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List of Main Symbols used in Bubbly Flow Sections 

jet thickness or circular jet diameter 

closed conduit dimension 

air bubble diameter 

circular nozzle diameter 

penetration depth of air bubbles into a pool 

jet Froude Number at plunge point (u 1 f;gct) 

general Froude Number 

gravitational constant 

height of fall or drop length of a plunging jet 

turbulent eddy length 

maximum turbulent eddy length 

Length ratio, (prototype/model), reattachment length 
shear layer 

disintegration length of a plunging jet 

droplength of a plunging jet (= H) 

rate of air entrainment per unit length (into the 
flow 

rate of air transport along a closed conduit 

water discharge rate per unit length 

Reynolds Number of flow (Udjv) 

radius of curvature of jet surface disturbances 

jet velocity at plunge point (sometimes v or v 1 ) 

mean outlet water velocity in a closed conduit 

fluctuating turbulent component of velocity 

turbulence intensity at plunge point(sometimes Tu) 

inception jet velocity required to entrain air 
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m~n~mum jet velocity required to tr~sport 
air in a closed conduit 

minimum outlet velocity required to tr~sport 
air in a closed conduit 

entrainment velocity into a shear layer 

recirculation velocity around a spreading shear 
layer 

air bubble velocity in a shear layer 

air bubble rise velocity in stationary water 

water velocity at circular nozzle exit 

streamwise direction 

normal to streamwise direction 

void fraction (sometimes given as C1 concentration) 

ratio of air flow to water flow (qafqw) 

air/water ratio of air entrained into a flow 

air/water ratio of net air tr~sport along a closed 
conduit 

magnitude of jet surface disturb~ce 

relative turbulence intensity in shear layer (Thomas) 
jet surface disturb~ce (Ervine) 

absolute viscosity (air or water) 

kinematic viscosity 

density of air, water, foamy mixture 

surface tension coefficient 

angle of conduit to horizontal 



SECTION 2 

Bubbly flows - Theoretical models and analysis. 

2.1 Inception conditions for air entrainment 

2.2 Quantity of air entrained 

2.3 Bubble escape and bubble transport mechanisms 



2.1 Inception conditions for air entrainment 

Every hydraulic situation involving air entrainment requires 

certain conditions to be met before air will be entrained. A wide 

range of inception conditions have been formulated, based on 

velocity, Froude Number, Reynolds/Weber Number, turbulence intensity, 

boundary layer thickness, etc. Every case demands that the free 

water surface is 'broken' (i.e. overcoming surface tension), with 

the major 'breaking' mechanism being turbulent fluctuations in the 

flow (u*). 

This is certainly the case for wall jets and plunging jets 

which require surface disturbances, driven by turbulent fluctuations, 

to form an air bubble and entrain it into the flow at the plunge 

point (See Fig. 2.1). 

It is also the case for natural surface aeration in high 

velocity open channel flows. In this case, turbulent fluctuations 

near the free surface must produce enough upward force to overcome 

surface tension and propel a droplet of water out of the flow. 

The droplet entrains an air bubble in its wake. 

In the case of hydraulic jumps, the free surface is 'broken' 

by the point of discontinuity at the toe of the jump in the form of 

a surface roller. A minimum inception condition of Fr 1 > 1 is 

therefore required. 

Our discussion on inception will centre, at least in the first 

instance, on wall jets and plunging jets at steeper conduit slopes 

than conventional hydraulic jumps. 

Formulation of non-dimensional groups for inception velocity for 

jets 

If we assume that the jet on Figure 2.1 is either circular, 

diameter d, or plane, thickness d, and that inception is dependent 

on the turbulent fluctuating component u*, the eddy size ~*. and 

viscous, gravitational, inertial and surface tension forces are also 

important, then we can write 

~J o.,* i*: cl).::. 0 
) I 

(2 .1) 

Using the method of synthesis by forming groups having length, we 

have, 
'l. 
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The number of variables not containing density and relevant lengths 

in (2.1) is 5, implying that four of the length parameters in (2.2) 

can be chosen along with ~* and d. 1"he four parameters chosen must 

contain between them every variable at least once. 

can choose, 

For instance we 

Jt*jci) 0 ••••• (2. 3) 

If we now divide through by either ~* or dJ we may obtain 

f ( U..'l. ).) ie-loCA)
1

~ "V cl ) _!,_. ) - • ,-.::.-./~:.J ) .;;,....-- £. ) - ,..., 

~9..,.. ~ 2-1r ---:v:- iA~... T• - v 

This may be written in the form, 

lA.f :: .f ( ~~ t,«-) u..tt ... J (6/.M):.-'l. I ~ ) ..... (2.4) 

~a..* 1) )) .(.,* d., 

Several points can be noted from this relationship. 

At the point of inception for air entrainment, the jet velocity u 1 

is denoted by the inception velocity ut, and the eddy length ~* is 

given by the maximum eddy length ~~ax• which is approximately equal 

to the bubble diameter db (Sene, Ref 

might obtain, 

) . Hence from (2.4) we 
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Now for air entrainment we may assume db (model) = db (prototype) 

inception, or from 

u*/u 1 is the 

and hence from ® u 1 model ~ u 1 prototype for 

and ® together (u1/u*) = (u1/u*) prototype. 
mcdtl, 

turbulence intensity. From @ , (a I pg) ~ is the capillary length 

®-

and = db (if capillary length is 2. 7 mm and bubbles of approximately 

3 mm diameter are entrained). 

an order of 

ut 
~b 

magnitude. Thus, 

f(~ 
lA, 

Hence @ might reduce to unity as 

(2.6) 

where u*/u is the turbulence intensity of the flow. It is generally 
1 

assumed that db/d is only significant in jets whose thickness is of 

the same order as the bubble diameter. That is, for eddies to grow 

to a maximum size ~*max to be approximately equal to a bubble diameter 

1-5 mm, then the jet would require to have at least this order of 

8 



magnitude thickness. Hunt (Ref states that jet surface 

disturbances are reduced if eddy sizes~* are smaller than about 4 times 

capillary length (say 10 mm). Thus for jets, say, >10 mm thickness, .. u. 
I • • • • • ( 2. 7) 

The inception velocity for air entrainment for larger jet thicknesses 

is a function of the turbulence intensity. 

A theoretical model 

The most cogent argument to date on the nature of.the inception 

velocity to entrain air was presented by Sene (Ref 

previously outlined by Thomas (Ref ). 

based on arguments 

Referring to Figure 2.1, a plunging jet with velocity u 1 enters a 

pool where a mixing layer is set up and the receiving water entrained into 

the mixing layer also forms a larger recirculating flow of velocity Ur, 

where Ur a ui. Sene indicates a value of Ur/u1 ~0.035. The dynamic 

pressure in the receiving flow is therefore of the order UPu~. 

The plunging jet itself is assumed to carry air bubbles into the 

mixing layer by the mechanism of surface disturbances on the jet free 

surface, indicated on Figure 2.1 by o. Surface disturbances caused 

by fluctuating components of velocity in the flow, u*, and~ is approximated 

to u*2 /2go the energy head of the turbulent eddies. The length scale of 

the turbulent eddies in the jet is given by ~* and it is assumed that most 

of the air is entrained at maximum eddy lengths given by ~~ax· It can be 

seen from Figure 2.1 that surface disturbances are assumed to form a shallow 

circular arc of radius R on the jet surface. Therefore the pressure set 

up by surface tension forces the maintain this shape is given by 2o/R, 

where o is the surface tension coefficient. 

Sene and Thomas argue that at the point of jet impact, the receiving 

flow will try to follow the undulations on the jet surface, and that air 

will only be entrained when the receiving water is unable to follow jet 

undulations, and a "gap" or pocket is formed which is subsequently trans-:-

ferred into the mixing layer. 

entrainment is given by 

Thus the criterion for inception of air 

..•.. (2.8a) 

In order to obtain an estimate for R, is was assumed that the length of 

a jet surface undulation could be approximated to ~~ax• the maximum 



length scale of turbulent eddies causing entrainment. Hence from 

Figure 2.1 

R"' !!,....~I g~ (2.8b) 

Combining equations (2.8a) and (2.8b) we obtain that the maximum eddy 

length is given by 

4- (tt.Yl.tt ) 
l i.lr/u.!) 

••••• (2.9) 

where ;a- is known as the capillary length and for the formation of 
l~g 

air bubbles is approximately equal to the air bubble diameter. 

Sene and Thomas argue that the volume of air held in a jet surface 

undulation is of the order£:~~. and at inception only single air 

bubbles are formed, so that 

"' 0.~ - (2.10) 
l. 

where db is the air bubble diameter. Also at inception, the jet 

velocity is the inception jet velocity Uf, combining (2.9) and (2.10) 

obtain, 
..!- ( ILr /14. 1) u.1f" - (~)~ (2.11) I 4 ""'(u . .A· /u.1)2. ..... 

where u*/u 1 is the relative turbulence intensity and 0 /p is constant 

for air/water. 

equal to 0.035. 

The value of Ur/u 1 is assumed to be approximately 

we 

The value of equation (2.11) is not in the quantitative prediction 

of the inception velocity but the implication that the inception 
tl4rb .. len~~t--

velocity (Uta (~u)2 ) is proportional to the inverse~intensity squared. 

This may well represent an oversensitivity of the contribution 

of the relative turbulence intensity, as a very smooth jet may have Tu = 
0,01 and a very rough jet Tu = 0,1, which would imply a difference in 

inception velocity of 100 times in the two types of jet. This has been 
tb 

shown by Ervine, McK~gh and ElsaWY notAbe the case, as a jet with Tu -

0.4% gave Ut of 3.6 m/s, whereas a jet with Tu -a% gave Ut of 0.8 m/s, 

which is closer to Uf a --1--1/. ( Tu )/2 

Experimental and emp;rical evaluations of the critical inception 

velocity 

Lin and Donelly (Ref ) investigated the air entrainment 

ro 



characteristics of circular plunging laminar jets and discovered that 

certain conditions of the jet were required before air bubbles were 

entrained into the flow. The criterion of inception proposed for their 

small scale jets (Re < 103 
) was 

1) WD /.:~c; 
1\ll.. ~ o, 04-~ "' 

based on the premise that viscous and surface tension effects 

dominated the process at least for this scale of jet. 

Equation (2.12) can be rewritten in the form 

(2.12) 

= 6.·u. 6' o~1~"+- :::; K 
~-C1:Z.O(o f-0/i'i1 Q_ 0;'2.0b (i}::

1
-z.o(, 

••.•. (2.13) 

for air-water at constant temperature. 

Ut is inception velocity to entrain air bubbles 

d is jet diameter at impact point. 

The implication of decreasing inception velocity for increasing jet 

diameters proved misleading for all jet diameters as the surface tension 

forces on the small diameter jets used,dampened surface disturbances in 

the jet1reducing the scale of eddies possible. 

Later work by Van de Sande and Smith (Ref ) and Ervine (Ref 

indicated that for larger jet dimensions, the inception velocity tended 

towards a constant value, and the mechanism of entrainment at the point 

of inception was most influenced by surface disturbances on the jet 

surface. 

This concept was later taken up to McKeogh (Ref ) and Ervine, 

McKeogh and Elsawy (Ref in testing inception velocities of plunging 

circular jets at various turbulence levels. A photograph overleaf 

(Figure 2.2) shows a plunging jet with impact velocity ~ 3 m/s, 

Re ~ 3 x 10~,Fr ~ 10 and turbulence level ~ 0,002, entraining no air 

bubbles. Previous work had shown that rough turbulent jets had an 

inception velocity around 1 m/s. A series of tests was carried out 

revealing that the inception velocity was more or less constant with 

increasing jet diameter, but varied considerably with increasing jet 

turbulence level. A plot of inception velocity with relative intensity 

is shown below, indicating that Ut for typical rough turbulent jets is 

0,8 to 1.0 m/s. (s~ Flc;-,.z.~) 

II 
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IMPACT OF A VERY SMOOTH 0.2% TURBULENT JET WITH THE POOL 

AND POSITION OF LASER BEAMS FOR VELOCITY AND TURBULENCE 

MEASUREMENT. Note the absence of air bubbles. (l'f'KeOjh) 
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Fiqure2.3: The critical velocity for air entrainment 
in a plWlqinq circular jet. {~rv1~ et 4l.) 

The implications of this graph are that 

(1) Jet surface disturbances are an important factor in determining 

inception velocities (Ut) 

(2) Small scale Froude models will entrain relatively less air 

than prototypes as (U~/U 1 lmodel > (U~;u.lprototype· 

(3) A minimum of model scale can be calculated below which 

entrainment will not occur as U! is constant for all scales. 

(4) The model turbulence level U*/u 1 , ideally should be at leas~ 

equal to that of the prototype structure. 

2.2 Theoretical models for quantity of air entrained 

In this section we will deal with the rate of air entrainment 

by a jet plunging through the atmosphere, a wall jet, and a hydraulic 

jump, but only in the sense of the total air entrained into the shear 

layer at the plunge point. Section 2.3 will deal with aspects of 

bubble detrainment (escape) from the shear layer, and bubble transport 

downstream with the flow and out of the shear layer. 

Air entrainment by jets ~ a complex phenomenon and as yet does 

not have a definitive theory to describe the phenomenon, no~ indeed, a 

comprehensive empirical correlation to describe the quantity of air 

entrained. Researchers are agreed that factors which contribute to 

the quantity of entrainment into a shear layer might be listed as -

gravitational, inertial, viscous, surface tension forces, 

/3 



surface disturbances on the jet surface characterised by 

turbulent velocity components and turbulent eddy lengths. 

ambient pressure of the atmosphere. 

the angle of impinging jet. 

conditions in the receiving flow such as the velocity in any 

recirculation eddy, foam layer on the receiving flow, etc. 

Analysis is complicated by the fact that at least three fundamental 

mechanisms for air entrainment have been proposed (shown overleaf on 

Figure 2.4) 

(1) 

(2) 

Entrainment due to surface disturbances on the jet. (Van de 

Sande (Ref ) ' Ervine et al (Ref ) ' Sene (Ref ) ) . This 

occurs in lower velocity jets (U 1 < 5-10 m/s). 

Entrainment due to a continuous layer of air 

receiving flows (Van de Sande.sene, etc.). 

high velocity jets (U 1 > 10 m/s). 

between jet and 

This occurs in 

(3) Entrainment along a highly agitated free surface with a deep 

layer of foam (Thomas Ref ) . This may occur often in 

hydraulic jump entrainment, where air bubbles are entrained 

into the shear layer both at the toe of the jump and along 

the free surface roller. 

Entrainment types (1) and (2) will be analysed in this section, with 

analysis for-type (3) in Sections 2.3 and 3.3. 

Formulation of non-dimensional groups to describe rate of air entrain­

ment due to jet surface undulations 

Consider the jet shown on Figure 2.1 with velocity greater than 

inception so that air is entrained, and assume that entrainment is 

achieved in the undulations in the jet surface, caused by U* and ~*, 

the fluctuating component of velocity and eddy length. Other 

influences on the rate of entrainment are inertial, gravitational, 

viscous, and surface tension forces, as well as the absolute value of 

jet velocity ul. If the jet is plane, the rate of entrainment is 

given by qa, and for circular jets qa QA/TTd• where lTd is the jet 

circumference at the point of impact. The droplength L is not included 

as it influences the velocity at impact already denoted by U1 , the size 

of the undulations o, already denoted by U*, and the eddy length denoted 

Ill-
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by R.*. The exclusion of droplength L, effectively excludes the flow 

conditions either at the overflow point or exit nozzle which ever is 

the case. In other words we are assuming that amplification of jet 

disturbances has not occurred, as in the case of wall jets.Ve may write 

..•.• (2.14) 

Or by the method of synthesis, 

We may choose for instance, 

~ ( tt~ lA,~ )} u. _.1. er ) .i-*, ct) _, 
-I - J - ) f"lti =-o 

lA.' a lA. I <J 
or 

q_"' ( ~· LC.,ct e til.~ LL"l. .~/· } - f teL' _L. J - -I "fd I Cl. i.llc:L v 0 ..... (2.16) 

This becomes, for the ratio of air to water 

~~t: ~ f( K-1 , Re- 11 We,, 
lA.t'l. 

~) 5"cl l 
••••• (2.17) 

U~ U*l.U 2 U 2 
The term gd- can be rewritten (--) ~ and as 1 is already included 

Ut gu go 
2 

(U*) ' we can denote this as or turbulence intensity squared. 
Ut 

According to Sene and Thomas (Refs ), air is entrained by maximum 

eddy lengths given by, R.;ax ~(1~(~)~or as turbulence intensity is 

already included we may denote i'/ri as (tr/P~'Iz../ cl· . 

• •... (2.18) 

Hunt (Ref · ) has shown that het thickness d is no longer significant 

when d > 4(~~•or 4 times capillary length, or approximately 11 mm. 

Thus for jets with d > 11 mm, 

t.~ ~ f.(H-., Re 1, ~vt1) (fiA.,)l.) ..... (2.19) 

According to Kobus (Ref ) Reynolds number is not significant if > 10 5 

and we may write, 

16 



Re > lOs is an onerous condition for jets entraining air just past the 

inception velocity, as U1 = 1 m/s, then d = O.lm (100 mm) which is 

substantial for a model. 

If the jet thickness criterion is satisfied in the model, say 

d > 10 mm, then to satisfy Re > lOs , we need U1 ~ 10 m/s. 

It should be pointed out that three important parameters have 

been omitted from this analysis, the angle of the jet e, the pressure 

of the ambient atmosphere ~p/pu 1 2 , and the droplength of a plunging 

jet L, which effectively denotes the initial jet conditions, if the 

impact jet conditions are already established. 

Thus a more complete similitude analysis would be of the form, 

••••• (2.21) 

which in fact is almost intractable for comparing model/prototype 

plunging jet behaviour. 

Most of the plunging jet and wall jet tests to be described 

have been carried out at atmospheric pressure, and hence Euler Number 

may be discarded. 

A range of 6 values has been used, but this may be corrected 

approximately to the vertical case, say. 

Unfortunately in many cases Re < lOs and d < 11 mm and the best 

we can hope for in any correlation of existing data of plunging jets 

would 

.•••. (2.22) 

If we could arrange all jets > 10 mm and identical model/prototype 

turbulence intensity then a f(Fr, Re, L/d). 

This of course may only apply in the context of low velocity jets 

with entrainment due to surface undulations, and will not necessarily 

apply with high velocity jets, say U1 > 10 m/s. 

Quantity of air entrained due to jet surface undulations (Type (1)) 

It will be noted in the foregoing dimensional analysis, that a 

simple theoretical model for entrainment by jets is unlikely. The 

simplest models for jets not plunging over long lengths should include 

Froude number terms either Fr2 or Fr -1, Reynolds Number Re, turbulence 

intensity (Tu) and if possible, an allowance for the inception velocity 

11 



U~ to entrain air. In some cases the Reynolds number is omitted 

(Kobus for Re > 10 5
) where viscous effects do not have a significant 

influence. 

Consider the model of Sene (Ref ) and Thomas as already 

discussed in Section 2.1 and shown on Figure 2.1. Sene argues that 

air is entrained when the circulating eddy in the receiving flow can 

no longer follow the surface of the jet undulations, giving the 

criterion, 

Most of the air is assumed to be entrained by maxim~m eddy sizes ~;ax 

given by 
~~ 'V 
~ 

as already discussed 

The magnitude of surface disturbance 6 is given by u*2/2g• where 

U* is the turbulent velocity component. 

