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Abstract 

Flow in conduits, a s  well a s  normal flow in open channels, is today usually 
computed using the Darcy-Weisbach formula, together with the Colebrook-White 
equation for the coefficient of hydraulic resistance. The structure of this system of 
equations has been greatly modified compared to classical flow formulas. The 
justified question arises a s  to what extent these approaches coincide with each other. 
In addition to  addressing this fundamental concern, the following study also proposes 
additional formulas to approximate virtually smooth and virtually rough flow regimes. 
The discussion specifically defines the scope of application for these formulas. 

1. Introduction 

In addition to  determining flow rate, the calculation of pressure loss in con- 

duits and normal flow in open channels represents one of the oldest problems posed by 

modern hydraulics. Quantitative analysis originated in the 18th century with Cou- 

plet's work on pipes and Brahms' study of open channels (31. Since their day, numer- 

ous formulas have been introduced representing a relationship between the flow rate 

and the slope of the  total  head line (respectively, of the energy line or bed gradient), 

the pipe diameter (resp. the  hydraulic radius), and the nature of the surface along the 

current boundary. Intensive efforts to measure and physically investigate flow rates 

culminated in the universally recognized Colebrook-White equation. When coupled 

with the Darcy-Weisbach formula, the resulting equation system is recognized today 

as the most accurate basis for calculating flow. It enables us to calculate flow rate in 

prismatic pipes or channels under stationary flow behavior, provided that  the medium 

in question can be viewed as a Newtonian fluid, and the roughness characteristic re- 

mains locally unchanged. Given sufficient distance in open channels, normal flow 

prevails [61. 

The phenomenon designated as  the uniform flow condition represents the basic 

condition for fluid movement. So far as  practical applications are concerned, this area 

of hydraulics is today considered to be a closed book. Nevertheless, dissemination of 



the  Colebrook-White formula has actually given rise to a certain uncertainty on the 

part  of engineers in the field. The classical flow formulas are much simpler than the 

Colebrook-White equation. In contrast to this simplicity, a "foreign element" is  intro- 

duced into what was previously a fairly trivial calculation procedure. Although i t  was 

introduced almost fifty years ago, the  Colebrook-White formula has not been totally 
accepted even today in the  area of open channel hydraulics. Consequently, losses due 

t o  friction in uniform currents are seldom included in the calculation, or the  formula is 

even rejected out of hand [ I l l .  To what can we attribute this continuing aversion to 
the  acceptance of a formulaic approach tha t  is derived from exact physical principles 

and tha t  has been verifled most precisely? If the  results obtained using this frame- 

work are more exact, what are the  differences between them and those obtained using 

the  classical approach? Which of the  classical formulas, if any, may still be used? 

Unfortunately, little attention has been paid to these questions until now. 

Kirschmer [9] has made a significant contribution toward the broad introduction 

of the  Colebrook-White formula in the  German-language community. To begin with, he 

notes tha t  at the beginning of this century, more than one hundred flow formulas 

existed, producing chaos in this  area. He cites in particular the  relations proposed by 

de Chezy, Darcy-Weisbach, Gaukler-Manning-Strickler, Kutter and Bazin. Based on a 

critique of the  last two formulas, he demonstrates tha t  they do not satisfy the physi- 

cal conditions required of them. 

A s  early a s  1961, Garbrecht [61 observed tha t  in the rough flow range, the 

Manning-Strickler formula represents a good approximation of the  Darcy-Weisbach 
formula when combined with the Colebrook-White friction coefficient, provided tha t  

the  relative roughness (E = G / 4  ray 1 lies in the  range 6 10-4 < E < 5 lo-=. In a re- 

markable study, Dallwig (21 compares the formulas of Bazin, Kutter and Manning- 

Strickler with the law of universal flow. He concludes tha t  all three comparative for- 

mulas are only applicable to the  rough zone, hence apply only to  open channels. How- 

ever, Dallwig maintains tha t  the  roughness coefficients m according to Kutter and y 

according to  Bazin do not include any variable for the roughness of the  channel wall. 

