurs much higher than ( Ediss) t, 
presented by equation (11). The conclusion is: The surface flow ought to be 
transform~d from the laminar regime to the turbulent one under the same 
hydraulic conditions with the target to diminish its energy dissipation rate! 

ENERGY BALANCE OF SURFACE WATER FLOW 

(1) Laminar flow. - The general energy-balance equation for laminar or 
turbulent flow can be derived from the Navier-Stokes Equation or Reynolds 
Equation. It has been thoroughly stated in many monographs on fluid mechanics 
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(Hinze, 1975). However, this 9eneral statement (without concerning the 
concrete velocity distribution and concrete boundary condition) is quite 
insufficient for real surface flow. Furthermore, we have predicted that for 
laminar flow, the input of energy should be dissipated entirely and directly 
through the velocity field, but for turbulent flow, the input should be 
dissipated only partly and directly through the time-mean velocity field. 
Proceeding now to the first problem. The input of the rate of energy to 
open-channel laminar flow for a unit width is the effective part of the 
potential energy: 

(24) 

Substituting (21) into (24), we get: 

(25) 

On the other hand, the rate of dissipated energy can be calculated by this 
exJression: 

. J h ( au)2 
Ediss = a µ ay dy 

Substituting (22) into (26), we get the same result as equation (25): 

f h (a )2 y2s2hJ 
a 11 a~ dy = - 3µ 

This is an alternative expression of equation (23). 
laminar flow we have: 
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Therefore, for the 

(26) 

(27) 

(28) 



Besides this, parabolic distribution of laminar flow is flow at the m1n1mum 
energy dissipation rate. This outcome has already been obtained by Song, Yang 
(1979). 

(2) Turbulent flow. - The input and output (dissipated) in the core and 
laminar sublayer has been calculated as equations (5), (8), (16), and (18), as 
shown in the following table: 

Output 
Region Input (dissipated) 

Core [2.5h.(1n h•-1)+5.5h.]"'(VS 0.54 p u.3 
Laminar 
Sublayer 67. 28 "(VS 11.6 p u.3 

Sum 12 .14 p u.3 

Without giving h~, u. a quantitative estimate of the input/output seems 
impossible. However, the energy dissipated mostly at the boundary region 
should be compensated by the energy taken from the core. In any case, the 
input and output for turbulent flow shown in the table could not equal each 
other; the input should always be greater than the output, because some part 
of the energy is transferred into turbulence generation, dissipated in 
sediment transport, etc. 

RELATION OF VELOCITY DISTRIBUTION TO UNIT STREAM POWER 

The unit stream power 1uS, or simply us, as an indicator for the stability of 
an alluvial river, was introduced by Yang (1976). Here u was the cross­
sectional mean velocity. Now we can see from equations (16) and (18), that 
.,.,ith different velocities., the concrete analytical expression for the unit 
stream power would be different. 

An important question faced is: If the unit stream power is referred to the 
input of surface flow, then, whether the minimization is referred to the input 
or output? Strictly speaking, the minimization must be related to the 
dissipated energy, that is, the output. However, for alluvial river flow (or 
uniform open channel flow with a rigid boundary}, where the equilibrium state 
was established, the flow pattern should approach a uniform one. The input of 
a river ought to be proportional to the output (though not equal to each other 
for turbulent flow}. In this case, the idea that the minimization was 
directly related to the input, ought to be approximately correct (see fig. 3 
of paper: Hou, H. C., "Gyarmati Principle and Theory of Minimum Energy 
Dissipation Rate"). 
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EXPERIMENTS ON VELOCITY DISTRIBUTION IN ACCELERATING FLOW 

So far, only the velocity distribution under equilibrium conditions has been 
considered. For open channel flow, this type of velocity distribution 
(semi log) would exist in a flume with a moderate or small hydraulic gradient. 
In another words, semilog velocity distribution for open channel flow would 
exist only in the region where the water flow is guided mainly by the 
Prigogine principle. 

A question immediately arises: Where should the boundary of this region be, 
within which the surface flow.would be. guided by the PP, and beyond which the 
PP has no force? Unfortunately, there were no experimental results on this. 
Obviously, the following three variables and their combinations should 
influence this transformation: 

(1) Hydraulic gradient (i.e., channel bed slope) 

(2) Discharge 

(3) Roughness of bed 

A surface flow along a steep slope with a smooth boundary and a large 
discharge would be out of the region for the PP. But with a very rough 
Joundary and a small discharge, flow would remain in the region of the PP. 
Recent experiments on a very steep slope had revealed some characteristics of 
this accelerating flow. Figures 1-3 show the velocity distribution on stepped 
spillways of Beaver Run Dam. The slope of spillways is 1:2; the height of 
each step is 2 ft. From these figures some important characteristics of 
accelerating flow can be revealed in following: 

(1) In the core, the velocities turn to uniform distribute; velocity-gradient 
disappeared entirely. This means that in this region there was no energy 
dissipation in this case. It indicates that as the Froude number increases 
sharply, Fr>l, the •minimum energy dissipation rate" turns to "zero energy 
dissipation rate" .. •zero" is minimum among all the minimums! 

Because there was no (or very little) energy dissipation in the core, the 
entire input should have been dissipated in the laminar or turbulent boundary 
layer. 

(2) According to the requirement of the acceleration along the course, the 
depth should decrease along the course. Meanwhile, the surface velocity 
should increase along the course. 

In general, the generation of accelerating flow was such that the input of 
energy rate was so large that it could not be dissipated entirely locally by 
conventional measures, resulting in energy accumulating. If this input of 
energy could be dissipated entirely and locally, so that energy could not 
accumulate, the surface flow would reach the equilibrium state, so that a 
uniform flow pattern would be sustained. In the above experiments, this 
transformation was observed under the conditions of a small discharge and a 
shallow water depth. 
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APPROXIMATE MATHEMATICAL MODELING AND VERIFICATION 

(1) Ideal fluid case. - In our previous paper (Gyarmati Principle and 
Theory of Minimum Energy Dissipation Rate) a model of accelerating flow for 
ideal fluid (i.e., where the friction can be neglected), by which the local 
velocity can be represented in this form: 

u2 - uu: 
L = 0 or U2 - UTJ -· Lgsin0 = o 

g sine ' 0 
(29) 

where U = velocity at L=O. The distance is measured from L•O downwards 
paralle~ to the flow distance along the steep slope. From equation (29), we 
get: 

U = [u0 ± Jifo + 4Lgsin6 ];2 (30) 

in which the root with negative sign has no physical meaning (The negative 
sign represents decelerating flow but not accelerating one.). Therefore, we 
have finally: · 

U = [u0 + Jifo + 4Lgsin6 ]12 

or in nondimensional form: 

L = [1 + ./1 + 4Lsin6 ]/2 ( 31) 

in which: 

U = U/U
0

, L = Lg/ifc, (32) 

Data from· figures 1-3 are used for verification. Since in these experiments 
sine= 1//5, (31) can be simplified to: 
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U=(l +Jl + 1.788!]/2 (33) 

The numerical results of equation (33) are shown as a solid curve in figure 4, 
in which some experimental results of surface flow on a steep slope from 
figures 1-3 are also shown as points. 