Thus for a plane plunging jet, Thomas argues that the volume of 

air held in a single jet surface undulation is given approximately by 

~~~ 6, and hence the rate of air entrainment by 

u., ....• (2.23) 

or 

.IV 
u.*l. i.l, -C(,Q. g (U.ll-fu.ll1.. ~ - 9 ..... (2.24) lUr/1AJ1.. 

For u*2 and '"'te~ = constant we have, = ul2(~t 

t."- ~ ti.Lit/~.~.1)/(_iLt/u.lr- u.3 •...• (2.25) 
I :::: 

where U*/U 1 is the turbulence intensity 
~todr~ 

Ur/U 1 is theAratio at entrance to shear layer to which Sene 

assigns a constant value (: 0.035). 

Dividing by the water velocity U1 d (for a plane jet). 

indicating an overly strong dependence on turbulence intensity. 

given turbulence intensity 6 « Fr2 as already advocated by other 

authors. 

(2.26) 

For a 

Sene's analysis as applied to plunging circular jets contains two 

qualifications:-



(a) the droplength of the jet is much shorter than the jet 

disintegration length, so that amplification of surface 

disturbances does not occur (see Section 3.1), 

(b) the circular jet diameter is sufficiently large so that 

surface tension forces do not dampen jet dist~rbances 

The relationship proposed for short 

~o.t ~ ~0.. K li4. -./u.,) 4--Q-v.~ (U.r-/uJl ... 
which is of similar form to that of 

-- LA~ 
I 

For low velocity circular jets. 

circular plunging jets is 

~k 9cl 
(2.27) 

plane jets again implying 

. • • . . ( 2 .28) 

This result qa « u~, has been put forward for low velocity plunging 

jets by previous authors 

Renner (1975) 8 K Fr2 K = 0.0015 to 0.00275 

Kobus & Rao (1975) 8 K Fr2 (general principle) 

Casteleyn, Van .Groen 8 « K Frz ( 1- 0. 8) 3 K = 0.006 to 0.01 
& Kolkman (1977) ul 

Goldring (1979) 8 K Fr2 (1-0.8)3 
U1 

K 0.0025 

Ervine & Ahmed (1984) 8 K Fr2 (l-0.8)3 
u1 

K = 0.00275 to 0.012 

Sene (1984) 8 K Fr2 K 0.0004 to 0.004 

This illustrates a concensus for plane jets that qa« ~ , or 8 « Fr2 
, 

with the latter three authors attempting to incorporate the inception 

velocity U! (= 0.8 m/s) discussed in Section 2.1. None has specifically 

included turbulence intensity (Tu) as in Sene's theoretical formulation. 

Kobus (1984, Ref ) states for the general case of plunging jet 

entrainment 8 = K (Re, Tu) Fr2 , where Re is significant for Re < 105 • 

Kobus (1984) has put forward a tentative framework io Figure 2.5 below, 

illustrating the effect of viscosity for Re <105
, incorporating the 

inception velocity, and showing 8 = K Fr2 for Re > 105
• This diagram 

1.9 



requires to be tested against existing data, (a) for each mechanism of 

air entrainment qa a: u~' qa a: ul 3/2' (b) for partially disintegrated 

plunging jets, and also (c) to test the Kobus thesis that Turbulence 

intensity (Tu) has no significance when R > 10 5 
• 

..,,..lft ,.,..., ... .Jr.¥ ,..... .!.J.. 
Su9geated functional relationship 
tor the relative Alr entra1naent fl 

Figure 2.5 Kobus framework for load self aeration 

Quantity of air entrained due to continuous layer of air above jet 

surface (Type (2)) 

There is some evidence, Van de~ and Smith (Ref ), Sene 

(Ref ) that high velocity jets exhibit a different mechanism of 

entraining air into receiving water. 

sketched below. 

Figure 2.6 

The model proposed by Sene is 

foq,.,~ ~Le1vi1 
wa.ltr 

The receiving water is already foamy with reduced density Pf~Pw (1- Cf). 

For the layer of air to penetrate receiving water 
. 2.. 

1. ef l.lr 
0 \ll. 
\qir I ••••• ( 2.20) 

and as Ur/u
1 

~ 0.035, then air can penetrate receiving water almost with 

no foam in receiving water Pf/ Pw ~ 1. 

20 



It can be seen from the sketch above, the pressure difference along 

the thin layer of air, thickness o, from inlet to point of air bubble 

formation is 

~ D ~x, S"'-<t1 
\t: 

and hence net force 6p s erx s-"'e ~ ..... (2.30) 

This force is balanced by the shear stress imparted to the air layer by 

the flow jet below, at speed U1 , assuming the contribution from the 

recirculating foamy layer is small, Ur <<< U1 • 

Sene approximated this force to ~~ and assuming a laminar air 

layer 
(2.31) 

Equating forces and calculating the rate of air flow as U1 o 
have 

(2.32) 

Sene modifies the relationship above to account for air velocity profile 

in the thin layer to 

J.. 
3 

give a revised 

2...f'o.- u} 
e~ ~ s-"' ~ 

estimate 

The same relationship applies for circular jets, except qa 

.•.•• (2.33) 

Qa;'Tf'd· 

The application of (2.33) above appears to be for jets of U1 > 7-10 m/s 

when the jet surface undulation type of entrainment is less significant 

possibly due to the fact that surface undulations have reached a maximum 

value, or that pre-entrainment of the jet has occurred. 

Sene also used this type of analysis to predict (speculatively) the 

rate of entrainment at the toe of the hydraulic jump as shown below. 

Figure 2.7 
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The pressure difference along the gap tip " Pfg tiy, (where P f < Pw) 

is again balanced by the shear imparted to the air by the jet below 

fo. U..VS • Hence~"" (b 1>'/.. i.l1 ). 'h. and the air flow qa is given by 
~f.~ A~ 

'L" ~ 13 j 2( a.: j ~ u. fi~ . . . . . < 2. 34 > 

~~ b':1 
tix/t~y may be approximated for jumps to the jump l~ngth, Lr/Yz- ~. 

Equation (2.34) implies non-similitude between the ratio of air to 

water a, and the jet Froude Number (Fr 1 ), but only incorporates 

entrainment at the toe· of the jump,whe~.air is also entrained into 

the free surface roller. (Thomas Ref ) . 
It is interesting to speculate on the quantity of air predicted 

from (2.34). -- 5, and qa -- ( ~" UI~)Yz. For a jump we may assume tlx/t~y J ~ 

. f;: " If we now assume Pf Pw, and substitute for ~air• ~.e. ~water ~ ~ 

1 x 10~ and ~air " 1.8 x 10- 5 then ~air ~water/ 55 . Hence we 

obtain ~ 1 

q, o.. -~ 0.13 (J:w~l ) ~ 
This becomes rt.J ~ 

~ ~ 0,13 ~,o... ~d.. l<o = 
Even for 

( 

14.. iJ.Iz. ) 1/.., 

the highes foam air concentration Cf" 0.5 and P ·" P 1 we f w 2 
obtain 

OdS ·fT. 
~ '::: 

t_R; )'lz.. 

At Re 103 
, a " 0.005 Fr1 

These are shown below compared 

10~, a " 0.0015 Fr1 
Re with Kalinske and Robertson etc., 

10 5
, a " 0.0005 Fr, Re giving very low estimates for a. 

We can only conclude here,that either the analysis is inadequate or a 

large proportion of air entrainment into hydraulic jumps comes from the· 

turbulent surface roller as postulated by Thomas. It is more likely 

that the above analysis of Sene is applicable to high velocity jumps 
he.~ been 

U 1 " 10 m/s, in which case pre-entrainment of the jump ~ ignored. 

~ o.r 
Figure 2.8 
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Summary of Section 2.2 

An estimation of the quantity of air entrained by a plunging wAll 

jet is complicated by the fact that Froude and Reynolds Number similarity 

is required at the same time (or Re > 10 5
), up to three separate 

mechanisms are possible Type (1), (2) and (3), and the.process is sensitive 

to the turbulence intensity of the jet (U*/u ). Some of three points are 
1 

illustrated in Figure 2.9 overleaf. 

(1) Van de Sande and Smith covered a wide velocity range of circular 

jets showing that at low velocities qa U1 3
• and at higher velocities 

> 10 m/s, qa "' U 1 
1

" 
5~ 2 • This has important implications for model/ 

prototype comparisons. If the same is true for plane jets, then 

correlations based on qa "' U1
3 o~ a "' Fr 1

2 may overestimate prototype 

entrainment if U1 (prototype) is greater than 10 m/s. It is still not 

absolutely clear if the regime qa "' U1
3 ceases for U1 > 5 m/s as 

experimental data beyond this range is very limited. More tests are 

required. 

(2) The effect of turbulence intensity is illustrated clearly on 

the two low velocity plots by Sene. The upper curve gives the maximum 

entrainment possible (upper surface of plane jet) in an artificially 

rough jet, while the lower curve (artifically smoothed jet) gives a 

prediction of the minimum possible entrainment. 

qa(max) "' 0.0004 U1
3 

"' o.oooo4 U1 3 
qa(min) 

Sene, for low velocity jets. 

It is interesting that other low velocity plunging jet data fit between 

these two limits. 

A jet entraining air on both surfaces would give values of qa 

twice as high as predicted by Sene (up to .0008 U1
3 

). 

(3) At this stage we have an unresolved problem. Renner and 

Kobus state that the ratio of air to water, a = K Fr2 
, at least for 

Froude Numbers less than 10. Therefore for this condition qa ~ U
1

3 

irrespective of the velocity acting. By implication, entrainment is 

always by surface undulation mechanisms. That is, qa a: u1 3 • or 

qa a: (U1 2
) u1, or for a given turbulence level U*/u • qa ~ U*z U1 ~ .s u1. 1 

Thus surface disturbances continue to increase with increasing 

jet velocity and cS is always proportional to U*2
• This also implies 

that a model operating at say 2 m/s will give qa ~ (2) 3 = 8, and a 

'2.3 



.. ...,,._ ... -.... __.._......_.., .... ------ -------------------··-

. . . . . .• 
\ 

' .. , 

\ 
\ 
\ . 
i 

-- -~·----- .... --

0 c 

~ 
~ ..:s 

.. -··-~ 

"' -

-s - ·--, -
.t""" 

~ ~ 
~ 
A-

(J) 

.E' 
6Q 

~ 
(""- j 

en 

~ -
-? 
.I 
~--

w 

·'-
G-

0 



prototype say at 10 m/s will give qa « 103 = 1000. In order for this 

to occur the ratio of the prototype to model surface disturbances would 

have to be (10/2) 2 = 25 times. 

The counter evidence from Sene and Van de Sande and Smith is that 

surface disturbances do not continue to grow indefinitely. From the 

limited data it appears that surface disturbances reach a maximum around 

5-7 m/s. Therefore just beyond 5 m/s, qa « oU1 KU10 as o becomes 

constant (See Figure 2.9). We might enter then a regime of linear 

increases in air entrainment with velocity. Around this stage the 

intermittent entrainment by surface disturbances becomes a continuous 

layer of air between jet and roller, or qa « U1
3 h. This is equivalent 

to saying that surface disturbances are no longer significant and 

entrainment is comparable to air from the boundary layer of a laminar 

jet. 

It is more likely that air entrainment generall~(ignoring 

contributions from pre-entrainment)would be made up of a combination of 

surface disturbances and air boundary layer entrainment in the form 

+ K ,, 3/l-
1. V\ I • • • • • ( .2- 3tt- b) 

In this sense K2 may be insignificant at low jet velocities, and 

Cont","b14kto"' 
fJVA\. h15n vru,riflJ 
l.oilhli..aiiD o.ir 
1?~~-

Figure 2.10 
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K1 may be small at very high velocities. The value of K1 is obviously 

influenced by Reynolds Number (Kobus), turbulence intensity (Sene and 

Thomas), and the value of jet thickness but only for jet thickness less 

than say 30 mm. 

One obvious weakness in the high velocity entrainment argument is 

that pre-entrainment possibility is ignored, and as a first order 

approximation may scale on Fr 1
2 

• 

Section 2.3 Bubble escape and bubble transport mechanisms 

In Section 2.2 we considered the quantity of air entrained into a 

flow for plunging jets, wall jets and to a limited extent, hydraulic 

jumps. In this section we will consider air bubble behaviour after the 

point of entrainment (in the shear la~er, etc.), with the discussion 

initially limited to plane wall jets and hydraulic jumps. 

Consider first a plane wall jet impinging on a conduit full 

condition as shown on Figure 2.11. Assuming the jet velocity u 1 is 

greater than the inception velocity to entrain air U!, then air bubbles 

are carried into the shear layer and are subjected to a range of forces 

including buoyancy, drag, inertia, vorticity etc. A recirculating 

vortex is usually set up with velocity Ur << U 1 . Water is entrained 

into the shear layer from either side, causing a spreading of the 

shear layer and eventual reattachment on the other side of the conduit 

as shown. In some cases, when D/d is very large, and the conduit 

angle is shallow, it may be possible for the shear layer to return to 

the water surface before reaching the opposite conduit wall. 

For a low jet velocity, say just greater than Ut, the entrained 

air bubbles are carried into the flow, but are quickly detrained from 

the shear layer, (because of bubble buoyancy) and are recirculated to 

the water surface. In this case, no air bubble transport occurs 

downstream of the shear layer. This is shown on Figure 2.12 (taken 

from Ph.D. thesis of A. A. Ahmed). 

At slightly higher velocities the mixing region extends in length 

along the conduit, and tiny air bubbles (diameter == 1 mm) extend some 

distance beyond the shear layer but net air transport along the conduit 

is still not occurring. In this case l.!t < u1 < U1 min' the jet 

velocity is still smaller than the minimum jet velocity to transport 

air, Ulmin· This is illustrated on Figure 2.13, again with total air 
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-F4& (2Jl). Early stage of air entrainment starts in the 
jet surface. 

_ f"l &:: (2. .Q,). Mixing region. 



Fl&_ (2.!3~). Air bubbles move downstream, but with total 
recirculation. 

~~G-. ( J., 13 ) • Air bubbles start to move further downstream 
in form of tiny bubbles. 



detrainment, or total deaeration. 

At higher jet velocities, U1 = U1 min• a point is reached when 

air bubbles are transported continuously along the length of the 

conduit. This jet velocity is the minimum velocity to transport 

air. Initially only small bubble diameters are transported, but ~t 

higher velocities, larger bubble sizes are transported (5 mm). This 

transition region is sometimes characterised by a coalescence of air 

bubbles on the conduit roof, forming small air pockets, which often 

"blow-back". This is illustrated on Figure 2.14 I overleaf-. 

At higher jet velocities, U1 > U1min• a larger proportion of 

the total air entrained into the shear layer, is transported along the 

conduit. We generally define the total rate of air entrainment into 

the shear layer as qat• the amount transported downstream as the net 

air transport qan, and the remainder is detrained and recirculated 

back to the atmosphere qar. In this case the entrainment capacity 

of the flow can be said to exceed the transport capacity. 

At much higher velocities U1 >> U1 min• a stable condition is 

reached where most of the entrained air is transported along the 

conduit. It should be noted here, that in terms of bubbly flows 

the upper limit of transport generally corresponds to a void fraction 

of a = 0.42, or an air/water ratio B ~ 0.72. If the jet is 

entraining more air than this upper limit for transport then 

recirculation to the atmosphere is likely to occur again. As an 

alternative, the bubbly flow can change to slug or air pocket flows, 

when B values greater than 0.72 can be transported, especially at 

shallow angles. 

The factors which influence how much air is detrained and how 

much is transported are complex, and will be dealt with in some 

detail in this section. In broad terms however, the problem can be 

defined by the forces action on a bubble both in the shear layer and 

downstream of the shear layer. That is, in the shear layer a bubble 

is acted upon by inertial, buoyancy, drag and lift (vorticity) forces, 

and bubble progress along a shear layer will depend on the relative 

magnitudes of these forces. This will be discussed in the light of 

recent work by Auton, Sene, Thomas and Hunt (below), recent experiments 

by Ervine and Ahmed, and in the light of a detrainment analysis by 

Neale Thomas, applied to Type 3 entrainment, where air is entrained along 

the length of a shear layer (such as hydraulic jumps) by a foamy surface 
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roller. Downstream of the shear layer, vorticity and inertial forces 

may be considered small compared to drag and buoyancy, and simpler 

analyses may be possible. 

Let us consider first the most complex section of the analysis, 

the behaviour of an air bubble in a turbulent shear field caused by an 

impinging jet. The work of Thomas et al is the most relevant. 

Sim~ation of bubble trajectories in vortices in a shear layer 

The most recent work on the behaviour of air bubbles in shearing 

vortices has been carried out by Thomas, Auton, Sene and Hunt (Ref 

at Cambridge, England. Their work originated from research into 

plunging wall jet air entrainment and the influence of shearing vortices 

downstream of the plunge point entrapping air bubbles in the cores of 

vortices as shown on the sketch below. 

Figure 2.15 

Fa ~ b!Wjdtl'j ~ 

F"ct ::. dru.3 Fcrct. 

FL =- li~ FClCL (vorh~.d-~) 

Fr :;. I~uh~ ( ;t Componerls) 

Forces on spherical bubble 

Ignoring the density of air Pa << Pw, Auton has written an expression 

for the resultant force on a bubble. 

F + 0 v ~ 
\\>,1 <lt 

\....,. -p<lrhGI t -:-} 

<lCitl(.\ 

ew v cilf1 ( d:: - ~t; J 
\....___ Yitrlla.l ~4~ fom.. ---..) 

~w V 9 ( U.b- i.L ) \ \.t~- u, l. 

\ U.br iAbr 

\...r. d~ ~ tJI\ bl4bt,~ --.) 

..... (2.35) 



where F 

-v 

is the resultant force on the bubble 

is bubble volume 

is local water velocity vector 

is bubble velocity vector 

is bubble rise velocity in fluid at rest 

a 
at + u.v 

is virtual mass coefficient (= 0.5) 

is lift coefficient (= 0.53) 

is the vorticity vector (VAU) 

For the simplified case of aub/at = 0 in the virtual mass force, Sene 

(Ref ) has written Equation (2.35) in terms of the acceleration (total 

derivative) of the bubble. 

<.lu.b ~ -9 + 
l).t 
which becomes 

2..~ 2C._lUo-tA.)AW 

~ t 
~o~~<~ iift(.vorh,lt~ 

Sene has usedAU (the velocity difference between shear layer and 

recirculating flow) and x (the streamwise direction) to compare the 

orders of magnitude of the forces above, giving 

(I''+.( Vc.vi'ldtli) I 

c'- u.11~ 6iA. 
X 

Thus if Ubr << ~u. the lift forces can be neglected compared to 

inertia; inertia can be neglected compared to drag and buoyancy if 

<< g, and so forth. 

Thomas, Auton, Sene and Hunt used a form of Equation (2.36) above to 

investigate the behaviour of bubbles rising under buoyancy from a 

point below a vortex core (shown overleaf). The resulting trajectories 

are shown on Figure 2.16 indicating a certain width w, whereby bubbles 

entering within the region are trapped in the vortex core. 

verified experimentally. 

This was 

Dimensional analysis showed that this width could be correlated by 

....• (2.37) 



where r is the ciruclation in the vortex. The trapping width 

increased with ciruclation in the vortex (Ref ). 

Thomas et al went on to simulate bubble injection into a shear layer 

using a technique of discrete vortex modelling. Early simulations 
\ . 

revealed a large proportion (80% in their case) of bubbles were entrapped 

by vortex cores, but a wider range of tests requires to be carried out 

before definite statistics can be presented on the proportions of 

bubbles trapped by vortices trapped in a free shear layer. 

Ultimately this type of analysis by Thomas et al will lead to 

more accurate predictions of bubble behaviour in shear layers, including 

detrainment, (bubble escape) and bubble transport. The analysis 

however requires extensive computer modelling and is not yet at a stage 

of development to become common place in the Civil Engineering context. 

In the meantime we can use more approximate methods, especially with 

regard to closed conduit hydraulic structures . . 

Figure 2.1"b: Paths of bubble with 

Figure 2.16 

a rise velocity near 
two-dimensional vortex. 
Note that bubbles rising 
from the region w are 
trapped in the vortex 
core. 

A significant finding of Sene's work on bubble escape and bubble 

behaviour in a shear layer is that the slip velocity of bubbles is close 

to the bubble rise velocity Ubr· That is, if U is the local water 

velocity in the shear layer, and Ub the local bubble velocity then 

Thus for a bubble in a shear layer at an angle 9 to the 

horizontal as shown in the sketch overleaf. 



Figure 2.17 

If the ~elocity in the shear layer U >)Ubr• and the velocity profile 

in the shear layer is given by U(x,~· then the average bubble velocity 

at any section is 

u.b (x.J = ••••• (2.38) 

where o(x) is the width of the shear layer at any value of x. 

The half angle of spread of the shear layer is approximately tan 14° 

and we may approximate o to,o = 2(X) 

Reichardt showed 5~00 lt(x.,~ ~ :; 

1-t<~tx:R. 1 Ub(xJ --v o.ss u.. § 
:l.X tbkl't0 

Furthermore 

••••• (2.39) 

Therefore the time taken by the bubble to reach a distance X in the 

streamwise direction 