Since it can be demonstrated tha t  the  Ganguillet-Kutter formula for the  slope Jr > 1% 

is  subsumed in Kutter's formula, these three formulas wil l  not be further discussed. 

The Manning-Strickler formula, on the other hand, yields results in the  relative 

roughness range of 6 10-4 < E < 10-1 with an approximate degree of accuracy of 10%. 



Finally, Unser and Holzke (121 compare the Colebrook-White formula with nu- 

merous approximation formulas tha t  have been introduced either for the rough, tur- 

bulent range and the smooth range, or for the transition range between the two. Their 

work reveals t ha t  the cited relation generally provides the most accurate results, 

which is also why i t  forms the basis for the current study a s  well. 

The goal of the following study is to compare most of the empirical flow formu- 

las tha t  have been introduced using the Darcy-Weisbach and the Colebrook-White 

system of equations. A s  a result, exponential formulas are proposed for virtually 
smooth and virtually rough flow systems, such tha t  their variation from the reference 

system is negligible. Great attention is paid to the definitive ranges governed by the 

respective relations, and examples are provided of typical applications. 

2. Inventory of Flow Formulas 

2.1 Hydraulically Smooth Flow System 

Flow rate formulas are defined as equations tha t  demonstrate the relationship 

between the slope of the energy line JE and the average velocity of flow v in closed 

conduits. In open channels, JE is replaced by the slope of the stream bed, in which 

case, the corresponding relations describe the normal flow condition. Generally 

speaking, the  transition relation Jr --> Je applies with reference to the critical 

slope, and D --> 4 hv applies with D a s  the pipe diameter and  by as the hydraulic 

radius. If we ignore the influence of the form factor, flow in pressurized conduits and 

open channels can be described using the same equations. Hence, the following dis- 

cussions refer to pressurized conduits, but can also be applied accordingly to open 

streams. 

According to  Forchheimer [3], Couplet was the first to deal with the determina- 

tion of pressure loss in pressurized conduits in 1732. He was followed by Bossut, who 
se t  the  average velocity proportional to  the  root of the pressure gradient. These 

French researchers were followed by Woltmann, Eytelwein, Weisbach and Gaukler. All 

their experimentally based relations combine v,  JE and D; the simplest type of formula 

can be represented a s  the exponential product 



with C(m1-0 s-11 as the  proportionality constant. Table  1 summarizes various 
propositions. The table reveals tha t  1/2 S a S 0.69 and 1/2 S B S 0.766; generally 

Reynolds found tha t  a = (1 + 8)/3. 

--  .- 

A u t h o r  C a B 

Woltmonn (1791) 45.8 417 . 417 
Eytehdn (1796) 15.1 111 111 

(-- ) 30.5 18/35 18/35 
de S.iot-Ven8nt (185 1) 5 1 7/11 7/11 
Dupuit (1865) 15.5 111 112 
L ~ p e  (1873) 54.1 5 19 15/36 

1) 111 t o  0,59 l / l t ~  0,765 
Tutton (1889) 25tO 3s 0,s 1 0.66 
Fkmmt (1892) 68t0 75 417 5 17 
Huen C Willlama (1901) 56 0,54 0.63 
Saph & Schoder (1903) 74 417 517 
Unwin (1907) *) 37.6 0,s 1 0.599 

3, 23.2 0.50 0.58 
For, (1908) 50.35 611 1 811 1 
B lu lu  (1911) 10,57 ill7 417 517 
Beywhru (1910) (-1 0.60 0.70 
W q a ~ p m  & Awn8  (1915) 49.1 7/13 0,713 

s0b.v (1930) 37.1 9/17 108/187 
Ludin (1931) - 52. 0.54 0,68 
Stueky (1943) 57.15 519 0,645 
SChe~mi (195 1) 61.55 0.56 0.68 

- -  . - - 

Table I :  Tabular listing of several exponential formulas according to [I], [31, 
including author, the year of publica tion, C [ m l - o  9-1 1 , as  we1 1 a s  t h e  
exponents  a and f?. 1)  For a and f? r e s p .  2 ,  For new c a s t  p i p e  3 ,  

For o l d  c a s t  p i p e  

Because all measurements were conducted with water, C in Table 1 corresponds 

to  a numerical value. Only Blasius' formula includes the  kinematic viscosityv ; it has 

been checked both for water at various temperatures and for other media. 