(2) Verification of velocity distribution. - From figures 1-3, velocity 
distribution for accelerating flow can be divided into two parts, that is, the 
core part and the sublayer part. The core part is nondissipative flow. It is 
characterized by constant vertical velocity: 

u = const, or u• = const 

Assume that in the sublayer region the velocity distribution conforms to 
linear law as for the equilibrium case. Thus, when 0 < y <&,we have: 

(34) 

( 35) 

But in this case, the thickness of the l~minar/turbulent sublayer could not 
remain constant; it .would increase with the increase of velocity in the core, 
as shown in figures 1-3. The position of the edge of this layer ought to be 
constrained by the unit discharge q. By the definition of mean velocity: 

1 Jh u = - udy 
h 0 

( 3 6) 

Since the unit discharge must be a constant value: 

q = Uh = CO{J.St (37) 

Therefore, the area bounded by the velocity distribution curve and the depth 
axis ought to maintain a constant value: 
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J: u dy = const (38) 

or 

J: u dy + J
6
h u dy = q = con st ( 39) 

Since in the core the velocity is uniformly distributed: 

(40) 

where uc = velocity in the core; both h,o are functions of distance. 

! 6 v2cz 
oudy=2 ( 41) 

Substituting (40),(41) into (39), we get: 

or 

CZ a 2 - 2au + (hu - q) = 0 c c ( 42) 

from which we have: 

(43) 
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Equation (42) or (43) can be considered as the equation of continuity for the 
present case. 

Another equation is the equation of motion. From the Hamilton principle (see 
the table) of our previous paper: 

u dE >O 
dx 

For nonuniform surface flow, if its friction must be included, ·then the 
alternative forms for equation (44) can be written in this form: 

Assuming this inequality can be replaced by a linear relationship: 

u - yUS - 't'b - = A yuS - 't'b-d ( du) ( du) 
dx dy . dy 

where A is a constant. For turbulent boundary layer flow, let: 

du 
't'b = e dy 

c is the eddy viscosity coefficient at the boundary region: 

but from equation (35), 
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( 45) 

( 46) 

(47) 

(48) 



Furthermore, for surface flow with a rigid boundary, u and S are not 
independent; they are related through the Chezy formula: 

If the change of h can be neglected, then: 

S = ku 2 

k = constant. Thus, equation (48) can be replaced by: 

resulting in 

~ (yku' - ecx 2 u) = A (yku3 - cx 2) 
dx 

J (4yku3 - ea 2) - - - du = Ax + cons t . 
yku3 - a 2 

ON A RATIONAL PRINCIPLE FOR SPILLWAY DESIGN 

(49) 

(50) 

The classic concept concerned with the hydraulic design of spillways was 
restricted to its streamlined body with the objective of nonseparation to 
prevent cavitation and increase discharge capacity. In the common case, 
spillway flow is an accelerating flow, tending to increase overflow. The 
accelerating process would be strengthened simultaneously, producing an 
energy-accumulating process. This phenomena would make dissipation of energy 
at the downstream end of a hydraulic structure difficult, especially for a 
structure with a high head. Therefore, some conflict exists in design, and 
this classic approach could not entirely satisfy the engineering requirements. 

Perhaps, an optional design for this type of structure would simultaneously 
address these constraints: 

(1) To maximally increase the discharge capacity 
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(2) To restrict or to obstruct the accelerating process, i.e., the 
energy-accumulating process. 

To satisfy these requirements, the energy of overflow needs to be dissipated 
not entirely downstream, but partly, along the route to the downstream end 
before the energy has a change to accumulate. In recent years, stepped 
spillways have been used widely (Essery, 1971; Rajaratnam, 1990). These types 
of spillways could satisfy the requirements, although further studies are 
st i 11 needed. 

CONCLUSION AND DISCUSSION 

(1) From the standpoint of energy dissipation, surface flow can be 
divided into two categories, uniform surface flow and accelerating nonuniform 
flow. The formation of uniform flow means that the flow is following the 
Prigogine principle, and that it has attained the equilibrium state. 

(2) Because the energy dissipation rate of surface laminar flow is. 
greater than that of surface turbulent flow under the same hydraulic 
conditions, according to the TMEDR, the surface laminar flow should certainly 
be transformed into surface turbulent flow. 

(3) Semilog velocity distribution in the core not only is the outcome 
of the mixing process in a turbulent mass, as predicted by the classic models, 
but it also represents a distribution by which the surface flow should gain a 
very low energy dissipation rate. 

(4) Uniform surface flow represents flow at an equilibrium state. Not 
all the surface water flow could attain uniform flow, only the flow in the 
region guided by the PP. Because the surface water flow in this region should 
maintain its (minimum} energy dissipation rate along the course, a uniform 
flow pattern would be formed in this reach. 

(5) Surface accelerating flow is that flow guided by the HP and for 
which the energy dissipation rate can be neglected. Energy accumulates for 
this flow so that it needs to be seriously considered in design of hydraulic 
structures. 
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1. Introduction 

Classic hydraulics studied water flow problems usually by 
using a one-dimensional approach to the equation of motion. 
However, due to the.viscous effect, the velocity is often 
nonuniformly distributed; at the boundary it approaches zero. Due 
to this nonuniform effect two coefficients a, ~ were introduced 
for correction early in last century. Coriolis introduced the 
energy coefficient a which was de_fined in this mathematical form: 

ex = 
J u3 dA 

u! A 

(1) 

where A is cross-sectional area; u~ is mean velocity; u is local 
velocity; a represents "the effect of nonuniform velocity 
distribution at a channel cross-section on the kinetic energy of 
the flow" (Watts, 1967). Eq. (1) is valid for three-dimensional 
flow. For two-dimensional flow (flow with very great width), 
Eq. (1) can be simplified to the problem for unit width as: 

Another coefficient ~ was introduced by Bousinesq. 
latter coefficient can be expressed in this form: 

The 

(la) 

(2) 

13 represents "the effect of the nonuniform velocity distribution 
at a cross section on the momentum flux of the flow". 

Similar to (la), for two-dimensional flow, Eq. (2) is 
simplified to: 
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~ = f u 2 dy 

u 2 h lD 

(2a) 

For a long time, a, /3 could be detennined numerically only 
by expericents; they fluctuate within a large range. 

Chow (1959) firstly attempted solve this problem 
analytically. He obtained the expressions a, /3 in these forms: 

CZ = 1 + 3e2 - 2e3 (3) 

p = 1 + e3 (4) 

where. 

e = (5) 

Experimental methods for determining the numerical values of 
, seems certain. Many factors influence their precise 
determination. 

The main goal of this paper is three-fold: 

(1) To derive a radical expression for a and /3. For 
simplicity, the surface flow is restricted to two dimensions 
(the distribution along the vertical, without regarding side 
slope influence). 