Assume bubbles originate at the plunge point, then during the time 

period T,bubbles will rise a certain distance towards the edge of the 

shear layer. For bubbles to escape the shear layer, then the 

distance in the y direction is o/ 2 and the time I:: S/2( u.br CoS g 

Thus we have an expression for the average distance (streamwise) 

travelled by the bubbles before leaving the shear layer is 

(2.40) 

Actually the constant 0.19 quoted by Sene, would seem from the 

arithmetic to be 0.085, but meanwhile assume X/d. :; K
1

( U..,jv..brL:•~&)'l-



The question now becomes, can Equation (2.40) be used to gain some 

insights into closed conduit behaviour in the context of minimum velocities 

to transport air downstream of a shear layer. Sene (Ref has conducted 

some measurements which reveal that the reattachment length of a spreading 

shear layer in a closed conduit is given approximately by 

Figure 2.18 

Lr j-4 ~ I• (D/.J -1) 1 <~ o.r /0\. • • • • • ( 2. 41 ) 

as indicated on the sketchJand this 

estimate appears almost independent of ., . 
condu~t angle. 

~~ 
...... -------~ ,, 

1 
././ 

/1> ~U.o 
/ 

Thus we can say as a speculation that the first requirement to transport 

entrained air bubbles downstream of the shear layer is that the average 

distance travelled by bubbles given by Equation (2.40) should be at least 

equal to the value of Lr given in Equation (2.41). 

criterion becomes 

or alternatively 

u., h'lln 

lAb,.. 
2. Cos e - K 

Thus our first 

(2.42) 

where K might be or order 0.1 to 0.2 (after Sene), and U1 min is the 

jet velocity required to transport air bubbles downstream. (Not to 

be confused with U(, the jet velocity required to entrain bubbles into 

the shear layer). 

In the event of air bubbles being transported downstream out of 

the shear layer, the criterion for air bubble transport (ignoring 

turbulence effects is simply U0 ~ Ubr Sine, where U0 is the conduit 



full mean velocity. For a 2-dimensional case, this gives 

\A., . 
m1n -· -- (2.43) 
l.l br 

which becomes our second criterion for air bubble transport. Actually 

a third criterion exists, in cases where air pockets form on the roof of 

the contuit downstream of the shear layer. These often blowback 

as slugs, even if bubbles can be transported. This is considered in 

Sections 4 and 5. 

A rider requires to be placed on Equations (2.42) and 2.43) in that, 

air bubbles are not transported until they are entrained in the first place. 

For steep conduits (say > 30°) this criterion is U* = 0.8- 1.0 m/s or 
1 

U,min/Ubr > 4. 

Equation (2.42) 

Thus we might say without great justification that 

becomes 

""' .,.~ - ..... (2.44) 
U.br 

and Equation (2.43) might become 

..... (2.45) --
The second criterion for air bubble transport is much more likely to 

apply to vertical shafts, where cos e = 0, and in any case is generally 

the lesser of the two criteria. 

At this stage it may be of interest to compare theory with some 

limited experimental data. A 60° SQUARE SHAFT (Ervine & Ahmed) give 

minimum velocities to transport air as shown on Figure 2.1g, This 

data is compared with U1 min/Ubr = K1 cose (D/d- 1)Yz + 4, giving K1 = 8. 
0 

This form of relationship in fact appears to be satisfactory forlo< e ·<goo: 

For e =goo, Equation (2.45) may be applicable as evidenced by 

Figure 2.20 for Ervine and Ahmed's data. In this case 

u., ~~~~/llbr -v o," o/ct S"'e +- 4-
For the case of e < 20° shallow conduits, the mode of entrainment 

is by hydraulic jump surface roller. For inception of air entrainment 

a breaking roller must form, say Fr 1 = 1.3, and according to Thomas 

(Ref the minimum jet velocity for air transport to occur in a closed 

consuit downstream of the shear layer is given by 

..... (2.46) 
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where E is the turbulence intensity in the shear layer, usually of order 

0.1 to 0. 2, and for shallow conduit angles cos e -7 1, U 1 min/Ubr " 5 - 10 

or U1min" 1.5to 2.5 m/s. The value of U min remains constant for all D/d 

values. This is at least partially borne out in Ervine and Ahmed's data 

for 10° shaft shown in Figure 2.21. Equation (2.46) is applicable only 

to surface roller entrainment (Type (3)) usually found in hydraulic jumps 

at shallow conduit angle (see Thomas analysis). Thus, by way of summary, 

we can state that the proportion of entrained air which is transported or 

detrained in a closed conduit, will depend primarily on the value of the 

jet velocity compared to the minimum jet velocity to tranpsort air ~ min• 

The value of U1min as can be seen in the foregoing discussion is dependent 

on the angle (or slope) of the conduit, the bubble rise velocity in a 

shear layer, the ratio d/0 , jet thickness to conduit depth, the turbulence 

intensity generated in the shear layer, etc. As a first estimate the 

jet velocities required to transport air can be given by 

U.'"''iV.j,r "" ~~ Ccse-(D!ct-l)'h. -t 4- t~ :2oo < e < ~oo 

U.lm~/t.l 
bf" 

u., . 
"'"' --v.br 

0<1 -v S'- ro) 

~ e< J..oo 
(c.. ,.., ~o r" 'ILt) 

Jet velocities less than ~min will not transport air, and greater than 

U1min will transport air. These estimates of course apply only to 

conditions where the mixing region is well short of the exit of the 

conduit. 

The proportion of air transported and detrained when Ul > U1min 

Once air transport begins in a conduit downstream of the mixing 

region' ul > ul min' a proportion of the air is detrained back to 

atmosphere and the remainder transported. Thomas (Ref ) carried 

out a detrainment analysis for the case of surface roller entrainment 

(as in a hydraulic jump) when the majority of air is entrained into 

the shear layer from a deep layer of foam above the shear layer. As we 

shall see below, the most important parameter is the effective bubble 

rise velocity over the entrainment velocity into the shear layer. 
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Thomas air bubble detrainment analysis 

Thomas (Ref postulated a detrainment analysis for air 

bubbles in a spreading turbulent shear layer. 

leaf and contains several assumptions. 

The model is shown over-

(1) The free surface plunging jet penetrates the receiving waterJ 

generating a surface roller and entraining air bubbles into the shear 

layer. A thick layer of foam is generated on the surface of the 

receiving water and air bubbles are entrained into the shear layer 

from the foam above. 

(2) For single phase flows the spreading half angles would be o~ as 

indicated on the sketch. Due to the presence of air bubbles in the 

shear layer, the free streamline (s) is deflected upwards by an angle ot. 
The lower boundary of the shear layer is also deflected upwards so as 

to make a new half angle o~, where o~ < o~. 

(3) Air bubbles above the streamline S are detrained back to the 

foam layer and air bubbles below o are entrained into the flow. Thus 

net air entrainment into the flow occurs over a spreading angle oB + o:. 
(4) The plunging jet is assumed to have a uniform velocity of V1 with 

this velocity considered to act on an air bubble in the mixing layer as 

shown. The air bubble is also considered buoyant as indicated by the 

2 components of bubble rise velocity. The bubble spreads through 

the shear layer by means of the entrainment velocity Ve• where Velv = 
I 

0 I e = £. the entrainment coefficient. 

estimates Velv 
I 

I I to ,be -:; to - • 
.... u S' 

For single phase flows, Thomas 

(5) Thomas assumed plane penetrating shear layers as can be seen in 

Figure 2.22, and as such may not apply directly to hydraulic jumps 

with strongly curved shear layers. 

Referring to Thomas's model, the net qua~~ty of air entrained into 

the shear layer is given by 

••••. (2.47) 

where qa is the air flow rate per unit width 

cm is the air void fraction (or concentration) in the shear 

layer 

0 I oil L and oB I 
oB L as indicated on the sketch. 

Expression (~.~an be made meaningful for realistic estimates of C 
rr. 

*' 
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An estimate for Cm the air bubble concentration in the shear layer 

can be obtained from a continuity expression for the air bubbles from 

the foam layer being entrained into the mixing layer along length L 

being equal to the transport of air across the entire shear layer. 

Namely, 

entrainment of air bubbles from foam 

Now ~ 
L 

layer 

entrainment and detrainment 

out of shear layer 

as already assumed 

Thomas postulated that b~ ::. £~ 
VI 

Hence we obtain an expression for Cm in the form, 

cf- ( t - v~,.w..e ) 
v~ 

(2.- v~~ )(' _ Vo,.s1.0a) 
Ve.. v, 

(2.48) 

••••• (2.49) 

••... (2.50) 

••••• (2. 51) 

The limit of equation (5) where buoyancy effects are negligible gives 

C.'" ~ 1i '-f , or the air void fraction in the mixing layer is half layer 

is half that of the foam layer. If the foam layer concentration is 

typically 0.5, then C ~ 0.25. This will be discussed later in the m 
context of plunging free jet entrainment where values of Cm over 0.4 

have been measured. 

An expression for (o 1 + oB) in Equation can be obtained by 

continuity of the water flows entrained into the shear layer from below 

(see sketch) and that moving out of the shear layer below the 

streamline S . 

• •••. (2. 52) 

Using the same argument as before, we obtain 

~.t~a = ll- V~w~:s) SL/ (1-C.ft\) ..... (2.53) 

Equatiom(l.SI)andl1.·:i3_.)can be substituted into Equation(2 . ..it=l)to obtain 

an expression for the net air flow rate. This can be divided by the 

water discharge (U1 d) to derive an expression for the ratio of air to 

water. The resulting air/water ratio splits into a non-buoyant scale 

independent section and a buoyant scale dependent section, the latter 

being given by, 



...•. (2. 54) 

For the case of Cf = 0.5 and V~5~Q <<<1, equation (2.~educes to 

( l- 1/r.-CQ& )2.. j (t - ~~ U,s9) ..... (2. 55) 
v~ 3 i/Q... 

which effectively is a detrainment scale factor. 

It is further argued by Thomas (see Notes of Inception speeds for 

Air Entrainment') that as Ve, = E'{,, where E is the entrainment coefficient 

or the half angle of spreading shear layers, that at the balance point 

for inception of air bubbles into the shear layer, V~ ::. Vbr Cc-se :: E. u.~ 

(U~ is the critical inception speed). Then Equation 2,.55 becomes 

. •••• (2. 56) 

The final relationship for air/water ratio of net entrainment proposed 

by Thomas is, 

~ " ~( Fr,-') ~- LlY .. ,t /('- ;qj ••••• (2. 57) 

which is applicable mainly to low Froude Number situations (F 1 < 10), 

shallow conduit angles e, situations with a thick layer of foam at the 

plunge point
1
and cases where the transport capacity of the flow down­

stream of the shear layer in a closed conduit is adequate to carry the 

net rate of air entrainment. Having stated that Thomas's analysis may 

be applicable to hydraulic jumps at shallow conduit angles, .lt should 

be noted that Equation (2.51) above gave an excellent representation of 

the entrainment in model siphons where e = 45° and a thick layer of 

foam did not exist (Casteleyn et al) and the shear layers were of the 

penetrating type. 

Also it ignores entrainment at the toe of the jump. 

Thomas does not state his reasoning for the ratio of air to water 

scaling on Fr - 1, but by implication and using the example of a 

hydraulic jump, if the rate of entrainment is dependent on the length 

of the jump, then for low Froude Numbers L = K (y 2 y 1 ) = Ky 1 (Yo/y
1

- 1). 

The value of~ ly
1

, scales approximately on the Froude Number(y2 /y
1 

e< Fr)J 

hence L « Y• (Fr. - 1) where Y• = d. Thus the air flow rate qa « UrL, 

where Uris the velocity of the recirculating roller, and qa « (Ur/U 1 )U1 L, 

where Urlu. according to Sene is 0.035. Hence qa « 0.035U 1 d (.Fr - 1) 

or 8 « .035 (Fr- 1). The value of K given by Thomas in Equation (2.57) 

is approximately 1/40 ~ lj30. 



If is interest to note that the relationship proposed by Thomas 

is in a similar form to hydraulic jump entrainment by Kalinske and 

Robertson (Ref a = 0.0066 (Fr1 - 1) 1 ·~. Kalinske and Robertson 

were probably correct in assuming that a scaled on Fr-Ias shown above, 

but failed to recognise that bubble dynamics in the shear layer would 
~s 

probably not be scaled in Froude Models~Ubr cos e remains approximately 

constant in model and prototype, whereas water velocity terms U1 or Ue 

scale with LrYz· The other point highlighted by Goldring (Ref ) is 

that Thomas assumed plane penetrating shear layers, whereas hydraulic 

jumps have curved attaching shear layers. A lot of research still 

requires to be carried out into hydraulic jump entrainment and 

detrainment, this being one area which has not received extensive 

analytical treatment. It is discussed in Section 3.3 in more detail. 



SECTION 3 

BUBBLY FLOWS - EXPERIMENTAL EVIDENCE AND EMPIRICAL 
CORRELATIONS 

3.1 Jets plunging through the atmosphere. 
Entrainment and dispersion. 

3.2 Wall jets in hydraulic structures including 
siphons and dropshafts. Entrainment, 
detrainment and bubble transport. 

3.3 Hydraulic Jumps. 
transport. 

Entrainment and bubble 



3.1 Air entrainment by circular jets plunging through the atmosphere 

Air entrainment by circular jets issuing from a cylindrical nozzle 

at low intensity is a great deal more complex phenomenon then entrainment 

by wall jets or hydraulic jumps. 

follows. 

The reasons for this are outlined as 

(1) If the jet is initiated by a nozzle, then the Reynolds Number of the 

nozzle flow and the development of turbulent boundary layers in the nozzle 

(~ length) have a strong influence on initial surface disturbances of the 

issuing jet. 

(a) A short slightly converging 

smooth nozzle, taking flow holT\ 

a large undisturbed source of 

water will produce a very 

smooth jet with a laminar 

core even at relatively 

high Reynolds Numbers. This 

has been shown to have a 

strong influence not only 

on the rate of air entrainment 

at the plunge point but 

also the inception velocity 

to cause air entrainment 

(see Section ) , and the 

disintegration length of 

the plunging jet. Evidence 

for this is given on Figure 

3.2. Figure 3.1 
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(b) A long nozzle or inlet pipe 

allows the development of 

boundary layers and can 

produce fully developed 

turbulent flow as the jet 

issues into the atmosphere. 

The lateral velocity fluctutating 

components U* (say ~ V* 
in the axial direction) 

induce surface disturbances 

which become amplified during 

the plunge. 

(2) The surrounding air becomes dragged 

along by the plunging jet, setting 

up an air boundary layer. The relative 

movement of air and water generates 

a shear stress at the interference 

(as shown) which may further disturb 

jet surface undulations. (This 

may be a similar· mechanism to the 

generation of sea waves by wind). 

Further acceleration of the jet and 

amplification of jet surface disturb­

ances may eventually cause the jet 

to disintegrate into a train of drop-

lets. This combination of hydro-

dynamic and aerodynamic forces is 

much more in evidence in plunging 

jets than wall jets and hydraulic 

jumps. This is also evidence that 

the air resistance effect may only 

be significant for \1/b > 10 or ellfci./c> 
.~ 

> 10, which corresponds generally 

to a high velocity range. 

Fier 3.3 



(3) The problem is further complicated 

at the plunge point. Consider the 

sketch opposite where air is entrained 

into the receiving water by a jet 

with surface disturbance £, and 

surrounding boundary layer. Air 

enters the pool, assume at the same 

velocity as jet impact U1 , then air 

may enter either from the jet surface 

undulations and/or the surrounding 

boundary layer. The exact proportion 

of each is still an open question 

and in fact makes an analytical solution 

extremely difficult. Even empirical 

correlations show wide divergence. 

On entering the pool, the high shearing 

stresses produce air bubbles of diameters 

generally 1 - 10 mm which are then 

transported downwards in the shear 

layer. The transport capacity of 

the shear layer may in fact be JUSi a.s 

important in determining the maximum 

rate of air entrainment aS the 

jet characteristics. It could be 

argued for instance that the maximum 

air concentration in the shear layer 

may be approximately 40 - 50%, then 

the maximum quantity of air transported 

might be, 11 " I"V 
Ol ••{ mo. '!C) 0.5' ill f"i~) 
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(4) The discussion has centred so far 

on low velocity plunging 
cl14C. 

jets acceleratingAto gravity. 

A different category of jet 

results for high velocity 

of exit from the nozzle. 

A classical study by Van de Sande 

and Smith (Ref shows three 

distinct phases of entrainment 

with increasing jet velocity. 

At low velocity q . « U 2 ~3 and 
a~r 1 

intermittent entrainment occurs, 

a transition stage qair « u •. 
and finally for high velocity jets 

10" 

IC D• 3mm 
• Do3.8 .. 
• 0•41 .. 
"D•~8" 
• OetO ., 

Figure 3.5 

qa « IA1 lo~-1Z.. This phenomenon has important implications for 

for· hydraulic structures especially in comparing model/ prototype 

entrainment. Van de Sande and Smith postulated that air 

resistance was of importance only in the high velocity region 

(say > 10 m/s above) but given generally by Wb > 10 where ~b = 
~o. U~ d.(fi' Beyond this point air entry is continuous and 

surface disturbances,important in low velocity jets, become less 

important. 

Empirical rleationships for air entrainment by circular jets 

plunging through the atmosphere 
ll.ir 

Early work on~entrainment by plunging circular jets by 

Oyama et al (Ref ) contained a complex relationship using a 

range of non-dimensional numbers each related to conditions at 

the nozzle. 

-~lrn/sl 
I 

- Qc.. - 01c;IRt \l·l~f§.)l.·13lv_l)-o.lf.f.1 {~ \o.2SI 
~ - ~IY - I \! r,J \~e. n ~l. '"'"' • •. • • (3.1) 

This work did not inCorporate the initial relative turbulence 

intensity of the jet which has been found by the author to have 

considerable influence on subsequent jet surface roughness and 

eventual jet disintegration. However all the jets in this 

study were of small scale with the turbulence intensity reflected 

in the Reynolds Number term. The terms Rt1 \Vb and Lj cl both reflect 

the surface roughness of the jet and its eventual break-up, with 

Vr.'~/ S L , as Froude Number, reflecting the effect of gravity of the 

jet behaviour. It is of interest to note here that Froude sc~lcn~ 
for the air/water ratio is not possible as the non-scaled port~on 

reduces to ~(rn~l-oVp, : P.,r o( L :,'Jvs-
/ ~~~c;cid.) \ 



In other words, the air/water ratio increases almost linearly with 

Froude model scale. This mc.j,not be strictly accurate, as already 

seen under inception velocities, that a velocity (or model scale) 

exists below which there is zero entrainment of air. 

Bin (Ref has correlated experimental data for cirC~lar 

jet air entrainment from Van de Sande (Ref Cumming (Ref 

Ervine et al (Ref ), Henderson et al (Ref ) , Kumagai and 
) ' 

Imai (Ref ) and Van de Donk (Ref ) . His correlation, which 

has been corrected for jet angles other than vertical, is of the 

form, l1 / ,, 1::.".,. o.s& iL.JJ .. ) o,tr 
\XV.. Q~ rv vi OS' n \. f lt,, 

:::::._ u. /·~ ..... (3.2) 
wkeflt rr :. 1 JScln ('h fQc.t, 81" ll5ed fi-01D) 

~jc)~ 11- ~ JJ..8 Stln 
The data correlations are shown on Figure 3.6. dn is the nozzle 

diameter. Of interest here is the observation that the Reynolds and 

Weber number of flow are absent, ignoring viscous or surface tension 

influence. Most of the jets in the data correlations are of relatively 

small scale, and thus viscous and surface tension forces must influence 

not only the nature of the surface of the plunging jet but also the 

inception condition for entrainment, and viscous influence in the 

shear layer eddies after the point of impingement. Presumably it can 

be at~~~d that the parameter L/dn reflects growing jet surface rough-

ness and break up. Initial turbulence intensity is also omitted, but 

Bin indicates the sensitivity of the data correlations to the length 

of the jet nozzle which in turn reflects the development of turbulent 

boundary layers within the jet at the point of entering the atmosphere. 

Relationship (3.2) implies Froude scaling for air bubble entrainment. 

From the data correlations in Figure 3.6 it can be seen that ratios of 