Only Unwin has considered different piping materials. Consequently, the  pro- 

posed formulas relate to the  specific type of pipe used in the  tes ts  and can only be 

applied to other types of pipe with care. 

In addition to the  type (1) formulas, complicated equations of the form 

DJE = 8 v + b *vZ 



have been proposed, where a and b are functions of v and D. The approaches of de 

Prony (18041, Darcy (18681, Frank (18861, Lang (1889) and Biel(1907) have become 

familiar. However, these formulas are so complicated in comparison to Type (1) tha t  
they wil l  not be discussed any further here. 

I 

Authbr u B 

de Chezy (1818) 112 112 
Lahmeyer (1845) 213 213 
do Saint-Venmt (1851) 11/21 11/21 
Humphreys and Abbot (1 86 1) 1 14 
Gaukler (1868) 1 1) 

112 
413 2) 

Hqen 
213 

(1876) 115 ,I :: 
115 I 
112 213 ') 

Mmnins (1 890) 112 213 
Forchheher (1903) 112 7/10 
Christen (1903) 112 
Hermmek (1905) 112 6) 

112 314 7, 
112 sn 8, 

T a b l e  2: Tabular l i s t i n g  o f  
several  exponential formulas for  
open channels according t o  [3], 
including the  author with the 
publ ica t ion da te ,  a s  well  a s  the 
exponents a and I according t o  
Eq. (1); 
1) Js < 0.078, 2) Js > 0.078, 
3)  f o r  r i v e r s ,  4) f o r  small 
streams, 5) f o r  l a rge ,  regular 
channels, 6) h = < 1.5 m ,  
7) 1.5 s h s 6 m 8) h > 6m 

. , 2.2 Hydraulically Rough Flow Regimes 

De Chezy appears to have been the first to propose Equation (1) using a = B = 
1/2 for the  normal flow condition in open channels. According to Eytelwein, the  pro- 

portionality coefficient is C = 26.4 m1/2s-l. 

T a b l e  2 shows additional propositions. With the  exception of Humphreys and 

Abbot's formula and one of Hagen's proposals, a is always greater than or equal to 1/2, 
while S varies between 1/2 < S < 4/3. It is apparent t ha t  all the  newer formulas use 

a = 1/2, while they propose t h a t  B = 0.7. 

3. Modem Initial Approximation 

3.1 Basic Relations 

Today flow formulas are usually used to solve special problems, such a s  back- 

water and drop-down curves. In order to calculate pressure losses in conduits, how- 

ever, the  Darcy-Weisbach formula has established itself 



where X is the coefficient of hydraulic resistance. A s  a result of turbulence theory, A 

is a function of relative roughness s = t /D and the Reynolds number (Re = (v8D)/.v). 

For turbulent flow (Re > 2300) in pipes with commercial grade roughness characteris- 

tics, Xcan be expressed using the Colebrook-White formula: 
E i s 1  = -2 log [-- K 3,7 + 

If W3.7) << [2 .61 / (~eK)] ,  we speak of a hydraulically smooth flow system, but if 

(d3.7) >> [2.51/(Re JG], flow is in the hydraulically rough zone. If the influence of 

both terms is of about the same magnitude, we speak of the transition zone. It is im- 
portant to note that both special cases, specifically 

1 - -  - -2 * log [ 2951 
4 * E + " - ;  

1 -- - -2 log [-$I , Re+= 
<A (6) - 

describe asymptotic expressions of Eq. (4). They do not actually occur in nature, but 
are closely approximated, which is why the terms "virtually smoothw* and "virtually 

roughw* flow are used. According to [7], these conditions prevail as soon as X (or com- 

parable parameters) deviate less than 1.5% from asymptotic conditions. If we assume 

even 10% deviation from Xaccording to Equation (4), the law for hydraulic resistance 

can only be described by equations (6) and (6). The transition zone is then contained 

in the virtually smooth and rough flow zones in simplified form. In such a case, com- 
parison with empirical flow formulas is quite simple. 