(2) To compare the change of a, P with different idealized 
velocity distributions. 

(3) To analyze Chow's assumption: should a, /3 be determined 
by only the velocity ratio u../um? 

2. Expression for a, P with semi~log distribution 
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2.1 Mean velocity distribution 

Although in Chow's derivation the log distribution for a 
rough surface was studied, .but the sublayer and the free constant 
in the semilog profile were not included. Strictly speaking,the 
semi-log profile could not be attain the boundary surface in 
whatever case. Therefore, we would prefer to use the log 
distribution, conjugated with a laminar sublayer. 

Because in the core the law of semilog distribution is 
effective, 

where A, B are constants; A = 2.5; B = 5.5; u•, y• are 
nondimensional velocity and distance, respectively; they are 
nondimensionalized by shear velocity u,.: 

yu. 
v 

(6) 

(7) 

In the laminar sublayer, the velocity distribution should follow 
to the laminar law, that is, 

The junction of the semilog line (6) and the linear line (8) 
should deter1I1ine the nondimensional sublayer thickness s• that 
is, from (6), 

u; = A lna • + B < 9 > 

u; = a+ ( 10) 
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where u • 
(9), (10~ 

is the velocity at the edge of this layer. From 
we have 

By interpolation s• can be obtainea from (11) as 

~· = 11.6 

(11) 

(12) 

Since the velocity distribution both in the core and the 
laminar sublayer was different, the mean velocity for the core 
and the laminar sublayer, respectively, first needs to be 
calculated. Mean velocity for the laminar sublayer u can be 
expressed: 

Substituting (8) into (13), we get 

Let 

substituting (15), (7) into (14), we get the integral in 
nondilmensional form 

5 

(13) 

(14) 

(15) 



+ 
Um,1 = 11. 6 = 5. 8 

2 

~1e mean velocity in the core u is expressed by 

1 (h 
um,2 = h-t> Ja u dy 

Substituting (6) into (17), we get: 

u = _l_ ( h u (A ln y• + B) dy 
h-t> J a • 

or in a nondimensional form: 

+ 
Um,2 = 

This results in: 

+ 
Um,2 = __ l __ [ 2 . s (h • ln h • - h • - 16 . a 3 ) 

h+ - 11. 6 
+ 5.S(h• - 11.6)] 

(16) 

(17) 

(18) 

(19) 

(20) 

For calculating the mean velocity over the whole depth, it needs 
to divide the mean velocity of different layers by respective 
different thickness: in general, the expression for the global 
mean velocity can be written as: 
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(21) 

where um i = mean velocity in layer "i" ; hi = thickness of layer 
"i". In our case, (21) can be expressed in this explicit form: 

u = u.m, 1 ~ + u •. 2 ( h - ~ ) 
m h 

or in nondimensional form: 

Some numerical results of (23) are shown in Figure 1. 

2.2 Calculation of the.integrals in (la) and (2a) 

(22) 

(23) 

To split the integrals into two parts, and calculate their 
a, ~ respectively: 

(2 ") 

and 

(25) 

Substituting (10) into the first integral of (24), we get: 
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Similarly, the first integral in (25) becomes: 

fo" u3 dy = fo6 u; y+> dy = faa• v u; y•1 dy• = 
vu: ~·' 

= 4526. 60 v u: =---4 

Calculating a, p for the laminar sublayer: 

« =Ju3 
dy =4526.60 vu: 

1 u;, 1a (5. 8 u.)3 ~ 

520. 30v u. 
( s. 8 u.) 2 ~ 

2.3 Expressions for a, P 

= 

= 

4526.60 
5. 83 x 11. 6 

520.30. 

5. 8 2 x 11. 6 

a, p for the core can be expressed by: 

= 2. 0 

= 1. 33 

(27) 

(28) 

(29) 

Similarly to mean velocity (Eq.22), the expression of global mean 
value of a can be written in this form: 

(t = (30) 
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This procedure is quite complicated. On the other hand, whether 
the residue method could give a precise result, was uncertain. 
Therefore, we would prefer to solve this problem with 
approximation in following paragraphs. 

3. Approximate method for deter.mining a, ~ 

3.1 Calculation of nondimensional mean velocity 

Since the laminar sublayer constitutes only a small part of 
the depth, from the standpoint of mechanical energy, it can be 
neglected. According to this assumption, the expression for a or 
~ for the whole depth can be s.i.Jnplified to: 

(31) 

u! h 

Eq. (31) can be replaced by this form: 

ex = (31&) 

where 

(32) 

Substituting (6) into (32), we get: 
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or 

u = _! ( h u (A ln y• + B) dy = ..!. (h+ (A ln y• + B) dy = 
m h 16 • h la• 

= ..!. {A[h• ln h• - h• - (~· ln ~· - ~·) + B(h• - ~·) 
h 

um = u; = hl {2. 5 (h• ln h+ -h•) - 42. 08 + 5. 5 h+ - 63. a} = 
u. ( 33) 

= ..1:.. (2. 5 h• ln h• + 3 h• - 105. 88) 
h+ 

Some numerical results of (33) are shown in figure 2, showing 
that the relation of (Un/U.) 2 to h+ conforms to the semilog law. 

Chow stated that if the velocity distribution followed the 
semilog law, then the coefficient a or p would be determined 
solely by u./u_, as was shown in Eqs.(3)-(5). However, as we can 
see from (33), this ratio should change with respect to the 
increase of h+. 

3.2 Calculation of a, p 

From (6), 

then 

in which 
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.l (h El dy = .l El (h-~) = v 166. 38 (h+ - 11. 6) = 
h J4 h u.h 

= 1 116.38 (h+ - 11.6) = 166.38 (1 - 11.6/h+) 
h+ 

.l ( h 3AE2 ln y• dy = ....!_ ( h• 3AE2 ln y• dy• = 
h)6 h+Jt>• 

= .2:_ 3AB2 (y• ln y• -y•) h+ = 
h+ 6• 

= 3 AE
2 

( h • ln h • - h + - 16 . 8 3 ) 
h+ 

= 226 · 87 (h• ln h• - h• - 16. 83) 
h+ 

Since 

then 

and since 

then 

11 
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(34) 

(35) 



Therefore, 

1 (h 3A2 B (ln y+) 2 dy = .J:.. (h.3A 2 B (ln y•) 2 dy+ = 
h la h+ la· 

= 103 (5. 23 - h+ ln h• + 2h+) = (3CS) 
h+ 

= 538 · 69 - 103 ln h+ + 206h+ 
h+ 

~J6h A3 (lny•) 3 dy=15.62[(lnh+) 3 +3 ln h•-6h•-30,41] = 
= 15 6 2 ( ln h") 3 - 4 6 . 8 6 ln h • - 9 3 . 7 2h • - 4 7 5 

(37) 

Although these results are quite cumbersome, they are algebraic 
equations, which are easy to solve by simple programming. 