air to water as high as 10 have been recorded, which is around tWo 
orders of magnitude larger than typical hydraulic jump entrainment. 

Several authors have employed more physical approaches to the 

quantity of air entrained by circular jets. The most common assumes 

the rate of air entrainment to vary with the flux of jet energy. 

employed this approach for low velocity 
Jt:t 

jets Using the nozzle diameter and~velocity as a reference point, he 

incorporated the jet length L, to derive an empirical expression 

( w~tt X ~ a.: v..;3 L~:L Su,\1'$'o<) 
tdo ::.d,~) 

..... (3.3) 

Again this was correlated by Bin (Ref ) for other data sets with 

the result shown on Figure 3.7. « is the jet angle to the horizontal. 
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From equation (3.3) is can be seen that the air/water ratio for 

entrainment scales on the length scale (or model scale) Lr~ for Froude 

models. McKeogh (Ref ) produced an empirical correlation for the 
I 

rate of air entrainment for high turbulence intensity low velocity 

jets. The total rate of air entrainment given by, 

• • • • • (3 .4) 

where H is the plunge length (= L) 

Ld is the jet disintegration plunge length 

the rate of air entrainment for zero plunge length. 

McKeogh found the value of Ld experimentally to be 4.6 Qw 0
'

2
• 

Equation \3.~)implies a strong dependence of the quantity of air 

entrained to the surface roughness of the jet and the jet 

velocity. Ignoring the entrained air quantity at zero length of 

plunge it can be seen from~3;~)that the upper bound value of air/ 

water ratio at the point of jet disintegration is a ~ 0.3U 1 where 

U, is the jet impact velocity. This value must be suspect for 

higher velocity flows (prototypes) as a rarely exceeds 3 for highly 

turbulent jets. 

The most interesting facet of McKeogh's relationship(3.~) is 

that for Hhd: I J Q <<.. Q..., ~~ IJ .: 0. 3 U. 1 Q a: U1 
2 d1 

2 
, or the quantity 

(~0 .... ) ~ w 
of air entrained is a function of the momentum of the jet. This is 

in contrast to the relationship by Van de Sande and Smith (Ref 

who found for jet plunge lengths greater than 90% of the jet disintegration 

length that Qa = K + 0. 0825 U1 
3 d2 n which is proportional to the flux 

of energy of the jet. 

A further physical interpretation of air entrained by low velocity 

plunging circular jets was attempted by Ervine and McKeogh (Ref· ). 

This was based on a simplified model as shown on the sketch below. 

The falling jet is supposed to increase in effective diameter by virtue 

of the fact of surface undulations (idealised here as a sinuous wave 

form of amplitude£). The air held within the surface undulations 

is assumed to have the same speed as the plunging jet and to contribute 

to the total rate of air entrainment. A tentative expression is also 

derived for the total rate of air entrainment possible from the surrounding 

~undary layer. 
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The discharge of entrained air therefore is given by, 
Q 4. :: U.1 ~ ( ;r ( e_1.. J- 2. €..r ~ ,.1.) - 1f r J. ) 

(3.5) 

or the ratio of air to water is a function of the surface roughness 

at any point during the plunge. The value of E/r, local surface 

roughness/local jet radi~S could not be predicted analytically and 

hence resort was made to high speed photographic measurements. 

Typical measurements of E/r are shown below, and correlated with the 

ratio L;Ld, plunge length/disintegration plunge length, and the jet 

velocity at nozzle exit, Vn· 

F/ G-. 3.~ 
b. Vn- 4 m/S 

0 Vn- 3 m/S 

X Vn- 2 m/1 

Very rough turbulent jets 
Turuulence level >5'11> 

00~~0~,---------------------------~o~.,~---------------------------~ 
Herghl of fall/Break-up length, 11/L 

Non-dimensional plot of incnsase in jet surface roughness falling through 
the atmosphere for various values of nozzle velocity Vn 



The value of this work was not in a quantitative or empirical 

estimate of the ratio of air/water by plunging circular jets, but as 

evidenced in the correlation below, an indication that the value of 

6 is highly dependent on the jet surface roughness at the point of 

impact (or the local jet diameter accounting for the surface 

undulations). It can also be seen in the Figure below that a 

substantial contribution to air entrainment comes from the surrounding 

boundary layer, sometimes as high as 50% of the total air entrained. 

The maximum air/water ratio is around 3, which is an order of magnitude 

higher than tha~ of typical hydraulic jumps. 

3 
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The analysis used by Ervine and McKeogh above was roughly based on 

a technique developed by Van de Sande and Smith (Ref ) for predicting 

air entrainment by high velocity circular jets. They proposed 

& t\.t_torq,l) ~ ~ ct.(_tAndl4lq,hok.1) + Q Cl. Q>o~ndQ'j 114~er) • • • • • (3. 6) 

To determine the amount of air entrained in jet undualtions, Van de Sande 

et al used photographic technique to show ~* = o, 0~5" (we R.e 1..) 'flo 

where D* is jet diameter at any point, D is initial jet diameter . 

• • • • • (3. 7) 



For a calculation of air carried by the laminar boundary, Van de Sande 

assumed an air velocity distribution around the jet (Ref ) such that 

&(\. b.ll .. Joe V . 1rrr J.r 
0-lr 

(3.8) 
R..ll' 

Var de Sande and Smith achieved good correlation between their theory 

and experimental data at least in the case of the air boundary layer 

still laminar. 

An important finding from their high velocity data, revealed 

that li :: fla../ o<. IA!·S"-fl. , compared with U 1 2 "~ 3 for low velocity 
(. U.. ~c(. I 

data. 

Empirical correlations for rectangular jets plunging through the 
atmosphere 

A rectangular plunging jet falling freely through the atmosphere 

will not retain its rectangular shape. Surface tension 

. will encourage the jet to eventually assume a 

circular shape. A range of shapes may evolve during the transition 

from a rectangular to circular. There is also some evidence for 

diversing growth development (Ref of the rectangular jet. 

Ervine (Ref ) investigated the rate of air entrainment by 

a rectangular jet issuing from a rectangular nozzle. Droplengths were 

limited so that the jet essentially retained its original shape. 

The major parameters controlling air entrainment rates were 

droplength, velocity and jet thickness. ·ver the range of parameters 

tested it was found 1: 
i". o( (Uh- «./) d~l. L'll... 

DY ~ i tfl..jf"' oe: ('- l.lt{")(L/c.tn)'/2. 
A final correlation was obtained in the form, 

~ d :; O,lb ~p) lLfd"y·lf*'- 0- 11.~1 J ..... (3.9) 

where Uf is inception velocity to entrain air(= 1.1 m/s). 

For wide rectangular jets b;p-TYz and the total entrainment from both 

jet surfaces 

~ ~" ~ ol13 (L/""t·lt% (1- u~,) ••... (3.10) 

This correlation is suspect in the sense that none of the plunging 

jets approached disintegration length, and over the range tested qa 

varied with LYz. This is not the case for greater values of L. Also 



the rate of entrainment would also become independent of d at higher 

values of d, hence the correlation on d~ is applicable only over 

smaller values of d. The correlation did serve to highlight the 

concept of inception velocities for air entrainment. 

Rogala (Ref ) investigated the rate of entrainment by a wide 

rectangular plunging nappe as shown on the sketch below • ... ~~ 

Figure 3.11 

Three scale models were tested, giving a correlation for air entrain-

ment from the underside of the nappe in the form, 

~ ::. l<. f'r 1.s1 Re..''' .•••• (3.11) 

where Fr is given by V,~~~ at 

Re 1.0 ~~~" b~ V1 he j1J j 

the impact point. 

K.-=- 0113LtXto-Cj 

This relationship scales on Lr 1
•

6 s which is likely to give an over­

estimate of prototype values of a. A possible explanation is that 

for higher Reynolds Numbers <>s x 10~ or lOs) and greater values of d, 

the entrainment rate should become independent of Re (see Kobus 

(Ref ) ) . Turbulent dampening in the jet is no longer significant 

and jet surface roughness will be fully developed compared with small 

models. This same argument applies to the initial turbulence l-evel at 

the crest overflow and also the shearing vortices at the point of impact. 

Thus Re 1
"

1 may be applicable in the range of models tested, but 

when Re > lOs, 8 is likely to depend only on Fr 1 , hence a new relation-
~ l-SI r:; 

ship might be formed ~ ~j(l. rr (for Re > lOs ),jKobus and Westrich 

(Ref investigated the reoxygenation of cooling water by plunging 

rectangular jets entraining air into a receiving pool below. Maximisation 

of air entrainment into the pool can be achieved by cooling water issuing 

from a a number of slots in parallel rather than say just a single slot. 

This has the effect of greatly increasing the surface area in contact with 

the air at the point of jet impact. The Figure below shows the air/ 

water ratio as a function of the plunge length of the jets, for 4 jets and 

6 jets in parallel. 

59 
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The advantage of this system is obvious. If the rate of entrainment by 

a jet is given by Qa = qaB ~ U~B (as an order of magnitude, then the 

same velocity u1 will exist at the impact point no matter how many jets are 

used (approx) and the total air entrained will increase by the term B, the 

total jet width for all n jets, 4, 6, etc. 

It is of interest to note that a varies approx with H~ above, Ervine's 

correlation for a wide rectangular jet gives a ~ 0.13 (H/dn) o.•s. From 

the diagram above at the maximum point H ~ 3.25 m from the slot exit and 

dn = 0.16 m (Ref ) . This gives a ~ 0.49 for one single slot. 

Assuming a pro-rata increase for 4 and 6 jets we have a (4 jets) = 1.99 

and a(6 jets)= 3 which is in close agreement with Kobus and Westrich. 

Other research into plunging jet entrainment has centred on oxygen uptake 

studies at overflow weirs. Avery and Novak (Ref 

ship for the oxygen deficit ratio in the form 

where 

r -1 fr.l.iS 
I 

K = 0.627 x 1o-• for tap water 

FY, -: v, / fii. and Re ::. 'twjp 

) produced a relation-

..... (3.12) 

deficit upstream of weir 
r is the oxygen deficit ratio given as deficit downstream of weir 

and is clearly always ~ 1. 

Although influenced by water quality, salt content, depth. of plunge pool, 

temperature, etc., the value of r- 1 is heavily dependent on air/water 

ratio (S) from the plunging jet, and Novak's relationship can be compared 

~0 



in its form to that of Rogola (Equation 3. II ) • The same comment can be 

made that for Re > 10 5 approx., Equation 3.12 above may overestimate 

B and hence r 15 -1. 

Kobus (Ref makes an interesting comment that previous studies 

on the value of r - 1 may underestimate prototype r - 1 values if 

correlated with the droplength alone, i.e. r- 1 = f(K). That is, if ti 

is held constant for both model and prototype, then model air entrainment 

B will be much higher than prototype. This can be seen clearly in 

Ervine's relationship B « (H/d) 0 "~ 5,. when Hmodel = Hprototype• and 

dmodel « dprototype thQn~ m > B prototype· 

Author's comments on plunging jet entrainment 

It is apparent that a wide I'Wl·ge of empirical correlations are 

available for air entrainment due to jets plunging through the atmosphere. 

A unified correlation procedure may be more difficult for plunging jets 

than wall jets or hydraulic jumps etc. There are a range of reasons why 

models may underestimate prototype entrainment. 

follows: 

These are summarised as 

(1) A minimum velocity is required to initially entrain air. This is 

of the order of 1 m/s but is dependent on turbulence intensity of the 

flow. Models operating at this range of velocity will entrain 

relatively small amounts of air. 

(2) Viscous effects are important in air entrainment for Re< 105 

<kobus). The turbulent eddies are suppressed by viscosity for lower 

Reynolds Numbers, which in turn influences the intensity of jet surface 

roughness and the shearing vortices at impingement point. 

factors contribute to air entrainment. 

Both these 

(3) The absolute value of jet thickness at impact may be significant 

in the entrainment process (i.e. not just a function of Re). The 

scale of eddies causing jet surface roughness is likely to be proportional 

to the jet thickness (d). If this is or order of magnitude size the 

same entrained air bubbles then entrainment may be suppressed. Some of 

the circular jet tests have jet diameter < 5 mm, and jet thirkness may 

supp.: ess en+rainm.,..nt for d < 10tt>20 mm. 

(4) Plunging jets undergo a gradual precess of increasing surface 

roughness and disintegration. According to limited research carried 

out to date, this process is not Froude scaled but much more dependent 

on the initial Reynolds Number of the flow. This phenomenon 



requires to be taken into account much more in plunging jets than 

hydraulic jumps for instance. 

(5) There is some evidence that high velocity jets (say U1 > 6 m/s) 

behave differently from low velocity jets. This is characterised by 

correlations for entrainment scaled on U 1
2 ~ 3 for lower· velocity jets 

and U 1 
1 •5 for higher velocity jets. C:?.re mt!st he exercised for model 

extra~olations based on qa « U1
3 which may in fact not apply at higher 

velocities. 

Before we discuss some of these points in more detail, it may be 

useful to investigate scaling factors (model/prototype) for existing 

correlations. 

Scaling for air/water ratios for air entrainment by plunging jets 

Froude models of prototype air entrainment situations invariably 

underestimate air/water ratios. Models at low Reynolds Numbers cause 

dampening in turbulent fluctuations in the falling jet, reducing entrain-

ment. Apparently plunging jets do not disintegrate according to 

Froude scaling. Inception velocities are required to initiate entrain-

ment, and also do not conform the Froude scaling. This author has 

outlined approximate scalings for air/water ratio (prototype/model) 

based on some empirical relationships postulated to date for jets 

plunging through the atmosphere. 

Scaling ~p/~m = ~r 

Van de Sande ( ) ) Circular jets . LO 
Reported by Bin ( ) ) ~"" fi.- o.s& (L/ d*') O·'t 

r 

(high velocity) 

VanJ:ie Sande ( ) Circular jets L o,r; 
62~ ()(. v 91~ d !/z. L3/'i 

r 

(low velocity 

McKeogh ( ) Circular jets ~ cx:.(_Y ~)o.g 0·1 

(smooth turbulent) ( 4 o<.. &o~3S') 
Lr 

McKeogh ( ) Circular jets ~ D(llf t....y0•1 i.l1 Lr 
Q,2.,c; 

(rough turbulent) { L..-t 6/. · Q_o:z.) 

Ervine ( ) Narrow rectangular Scales on absolute 
jet ~ ()(. lH/b) 'lz.lf- .!.-) velocity rather than 

"'• model scale. High 
velocities -= LO,. 

Ro~'"~ ( ) Wti.(Q_ ttt,~~IIC#' J"et ~II( Ff.I·S' ~I· I L~·bS 

F~gure 3.13 



Previous correlations for air entrainment by plunging jets have 

generally ignored (a) the effect of increasing jet thickness with 

droplength and velocity held constant (b) the effect of increasing drop-. 

length with initial jet thickness and velocity held constant and (c) 

the effect of increasing jet velocity over a wide range when jet thick-

ness and jet droplength are held constant. 

follows:-

{a.) Vo.-,~ 1t\ mft 
of Qlr trl~t\ ~ J&' 
Loait ~u~ lt~ 

1 

Walt udoufq (u.0 
QI\A, dnip~"{\t\ (L.J Co"~ 

Figure 3.14 

These can be explained as 

t---';) '"4e~e.,l-
of Jet' Ht!Cknes~ · 

For higher jet thickness qa is independent of d for wide rectangular 

jets and~ is independent of d for circular jets, i.e. Turbulent 

suppression no longer important for higher d values. The independence 

of d appears to happen ford> 10-20 mm and Reynolds Numbers >5 x 10 4
, 

depending on initial turbulence levels in the jet and air bubble sizes. 

Most experimenters have used values of d < 20 mm, especially in circular 

jet research, and hence not generally in independent region. 

(b) Jet droplength 

A typical sketch of variation of entrainment with droplength is 

below. 



Most correlations are taken from the region AB when qa « L~ approx. 

This is not the case for greater droplengths and hence cannot be 

extrapolated past the jet disintegration length Ld. 

(c) The effect of increasing velocity with L and d held constant. 

flo.. (t- qaul t eo,.swJ 
lT'tl 
~ 

fo.. 

u., 

Figure 3.16 

For low velocity jets McKeo3h (Ref ) found the entrainment rate 
2.~1,$' 

to vary with U 1
2 

, Van de Sande, u, ·, Renner (Ref U 1 
3 

, Ervine et al 

(Ref ) (U 1 - 0.8) 3 
, Sene (Ref ) U1 3

' while for high velocity 

jets Van de Sande (Ref ) U11 ... 2 , Sene (Ref ) U 1 1' 5
, illustrating 

the divergence in the power of the impact velocity, u1n' 

Thus for plunging circular jets, L and d constant, 

where ~ n = 2 + 3 at low velocity 

ln = 1 + 2 at high velocity 

and rectangular jets 

where n = 3 for low velocity jets 

Incorporating the parameter d, we obtain for circular jets, 

bla. 
F, (c\) - :::; 

" cl W~ct- ~I (ci) KiiA.I 

1-a.. f (d..) 
n.•jh~ bt 

- =- ht<t 
i<.z_IA ~ 

l.. 

We can assume that f 1(d) constant when d > 20mm or Re > 5 x 10~ or 10 5
• 



Finally to (tiCo~b:-, the effect of jet break-up with increasing plunge 

length, we obtain, 

Circular jets 

& C\. :: ••.•• (3.13) 

Rectangular jets, 

"-z. ()..t r.z.(ct) lL/4) o.1~ o.s (3.14) 

where L is droplength and Ld disintegration droplength. 

Translating these into air/water ratio terms, 

l ( I Y'(l4!Q.. ) ~ :; J<., ()..r' fltcU (!-ft..~) o.·1 ~ ". '4 (3.15) 
7 

..... 

c Jf(~Q.,_Icw) ~ ~ 
IG u"-t 

Z. I ~~ 
(;l 

e-;~yJ.1?0·?. ..... (3.16) 

For the case of a plunging rectangular jet n = 3, and for the case of 

d > 20 mm should give from (3.16) ~ K Fr: (L/1d) 0
'

7 + o•e, which is 

similar to wall jets, except for the term (L/1d) describing jet break-up. 

A lot more research is required on plunging jets especially at larger 

scales and velocities. 

Bubble dispersion for jets plunging into unconfined pools 

There appears to be a minimal amount of research carried out on 

the nature of the two phase conical diffusion region in the plunge 

pool. A good deal of work has been carried out on submerged jets but 

very little on plunging jets entraining large quantities of air 

bubbles. 

If we consider first a jet entraining no air bubbles (single 

phase) then a system of spreading shear layers will develop as shown 

overleaf: 



' 

( 

t 

Figure 3.17 

The sharp discontinuity between jet velocity 

and ambient fluid immediately sets up high 

turbulence intensity shearing eddies which 

transfer energy and momentum to the ambient 

fluid. The jet is rapidly decelerated and 

counterbalancing this, ambient fluid is 

accelerated and entrained into the spreading 

core. 

Jet analysis is carried out on the 

assumption of constant momentum flux at any 

cross section in the core, the mixing eddy 

length is proportional to b, and b/x the 

angle of spread is approximately constant. 

The velocity profile at any section 

,..,~shows similarity in the form 

e~ V/ _ (- r'l/z.~z.) 
~'II"' _ e ..... (3.17) 

where a is the standard deviation and 

equal to the value of r where v = 0.605Vm. 

That is, at any value of r;a, V; = constant. 

If we assume momentum flux is constant for all cross sections then 

~ Vo'l... ~ (.c:- ~ e Lb vz. ~rrr dr ..... (3.18) 

Thus with V a: Vm at any value of r /a s b v). lrrf' Jr a< v~l.. sb .;Ztfr dr 
t' 

..... (3.19) 

We obtain V0 d0 a: Vmb 

Now it spreading angle approximately constant, b;x const, or b a: x. 

Thus V0 d0 a: Vm~ = constant. 

This indicates that the c~ntre line velocity Vm decays linearly with x. 

(Vm a: 1/x) the distance from the plunge point. 

Albertson (Ref showed from experimental data that 

Vtttfvo -v b (drx-) (3.20) 

The question now presents as to how the turbulent core behaves with the 

introduction of large quantities of air bubbles. If behaviour was 

identical to that in Equation (3.20) then we could calculate approximate 

penetration depths for air bubbles. 

6b 



·v - (3.21) 

Assuming air bubbles descend with the flow until a point when Vm 

is equal to the bubble rise velocity (= 0.25 m/s), then x the 

penetration depth = dp = 24 V0 d0 • This of course is not possible as 

the air bubble concentration affects the angle of spreading cone and 

turbulence intensity in the shear layer. 

With substantial quantities of air now entering the spreading cone 

the characteristics of the cone will change considerably. We can 

postulate initially that the spreading shear layer will have a greater 