3.2 Virtually Smooth Flow Reghe 

X is an implicit function of Re in Equation (6). An approximate designation in 

the form of an exponential formula would be: 

'German usage prefers the terms hydraulically smooth and hydraulically rough. The 
terms used here, virtually smooth and virtually rough, would indicate that a flow con- 
dition can also exist on the boundary to the transitional zone. 

6 



where [ - I  is the  proportionality constant and N > 1 is the  exponent. Blasius' formula 
is based on C = 0.316 and N = 4, which approximates Eq. (6) for 
2.3 lou < R e  < 2.6 lo8 by better than f 6%. Table 3 shows a compilation of additi- 
onal and N values and indicates the corresponding application area for R e  181. 

Table 3: and N i n  Formula (7) w i  th  corresponding appl ica t ion ranges [81. 
Variat ion from Eq. (5)  less than * 58. 

Application 2.3*103 (Re<2.5*108 5*108 (Re(107 107 <Re<2*108 
Range 

Combining equations (3) and (7) yields: 

where v is a function of JE ,  D and V .  Coefficient comparison with Eq. (1) yields: 

a = N/(2n-11, 

13 = (1 +N)/(2N- 1) and 

c = [2g / ( -&1 /~ ) ]~ / (4~ - l )  

A s  shown in 181, a only varies by f 3% on either side of the average value 

a = 5/9, while 13 varies by f 7% on either side of the  average value ilr = 2/3. How- 

ever, for a constant temperature T of the medium, C varies by f 16% on either side of 

the  average value. Figure 1 shows both parameters N and C (water at T = 16'C) as a 

function of the Reynolds number. The function N=N(log(Re)) can be approximated 

adequately by the straight line 

For E = E (Re), the following applies in the range 104 <Re<108: - 
C = (60/Re)1/8. 



Rigwe 1: Correlation between Eq. (6,7) smooth flow regime; 8 )  N 8s 8 finctfon of 
the Re number, b) 8s a function of the Re number (...) Eq. (1  1 )  

Plgun? 2: a)  a and b) B as finctions of the Re number according to Eq. (9.10). 

Thus a, I) and C can be expressed according to Equation (9) as functions of the Re 

number. As shown on Figure 2, the ranges for a and I) for 2.3 lO3<Re<lOs are quite 

small. The following values apply: 0.53 < a < 0.60 and 0.59 < 8 < 0.75. Both a and I) 

vary in inverse proportion to the Re number. 

Elimination of the  Re number from both representations on Figure 2 yields a 

direct relation between a and 8, a s  represented on Figure 3a. The relation conforms 

to the  Reynolds' formula 



Figure 3: a) (-1 relationship between the exponents a and B according to Eq. 
(12) and to (k') Woltmann, (4) Eytelwein, (v) de Saint- Venan t,  
(9) Flamant, Lampe, and Blasius, (o j  Tutton, (.I  Saph & Schoder, 
(@ Unwin, (h) Foss, (dl Hazen & Williams, W Beyerhaus, (6) Wegmann & 
Aeryns, (1) Scobey, (+I Scimeml b) C as a function of B according to 
Eq. (9 -11)  and to Table 1 (selected values) 

The combinations of a and B suggested in Table 1 are also plotted in Figure 3a, 
indicating that  in particular, Saph & Schoder's formula for Re s lo4, Scimemi's for 

Re s loo, Hazen & Williams' for Re = lo6, and Scobey's for Re = lo8 represent excellent 

approximations of Eq. (6). 
.- 

If we assume that  the formulas are based on temperature T = 1S8C, thus that 

V= 1.146 10-6mgs-1, we arrive a t  the relation C(B) shown on Figure 3b according to 

Eq. (9) and (1 1). The minimum for this equation is G i n  = C(B=0.63)=62. The four em- 

pirical approaches cited earlier are plotted on this curve based on Table 1. With the 

exception of Scobey's formulas, these values again conform well to results derived us- 

ing the Colebrook-White formula. 