4. Comparison with Chow's model 

Chow's result (1959) about the influence of coefficients a, 
Pon the velocity distribution was shown by Eqs.(3)-{5). As 
evidence, some numerical results, for these equations are shown 
in figure 2. ~hus, according to Chow's model, although his 
derivation was based on the velocity for a rough boundary, the 
·final expression was related to the nondimensional velocity u./um 
only. In other words, Chow considered the ratio U./~ as an 
"independent" variable for determining the value of a and {3. 
However, as we see in this paper, the ratio u./u

111 
is determined 

by the nondimensional depth h". 

To precisely determine the value of a, p was quite difficult 
before (Watts,1967). This may be partly due to the influence of 
different values of h•. 

Furthermore, the relation of values a, p to Um/'U. predicted 
by Chow, was too simple. It approximated a nonlinear combination 
of e. In our numerical results, the relation is quite 
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cumbersome. They could be solved only by either a program, or 
with the help of subsidiary graphs. 

According to Chow's model, a and p -are not independent of 
each other. Their relation can be obtained by co-solution of 
Eqs. ( 3 ) - ( 4) : 

cx = 1 + 3 ( ~ - 1) - 2 ( ~ - 1) 3/2 

This numerical result is shown by the doted line in figure 4, in 
which the analytical results of this paper are shown as a solid 
line (see below) for comparison. We can see from this figure 
that in the region o~ small a (probably a <1.3) our results seem 
close to Chow's, but as a increases beyond this region, the 
predicted relationships of a to p diverge. 

5. Influence of velocity distribution on the values of a, P 

5.1 Case of ideal fluid 

In general, a and p represent a gauge of velocity 
distribution. In the following are some limiting cases from the 
standpoint both of type of velocity distribution and of different 
flow pattern. 

The surf ace flow along a steep slope is close to the ideal 
case, because in the core, the velocity was almost uniformly 
distributed. · 

Once the surface flow is uniformly distributed, then 

(1) the velocity should independent from y; and 

(2) the velocity at any point should represent the mean 
velocity. In this case, Eqs. (1) and (2) become 

ex = u3 J dA = 
u3 A m 

13 

u;,J dA = 1 

u3 A m 

(38) 



2 

p = u
2

[ dA = 1 
u 2 A m 

This is one of the limiting cases for a, p. 

5.2 Case of linear velocity distribution 

(39) 

This type of flow and velocity distribution would be 
realized when the water surface suffered a shear stress. In the 
laminar sublayer of open channel flow, the velocity distribution 
was close to a linear distribution also. Although the velocity 
should be distributed along the vertical, there is no curvature. 
This is of another type of limiting case. 

Like Eqs. (26) ,(27), the integral in (la) and (2a) can be 
easily performed as: 

h h b h+l fo U2 dy : fo u: y+Z dy : _!. ( u! y+l dy+ = V U• (40) 
u.lo 3 

h h h+' r u3 dy = r u; y•3 dy = ..!.. (h"u; y•1 dy• = v u: (4l.) 
Jo lo u. lo 4 

and the mean velocity can also be easily calculated: 

1 J h 1 J h v Ji:· v h+l u.h• um=- u dy=- u. y• dy=- y• dy·=- - =--
ho ho ho h2 2 

Substituting (41), (42) into (la), we get: 

ci = [ u3 dy = 
. 3 h 
Um 

v u~ h·' I 4 

u: h·
1 b./ 8 

14 

= 2 

(42) 

(43) 



and 

n = J u2 dy = _v_u._h_.l_/_3 
t' = 4/3 = 1. 3333 

U~ h U: h+Z h/4 

5.3 case of parabolic velocity distribution 

This type of velocity distribution belongs to laninar 
surface flow, that is: 

u = ~g (yh - ~
2 

) 

Substituting {44) into (42), we get the mean velocity as: 

then 

"= ~ (h (yh - ~) dy= gSh2 
.... vh Jo 2 3v 

u2 = g2 5 2 h' 
m 

9v 2 

u; = g3 53 h6 
27v3 

The integrals in {la) and (2a) become 

rh u3 dy = 53 g3 rb 
Jo v3 Jo 

(y3 h3 - 3y4 h
2 

+ 3y
5 

h - y6 ) dy = 
. 2 4 8 

52 g3 h1 3h7 
=. v 3 (4 10 + 

h 1 h 7 2 g3 5 3 h 7 

8 56 ) = 35 
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(44) 

(45) 

(46) 

(47) 



Then 

Furthermore, 

fol! u2 dy = foh 
= 2 g2 5 2 h 5 

15 v2 

Then 

a: = J uJ dy = 

ui h 
2/35 = 
1/27 

1.5428 (48) 

g2 52 (y2 h2 - y3 h + y') dy = g2 52 ( hs - hs + hs) = 
v2 4 v2 3 4 20 

p = J u2 dy = 

u~ h 
2g2 5 2 h 5 /15 v 2 = 
g2 S 2 h' h/9 v2 

1.20 (49) 

6. Coefficients a, ~ and energy dissipation 

6.1 Case of ideal fluid 

This is the problem of whether the coefficients a, ~ should 
relate to the energy dissipation. Solving this problem requires 
calculating the rate of energy dissipation separately for the 
individual profiles mentioned above. 

Since in an ideal fluid flow field velocity distribution is 
uniform, (i.e., u = const), 

au 
ay =a 
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so that it can be conjectured that in this field the energy 
dissipation rate can be neglected. 

6.2 Case of linear velocity distribution 

Since 

then 

yu; 
u = -, 

v 
au 
ay 

u: 
= -, v 

yu. 
v 

Energy dissipation rate along the whole depth E can be written 
as: 

. rb ( au)2 
E = lo µ ay dy = 

µ u! b ILU r dy :_,._. h = p h+ u~ 
v2 lo v2 

6.3 Case of parabolic velocity distribution 

since 

gS y 2 au 
U : V ( gh - 2 ) I ay : 

then 
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....2 52 = ~ (h - y)2 
v2 

(SO) 



(h ( au)2 ug2 52 rh E = lo µ ay dy = ~ v2 Jo (h2 - 2hy + y2) dy = 

= µg2 52 (h3 - h3 + h3) = (51) 
v2 3 

= µg2 5 2 h 3 /3v 2 = ph+ u!/3 

in which 

../gh5 = u., v = µ/p, h+ = u.h/v. 

Comparing (50) and (51) we can see that the formation of the 
curvature of the distribution curve decreases the dissipated 
energy. 

All these numerical values by analytical approaches are 
listed in the following table: 

Flow Velocity Enerav dissination 
pattern profile a f3 Dimensional Nondimensional 

Coutee flow Linear 2 1.33 p h+ u; h+ 

Laminar linear 2 1.33 p s• u; s• 
sublayer 

Laminar Parabolic 1. 5428 1. 20 p h+ U:/3 h+/3 

• Turbulent Semi log 1. 03- A2 P u;; s• A2/o• 

~I 'eal fluid 

1. 06 

Uniform 1 1 0 0 

This relationship between a and f3 is shown as a solid curve in 
figure 4, and can be considered an analytical relationship. 