angle of spread due to the presence of air bubbles, and hence the centre 

line velocity will decay more rapidly than the case with no air bubbles 

present. Also the penetration depth of air bubbles will be considerably 

reduced due to the more rapid decay of jet velocity. Evidence for this 

is given overleaf in two photographs (McKeogh) of plunging jets with 

identical velocity and diameter at the point of impact but one jet with 

a low turbulence intensity and the other high. (Figures 3.18 and 3.19.) 

It can be seen that the low intensity turbulent jet entrains small 

quantities of air and has a deep penetration depth, whereas the higher 

turbulence jet entrains large amounts of air, has a smaller penetration 

depth and hence a greater spreading angle of shear layer. Further 

verification of this phenomenon is given on Figure 3.20 (from McKeo3h's 

Ph.D. Thesis, Ref ) comparing a jet with no air entrainment to the 

case of the jet with flow turbulence intensity and small air concentrations 

(<2%). For no air entrainment vm;v0 = '(do/x) as in the case of 

Albertson, whereas with a small amount of air entrainment Vm/V0 = 3 

(dofxl· Thus for this particular case, the centre line velocity decay 

is twice as great with modest amounts of air entrainment. This is 

also reflected in the angle of spreading shear layero( , which is 

approximately 1;6 for a jet with no entrainment, but ~ for the case of 

air entrainment with air concentration = 2%. 

One would expect therefore, that if air bubbles penetrate to 

Vm : 0.25 m/s then for McKeogh's cases of small air concentration that 

x = dp : 12 V0 do which is half the value of that postulated from 

Albertsons non air entraining case. 

McKeogh did not measure the penetration depth for smooth turbulent 

jets, but instead measured this value for rough turbulent jets of the 

type commonly found in civil Engineering structures. He correlated 

experimental results to give 

..... (3.22) 
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Ft<r ~·18 
2. ENTRAINMENT PATTERN PRODUCED BY A JET OF IMPACT TURBULENCE 

INTENSITY LESS THAN 1.3%. Note the depth of penetration 

and low bubble intensity. 
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ENTRAINMENT PATTERN PRODUCED BY A JET OF IMPACT TURBULENCE 

INTENSITY OF APPROXIMATELY 5%. Note the depth of penetration 

reduced from that of Fig. 7.32. and the high bubble intensity. 
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where Vn and dn are the velocity and diameter at the nozzle. (For 

long jet plunge lengths it is difficult to measure V and d at the point 

of impact). 

Vigander (Ref ) also measured the penetration depth for rough 

turbulent high velocity jets varying in diameter from 6 mm to 38 mm. 

The result is shown below, giving 

f, 5' • • • • • ( 3. 23) 

Assuming Vbr the bubble rise speed is = 0.25 m/s, we obtain dp = 6 Vndn· 

Both results are plotted on Figure 3.22 for comparison. It is noted 

that penetration depths for rough turbulent, high air entrainment jets 

(= 6Vndn) are approximately 50% of that postulated for smooth turbulent, 

low air entrainment jets, and approximately 25% of that postulated for 

jets with zero air entrainment. 
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Figure 3.21 

Bubble penetration depth 
correlation (Vigander) 

Section 3.2 

The obvious conclusion from this 

work is that for the case of 

unconfined hydraulic structures, 

rough turbulent jets may entrain 

more air, but the air and the 

spreading jet penetrate to smaller 

depths and hence exhibit much 

greater energy loss efficiency. 

Figure 3.23 shows a typical plot 

of variation of penetration depth 

with increasing turbulence intensity. 

Experimental and empirical evidence for wQll jet air entrainment, 
detrainment and air tran~port in siphons and dropshafts 

In Section 3.1 the rate of air entrainment by jets plunging through 

the atmosphere was discussed, with the conclusion that the total rate of 

entrainment qat• was influenced not only by jet velocity and turbulence 

level,·but also the degree of 'break-up' in the jet. The same break-up 

phenomenon is not as evident in the wall jet entrainment and hence 

simpler correlations may be possible. Also in Section 3.1, the emphasis 

was placed on the total rate of air entrainment into a large pool area at 

the point of impingement, whereas the thrust of Section 3.2 will be the 

11 



-

~ 
----~-~ --

ii: 

7'2.. 



/m) 

0 7 

0·6 

0 s 

0·3 

0., 

, 0 2 0 

7a 

JET OIA = 9 Omm 

H = 0 3m Vn = 3 13m I 

3 0 I. 0 

E-

VARIATION OF PENETRATlOt-c DEPTh. op. wiTh JET TURBULENCE INTENSITY. E. (m'- K~h) 



net rate of air transport, qan, along the conduit downstream of the 

point of impingement. Hydraulic jump entrainment and transport will 

be investigated in Section 3.3. 

It is important in this section that the reader is aware of the 

distinction between the total rate of air entrainment (qat> by a 

supercritical wall jet into the shear layer, detrainment of air bubbles 

out of the shear layer recirculating back to atmosphere (qar), and the 

net air transport out of the shear layer downstream along the conduit 

The latter is the parameter of most practical interest, 

certainly in the case of siphons and dropshafts. These separate 

process have already been discussed in Section 2.2 and 2.3, and the 

reader is referred to t~ sections for a background of ph~sical 

conjectures and more analytical treatment of air entrainment. 

The behaviour of siphons with regard to air entrainment and transport 

A siphon is essentially a closed conduit inverted U-tube, which 

transfers water from a higher to lower water level with a portion of the 

siphon length above the hydraulic gradient line. The upper part of the 

siphon is therefore at sub-atmospheric pressure, with the upper limit of 

sub-atmospheric pressure around - 10m head of water, at which point 

cavitation is likely to occur. Most siphon designers use an upper limit 

of negative pressure around -7.5m head of water so that cavitation 

problems might be avoided. 

A siphon can be short in length, such as 'saddle' siphons over 

the crest of a dam, or low-head water level control siphons as in river 

engineering works. Siphons are often of c()nslderable length, such as 

the high points (above hydraulic grade line) in long pipelines, or a 

component in the cooling water system of a power station (Goldring, 

Ref ) . In most cases the siphon will only run-full when the air 

trapped in the upper portion of the pipe is removed, usually either by 

air entrainment and transport, or by air vacuum pump. Siphons which 

remove air by jet entrainment and transport are said to be "self­

priming". 

Once the process of jet air entrainment and transport had been 

set up, it may proceed uncontrolled until the siphon runs full. This 

is a blackwater siphon and commonly found in storm-water systems. 

Reservoir and river siphons are nowadays generally designed to have 
. 1).1::' 

controlled air entrainment and transport. Th· isJair allowed to 

enter the siphon at the upper end, so as to replace transported air 

at the siphon exist. This type of siphon behaves as a smooth valve in 

the sense that it is capable of remaining stable at any value of water 



inflow to the siphon, and the exiting air flow is exactly balanced 

by the incoming air flow. This is an air-regulated siphon, and 

exhibits a fine control of the upstream water level which is of 

particular value in river engineering watks. A typical stage-

discharge relationship for an air regulated siphon is shown below 

(Figure 3.24) for the case of a short siphon where the inlet lip is 

a short distance above the siphon crest level. 

stages of flow ensue. 

Four separate 

(I) Weir flow - when Q = C1 L h!f~ ,(h is head above crest level.) 

j/ ¥.z.. (II) Sub-atmospheric weir flow, Q ~ C1 L ( r~Ycr) , where the siphon 

has begun to entrain and transport air, the upper air pocket is under 

partial vacuum, and we might assume hydraulic criticality at the crest 

(Ycr), giving an upstream apparent head of~ ¥1 Ycr in the reservoir. 
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Fltr.3.24-Typical priming characteristic for a siphon spillway 

(III) Partialised flow, which is a well mixed two-phase flow. In this 

case the air pockets are essentially removed and regulating air from the 

inlet disperses through the water flow. In this case C o(J15H where H 

is the head across the siphon from upstream to downstream water levels. 



(IV) Blackwater or siphon full flow, when all air is removed, no 

further air enters from the inlet and £1 : C J. }.. 0 J ;.l.j it , where A0 is 

the cross-sectional area of the siphon barrel and Cd is generally 

0.7 to 0.9 depending on siphon design. 

This1rocess is illustrated by a series of photographs Figure 3.25(a) 

to (f) for a low head siphon where the means of air entrainment is by a 

plunging jet, and a further series of photographs Figure 3.26(a) to (h) 

for a high head reservoir siphon where the means of air entrainment is by 

a jet impinging on a wall, causing a surface roller in a manner similar 

to a hydraulic jump. A third common type of entrainment is simply a 

wall jet remaining in contact with the lower siphon wall and entraining 

air at the plunge point entry into the siphon full condition This 

ha~ been discussed in detail in sections 2.2 and 2.3. 

Air entrainment theories for siphons (1975-85) 

In the interests of brevity, only a selection of air entrainment 

theories over the last 10 years will be considered. These are limited 

to Ervine (1975), Renner (1975), (Kobus and Rao 1975), Casteleyn, 

Van Groen and Kokman (1977), Thomas (1978)(1982), Goldring (1979, 1980, 

1984), Ervine and Ahmed (1984), and Sene (1984). 

A good deal more research than above has been carried out on 

siphons in the last 10 years, but the intention is to concentrate on 

research quantifying rates of air entrainment. For instance, 

Professor Markland (University College, Cardiff) has been engaged in the 

most innovative aspects of siphon design. Further references on 

siphons can be obtained from, B.H.R.A. Conf. on Design of Siphons and 

Siphon Spillways, London, England, May 1975. 

Ervine (Ref ) measured the rate of air entrainment in three 

siphon models of a reservoir siphon scales 1:7, 1:10 and 1:20, and the 

rate of entrainmemt for three low head river siphons also at scales 

1:7, 1:10 and 1:20. The measured rates of entrainment are in fact the 

rates of air transport through the siphon (Ban) and are indicated in 

Figure 3.27. (The design on the reservoir siphons are as shown on the 

photographs, Figure 3.26 and the low head siphons as shown on Figure 

3.25). 

It can be seen from Figure 3.27 that the low head siphons in 

particular revealed large scale effects in the rate of transported air. 

The value of Ban increased almost linearly with model scale (Lr), 
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(a) Weir flow 

(b) Sub-atmospheric weir flow (deflected nappe) 

(c) Depressed nappe 

FIG.3.2S: 



(d) Air pocket nearly disappears 

(e) Partialised flow 

(f) Black water flow 

FIG.i .25 
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whereas the high head siphons, at larger velocities, showed an increase 

in the air water ratio Ban approximately with LrYz or less. There was 

no consistent pattern with the scale effect. One thing did become clear, 

that siphons did not transport air according to Froude scaling. The 

reasons postulated for this by Ervine were:- (a) a minimum velocity 

(= 1 m/s) was required to entrain air initially, hence models operating 

at velocities around 1 m/s would entrain relatively little air. This 

effect would become progressively smaller as the velocity is the siphon 

barrel or the scale of the model increased, as witnessed by the high head 

siphons, (b) air evacuation would also depend on the ratio of the air 

bubbles rise velocity to the outlet water velocity in the siphon. As 

the bubble rise velocity Ubr is approximately constant in all three 

scale models, 

Ubr is not scaled according to Froude law, 

and a distortion in air transport scaling results. 
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In 1975, Renner (Ref ) reported on an experimental investigation 

into ai'kQS~d". of siphon air entraining behaviour. This was also reported 

extensively by Kobus and Rao (Ref ) . A 2-dimensional jet issues from 

a slot impinging on a wo.ll which may be inclined at any angle a: to the 

horizontal. A turbulent surface roller is formed as shown on Figure 3.28 

and according to Renner air is entrained at the toe of the roller. 

Thomas has since conjectured that air is in fact entrained into the roller 

itself as well as the toe of the roller. A proportion of the entrained 

air is transported along with the flow and the remainder is recirculated 

to the atmosphere. A correlation for two wall angles of the net rate of 

air transport is shown on Figure 3.28. From this it can be seen that 

for Froude Numbers less than 9, and for a given angle of wall a:, the 

ratio of air to water can be given by 

.•••• (3.24) 

or qair a: ~1 where U1 is the jet velocity. 

Kobus argues that air entraining situations which are not influenced by 

boundary scale, and where viscous effects are no longer significant, say 

Re > 10 5
, then we may write 

..... (3.25) 

or from dimensional analysis 

= constant, which is the result of Renner. 

This result is very attractive because of its simplicity. The values 

of K reported by Renner are generally in the range 0.00172 and 0.00275 

depending on the wall angle a:, 

Renner's result brings into question a lot of assumptions regarding 

air entrainment and transport outlined in Sections 2.2 and 2.3. 

(1) What type of air entrainment mechanism is this? Type (1) entrain­

ment due to jet surface roughness might give ~ :; t( Pr,Z ~ (tiA.) so we 

could assume that Renner's results were of the same order of magnitude 

turbulence intensity. Type (2) entrainment at higher velocities with a 

continuous layer of air at the toe of the surface roller would give 
v ~ 14 c<. Ll. 1 ~ which is obviously not the case from Renner's results. 

Type (3) entrainment due to a surface roller might give a correlation 

on Fr-1 for Froude Numbers less than 9, which appears not be be the 

case either. 
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(2) What type of air evacuation is this? The forces acting on an air 

bubble in the mixing region of the surface roller are inertial1 buoyancy, 

vorticity and drag. Even is inertial and vorticity components are of 

no significance in this situation, buoyancy and drag will not scale on a 

Froude basis because of the same size of bubble in model and prototype. 

We can only assume that drag forces on the bubble say « if1 are much 

greater than bubble buoyancy, which would only be the case at higher jet 

velocities, especially U1 ) 2.5 m/s. Renner tested only up to velocities 

of 5 m/s. Thus comparing with Thomas detrainment theory (Section 2.3) 

bubble detrainment appears with Renner's data to have no significance in 

this situation certainly with regard to scaling. This, in fact, might 

be the case in Renner's physical configuration as conventional penetrating 

shear layers are not occurring due to the proximity of the wall. 

(3) Why does the angle of impingement into the wall have so much affect 

on the rate of entrainment? It can be seen from Figure 3.28 that a 

reduction in impingement angle from goo to 45° causes a reduction in air 

entrainment (= 62%) at the same jet velocity. If, according to Renner, 

all the air is entrained at the toe of the roller, then at the same jet 

velocity, the same quantity should be entrained at 45° and goo angles. 

Maybe more air is detrained at smaller wall angles. If on the other hand, 

air is entrained into the flow along the length of the surface roller, then 

this length will be reduced as the angle reduces from goo. As a first 

approximation we might say that the length of the roller is proportional 

to the rate of change of momentum;then for a given U1 and d the length will 

decrease approximately with Sin6. Thus the reduction in entrainment from 

goo to 45° would be of the order, 100%:71% which is not as much as the 

measured value 100%:62% . 

angles. 

Maybe more air is detrained at smaller impact 

(4) Renner noted from this data that jet thicknesss d < 10-15mm produced 

te.dll6-d. rates of entrainment. This is in line with observations from other 

authors, Ervine and Ahmed (Ref ) and Sene (Ref ) etc. This is 

li;n·ked to the fact (not only of Re < 10 5 ) but a dampening of surface 

disturbances by surface tension when the scale of eddies is less than 

about four times the ca~illary length (= 11 mm) Hunt (Ref ). 

In 1g77, Casteleyn, Van Groen and Kolkman (Ref ), reported on 

air transport measurements in two model siphons at scale 1:20 and 1:7. 

The siphon design is shown on the sketch overleaf, with a total length 

of lOOm (approx), a conduit dimension of 3.2m, and a variable level on 

the downstream side of the siphon. 



Figure 3.29 

Air entrainment (or air transport more correctly) measurements were 

made in the two scales of model siphon, with the downstream leg almost 

full 1and the point of jet impingement generally just downstream of the 

point of criticality; i.e. the Froude Numbers at jet impact1 I<: ~'/JS~(l,~. 
An attempt was made at extrapolation of air transport measurements to 

prototype behaviour. 

The physical reasoning for extrapolation was straight forward and 

similar in a sense to that of Thomas, Sene etc. If the rate of air 

entrainment qa is proportional to the volume of air held in the jet 

surface disturbances and the jet velocity at impact, then we might have 

tl\, o1.. t.t1 Hs) 0( u., (~?~) ~ u.,/s ..... (3.26) 

Casteleyn et al found that in fact that for a given value of ha/D, 

where ha is defined on Figure 3.29, and D is the conduit 

dimension, that the rate of entrainment varied with, qa « U1
5

•
6

• In 

order to generate a ~ relationship, an additional term was introduced 

Uc, where qa « (U 1 - Uc) 3
• The value of Uc required to form this 

cubic relationship was 0.8 m/s, which by coincidence is the approximate 

jet velocity to entrain air into a flow. Using this revised cubic 

arrangement, the data from the 1/20 model and lj7 model could be 
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correlated on one curve as shown below on Figure 3.30. {for 11\e C4St of h•Jo~0.18) 
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The correlation thus gave, 

(3.37) 

and for ha/D values greater than 0.6, this could be approximated to 

~4- : o. 0005' -7 O. 001 (U. 1- 1.4.c.) 3 
This was later modified by Thomas to 

~"'"' ~ o. 005 ~ o.o1 ~1. Ll- ~;)3 
(3.28) 

Prototype data confirming this relationship is still awaited. 

Several points of interest emerge from Equation (3.28). 

{1) Can the relationship qa « (Ul - Uc) 3 be sustained for prototype 

conditions where the velocity at impact U1 is likely to be as high as 

7 m/s? This would mean that surface roughness disturbances would 

have to increase with U~ /g. That is, for U « 7 m/s, Uc/U1 << 1, then 

13 ':. Q,Ot"5~ O.otFr~ . This is an abnormally high rate of entrainment by a 

jet entraining only on the upper surface. Sene (Ref ) found an 

upper limit of~N0.004 Fr: which is approximately half of that to be 

expected from Kolkman's prototype data. Thus we must ask, in the 

light of Figure 2.9, Section 2.2, if the rate of entrainment will not be 

reduced from the (U 1 - Uc) 3 relationship when the jet velocity· U
1
>5 or 



6 m/s corresponding to prototype conditions? 

(2) Counterbalancing this possible reduction in air entrainment based 

on the (U 1 - 0.8) 3 relationship,(with higher prototype velocities) we 

have that possibility of greater air transport out of the penetrating 

shear layers in the prototype where the outlet velocities acting on 

entrained air bubbles will be greater. The drag forces on an entrained 

bubble are now much greater than buoyancy effects and scale effects from 

this source may be negligible compared with either the 1120 or 1 /7 scale 

model. 

In terms of prototype predictions we may use the graph produced by 

Ahmed and Ervine (Figure3.3~) to give likely estimates of Ban for the 

case of Casteleyn et al siphons. Most of their siphon data gives Fr 1 

= 1 + 3, and prototype velocities 5 + 7 m/s. Assume transport scale 