Based on practical application, it would be desirable to cover the smooth flow 

regime with a single exponential formula. To do this, it is, of course, necessary to 

accept certain variations from Eq. (6). This kind of formula must be simply structured 

to use it with advantage together with the Colebrook-White relation and is particu- 

larly applicable for rough estimation. Because the standard range for Reynolds num- 
bers is 104 < Re < 107, the exponent N=6 should be used per Table 3. When = 0.194, 

we get a tangential approximation of Eq. (5) in this Re range. For smaller and larger 

Re numbers, however, 4 is underestimated. In order to account for this circum- 
stance, e is increased slightly, yielding the following proposition: 

v = (10gJE)5/9~2/3v-1/9 (13)1 



Plgum 4: Hydraulically smooth flow regime, A as  a function of the Re number 
according to Eq. (6) (-1 and ( - - a )  Eq. ( 1 3 )  2 

~t is important to note that where a = 5/9 and B = 2/3, Eq. (12) is satisfied. 

Figure 4 shows a comparison between 

according to Eq. (1311 and Eq. ( 6 ) .  It is evident that A is slightly over-estimated in 

the range of 10' < Re < 107, i.e. when values (v, Q, D) are given, JE is also overesti- 

mated. In the range 2.3 lo9 < Re < 2 108, the maximum variations between Eq. (5) 

and ( 13)1 amount to f 10%. 

However, if (JE, D, V)  are given and we solve for the flow rate 

we arrive a t  maximum variations of f 5% in comparison to the Colebrook-White ap- 

proach. Finally, if (0, JE , 1 are given and we solve for the diameter D, we approxi- 

mate the formula 

D = [49v' I9  /(n( 1 0 ~ ~ ~ ) ' l ~ )  ))I8 (13k 

with effective relations of better than f 2%. This degree of accuracy, measured 

against the determination of other critical parameters, is probably too high. Finally, 



we should also note that flow is in the virtually smooth range as soon as (71 

i /a 

* D o ,  where DO = 

Example 1: Given Q = lOmas-I , JE = 0.01, L = 10-a m, v = 1.16 10-6m8s-i ; 

we solve for diameter D. 

Where Do = [1@/(9.81*0.01)]*/~ = 4.0, it follows that  

(1.31 v * Do/Q)e/s*Do = (1 .31*1 .16*10-6 /10)~~~*4  = 1.18*10-am > L, which places the 

flow in the virtually smooth range. Consequently, we can use Eq. (1314 here. Thus 

the following applies for the diameter: D = [4 10 (1.16 10-6 ) I /* /  

(n(10 9.81 O.Ol)8/9)]3/0 = 1.474 m. According t o  Eq. (4) this yields D = 1.494 m, 

which is 1.3% greater than the value found using the simple approximation equation. 

3.3 Virtually Rough Flow Regime 

with equations (1) and (61, it is evident that in the virtually rough range a must equal 

1/2. (According to  Eq. (61, A is independent of JE 1.0, on the other hand, is a function 

of the relative roughness E. Because the flow rate decreases as the relative roughness 

increases, the following makes sense: 

(1611 and ( 1 5 ) ~  

I t  should be noted that although A is explicitly a function of & according t o  Eq. (6), the 

implicit system of equations (1, 6) should be solved t o  determine, for instance, the 

diameter D. 

If instead of Eq. (6), we use 

= [-2 log (e/3,7)]" 



and calculate the  function X(E), it becomes apparent tha t  one cannot describe the 

rough flow regime using a single combination of and M according to Eq. (1612 

(figure 9. 