7. Concluding remarks 

The coefficients a, p were not deduced directly from the 
consideration of energy dissipation, but they indeed indirectly 
represent one of the indicators of dissipated energy. However, 
since they are related to velocity distribution, they could give 
only relative values, not its absolute quantity. For example, 
for laminar sublayer flow and laminar flow over the whole depth, 
the values of a, ~ are the same, but the amounts of dissipated 
energy would be different. Whatever the val~e of a, or f3 they 
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can be considered indicators of stability of flow: If a, P were 
high, the flow pattern would be relatively unstable situation; 
when a is very close to 1.0 (representing no energy 
dissipation), then the flow ought to be stand relatively stable. 

Coefficient a, or ~ does not represent a purely empirical 
coefficient, but can be obtained by an analytical approach. 
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1. Introduction 

Hydraulics is a longstanding scientific branch of classical 
:i:echanics. From the standpoint of engineering applications, 
hydraulics was first constituted mainly of two components. The 
::ain component (Bakhmeteff, 1932; Chow, 1959; Henderson, 1966) was 
concerned with the 'macroscopic' (long-range) forms of water 
surfaces due to man made obstructions (dams, hydraulic structures, 
sharp changes of channel slopes, etc.). The second component was 
concerned with local 'microscopic' considerations of 
velocity/energy fields around hydraulic structures, including the 
determination of different coefficients, different measures for 
dissipating energy in tailwater, etc. 

Although most of the principles, laws, and methods of 
calculation for different problems in the above two components of 
hydraulics were established long ago, and the problem of energy 
dissipation has been studied extensively in engineering hydraulics, 
some problems still seem to need to be refined. Especially 
important problems are whether the theory of minimum energy 
dissipation rate (TMEDR) conflicts or conforms with classic 
hydraulics and how to explain different hydraulic phenomena from 
the standpoint of energy dissipation and TMEDR. 

This paper is devoted to the analysis on these problems. 

2. Basic Concepts of Theory of Minimum Mechanical Energy (TMME) 
and the Theory of Minimum Energy Dissipation Rate (TMEDR) 

2.1 Basic Concepts of TMME 

Although some of the following phenomena are common sense, 
they need to be reconsidered against the background of energy and 
energy dissipation: 

Because water is a dense fluid, when a water mass is still 
within some container, it is stabilized with respect to the lowest 
position of its center of gravity, as with a rigid body. But why 
does a quiet water mass form a horizontal straight line surface 
instead of another form? The answer is: The center of gravity for 
a water mass with a horizontal surface is at the lowest position 
compared to the position with whatever form of free surface, such 
as a sloping free surface (Yang & Song, 1986). The lowest position. 
'Jf the center of gravity corresponds to the minimum potential 

ergy for a given water mass, and a still water mass should 
hibit a tendency to establish its own state with minimum 

~ ;tential energy. 

Why does water flowing freely over a weir form a 'critical' 
depth on the crest, but not any other depth? The answer is: The 
magnitude of mechanical energy of a given water mass, corresponding 
to the formation of critical depth, attains the smallest value of 
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mechanical energy compared with the magnitude for whatever 
different depth. In other words, moving water exhibits a tendency 
to establish its own state with minimum mechanical (kinetic plus 
potential) energy. Even on the crest of a weir (a free uncontrolled 
fall) water could change in both its depth and velocity 'freely', 
so that minimum of mec.hanical energy would be maintained. 

Obviously, the minimization of potential energy is a special 
case of minimization of mechanical energy. 

This characteristic of a minimization-approaching tendency can 
be named the THEORY OF MINIMUM MECHANICAL-ENERGY {TMME). 

This mechanical characteristic is only one of the basic 
characteristics of water flow. Besides its dense character, water 
is also a viscous fluid. The viscosity should point to another 
mechanical/thermodynamic characteristic of water flow, which will 
be analyzed in the following paragraph. 

2.2 Basic Concepts of TMEDR 

The viscosity of water flow should correspond to its energy 
dissipation. Flowing water should always dissipate some part of 
its energy, and this energy should be transformed into heat and 
transferred to the external environment. Thus, if no energy were 
supplied constantly from outside (man made or natural) to 
compensate this dissipated energy of surface water flow, then the 
existence of any form of water flow would be impossible. Flowing 
water would stop suddenly. This has been a quite well understood 
phenomenon. 

However, the fact that water flow is unavoidably accompanied 
by energy dissipation is only one of the basic characteristics of 
water flow, as viscous flow. Other more important basic 
characteristics are that {l) the energy dissipation rate falls as 
much as possible under given constraints, and (2) along with this, 
the time rate (or course rate) of energy dissipation for a given 
water mass diminishes with time (and along the course). If the 
boundary of flowing water were a deformable surface such as an 
alluvial bed, then this characteristic would be expressed quite 
obviously: The energy dissipation rate (i.e., the unit stream 
power) should be diminished along the course on one hand; on the 
other hand, the rate should fall to a value for a given bed 
material in the lower reach, whereby the representative particles 
on the riverbed remain in a statistically incipient/equilibrium 
condition. 

For most problems in engineering hydraulics, the boundaries of 
flowing water are rigid, so that the energy dissipation rate can be 
diminished neither along the course, nor with time by bed 
deformation. It is as if this characteristic cannot be expressed 
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in engineering hydraulics. However, it is expressed indirectly in 
the velocity distribution. 

As mentioned before (Hou, II) , the formation of semi log 
velocity distribution in an open channel (or a pipe) is not only 
the result of random fluctuating fluid particles (as described by 
the classical Prandtl's model), but also minimization of dissipated 
energy: Comparison between the dissipated energy for the core (by 
semilog) and for the laminar sublayer showed that, though the core 
constitutes most of the depth, and the thickness of the laminar 
sublayer is negligible, dissipation in the core energy was still 
much lower than that in the laminar sublayer. Therefore, the 
semilog distribution is the most 'energy-saving' distribution for 
water mass transport. This fact indirectly indicated that the 
water flow would spontaneously maneuver its own velocity 
distribution toward the minimwn energy dissipation rate. 

2.3 coupling of TMME and TMEOR 

TMME is concerned with macromechanical processes without 
considering energy dissipation, whereas TMEDR is concerned with 
thermodynamic processes with energy dissipation. These principles 
belong to two different areas, representing two different laws. 
However, due to the dual mechanical-thermodynamic characteristic of 
surface water flow, the TMME and the TMEDR ought to be coupled. 
Thus, the question becomes whether TMME and TMEDR conflict or 
conform with each other in an united syst~m. In general, both 
TMME and TMEDR are in conflict. Only in some restricted cases do 
they conform. 