effects are negligible, then from Figure3.3bwe have for Fr1 = 2 and U1 

= 6 m!s, Ban = 0.04. 

One point not mentioned by Casteleyn, Van Groen and Kolkman is the 

possibility of air pocket formation at the start of the horizontal 

outlet section of the siphon. Air bubbles from the entrainment mixing 

region may accumulate at the roof of the conduit with a possible blow­

back tendency at low outlet Froude Numbers, say 

It is assumed that this problem did not arise. 

In 1978, Thomas (Ref produced a scaling analysis for air 

transport out of a penetrating shear layer with a thick layer of foam on 

top of the shear layer, and air bubbles entrained into the shear layer 

along its upper length. This was subsequently reproduced and modified 

in a paper by Goldring, Mawer and Thomas (Ref ) and a paper by 

Thomas in 1982 (Ref ). 

The analysis is presented in detail in Section 2.3, and the 

relationship presented by Thomas for the ratio of air to water Ban, 

is in the form of a scale independent entrainment into the shear layer 

term, and a scale dependent air bubble detrainment out of the shear 

layer term. 

Entrainment into the shear layer is given as, 

6 ex (Fr - 1) for Fr < 10 

for Fr ) 10 

Bubble detrainment as indicated in section 2.3 is given by, 

Lt t )l./ ( . Ll t ) (I- ~~ I - ~IA 1 



Thus for an air entraining situation with jet Froude Number less 

than 10, 

••••. (3.29) 

where the value of K according to Thomas ought to be around 0.025. 

This relationship is proposed for the net rate of air transport. One 

point of confusion in Thomas's relationship is connected with the value 

of ur, which Thomas has called the entrainment inception velocity. It 

is not clear if this is meant to be the inception velocity to entrain 

air into the shear layer ur, as discussed in Section 2.1, or the minimum 

velocity to commence air bubble transport U1 min as discussed in Section 

2.3. For Equation (3.29) to make any sense, the entrainment inception 

velocity should in fact be U1 min• below which there is no net air 

transport, but there may be entrainment into the shear layer and 

subsequent total detrainment. 

Thomas used a value of U1 min of 1 m/s to correlate the data of 

Casteleyn, Van Groen and Kolkman. This is smaller than predicted 

values of U1 min in Section 2.3, because the shear layer in the Delft 

siphons is reaching the exit of the conduit, or to be more precise, the 

start of the horizontal length. Thus the minimum jet velocity to 

transport air U1 min is practically as small as the inception velocity 

to entrain air Ut for this particular case. Generally, though, for 

long conduits the value of U1 min in the Thomas equation should be 

around 1.5 + 2.5 m/s. 

The correlation of Equation (3.29) with Casteleyn et al siphon 

data is shown in Figure 3.31, indicating excellent correspondence with 

both model scales(and 

prototype case of Fr1 

which is aan :: 0.02. 

and Ahmed ( a 0. 04) • 

a prototype extrapolation·) Thus for the 

:: 2 and U1 :: 6 m/s we obtain, ~ "' ~ {1.-t) Kl- ~ /"/(1- ~f) J 
This value is half of that predicted by Ervine 

So 
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In his paper in 1982, Thomas compared data correlations from three 

separate siphon configurations 

'Ril.M~t" ~Q~ -
o. Ool12. ..:;::; O. 001..7S fT-

1
l. (3.30) 

5o1&w1~ ~c.v\ IV o, o(Jl..~ n/· ( 1- i.ltfo,) 1 
(3.31) 

c(\~n:~~ ~QII\. '"" D. cor;.=, o.ot filt (I _o;a/u.,? (3.32) 

+ l<'ol~~t~~~r.. 
in an attempt to obtain an explanation for the large ranges of K(.0017 + .01) 

obtained in the above correlations. 
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Thomas argued from photographic evidence and experiments at Cambridge, 

that two types of flow were possible, (1) when the shear layers 

penetrate into the flow and are almost plane as in the case of the 

Casteleyn et al siphons, and (2) where the shear layers are strongly 

curved and reattach either on the free surface or just a small distance 

along the conduit. This is generally accompanied by a thick layer of 

foam and is characteristic of the air-entraining siphon flow of Goldring. 

Goldring's siphon also exhibited curvature of the free surface impinging 

jet, which in turn contributed to the curvature of the shear layer and 

the reduced amount of air bubble transport compared with the Delft 

siphons. Thomas postulates that detrainment effects are comparable in 

Goldring's model compared with Casteleyn et al's model, but entrainment 

into the shear layer from the jet is greatly reduced in Goldring's 

model. This is still open to question. 

Goldring investigated the priming performance of a siphon which 

constituted a component part of a cooling water outlet system for a power 

station, as shown on Figure 3.32. This work was reported both for 

model and prototype data in Reference 

(1984), ~ncl Rtf. (19Sc) 
, (1979) and Reference 

If we concentratedn Goldring's air entrainment work, he measured 

the rate of air transport through the siphon by indirect means using 

a step-by-step procedure based on the time taken for the siphon to prime 

and assuming hydraulic criticality at the siphon crest. That is, the 

air entrainment rate was assumed from one of the known formulae and checked 

against the actual rate of air removal from the air void in the siphon 

crown. 

A correlation was attempted first with the model siphons using 

Equation (3.28) by Thomas. The best fit relationship was found to-be, 

~ '>,; oloot,{,(Ft--t)[1- 'lu.1y·(('- ru.)] (3.33) 

from which it is noted that the K value (~ 0.0066) is approximately one 

quarter of that used in the correlation of Casteleyn et al siphons. As 

already discussed, Thomas postulated the hi-model entrainment structure 

to explain this difference. Also Goldring used Utmin of 1 m/s to 

commence air bubble transport which must be also open to question, as it 

coincides with the velocity required to entrain air into the shear layer. 

Thses are two separate criteria. 



Goldring correlated model results with the empirical relationship 

developed by Casteleyn, Van Groen, and Kolkman, finding, 

~'V 0· oo~5 hjt. (1- O·Yu,)3 ..... (3.34) 

Again the coefficient K (~ 0.0025) is only one third to one quarter of 

Casteleyn et al. Again we have the assumption that air bubble trans­

port occurs when U1 ~ 0.8 m/s which is open to question. 
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Figure 3.32 

Goldring in his 1984 paper (Ref ) discussed prototype measure-

ments of air entrainment in the siphon design which had been subject to 

the previous model tests. The surprising conclusion was that the Thomas 

equation which had proved satisfactory for model correlations, proved 

unsatisfactory in correlating prototype data. The value of K which had 

correlated as 0.0066 for model results, varied substantially in the 

prototype, 0.007 to 0.017, depending on D-d, (the conduit dimension less 



the jet thickness). The non-correlation with prototype data was 

attributed by Goldring to the fact that Thomas's correlation can not 

be applied to Mode 2 flows (i.e. curved shear layer attaching on the 

opposite conduit wall) which leaves the obvious question as to why 

it proved satisfactory for scale models. 

Goldring's model and prototype data obviously requires further 

analysis to find an explanation for this discrepancy. Perhaps the 

Thomas equation is more applicable not only in plane shear layers as 

opposed to curved, but also at lower water velocities in the shear 

layer where shearing vortices have a less coherent structure. Thll.s 

model data correlations with a small value of U1 (jet velocity) (for 

Casteleyn et al this was < 2.5 m/s) may not translate into prototype 

velocities with more coherent vortex structures. (S~ne J RJ (. ) 

Ervine and Ahmed (Ref and ) carried out on an extensive 

series of air entrainment tests in a square conduit (0.14 m square) 

with the conduit angle ranging from 10° to the horizontal to vertical. 

Although this work is intenrled to be as applicabl~ to dropshafts as 

siphons, a description of the work will be included below under 

siphons, and referred to (briefly) under dropshaft entrainment. 

The purpose in testing such a wide range of conduit angles was 

to make the result applicable to dropshafts, siphons, hydraulic jumps 

in conduits, etc. The final result for air transport in closed 

conduits probably suffers from the fact that it attt~pts to include 

all types of entrainment and detrainment at all angles of conduit in a 

single expression. 

A schematic diagram of the conduit is shown on Figure 3.33 with 

the experimental parameters appended. At each conduit angle, the total 

rate of air entrainment into the shear layer (qat), and the net rate of 

air transport out of the shear layer downstream (qan) were measured 

independently over a range of jet velocities up to 6 m/s and jet thickness 

up to 120 mm. All the results (from Section 2.3) could be said to be 

low velocity (i.e. < lOm/s). Working on the premise that entrainment 

due to jet surface undulationscales on U1
3

, and a minimum jet velocity 

of 0.8 m/s was required to entrain any air, a correlation for total air 

entrainment was attempted along the lines 9at ~ (U1 - 0.8) 3 
• The 

constant of proportionality here proved not be a constant, but varied with 

the Froude Number Utj'~ and the conduit angle, as shown on Figure 3.34. 

This variation in K has many parallels with the variation in K found by 
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Goldring in his prototype data. Further more, the value of K found by 

Casteleyn et al for Froude Numbers around 2, was 0~1 which was very 

similar to the values on Figure 3.34. The value of K appears to be 

constant only for high Froude Number Flows (Fr 1 > 10). 

The net air transport downstream out of the shear layer was 

plotted as a ratio of the net air transport to the total air entrainment 

(qan/qat> against a team incorporating the outlet velocity in the 

conduit, (U0 - U0 min)/Ubr• U0 min is the conduit full outlet velocity 

required to commence air bubble transport and has been already described 

in Section 2.3. ( i.lo 111~ = i.l1 111 ~ cl.j0 ) The result for all conditions tested 

is shown on Figure 3.35, where it is clear that full transporting 

capacity of entrained air is effectively possible for(Uc- i.<.cm~) /l.{br) 1 

That is, when the outlet velocity in the shaft exceeds the minimum 

outlet velocity to transport air by a value equal to the bubble rise 

velocity in still water, ~ 0.25 m/s. 

Ahmed and Ervine have thus proposed two separate scale factors 

for air transport, (1) a scale factor for entrainment into 

layerll- o~.)'3and (2) a scale factor for transport out of 

layer f(i.to-l.lo"'~ I ub,.) A final relationship was produced 

~Citl:: ~ fi-,2-L ( 1- 0·%, )5 ( 1- el(lla-Uc,li~)/U~)] 

the shear 

the shear 

in the form 

..•.. (3.35) 

where 
i - o. ~$'(~.-·)) 

K ~ o, 002.)5" \ I+ 'f-.S 1 e.. 
This complicated form is plotted on Figure 3.36 for a range of velocities 

U1 , but with the transport scale factor considered negligible. This 

relationship has proved reasonably accurate in correlating experimental 

data from Casteleyn et al siphons, as well as dropshaft data from 

Whillock and Thorn (see Ref ). 

It can be seen from Figure 3.36:-

(a) Air entrainment scale effects are small for jet velocity U1 >5 m/s. 

(b) The upper limit for air entrainment is very similar to prototype 

data Campbell and Guyton, etc. 

(c) Previous correlations based on (Fr - l)n, and Fr2
, generally cross 

velocity bands when the jet Froude Number is increased. This has 

resulted in spurious correlations as air en~rainment is only 

partly governed by Froude scaling, and partly scales on the absolute 

velocities acting. 
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The behaviour of dropshaft with regard to air entrainment and transport 

Dropshafts have generally been associated with the outlets of large 

dams where excess floodwaters are transferred from reservoir level via 

a circular vertical shaft to a horizontal conduit passing under the dam. 

Other applications include vertical flow structures in sewer systems, and 

more recently cooling water outlets of nuclear power stations have been 

included dropshafts (See Figure 3.37). 

The air entraining characteristics of dropshafts are generally more 

complex than lower velocity, shorter length siphons. In fact their 

behaviour is also more complex than disintegrating jets plunging through 

the atmosphere. The reasons can be summarised as follows. 

(1) During low flows, the hydraulic gradient in the outlet tunnel 

usually produces a low shaft-full level somewhere close to the shaft/ 

tunnel junction. The annulus jet plunging down the dropshaft, may 

often produce high velocity entrainment at the plunge point. 

(2) The plunging jet may also be partly disintegrated due to large 

plunge lengths, and pre-entrainment of the jet may have occurred, as in 

the case of free surface aeration. 

(3) For low shaft-full levels the rate of air entrainment or air 

transport into the horizontal tunnel may be as high as the total entrain-

ment rate at the plunge point. 

to the tunnel section. 

This is because the mixing region extends 

(4) Air pockets may form at the tunnel/dropshaft junction at the 

conduit roof and 'blow-back', or at least cause instabilities and reduced 

discharge. 

(5) For higher flows, the shaft-full condition is closer to the upper 

end of the dropshaft. the plunge length is less but all the problems 

mentioned above may still occur. 

(6) Only when the shaft is completely submerged at the upper inlet will 

air entrainment problems cease. One method of overcoming some of the 

problems above has been the use of vortex inlets producing lower rates 

of air entrainment at the plunge point. This has met with partial 

success. 

Before we consider some of the experimental and empirical correlations 

for dropshaft entrainment, perhaps we might consider some of the author's 

speculations for scaling of dropshaft entrainment. Like the case of 

siphons the process can be sub-divided into total entrainment into the 

I~ 
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shear layer, bubble detrainment and bubble transport downstream of 

the shear layer along the shaft. 

(a) Total entrainment into the shear layer. 

Consider a circular annular jet plunging down the drop shaft and 

impinging on the shaft full condition as shown on the sketch below. 

As in Section 2.2 we need to consider 

the rate of air entrainment per unit 

surface area. In this case the 

surface length entraining air is given 

by, 

1!' (D - 2d) 

where D is the conduit diameter and 

d the jet thickness. 

Thus 

The value of qa will depend primarily 

on the jet velocity at the plunge point. 

For low velocity jets qa « ui and for 

high velocity jets qa a( ulh ?? 

( txcll.l•1 ptt- e~r!ltillllf-t_) 
Figure 3.38 

' 

Let us consider first, the likely effect of testing a series of scale 

models at increasing scale for a given value of H;n, the droplength over 

H 

the conduit diameter. The likely variation in qa with jet impact velocity 

is shown in the sketch below. 
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Consider five models with increasing scale (1 + 5), and hence 

increasing U1 at a constant value of H;n. 

Model 1 is extremely small and is entraining no air because the 

inception velocity to entrain air has not yet been reached U1 < 1 m/s. 

This model will give Bat = 0, which is an underestimate of prototype 

entrainment! 

Model 2 is larger than model 1., but may still give a low rate of 

air entrainment into the flow, as the jet velocity at impact ~ 1 is only 

slightly larger than U1 *, the inception velocity. If we attempted to 

correlate Bat on Fr2 ,for model 2, and underestimate of Bat for the 

prototype may still be obtained. 

Model 3 is considered to be operating close the the upper limit 

for low velocity jets where entrainment is due to surface undulations. 

In this region qa = k~ or 6 a: Fr2 
• The value ofBat obtained from 

model scale 3 is usually larger than the value of Bat obtained from 

models 1 and 2. At point 3, approximately the same value ofBat would 

be obtained for all model scales if, qa a: ~ remained the case for 

increasing jet velocities beyond this point. 

the case. 

This in fact may not be 

Models 4 and 5 may have now entered a new regime of air entrain-
~~ ~ 

ment where ultimately qa a: U1 for very high jet velocities~ Thus 

it would be possible to obtain, in terms of the model scale ratio 

That is, for models tested in the high velocity range only, the value of 

air/water ratio~ at may decrease with increasing model scale for a 

constant H;n and d;n. Thus, it is quite possible for model (scale) 3 

to overestimate prototype total entrainment, and great care must be 

placed in correlating low and high velocity dropshaft entrainment 

data. It will be seen later in this section that larger scale drop-

·Shaft models often produce smaller air/water ratios than smaller 

dropshaft models, especially if pre-entrainment is not evident in any 

of the models. 

A further problem in correlating total air entrainment data for 

dropshaft models, is the effect of increasing water discharge in a 

given model. There are two main effects (1) the droplength H decreases, 

hence does the jet velocity at impact U1 , and hence the rate of entrainment 

per unit surface length decreases, (2) the value of jet thickness 

increases, hence (D - 2d)rr decreases, (the surface length available for 
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entrainment), hence the total volume of air entrained (Q~ also decreases. 

Thus an increase in water discharge will invariably produce a decrease 

in total air entrainment rate. This argument of course will not hold 

for small jet thickness at the impact point, say d < 10 mm, where the jet 

thickness itself will influence surface disturbance growth, eddy lengths 

and also air entrainment rate. That is, for jet thickness d < 20 mm, 

the rate of air entrainment may well increase with jet thickness, etc. 

A further phenomenon of circular dropshafts at increasing water 

discharges is illustrated in Figure 3.38. The diameter of air core at 

top of the shaft may become too small to copQ with the quantity of air 

being entrained at the plunge point. The plunging jet, if it remains 

attached to the dropshaft walls will also continue to accelerate under 

gravity until it reaches a terminal velocity, comparable to normal depth 

in open channel flows. Thereafter the jet might increase in thickness 

due to pre-entrainment if surface tension is overcome by turbulent 

fluctuations. The shape of the air core is neW similar to a Venturi. 

If the air core becomes small, and the total air demand cannot be 

satisfied, then a sub-atmospheric air pr~ssure will exist in the air core 

and accelerate air through the core from the atmosphere. In this case 

Qa > AcVc, the air flow is greater than the area of the core times the 

water velocity at that point. For the case of an annular hydraulic jump 

occurring at the plunge point, the quantity of air passing the core will 

be required to satisfy only the net air transport (which is typically 

tolf-

San= 0.1 to 0.5), with a large proportion of the total air entrained, detraining 

and recirculating in the air core back to the plunge point. 

(b) Dropshaft bubble detrainment and transport. 

The total entrainment into an annular hydraulic jump will depend 

primarily on the jet velocity at the plunge U1 , and the turbulence 

intensity (U*;ul), Reynolds Number and jet thickness(for d < 20 mm and Re 

< 105} At long droplengths and smaller values of djD, the ratio of air 

to water (Sat> often exceeds one and in some cases is as high as 2 or 3. 

(This is comparable to plunging jet entrainment). Clearly, the shaft-

full flow downstream of the plunge point is incapable of transporting 

this ratio of air to water. Wallis (Ref ) indicates that the 

maximum void ratio (a) for bubbly flows is around 0.42, which gives an 

upper limit of San for vertical bubbly flow of 0.72. Even this value is 

uncommon in vertical downward flows. Typical upper limits of downward 

bubbly flows appear to be around 0.4 to 0.5 for San. Thus, a large 



proportion of entrained air must be immediately detrained. This is 