Figure 5: C o e f f i c i e n t  o f  hydraulic  r e s i s tance  X as  function o f  r per (-1 
Bq. (61, ( * - - * )  Bq. (1812, (---I Eq. (1811 and ( - 0 - 1  Eq. (1813. 
Ver t i ca l  broken l i n e s  show r e s p .  r -ranges. 

Through derivation of the two-sided logarithmic equation (161, it follows tha t  

Table 4 shows a magnitude of M for various ranges of E; cP is also entered for Eq. (1612 

log ( 8 1  -7 - 5 - 3 - 1 

Table 4: Jf and cP according t o  Bq. (61 and (1512 f o r  the rough flow regime. 

If we se t  the  expression 
d2g 

in Eq. (15)i equal to C according to Eq. (11, 
4,1/2M 

then it follows tha t  13 = 1/2 + 1/(2M). If 2 < M < 9 according to Table 4, the possible 

value range is 5/9 < B < 3/4. Hence Gaukler, Hagen, Manning (all three with 



a = 1/2, B = 2/3), Forchheimer, Christen and Harmenek's equations as shown in Table 

2 represent reasonable approaches. 

The combination a = 1/2, B = 2/3 is a special interest, in which case M = 3, and 

according to Eq. (171, E = 1WP. Thus M = 3 characterizes relatively rough flow in the 

rough zone. If w e  accept variations o f f  6% with respect t o  Eq (6). then 

applies in the range 9 10-4 < E < 6 lo-%. According to the Moody Diagram, the ap- 

propriate range for the Re number is about loo < Re < 108. 

For smaller values of E, e.g. flow where Re > 100, compared to the Moody- 

diagram, M=7 applies. The relation 

A = 0.058 z l / e .  (1812 

varies less than 6% from Eq. (6) in the range 2 10-7 < E < 9 ' 10- . Finally, for 

greater values of E, speciflcally 6 10-= < E < 2.6 10-l , we get 

A = 0.34 t l / 2 .  

Correspondingly, we  get 

v = 5 ,87(g~E)112 ~ ' 1 ' ~  kS-ll1 , 2 1 0 ' ~ < ~ < 9  1u4 ; 
V = 3,27(gJE) 1 1 2 ~ 2 1 3  kS-1 16 , 9 1 0 ' ~ < € < 5  ; 

v = 2,42(g~E)'12~314ks-114 , 5 1 0 ' ~ < r < 2 , 5 * 1 0 - '  

for flow velocity In pressurized pipes and 

for open channels. 



b If we compare these values with Table 2, Christen and Forchheimer's formulas 

approximate Eq. (20)r and (2010, while Manning's exactly reflects Eq. (2012. On  the 

other hand, L represents the roughness characteristic in the new relations, a gener- 

ally accepted value, and Eq. (19, 20) are dimensionally compatible. Furthermore, the 

roughness range is specified in which variations of less than 6% occur with respect t o  
Eq. (6). Hence, JE can be predicted with a t  least f 6% accuracy when 

(lb , D, Q) are known, resulting in variations of no more than f 3% with respect t o  the 

equation system (1,6). Finally, if (9, k. and JE)  are known and we solve for the dia- 

meter D or the hydraulic radius n y  , then we can count on variations of less than 

f 1.6% with respect t o  Eq. (1,6). 

According t o  171, we are in the virtually rough range if 

where DO = [ Q ~ / ( ~ J E  )11/6. Application of the exponential formulas given above is thus 

related to two criteria: first it must be proven that flow is in the virtually rough 

range, and second, one of the three equations (19) or (20) must be applied, depending 

on the size of E .  

Example 2: In a rectangular channel with width b = 2 m, the following values 

are given: Q = l0m3ss-1, k. = 6'10-am, Js = 0.006. What is the standard flow depth for 

water at temperature T = 16*C? 