In this paper, we will see that if water processes proceed 
without man made constraints, that is, is proceeding spontaneously 
forward, then they evolve toward a situation, whereby TMME and 
TMEDR conform with each other. However, if the water process is 
accompanied by some man made constraint, then they conflict with 
each other. · 

3. Engineering Hydraulics and TMEDR 

3.1 Expression of Energy Dissipation in Hydraulics 

'Energy-dissipation' is not a new concept in hydraulics, for 
most hydraulic structure projects are concerned with energy 
dissipation in the tailwater downstream. But this is a global form 
of energy dissipation, and it is constrained mainly by the man made 
obstruction. However, energy dissipation should exist within the 
whole system of water flow. 

Irrespective of the different forms of surface water flow, any 
energy dissipation can be decomposed into these different forms: 
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(1) Dissipation through the action of Newtonian forces (i.e., 
through the viscous effect of the velocity distribution). - This 
physical picture and its numerical method was dealt with thoroughly 
in our previous paper (Hou, II) . 

(2) Dissipation through separation. - There are two types of 
separations: 

a. Microscopic separation. - When water flows along a 
streambed, although the streambed should coincide with the 
boundary, from the microscopic point of view, the streambed could 
touch the boundary only locally and discontinuously; the streambed 

. would be separated at rough spots, so that in these 'shaded' 
regions beneath the rough boundary, innumerable small vortices 
would be forced to form. These vortices should dissipate 
additional energy, so that the coefficient of friction for rough 
pipe is greater than that for smooth pipe. 

b. Macroscopic separation. If the boundary did not 
coincide with the streambed, then a large separation would be 
generated. The vacuum formed could create a great amount of 
dissipated energy in the case of high-speed flow, and it would be 
the source of cavitation and damage to the hydraulic structure. 

(3) Dissipation through the impact to the boundary. - In this 
case, the kinetic energy of a fluid mass is dissipated directly 
into heat through the random fluctuation of fluid particles. 

3.2 Energy-Related Meaning of Hydraulic Coefficients 

In engineering hydraulics, there are many coefficients such 
as: 

(1) The coefficient of friction, f, along a pipeline or open 
channel (or expressed in the form of Manning's coefficient). 

(2) The coefficient of water head loss due to a local sharp 
change in the configuration of a conduit. 

( 3) The coefficients of discharge for different forms of 
weirs, spillways, etc. 

(4) The coefficients of hydromachines (pumps, hydroturbines, 
etc.). As if all these coefficients were of empirical constant 
only. Of course, most of their numerical values could be 
deten:lined only by experiments. But an important fact is that, 
from the viewpoint of energy dissipation, these coefficients in 
fact represent a relative measure of dissipated energy. 

For example, the pipe flow the Darcy formula can be written 
as: 
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Ah =fl= V2 
d 2g 

(1) 

where d = diameter of pipe; v = mean velocity of pipe flow; 
t.h = water head loss along a distance, L. Equation ( 1) can be 
replaced by: 

where 

f = 
Y A.h d 
"L 

pv'/2 

Ah = s = hyd.Iaulic gradient 
L 

(2) 

The numerator of (2) can be considered a dissipated energy, 
represented in the form of potential energy loss, divided by the 
diameter, d. The denominator of ( 2) is the kinetic energy per unit 
volume of water mass, and it can be considered to be the input. 
Hence, the coefficient 'f' can· be considered as a measure of 
dissipated energy relative to the input in the form of kinetic 
energy. Therefore, we have: 

f = dissipated energy in the form of potential energy (l) 
input in the form of kinetic energy 

Another example is the free fall of surface flow over a weir. 
It can be written as: 

Q = C 13./2§' H3/2 (4) 

where Q = discharge; B =width of channel; H =water-head above the 
weir; c = discharge-coefficient. Equation (4) can be written as: 
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for 

02 = c2 B2 2 :J... H3 
p 

V = Q/BH 

(5) 

where v = mean velocity. Then Equation (5) can be replaced by: 

c2 = 
.E 

2 
yH 

(8) 

in which the numerator is the kinetic energy of the water mass, or 
effluent from the weir. It can be referred to as the output of 
dissipated energy. The denominator is the potential energy in the 
form of the water head of the weir. Therefore, we have: 

c = Dissipated energy in tbe form of kinetic energy 
Input in the form of potential energy 

3.3 Different methods for diminishing dissipated energy 

(7) 

In engineering hydraulics, an important measure for 
diminishing the energy dissipation rate is to exclude the 
separation region. In general, in whatever case, for the streambed 
being a continuous smooth curve, then accordingly, the boundary 
contour of all the conduits must be designed such so that it 
contacts the adjacent streambed as much as possible. Otherwise, 
the energy dissipation rate could be aroused, and the coefficient 
of discharge (or velocity) would be increased accordingly. 

In figure 1 are serial experilnental results on an elliptical 
contour entrance in submerged square tubes. From these results 
some general insights can be obtained. 

(1) Irrespective of different lengths of tubes, for a given 
length of tube, the more closely the entrance of tube comes to an 
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elliptical contour, the higher the coefficient of velocity, that 
is, the lower the energy dissipation rate. 

(2) The influence of length on the coefficient of velocity 
seems twofold:· If the entrance was only partially elliptical or 
not elliptical at all, then the longer the tube length, the higher 
the value of the velocity coefficient. If the entrance was 
elliptical, an inverse physical picture would appear: the longer 
the tube length, the lower the value of the velocity coefficient. 

(3) Although both the length of the tube and shape of the 
entrance could increase the value of the coefficient of velocity, 
an elliptical entrance with the shortest tube length would be the 
most effective one. Thus, a short tube with an entrance with a 
wholly elliptical surface would be the outlet with the quasi­
minimum energy dissipation rate. 

From these experiments, we can see that the influence of an 
elliptical entrance on the coefficient of discharge occurs 
monotonical, whereas the influence of the tube length is of 
twofold. It would channel water in a straight line, suppressing 
separation downstream and decreasing the energy dissipation rate on 
one hand. On the other hand, a long tube would increase the 
friction loss, increasing the energy dissipation rate. This 
twofold character of tube length is expressed in figure 2, where 
the abscissa is the tube length, L, normalized by the tube height, 
D, and c is the coefficient of velocity, that is, 

H is water head. 

These experiments are concerned with the case of low water 
heads. If the water head increased, separation would intensify. 
A sharp-edged entrance would not only generate vortexes behind it, 
but sometimes the cross section of water flow would be compressed, 
leading the discharge to decrease sharply. Figure 3 (Bureau of 
Reclamation, 1977) shows this comparison. 