sketched below indicating a possible increase in air transport when the 

mixing region reaches the conduit exit. 

\ 

\~Q" \ ,net-
, cur 

\~nspok 
' ' \ . ... 

Figure 3.40 

This type of detrainment cannot be prodicted by analyses such as 

Thomas (Ref ), as bubble buoyancy terms Ubrcose and Ubrsine are 

negligible compared with velocities in the shear layer. It is much more 

informative to compare bubble rise velocities with the shaft full velocity 

We might assume for instance that the real bubble downward 

velocity in the shaft full condition is approximately U0 - Ubr (where Ubr 

~ 0.2 to 0.3 m/s), in which case, as the air concentration (a) increases 

towards 0.42, there will be an increasing tendency towards bubble 

coalescence; air pockets may form and blow back to the free surface due 

to increased buoyancy. This type of air pocket formation and blow back 

is likely until the downward Froude Number of the flow ~o;'~i) exc~eds 
0.4 to 0.5, beyond which, even air pockets may be transported with the 

flow. 

To the author's knowledge, no satisfactory entrainment or detrain-

ment analysis exists for dropshafts. 

experimental/empirical correlations. 

Recourse must be made therefore to 

Viparelli (Ref presented a correlation for net air transport 

in vertical dropshafts in the form, 

••••• (3. 36) 

where h is the height of fall of the plunging wall jet and D the conduit 

diameter. 

This is a crude correlation on two counts: 

/0~ 



( 1) a increases ad infinitum for large h;n values. 
an 

(2) The relationship is essentially a Froude scaled phenomenon for air 

entrainment which might only be true for high velocities, turbulence leve1, 

Re > 10 5
, d > 20 mm etc. etc. Even at high velocity there is a suspicion 

( qa a: U (h ) that Froude scaling is not necessarily applicable for 6 an. 

After the point of jet impingement air bubblesdo not travel at the same 

speed as the water, and hence it is difficult to see how Froude scaling 

might apply in comparing model + prototype. However the correlation may 

provide rough estimates of entrainment rate. Wijeyesekera (1969) (Ref 

carried out a series of experiments on a dropshaft at five different 

scales, measuring both total entrainment and net air transport downstream of 

the annular hydraulic jump. This result is shown on Figure 3.41 revealing 

that values of Bat for total entrainment are often as high as 1 to 2, but 

decrease with increasing water discharge (or djD). The net air transport 

downstream of the plunge point did not exceed 0.4 for 6anin any of the 

dropshafts, and conformed closely to the correlation presented by Viparelli. 

By implication, large amounts of air are detrained, with an exception 

possibly at small values of H;n when Bat is of the same order as Ban· 

The Hydraulics Research Station, Wallingford, U.K. (Ref ) carried 

out an investigation into the net air transport in a vertical dropshaft 

for Plover Cove, Hong Kong. Three models were tested at scales 1:10, 

1:20 and 1:30, with the results plotted as Ban against HjD shown on 

Figure 3.42. 

also shown. 

An attempted extrapolation to prototype conditions is 

The most interesting feature of this correlation is 

decreasing air/water ratio with increasing model scale. The curves shown 

represent the upper limit of air transport in each model and therefore 

correspond to a high outlet water velocity where the slip velocity of air 

bubbles is not significant. Why then is there a scale effect in the 

entrainment rate? In order to find the answer, a complete analysis of 

the plunging jet profile would be required to be carried out for each 

model scale after the fashion of Dawson and Kalinske (Ref ) . The 

jet velocity U
1 

and the jet surface length available for entrainment 

1r(D - 2d) could then be calculated for each plunge length. A graph of 

qa or Qa.j11"D( 1- Z.%) against U 1 could then be plotted for each dropshaft 

model. As a first order of magnitude however, if the dropshaft wall 

roughness is modelled correctly, the jet velocity at impact (U1 ) should 

scale on a Froude basis (LrYz) and hence U
1
for 1/10 model will be higher 

than the 1/10 and 1/30 models, and if Bat scales on Frt or (Fr - 1) then 

the same air/water ratio will be obtained for all 3 scale models. If on 
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the other hand, the higher velocities in the 1/10 model produce a 

different regime of air entrainment (say t~ II(_ l.{r~) whilst the 1/20 and 

1/30 models scale on Sat a( Fr: then the result shown on Figure 3. 4-l 

might result. 

A simpler explanation based on wall surface roughness might be 

employed. Assuming that each model was constructed in the same 

material (say perspex), then wall roughness will be underestimated in the 

larger model. That is for Froude models, Mannings 'n' 

which in comparing the 1j30 to 1j10 models should give 

.,, 
scales on Lr , 

n('ho) 1 n~/!o) ~ '· 2 
or the model material should have a Mannings 'n' value 20% higher than 

the 1/30 model. If this is not the case, the 1110 model will effectively 

overestimate the droplength required to reach terminal velocity and will 

overestimate terminal velocity. 

Therefore the larger model, if it 

is too smooth, may overestimate jet 

thickness and underestimate velocity 

during the gradually varying section of 

its flow profile, even though the 

terminal velocity is higher in the 

smoother model. This is hardly likely 

to account for such a wide discrepancy in 

air/water ratios~ 

Whillock and Thorn (1973, Ref ) carried out a 

' \ 

' 
more fundamental 

study of dropshaft air entrainment, using square dropshafts (to reduce the 

number of variables) at sizes ranging from .15 m square x 1.94 m lDng, to 

0.3 m square x 3.88 m long. The net air transport was measured in each 

case, with a sketch of the apparatus shown on Figure 3.43 (a). The jet 

thickness can be controlled independently of the jet velocity, providing a more 

comprehensive range of data. Results for the .15 x .15 x 3.78 m long shaft are 

shown on Figure 3.43 (b) and the 0.3 x 0.3 x 3.88 m long shaft on Figure 

3.43 (c), with the data plotted as the air/water ratio a against droplength an 
H. The first point of interest is the increase in net air transport with 

water discharge (or outlet velocity U0 ) until a limiting condition is 

reached where no further air transport is achieved. fhis can be seen by 

taking a horizontal line across at any given droplength H. The limiting 

condition for air transport corresponded to an outlet shaft-full velocity 

of "' 0.5 m/s. Whillock and Thorn showed that the minimum outlet velocity 
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to transport any air was approximately 0.15 m/s, hence maximum transport 

capacity is achieved at 

tlo- Lto1111~ 
lA...,. 

IV-- a.s- o.1~ -0· :z.s 
If we now compare this with the result of Ervine and Ahmed on Figure 

3.35 we obtain excellent correspondence, as full transport is achieved 

at = 1.5. 

The other point of interest is the comparison of air/water ratios 

for the two models (b) and (c). The larger model appears to give lower 

values of B; this is misleading. Ervine and Kolkman (Ref and 

Ahmed and Ervine (Ref ) have calculated the water surface profiles 

for each of Whillock and Thorns dropshafts, revealing that the jet Froude 

Number at a given value of H is often lower in the larger model than the 

smaller one. Hence if qa « U~, for jet surface entrainment, then B « Fr2 
, 

then the larger model may seem to give lower entrainment. 

The data of Whillock and Thorn was compared for all three models 

against the relationship developed by Ahmed and Ervine 

~ .. : U. f'r,t l<'-":%,y ( 1_ i'"(q,-u.,..1Ja.,. )] •.•.• (3.37) 

where U0 min was taken around 0.15 m/s as suggested by Whillock and 

Thorn. The result for all three scale models is shown on Figure 3.44, 

giving good correspondence at each model scale. It is possible that a 

comparable correlation could be achieved using the lhomas equation 

possibly in the form, 

~ ... , k- w,• [( ,_ if.• Y"/ll- ~~)] ••••• (3. 38) 

where the value of U min could be estimated as U0 min D/d = 0.15 D/d. 

The value of K in the Ervine and Ahmed equation varies with Froude Number 

but js generally 0.003 - 0.004 for this set of data. This is in clGse 

correspondence with the estimates of Sene (Ref ). 

If it not possible to include all the vast range of literature on 

air entrainment in vertical shafts. The reader is referred to the review 

by Falvey (Ref 

Haindl (Ref 

) Whillock and Thorn (Ref 

for more detailed information. 

and the review by 

Of particular interest is 

the work of Hack (Ref ) in predicting dropshaft air flow ratio when the 

outlet is not pressurised and free flow exists, the work of Haindl (Ref 

predicting the rate of air transport downstream on an annular hydraulic jump 

~4" ~ 0.o2..(n-,- 1) 0'8" , and the work of Cl.lrtet and Djonin (Ref ) in 

HI 



predicting the length 

U.c~~ .-., 0.06 for 

of a deaeration zone (L) downstream of a plunge f~t 

small values of bubble slip velocity (< 0.2m/s). 
r;i.. -

There is considerable scope for reanalysis of past dropshaft air 

entrainment data. More attention requires to be given to the following 

points:-

(a) The plunging jet condition, its profile calculation, (d and U1 ), 

its boundary layer thickness ( 0*/d) for estimation of pre-entrainment. 

Its turbulence level (U*/U
1 

), Reynolds, Froude and Weber Number at the 

jet at impact. 

(b) Plotting is required for the rate of entrainment per surface length 

qa, (or &y-rrt>(l-14{0) for an annular jet) against the jet velocity 

U 1 , to determine if qa a: U: , (s a: Fr2
} or if the jet has reached high velocity 

entrainment region 'f. a. oe u:h? Care must be exercised in extrapolating not 

only from low velocity tests, but also from small jet thicknesses d < 20 mm, 

when for higher jet thickness qa is independent of jet thickness. 

(c) Attention is also required to detrainment and transport characteristics, 

with the model operating as far as possible with the outlet velocity as close 

to the prototype outlet velocities as possible, or at least U0 (model) ~ 

0.5 m/s. 

negligible. 

This ensures that the effect of bubble sli'p velocity is 
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Section 3.3 Hydraulic jump entrainment and transport 

This section, which may prove to be somewhat speculative in nature, 

will concentrate on air entrainment and transport by hydraulic jumps in 

closed conduits when the conduit slope, is horizontal, or in the upward 

or downward direction, and the conduit is filled by the downstream depth 

of the jump. Even a cursory review of previous data correlations will 

reveal a standard correlation 

(3.39) 

where n seems to vary anywhere between 0.85 and 1.4 

Fr1 the upstream Froude Number ( 1.(.1/~ l1'r 1A 1//~JA•/e 1 ) 
and K varies from 0.0066 to 0.04. 

Equation (3.39) appears to be satisfactory:-

for a wide ru~ge of conduit angle. 

for all almost all conditions of the upstream supercritical flow, 

velocity U1 , turbulence intensity (U*/u 1 ), pre-entrainment, 

Reynolds Number, etc. 

bubble detrainment appears to have no significance (or it scales on the 

jet Froude Number) in the reattaching mixing region of the jump. 

bubble transport capacity downstream of the jump also appears to scale 

on the jet Froude Number. 

the inception condition for air bubble transport appears to be a 

supercritical jet (Fr 1 > 1). 

Let us consider some of these points in more detail. 

(1) The con~1it angle 

It is the author's opinion that this is one of the most sensitive 
-

parameters governing the amount of air transport along a conduit downstream 

of a hydraulic jump. Assuming for the time being that air entrainment into 

a jump is correlated at ~ and Fr - 1 as suggested, then let us look at the 

transport capacity of the flowing mixture downstream of the jump. 

(a) For an upward sloping conduit angle, entrained air is easily transported 

(due to buoyancy) and a (Fr - 1) correlation may be possible. 

(b) For a horizontal conduit (e = 0), air is again easily transported 

downstream in the absence of buoyancy effects. 

(c) For a downward sloping conduit, e <20°, a completely different 

regime of behaviour occurs in long conduits. Air is initially transported 

downstream of the jump in the form of air bubbles which soon rise ~o the 

con4uit roof forming air pockets (or slugs). We will see in Section 4 

that once an air pocket forms, a certain conduit-full Froude Number is 
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required to transport the pocket along the conduit, otherwise the 

pocket simply grows in size and will eventually blow back. This limiting 

Froude Number to clear air pockets depends not only on the conduit slope-a, 

but also the air pocket depth H;o. (See Figure If-, '11. ) • As an order of 

magnitude we will assume that even for small downward sloping angles (say 1°), 

the required Froude NumberV0/JSD is in the region of 0.5 to 0.7 as shown on 

Figure~.~~. Thus, air transport will not commence until this Froude 
GrS'·'· 

Number downstream of the jump is reached. For initiation of air 

transport for downward sloping pipes e > 0° we may write 

U1 and A1 are upstream velocity and Area of flow 

Ap is the full pipe area nD2 /4. 

..... (3.40) 

The upstream Froude Number may now be calculated to achieve this condition, 

(for various values of d/D, fractional depth) 

Taking the case of a circular pipe, we obtain from (3.~) 

(3.41) 

where the upstream Froude Number is calculated on the basis of a flow 

depth, equal to the area of flow 

The angle 'a' is 

specified on the 

sketch opposite. 

The author has used Equation (3.41) to the upstream Froude 

Number required to transport air, and compared the result with the dat~ 

of Kalinske and Robertson (Ref 

3.45 giving a good correspondence. 
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This has important implications for the transport of air downstream 

of a jump. If d/D is 0.2 (say) then a Froude Number of 10 will be required 

to commence air transport along a long conduit, that is, for conduits even 

at a slight downward angle. If the conduit is horizontal or sloping slightly 

upwards, no such limitation exists •• 

Even for a fractional depth of one half (d/D ~ 0.5) an upstream Froude 

Number in excess of 2 is required to commence air transport in downward 

sloping pipes. Any correlations of air entrainment and transport by 

hydraulic jumps should therefore make careful reference to the slope of the 

conduit and a correlation for downward sloping pipes should contain an 

air pocket 'detrainment' or blow back term (albeit on a Froude basis) to 

account for the limiting Froude Number to transport air. 

write for downward sloping pipes 

Thus we might 

(3.42) 

where the value of Fr1 (limit) is given approximately by Figure 3.45. 

(2) Bubble detrainment from the reattaching shear layer. 

So far we have discussed a limiting condition for air pocket blowback 

downstream of a jump when the conduit slopes at a downward angle. However, 

at any conduit angle (upwards, horizontal or downwards) air bubbles have a 

natural propensity to detrain as already seen in the analysis of Thomas 

(Section 2.3). Thomas's analysis was for plane penetrating shear layers, 

unlike the case of a hydraulic jump with a strongly curving reattaching 

shear layer, as shown below. 

C<<<< <<< ...... "\ <("'""'- c: <<<"-<<<c:::,, ........................ 

The principle however remains the same. If we ignore contributions from 

vorticity holding air bubbles in their cores, then a bubble rise velocity 



of Ubr cos e exists, tending to detrain air bubbles out of the shear layer, 

whilst at the same time and entrainment velocity Ue exists, tending to 

carry bubbles into the shear layer. As a crude approximation we might say 

that bubbles are detrained when Ubr cose > Ue, or the point of commencement 

of air bubble transport is Ubrcos9 Of course, the real velocity 

required may be less than this as air bubbles can be ret ained in vortex 

cores for at least the length of the shear layer. According to Sene this 

influence becomes prevalent when 6U is 5 - 10 times the bubble rise 

velocity
1
or U1 "' 1.25- 2.5 m/s. ( 6LL : 14,-u,. ~ t.t1) 

Thomas specified the entrainment velocity Ue as EU1 , where € is the 

half angle of the spreading shear layer which is aproximately equal to the 

turbulence intensity in the shear layer. Thus for air bubble transport 

we need U1 > Ubr cos9/€, when the value of~ might be 1/10 to1/5 for a 

jump, and hence for shallow angles U1 > 1 + 2.5 m/s for commencement of air 

bubble transport dciN"sheq"" ~ !Iii, Jll"'P. 
In any case, at slightly higher jet velocities bubble transport may still 

be influenced by detrainment, and we may speculate for hori~ontal and upward 

sloping conduits. 

• •••• (3.43) 

and for downward sloping conduits 

••••• (3.44) 

For downwards sloping conduits we must take account not only of air bubble 

detrainment, but air pocket blow back. At upstream jet velocities say 

greater than 2.5 m/s, detrainment may not be significant if air bubbles 

are transported by vorticity. 

(3) Bubble entrainment into a hydraulic jump. 

Consider first the inception correlations to entrain air into the 

flow. In previous sections we have seen that a velocity is required Ut 

to entrain air bubbles in a flow, for steeper conduits. In shallow 

conduits with a hydraulic jump, the only criterion for air entrainment is a 

breaking surface roller (Fr 1 "' 1.3) and air is carried into the shear layer. 

If Fr 1 :.1.3 also coincides with a low supercritical velocity, say < 1 m/s, 

then entrained air is simply detrained and no transport occurs along the 

conduit. That is, for U1 < 1 m/s, then Ubr cose > Ue generally, and 

also vortex cores are not sufficiently developed to tranpsort air, 

I I' 



Thus as an order of magnitude for hydraulic jumps, 

a dual criterion for air bubble transport occurs which is U1 > 1 m/s and 

Fr1 > 1 and this applies only horizontal and upward sloping conduits, as _ 

downward sloping conduits have a further limitation for blow back, in that 

llo/{;b '7 OaS" approximately. 

Secondly, in order to obtain a correlation for air entrainment into 

a jump we must decide on the predominant mechanism for entrainment. 

are three possible mechanisms:-

There 

(a) Entrainment at the toe of the jump, with air entrainment coming from 

the volume of air held in the jet surface undulations. This has been dealt 

with in Section 2.2 with the conclusion that the air flow rate qa is 

proportional to the jet velocity U~ ( qa "' ti ) and independent of jet 

thickness, with the exception of small jet thickness, d < 20 mm say. 

An alternative way of expressing this quantity of air entrained is in 

the form, qa/q K Fr: as seen in previous sections. Thus, for the case 
w 

of air entrainment by surface undulations at the jet surface(whose volume 

scale on ~/g,)we have the case as illustrated on the sketch below. 

Figure 3.47 

Jets of the same velocity entrain the same quantities of air, but when 

expressed as an air/water ratio a, jet (1) has a higher a than jet (b) by 

virtue of its higher Froude Number (or smaller depth). 

One point noted by Ahmed and Ervine (Ref ), albeit for steeper 

flows, is that for jet Froude Numbers less than about 10, (and incidentally 

for larger values of djo) the value of K in the relationship a = K F12
, 

did not remain constant. An inspection of Figure 3.34 reveals that 

for Fr 1 < 10, the value of K varies approximately as 1/Fr
1

, or K ~ 0·~, 
I 

g~v~ng an approximate value for a of a ~ 0.03 Fr1 if we ignore the term 

(1- 0.8/U 1 )
3 for first order magnitudes. Replotting the data for Fr

1 
< 10, 

did in fact reveal a correlation for a on F~ - 1, as shown on Figure 3.36. 

This is the same form as hydraulic jumps, even though it was derived from 

wall jet entrainment at steeper conduit angles. 

Iff 



(b) Surface roller entrainment. 

Thomas (Ref ) has hinted at a possible physical reasoning for 

correlations of a on Fr1 - 1, for low Froude Number jumps. This has.not 

been published and is merely surmised here by the author. Thomas assumed 

entrainment into a low Froude Number hydraulic jump occurred P.OSsibly by 
Q.flm'l i~S ftll!lf\ 

the mechanism of free surface entrainment into the surface roll~r.~ This 