Where Do becomes 4 n v o ,  n y o  = 0.26 [100/9.81 0.006)11/5 = 1.148 m. Since 

Ib = 0.006m > [60*1.16*10-~*1.148/10]~o/~*1.148 m = 2.46'10-6 m, flow is in the vir- 

tually rough zone. Based on Eq. (2011, we get the following for 

,-%d - 

thus yielding h = 1.488 m, compared with h = 1.670 m (+ti%) according t o  Eq. (1,4), 

without accounting for the form coefficient; compare e.g. [2]. However, where my = 
hb/(b+Zh) = 0.698, thus E = k. / (4ny ) = 6' 10-3, flow is not in the rough range repre- 

sented by Eq. (20)1. According t o  Eq. (2012, i t  follows that 



thus  yielding h = 1.673 m, compared with h = 1.670 m (-0.2%) according to Eq. (1,4), 

corresponding to 
- 

ks 2.51 v 
~ = - 4 b h d K  log [ + - 

14.8 rhy 

In conclusion, it should be noted that  Eq. (2012 is also frequently applied in the  form 

used by Manning-Strickler: 

where K represents the friction coefficient and by virtue of coefflcient comparison 

with Eq. (2012 is equal to 

Hence if t is known, it is easy to determine K[m1I3 8-11. 

4 Conclusions 

The study described here has attempted to compare classical flow formulas with 

the results of modern turbulence theory and to derive appropriate propositions from 

this comparison. The Darcy-Weisbach formula serves as a basis for comparison, using 

t he  Colebrook-White formula to express the  coefficient of hydraulic resistance. In 

special instances, the results reflect the  virtually smooth and the virtually rough 

flow regimes. I t  is determined that  a number of classic flow formulas represent excel- 

lent approximations of currently -recognized relations, but it is noted t ha t  these ex- 

ponential formulas are relatively recent (dating since about 1880). 

If we accept variations of f 10% with reference to  the slope of the  total  energy 

line JE (corresponding to f 6% with reference to the flow or f 2% with reference to the  

diameter), then it is possible to approximate the smooth flow regime using Eq (13)i. I t  

appears significant tha t  the flow velocity v is a function of J E ~ / *  and of D213. How- 

ever, th is  formula can only be applied if inequality equation (14) is satisfied. 



In the virtually rough flow regime, which is defined by inequality (211, three 

flow formulas are proposed, depending on the relative roughness E (see Eq. (19) or 

(20)). For 9 10-4 < E < 6 10-2, the proposition agrees with Manning-Strickler 

formula (26). The col~elation between the equivalent sand roughness & and the fric- 

tion coefficient K is expressed in Eq. (26). However, if E i s  smaller or greater than the 

range indicated above, then the relations proposed in Eq. (20)r and (2013 should be 

used. However, the  Manning-Strickler formula is particularly significant because the 

roughness range covered by this formula occurs most frequently in practical applica- 

tions. It should be noted that  in both the virtually smooth as well as the virtually 

rough flow regimes, v is a function of DP / a  , resp. a y 2 1 8  . 

Designated Variables 

a 181 Coefficient according to de Prony's formula 

b [s2n-11 Coefficient according to de Prony's formula 

b [ml Surface width [e.g. Eq. 22, 23, 241 

C s- 1 1 Proportionality factor in the flow formula 

% [-I Proportionality factor for the  coefficient of hydraulic resistance 

D [ml Pipe diameter 

DO [ml Reference diameter 

g ins- 1 Normal case acceleration 

h [ml Water depth 

JE (-1 Slope of the total energy line 

Jn 1-1 Slope of the channel bed 

b i d  Equivalent sand roughness 

K [m1/3s-l] Manning-Strickler coefficient of roughness 

N 1-1 Exponent in the equation for hydraulic resistance 

Q [mas-1) Flow rate 

r a y  [ml Hydraulic radius 

Re [-I Reynolds number 

v [ms-'1 Flow velocity 

a [-I Exponent for the slope of the total energy line 

I-] Exponent of the diameter 

E 1-1 Relative roughness 

(-1 Coefficient of hydraulic resistance 

v [mzs-11 Kinematic viscosity 
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