3.4 Velocity-Distribution and TMEDR, TMME 

In our previous paper (Hou, II), the relation between the 
velocity distribution and the TMEDR was analyzed, and some 
numerical results were derived. Most of the energy was dissipated 
not in the core, but in the laminar sublayer region. The numerical 
results showed that the core, which occupied most of the depth, 
represented an energy-saving distribution. 
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Therefore, the main part of the dissipated energy was 
concentrated into a narrow region at the boundary. Dissipated 
energy corresponds to velocity gradient. Therefore, if we could 
decrease the velocity gradient at the boundary, we would achieve 
the goal of diminishing the energy dissipation rate for surface 
water flow. However, hydraulic structures (weirs, conduits, etc.) 
have rigid boundaries, where the velocity ought to equal zero, so 
that the velocity gradient at the boundary would be unchangeable. 
In this case, the question is whether the velocity gradient could 
be diminished in hydraulic engineering. There may be different 
measures available for this change: 

(1) Movable bed of fine particles 

(2} Ejection beneath the boundary 

(3) Flexible boundary, etc. 

The effectiveness of each measure used can only be verified by 
experiments. 

3.5 Local Scour Downstream and TMEDR 

Energy dissipation downstream of a high-speed water flow 
issuing from a spillway gate under a high head is an important and 
difficult problem in engineering hydraulics, especially for 
structures founded on fluvial beds with fine particles, because 
aroused local scour for this case would be serious and sometimes 
dangerous for structure foundations without proper engineering 
treatment. Of course, treatments for different 
hydrological/hydraulic, geological, and engineering conditions 
would differ from each other. This paper does not cover this skill 
in design, and does not conclude with some successful experience or 
failure in design. This paper covers the general principles for 
treating this problem. 

Design work for avoidance of serious local scour focuses on 
hydraulic jumps that are separate from the structures. Of course, 
hydraulic jumps extensively mix the water mass, and dissipate a 
large amount of kinetic energy, so that eases the problem to some 
degree. However, hydraulic jumps are a general concept: their 
structure would be different for different cases. 

In recent years, many authors have studied the turbulent 
diffusional process in water flowing from structures. Local scour 
has indeed been found to be closely related to the evolutional 
diffusional process of velocity distribution downstream. Local 
scour and its effects are the 'byproducts• or 'footprints' of the 
diffusional process of velocity distribution downstream. Scour is 
caused by turbulence fluctuation generated by a velocity gradient, 
which penetrates deeply through the turbulent-diffusional process, 
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on one hand, and on the other hand, a deep clockwise circulation 
(fig. 4a) intensifies the deep transport of sediment. The relation 
between the velocity distribution along the course, the formation 
of circulation and the corresponding formed local scour is shown in 
figures 4a and 4b. 

Difficulties in solving the local scour problem are that the 
outflow velocity from the structure is high and quasi-uniformly 
distributed along the vertical, and energy is concentrated within 
a small region(depth). 

Because the energy dissipation process of water flow 
(including the turbulent decaying process) is continuous and 
gradual from the viewpoint of TMEDR, the principle for compensating 
for this manmade concentrated high energy must be that the energy 
must be dissipated continuously and gradually without significant 
differences along the course. According to this requirement, 
protection (by either reinforced or flexible material) must be 
designed so that the diffusional process of water flow follows this 
principle. 

4. Open-Channel Hydraulics and TMME,TMEDR 

4.1 Horizontal surface and.TMME,TMEDR 

Different classifications of surface profiles and their 
corresponding methods of calculation are dealt with thoroughly in 
many monographs on open channel hydraulics (Chow, 1959) , but this 
paper will reconsider their characteristics from. the standpoint of 
minimum energy and energy dissipation rate, without regard to their 
numerical method of calculation. In this respect, the free-surface 
profile of a quiet water mass, as the simplest form and limit case 
of surface 'flow•, ought to be included in the category of free 
surface flow. In this case, both the hydraulic gradient, S, and 
velocity, u, should equal zero. 

A horizontal free surface has two meanings: (1) The potential 
energy of this water mass should be in the minimum state, and 
(2) The energy dissipation rate along the course should equal zer·o 
(i.e., minimum among the minima!). The first statement refers to 
TMME, the second to TMEDR. In another words, if a surface water 
mass is flowing 'tangentially' (with very small hydraulic 
g~adient!) to a water mass with a horizontal free surface, then 
TMME and TMEDR conform to each other. All the spontaneously 
evolved rivers in nature flow along this way! Therefore, 
conformation between TMME and TMEDR is conditional. 

4.2 Uniform Flow and TMME,TMEDR 

It must be emphasized that not all surface water flow could 
form a uniform pattern. As mentioned by Hou ( II), formation of 
uniform patterns in open channel flow is conditional. When the 
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flow is in the region governed basically by TMEDR (in the case of 
not a very great channel bed slope), then the surface flow would 
ultimately establish its uniform pattern spontaneously. Roughly 
speaking, when the input of surface flow, that is, the effective 
component of the rate of potential energy should equal the energy 
rate dissipated directly through the velocity field plus that part 
of the energy dissipated at the rough boundary, then a uniform flow 
pattern would be formed. If the effective input were much greater 
than the directly dissipated part, then the flow pattern would be 
transformed to an accelerating one. 

Di.fferent flow regions and their corresponding flow patterns 
are listed in table 1: 

Table 1. 

Slope Horizontal Small Medium Steep Vecy steep 
hydr. 

Theory TMME TMEDR & TMEDR TMME & TMME 
TMME TMEDR 

Flow Quiet Uniform Uniform Quasi- Nonuniform 
Uniform Accelerat. 

Table 1 is only a qualitative classification; there are not 
yet distinct specific value, by which each case could be 
quantitatively defined. 

From table 1, we can see that TMME should occupy two limit 
regions. It should be effective in the region with very high speed 
and slope. Meanwhile, it should be effective in the region with 
zero gradient and velocity. The regions, guided by TMEDR would be 
in some intermediate region. The remaining regions would be mixed, 
where TMME and TMEDR would be coupled. 

4.3 Criteria for Flow Pattern Transfer 

Our previous paper (Hou, II) predicted that a turning point 
exists for surface water flow, beyond which the uniform pattern 
should transform to the accelerating one, and vice versa. 

The classification of flow pattern in table 1 is only a rough 
one. In fact, as indicated in (Hou, II) , the factors that 
influence flow pattern, are not restricted to the bed slope, s, but 
include the discharge, Q (or velocity) , and the roughness (n or f) . 
For example, on some steep slope with a smooth boundacy under a 
given discharge, the flow pattern may be accelerating, but with a 
rough surface under the same hydraulic conditions, it would become 
uniform. Or, on a steep slope, the flow pattern would be uniform 
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under the condition of small discharge, but it would become an 
accelerating pattern with a high discharge. 

Considering these factors separately: Let an increase of N 
represent the flow pattern transfer from uniform toward 
accelerating. Then N should be directly proportional to the 
discharge: that is, the higher the value of Q, the greater the 
possibility of this transfer. N should also be directly 
proportional to s but inversely proportional to the roughness n. A 
possible form of this criterion would be: 

(8) 

here the indexes x, y, z can be determined only by experiment. 

Another approach is the input-to-output approach. Let the 
magnitude of N be constituted by the input to the output. Here 
output must include that part dissipated throuqh the velocity field 
plus that dissipated by the rough boundary. This criterion can be 
obtained by an analytical procedure: 

From (Hou, II), the input of surface flow was obtained as: 

Let o· = 11.6; A = 2.5; B = s.s, then equation (9) can be 
simplified to: 

(10) 

where 

The output is: 
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Ediss = 12 .14 p u; = 12 .14 p (ghS) 3 /:1 (11) 

Defining the N as: 

(12) 

Substituting (10), (11) into (12), we qet: 

N= CyvS =0.88vg_§_=k_§_ 
3 3 3 12.14pu. u. u. 

(13) 

This can be used as an indicator for pattern transition also. But 
the concrete value of coefficient 'k' remains unknown, it could be 
determined only by the experiments. 

4.4 Gradually Varied Flow and TMME,TMEDR 

The classification of different surface profiles for gradually 
varied flow is thoroughly analyzed in textbooks on open channel 
hydraulics. A widely accepted classification is shown in figure 5 
(Chow, 1959). However, some cases in figure 5 could be realized 
only in an artificial surface flow. For example, neither the 
normal depth nor the critical depth of surface flow could be 
realized in an open channel with zero or adverse bed slope. 
Besides this, in an open channel with a steep slope, surface flow 
does not necessarily ne1:d to approach a uniform pattern. In 
another words, the existence of 'S2' and 1 53' in figure 5 must 
remain to be verified by experiments. 

The profiles Ml, M2 in figure 5 seem to be most interesting 
and profound among all the profiles from the standpoint of TMEDR 
and TMME. 

Backwater curve Ml in a river is formed by a high elevation 
preceding a dam (or the sea). The specific characteristic of 
profile Ml is: It coincides tangentially w'ith the normal free 
surface upstream on one band, and on the other hand, it coincides 
tangentially with the horizontal surface downstream. The method 
for calculating the form of this profile is well known in hydraulic 
textbooks. We are interested only in its energetic essence here: 
Backwater curves represent river processes, by which .the surface 
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curve is initiated from a uniform flow, where the state has reached 
equilibrium, and it is terminated downstream by the 'zero energy 
dissipation rate', that is, the horizontal water surface. Hence, 
the backwater curves, as a river process, conform to TMEDR: Thus, 
at the junction of the backwater curve upstream, we have: 

dE = u dE =min = const, (min, const >O) 
dt dx 

At the junction downstream we have: 

dE 
dt 

= u dE = 0 
dx 

(14) 

(15) 

However, a horizontal surface means that the backwater curve 
should start to follow to the TMME, that is, the backwater curve is 
terminated by: 

E =min (16) 

Hence, in this river process the TMME and TMEDR conform. 

The profile M2 in figure 4 represents a process by which the 
state is initiated from the uniform pattern upstream, that is, 
according to equation (14), but terminated with maximal release of 
mechanical energy downstream, that is, the profile M2 is terminated 
by: 

dE = dt 
u dE =max 

dx 
(17) 

according to TMME, at the point of a junction (crest of weir), the 
mechanical energy should approach a minimum value, as shown by the 
equation (16). 

5. Conclusion and Discussion 

Classic·hydraulics is entirely related to TMME and TMEDR: 
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(l) Different coefficients in engineering hydraulics relate 
to the different expression of relative dissipated energy. 

(2) Because dissipated energy is concentrated at the 
boundary, if the 'boundary' conditions of water flow could be 
changed, then the value of dissipated energy would decrease 
accordingly. 

( 3) Some surface profiles in open channels are river 
processes, terminated either by TMME or by TMEDR downstream and 
upstream. Many problems remain for further study on whether these 
constraint conditions could be used for determining the surface 
profile. 
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Appendix 

Backwater curve was studied thoroughly in any textbook on open 
channel hydraulics. Its method of calculation was founded on the 
balance equation of water head (Chow, 1959). 

From the standpoint of energy dissipation, the backwater curve 
is such a surface water-process, by which the energy dissipation 
rate should be diminished along the course to that limit value, 
where the energy dissipation rate would be approached to zero! (for 
the hydraulic gradient at the junction to the reservoir should 
equal to zero) . 

Specified to the surface water flow, the energy dissipation 
rate is expressed in form of 1 7us 1 , or shortly, in •us•, for in 
common case, the specific weight was remained a constant value. At 
the upper junction A-A the value of energy dissipation rate ought 
be given. But whatsoever its value should be, it ought be grater 
than zero: 

( y US) A > 0 (Al) 

otherwise any surface flow could not exist. At the lower junction 
B-B its value should approach to zero: 

( y US) B = · 0 ( A2 ) 

And in the range the change of unit stream power ought be less than 
zero, i.e. , 

d (I uS) < 0 , or u d ( y uS) < 0 
dt dx 

(A3) 

Irrespective to that, whatev~r the form of backwater curve 
should be, the value of (7uS) within the range of back water curve 
ought be satisfied to this inequality: 

o < ( y us) < ( y us) A (A4) 
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Furthermore, the change of (1uS) along the course ought be remained 
of continuous. 

The equations (Al)-(A3) can be derived in following: 

According to the Theory of Minimum Energy Dissipation Rate (or 
named as the Prigogine Principle), the water flow, as an 
irrversible process, its energy dissipation rate must be of a 
positive value; it would be deminished along the time; and finally, 
it should approach to a minimum.value (or, in limit case, to zero). 
These statements can be expressed by the mathematical formulation 
in following: 

dE > 0, 
dt 

d2 E dE < o , and dt = min 
dt 2 

(AS) 

But we are interesting how the energy should change along the 
course, but not along the time. In this case, 

d 
dt 

= u d 
dx 

Furthermore, the energy, which should sustain the surface water to 
flow, is only the potential energy of this water mass, then: 

so that: 

For 

E-yy 

dE = u ...E._ y y = y u dy > 0 
dt dx dx 

~ =S. 
dx 
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then 

and 

or 

or 

dE 
dt = yuS > O 

d2E = d dE < 0 
dt 2 dt dt 

d 
dt (y us) < o 

u ..!! ( y us) < a 
dx 

Principally, if the law of change rate of (1us) was known, 
then the backwater curve could be derived. Unfortunately, this 
problem is remained to be studied. We assume temporarily that the 
change of (1us) is linearly proportional to the local value of 
( -yus) , i . e. , 

d ( y uS) = _ A ( y uS) 
dt 

where A is a constant of proportionality. From (A6) we have: 

d ( dy uS) = - A d t = -A dx 
(y uS) u 

3 
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or 

ln (yuS) = -AJ~ + const (A7) 

The boundary condition is: when 

x = 0 , ( y uS) = ( Y u0 S0 ) (AS) 

where SQ, h
0 

, u
0 

are the values for uniform flow at upstream beyond 
the bacJCWater curve. Substituting (AS) to (A7), we get: 

(A9) 

then 

or 

for 

q is unit discharge, then 
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Furthermore, if the Chezy formula is remained valid for the 
nonuniform flow, then: 

and 

the equation 
verification. 

(AlO) 

q = C,/IiS 

(AlO) 

is remained for further experimental 
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