may be similar to natural surface aeration in high velocity flows and will 

depend therefore on surface tension forces being overcome by highly turbulent 

fluctuating components, U*. (A droplet of water is ejected by the turbulence, 

which entrains an air bubble as it reenters the flow). Alternative]y, air 

bubbles may be entrained into the surface roller by the action of small 

breaking waves, etc. Air bubbles are then entrained into the shear layer 

from the layer of foam at a rate which must be dependent on the entrainment 

velocity ue into the shear layer. We can state further that Ue « ~ the 

upstream jet velocity. The rate of entrainment qa must also be dependent 

on the length of the roller which Thomas denoted by D-d, (or y 2 - y1 in 

hydraulic jump notation). In reality, the length of a jump is generally 

~ 4 (D-d), but for the time being we may write 

~4. ~ K ( lA. 1) (1>- d) 

(ty ~ = ~i~w :: I( (l>~ -I) 
••••• (3.45). 

In the case of an open channel hydraulic jump, Djd scales on the Froude 

Number Fr
1 

and we obtain~= K (Fr- 1). This argument would only hold 

for the case of the sequent depth of the jump being approximately equal 

to the conduit dimension. 

It is not absolutely certain if Thomas postulated the exact argument 

outlined above. 

An equally valid argument can be put forward for scaling on Fr-1 based 

on observations of Ervine and Ahmed for low Froude Number jumps. If we 

refer again to Figure 3.47 with hydraulic jumps occurring at the same velocity 

but different fractional depths d/D, we may assume that entrainment occurs 

primarily at the toe of the jump based on qa « U~ or a « Fr~ as outlined 

in Section 2.2 and 3.2. When d/D is increased, the length of the roller 

available for detrainment decreases. Thus we might assume that less 

detrainment and hence more air bubble transport occurs in Jump (2) with 

higher d/D. We may write as a speculation 
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•.... (3.46) 

for a closed conduit when Fr1 <10. 

Now for hydraulic jump flows, D/d « Fr1 as a first order approximation, 

and hence from (3.46), 8 = f(Fr1 ) and thus scaling of~ on Fr-1 may be 

possible. This has certainly been attempted for the data of Ervine and 

Ahmed as already shown in Figure 3. 36 where 8 "' 0. 04 ( Fr1 - 1 r·fS' t ( Sccla fQ~ )
1 

although this is generally for steeper flows. If we attempt to linearise 

this expression for (Fr-1) we obtain 8 "'0.03 (Fr1 - 1)f(~~). In 

any case
1
correlations on (Fr-1) 1·~ are only possible by crossing velocity 

bands as in the work of Kalinske and Robertson. It is most likely that 

8 scales on Fr1 - 1 for low Froude Number jumps, but some account must be 

made for air pocket detrainment, etc., highlighted in (1) under"conduit angle". 

(c) High velocity entrainment. 

This has been discussed in Section 2-2, where it has been proposed by 

Sene (Ref ) that high velocity supercritical flows may produce a 

continuous layer of air under the roller (Type (2) entrainment, Figl.~ ). 

In this case qa U "'~ « 1 ' and hence would not scale on the Froude Number. 

This type of correlation may well be relevant to prototype jump data. 

Empirical correlations for hydraulic jump entrainment 

The first reported work on closed conduit hydraulic jump entrainment 

was by Kalinske and Robertson (ref ) . Experimental studies were 

carried out in a 150 mm diameter pipe with a downward slope ranging from 

0-30~. As already discussed, Kalinske and Robertson found a Froude 

Number U.'/ WVa below which only a small proportion of air was transported, 

this limiting Froude Number varying with d/D (Fig 3.'+5' ) . They proposed a 

relationship for net air transport, presumably once the limiting Froude 

Number was exceeded, in the form, 

~a"' ~ 0. oo"" (~'I - I) f.lf- (3.47) 

No air pocket blow-back term was inCorporated, which is surprising 

as an outlet Froude Number~b of at least 0.5 is required to transport 

air over most of the conduits slopes tested. By implication Equation 

(3.47) would reveal the air entrainment rate to vary approximately with 
1·~ u1 J but also to give increasing qa with larger upstream flow depths, or 

as only one pipe was used, larger d/D values. The air entrainment rate 

into the shear layer should be independent of upstream flow depth d, but 

entrainment and/or detrainment may well be influenced by the length scale 

of the roller(« D-d), perhaps best correlated in the form, f(d/D). 



Further correlations for air transport were carried out by Campbell 

and Guyton (Ref ) and Wisner (Ref producing separate scalings 

for low and high Froude Number jumps. 

Fat" Fr, <.'a ~Of\ ~ o. oq. ( Frj -I) o.~s- (3.48) 

~ Fr,) <a ~~ ~ o,o\~ (Fr. - ol·lf- (3.49) 

th~ latter equation being in the same form as Kalinske and Robertson 

Equation (3.~1) but the constant 0.014 twice as high as that given in 

Equation ( 3.41) . Of course Wisner used larger dimension models than 

Kalinske and Robertson, the largest size being 0.5 m x 0.5 m which is of 

order 3 to 4 times greater. This in turn would imply jet velocities 

approximately twice as high for Wisner's data. It is of interest 

therefore to compare the correlation for steeper flows proposed by Ervine 
~-~El 

and Ahmed on FigureApredicting higher values of San for higher absolute 

jet velocities. That is, providing air pocket transport problems do not 

exist, and U0 is large. 

Haindl (Ref ) and (Ref ) carried out extensive testing of 

hydraulic jump entrainment, again correlating San on a (F~- 1) basis. 

His data is shown on Figure 3-~8 , together with that of Wisner, and 

other published prototype data. 

all data in the form 

In conclusion, 

Haindl suggests an upper envelope for 

..... (3. 50) 

flo 
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FIG. 10. Plot of eqn. (23) for a hydr'aulic jump in closed conduits. 
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SECTION 4 

AIR POCKET FLOWS - THEORETICAL IDDE:LS 

4.1. Behaviour of air pockets in closed co:rrluits (General) 

( a) Vertical conduits 

(b) Horizontal conduits 

(c) Inclined conduits 

4.2 Extension of Benjamins analysis to single air 

cavities in stationary and moving water 

co:rrlitions. 

4.3. Analysis of air pocket 'blow-back' and air 

pocket 'clearing' in downward sloping pipes. 
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Major Symbols used in Sections 4 and 5 on air pocket flows 

A 

A 
p 

B 

g 

H 

L 

L* 

n 

R 

Re 

v c 

v 
0 

area of flow under an air pocket 

cross-sectional area of pipe 

width of flow at surface in a circular pipe 

constants used in air pocket flows in moving water 

speed of an air pocket (used by Benjamin, Bacopolous, etc.) 

conduit diameter 

Froude Number of flow under an air pocket or upstream of a jump 

Pipe-full Froude Number, Vo;~ 

gravitational constant 

depth of air pocket 

volumetric flux for slug flows (QA + ~)/A 
p 

Total length of an air pocket 

Length of air pocket from nose to point where pocket reaches 
maximum depth, H. 

non-dimensional air pocket volume = Vol/11' D' /4) 

Air flow rate 

Water flow rate 

bend radius at dropshaft/tunnel junction 

bubble radius 

Reynold 1 s Number 

air pocket velocity in moving water conditions 

air pocket velocity in stationary water conditions 

rise velocity of air pocket in vertical pipe (stationary water) 

pipe-full water velocity required to clear an air pocket 

pipe-full water velocity required to prevent air pocket blow-back 

v
1 

(or u1 ) water velocity under an air pocket or upstream of a jump 

We (or Wb) Weber Number 
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Y1 depth of flow under an air pocket or upstream of a jump 

Ye equivalent depth of flow in a circular pipe ( AjB) 

o( void fraction 

~ ratio of rate of air flow to water flow (Q.~~) · 

cp angle between nose of an air pocket ani pipe wall 

~ absolute viscosity 

)} Kinematic viscosity 

~a density of air 

'( w density of water 

~ surface tension coefficient. 



Section 4.1. The behaviour of air pockets in closed conduits 

In Sections 4 and 51 discussion will be 

limited to the behaviour of larger air 

bubbles 1 plug flow and slug flow1 as 

illustrated in the sketches opposite1 

presented by Falvey {Ref. ) • The 

classical air pocket shape as en­

countered in many Civil Engineering 

applications is also sketched below in 

Fig.4.1. 

The lower limit of air pocket sizes is 

difficult to define1 but if we stipulate 

that the bubble behaviour is dominated by 

inertia and buoyancy 1 then a sui table 

limit would be bubbles of equivalent 

diameter of over 10 mm1 thus excluding all 

of Sections 2 and 3. 
The upper limit is equally difficult1 but 

moving air pock~ts rarely exceed Hjn) 0 1 5 in 

the Civil Engineering context especially at 

shallower conduit angles. Pure slug flow1 

say Hfn)0.51 does however sometimes occur1 

especially in cases such as blowbacks in 

vertical corxl.uits1 etc. 

The term "air pocket" is thus used to cover 

any of the categories above., and a wide 

diver~~ of theory and practice is employed 

from slug flow research1 air bubble research 

and air pocket research. 

FIG 4-. I 

Bubble 
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(a) The behaviour of air pockets in a vertical conduit 

If we consider first the case of stationary water in a vertical conduit, 

then the behaviour of an air pocket will be governed by the balance between 

inertia, buoyancy, visco~s and surface tension forces. Wallis (Ref. ) 

has proposed three non-dimensional numbers describing the ratio of buoyancy 

to the other three forces, 

Inertia 

buoyancy 

Viscosity 

buoyancy 

Surface tension 

buoyancy 

0 v 2 
~w c.o ............... . (4.1) 

•••••••••••••••• (4.2) 

................ (4.3) 

It can be seen that for ~a<....<.. ewand V.,.. o<.J@"'Equations (4.1), (4.2) and 

( 4.3) above, become a type of FroW.e Number, Reynolds Number and Weber 

Number respectively. 

For the case of viscosity and 

then from Equation (4.1) 

v.., ~ K,_J ~w~a J9D 
for the case of air and water. 

surface tension effects considered negligible 

•••••••••••.•••• (4.4) 

The value of K1 is of the order of 0,345, with 0,35 being a commo!UY 

excepted value. Equation (4.4) is an important result in air pocket 

behaviour with its implicit suggestion of FroUde scaling provided viscous 

and surface tension is neglectable. Definitions of its applicability will 

be given overleaf. 

It is of interest to note that the rising velocity of single air bubbles 

in an infinite body of water was shown by Davies and Taylor (Ref. to be 

V <tCJ = 2;3 JgR~ , applicable to bubbles greater than 10 mm diameter. R0 

is the radius of curvature of the bubble nose. With the bubble spherical 

nose making an angle of approximately 100°, the volume of the bubble can be 

calculated, and the rise velocity V
00 

related to the equivalent bubble 

/2.b 



radius Rb. The result gives VCJO : J~~'o 

When such bubbles rise in a pipe of diameter D, the rise velocity of the . 

bubble can be expressed as a function of d!ln .. where db is the equivalent 

bubble diameter(= 2Rb). Collins (Ref. has shown that the rise 

velocity for larger bubbles can be given by 

V ( D t ...! = 0,496 -) 
v-o ~ ................ (4.5) 

ani when combined with V = ~~ , yields, Vr = 0.35 {i£", which is the 

same resust as that obtained for slug flow. 

-- For the case of viscosity being the dominant force, we have from 

equation (If..~, 

V = K_ ew-~a gD2 ~ K_ f5!l. 
-o -"'2 ~W -~)) ••••••o•••••••••(4.6) 

for air and water, where')) is Kineimatic viscosity (of order 10-6) ani K2 
of order 10-2 (Wallis, Ref. ). 

We may now eliminate the air pocket velocity in Equations (4.1) ani (4.2) 

by taking the square root of Equation ( 4.1) and dividing by Equation ( 4. 2) • 

(2.1-



The resulting term is the dimensionless inverse viscosity~ denoted by Nf • 

N = 
f 

••••••. ••••••• •• (4.7) 

Viscosity is dominant when Nf < 2~ which~ for an air/water mixture corresponds 

to a pipe diameter of less than l rmn. Viscosity has an influence~ however~ 

for values of Nf up to 300 at least~ giving a corresponding pipe diameter of 

2 rmn. It would appear that viscosity is not an important factor in the 

Civil Engineering context for air/water flows~ although Wisner et al (Ref. 

have detected viscous influence (for air pockets rising in a pipe inclined 

at 18°)~ for Reynolds Number up to 10\ where Re = Vr!J/'V If we 

translate the result of Wisner to the vertical case where Vr~0~35 .jgD ~ 

we obtain Viscous influence up to 0.35 ~,.., 105 ~ which gives a pipe 

diameter of 200 rmn. 
)} 

For the case of surface tension being the dominant force~ Equation (4.3) 

may be used in the form (~w- ~a)gn2/ ft ~ known as the E8tvos Number.· Wallis 

recommends this value to be greater than 100 in the vertical pipe case~ giving 

a pipe diameter in excess of 27 rmn to have neglectable surface tension effects. 

Experimental work by Zukowski (Ref. ) indicates that this criterion may be 

sufficient for the vertical pipe case~ but is inadequate for horizontal or 

inclined pipes where the air pocket rises along the conduit wall. It can be 

seen from Fig. 4.2 that a pipe diameter of l.:;D mm to 200 rmn would be 

required to produce negligible surface tension effects~ giving an Eotvos 

Number criterion of ~0 ) 3000 • 

Translated into the Civil Engineering context~ and physical modelling in 

particular~ we may state that pipes of diameter approximately l.:;D rmn or 

greater should produce negligible surface tension or viscous effects~ and 

the rise velocity of an air pocket in a vertical conduit dominated by inertia 

and buoyancy~ can be given by 

VDO X 0~35 fi,D •••••••••••••••• (4.8) 

Equation (4.8) is applicable to the stationary water case only and requires 

to be modified if the water is moving either upwards or downwards along the 

pipe. For the upward flow case~ Wallis (Ref. ) proposes a simplified 

relationship based on the drift flux model. 

given by 

j + vl1!0 

The air pocket velocity is 

•••••••••••••••• (4.9) 

/~J 
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Fig.4.2. Effect of surface tension en the rising velocity of air- pocket 

through stationary water in dosed conduits {after Zu koski ). 



where j is the volumetric flux of the flowing mixture (QA~;f.~ i.e. the 

air flow plus water flow rate averaged over the pipe area A. Equation ( 4. 9) 

requires further modification to account for the fact that the air pocket 

moves relative to the actual water velocity profile in the pipe1 (a function 

of Reynolds Number and pipe wall roughness) and not just .the average velocity 

weighted over the pipe area. 

pocket velocity is thus 

A more accurate representation of the air 

................ ( 4.10) 

C
0 

is approximately 1.2 for higher Reyrold' s Number flows (Red) 8.xl031 

and Rej = jD/y ) c1 is unity, except for the case of the air pocket 

rising along the vertical pipe wall when c1·~1.4 (Martin Ref. ). Thus, 

the rise velocity of an air pocket in upward moving vertical flows is given 

by 
V ~1 2 (QA+\) 

r ~ A, + 0,35 fiD 
................ (4.11) 

or in the case of the air pocket rising along the pipe wall1 

QA+~ 
vr -x 1,2 (---p:;-) + 0,495 {sD ................ (4.12) 

For the case of downward water flow, air pockets may either rise or descend, 

depending on the relative magnitudes of the air and water velocities. An 

investigation of this phenomenon has been carried out by Samuel Martin 

(Ref. ), in three vertical pipes of diameter 0.026 m1 0.1016 m and 0.14 m. 

In each case water flowed vertically downward1 and the air pocket (or slug) 

would then either ascend1 descend ·or remain stationary. A typical result 

for the pipe 0.14 m diameter is shown in Fig. 4.3 below. 
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For downward velocity flux (of the mixture ) up to 0.8 m(s1 the air 

pocket ascended the pipe1 and for velocity fluxes above 0.8 m/s in the 

downward direction1 the air pocket descended. In this case 1 the point of 

air pocket equilibrium is when vb = 01 and v;= 0.8 m(s and hence 

Vol { gD ~ 0.681 or a downward Froude Number in excess of 0.68 is required 

to ensure downward air pocket movement. This work has important implications 

for blow-back and cle~ring studies and will be discussed further in 

Section 5. The other point concerns the correlation of air pocket velocity. 

This is given by Martin as 

................ ( 4.13) 

For the case shown1 C .vo.86 which is very much smaller than (i) the 1.2 
0 

found for upward moving water flows 1 (ii) the value of 1.0 to 1.2 commonly 

found in horizontal slug flows and (iii) 1.05 to 1.11 found by Ervine and 

Himmo for a pipe inclined at +1.5° above the horizontal. Martin attributes 

the lowering of C0 values for downwamd flows to the tendency for the air 

pocket to become eccentrically shifted from the pipe axis and hence it is 

moving relative to a velocity smaller than the cross sectional average. 

The value of c1 shown is 0. 58 which is a good deal larger than either 

Equation ( 4.11) or ( 4.12) for upward flows 1 but in fact comparable to data 

of Ervine and Himmo in Section 4.2. 

(b) The behaviour of air pockets in horizontal conduits 

In this work1 it is intended as far as possible to treat the behaviour of 

air pockets in horizontal or slightly inclined conduits in the same manner 

as density currents or gravity currents1 after the example of Brooke Benjamin 

(Ref. ). Numerous observations of air pockets in shallow conduits reveal 

great similarities in behaviour as shown in the sketch below1 especially when 

the air pocket depth (H) occupies less than half the pipe diameter (D); or 

HID <.0~5· For values of H;D>0 1 51 the flow regime will be that of fully 

developed slug flow1 with analysis outlined by Wallis (Ref. )1 and in any 

case is not particularly relevant in the Civil Engineering context. 
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- Let us consider first~ energy conserving flow for the simple two-dimensional 

case below~ where an air void is propagating along the conduit atcelerity Cp 

con:iui t dimension D~ an:i 

the exit of the conduit~ 

horizontal con:iui t. 
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We may bring the air void to 'rest'~ by applying relative velocity c
1 

to 

the water just upstream of the stagnation point 0~ with the relative velocity 

under the cavity becoming c2. 

Applying Bernoulli along the free surface (at atmospheric pressure) to the 

stagnation point~ we have 

2 
c

2 
= 2gH = 2g(D-h) .............. .. (4.14) 

The flow force at a point upstream obtained by adding pressure forces to the 

momentum flux gives~ 

sl = ~ ~w (cl2D + gD2) ................ ( 4.15) 

and similarly at a point downstream gives~ 

S2 = ew (C2~ + ~gh2 ) •••••••••••••••• (4.16) 

Combining Equations (4.14)~ (4.15) and (4.16) with continuity c
1

D = C2h~ and 

with sl = s2~ Benjamin found that for flow with no loss of energy~ 

c 2 
2 

which yields the solutions~ 

........... ..... (4.17) 

h - D/ u = Ju:t - /2. or 11 1~ ~ the air pocket occupies exactly 

one half of the conduit depth, and~ 

•••• Cl ••••••••••• ( 4.18) 

It can be noted that for energy conserving flows in a horizontal conduit 

c1 = 0.5 .Ji"D~ which gives a higher air pocket velocity~ than the vertical 

conduit case (0.35 {@)s and also the receding stream Fro.Ld.e Number 

Cz' ~)1 and hence is supercritical. 

Benjamin extended this simplified analysis to the 2-dimensional case where 

energy loss occurs. It can be seen from Fig. 4.4 that most of the energy 

loss is likely to occur at the jump just behind the cavity nose. Denoting 

the head loss by A ~ Equation ( '+-·•'t) becomes 

c2 
2 

= 2g(D-h- A) • Cl Cl • Cl ••••• 0 ••••• ( 4.19) 

and again combining with equations of momentum and continuity, an expression 

was found for the head loss A which had a maximum value of A/b ~ 0~021. 
The·revised expression for the non-dimensional air void speed is given by~ 
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.......... ...... (4.20) -

which is plotted on Fig. 4.6 in the form of C1; I@ against either hfn (the 

depth of flow beneath the cavity) or Hfn (the air cavity depth). 

c., -{£D 

hfd 

FIG-. 4-.6 (Be~jl\ntll9 ~~Go!\. of 'iJSi> fA)jj\ H/D. 

Several points emerge from this graph:-

( a) For a given con:l.ui t aiJgle (in this case horizontal), the air pocket 

speed can be given in the form ell[@ = f ( H; n) as shown on Fig. 4_. 6. 

(b) For small air pocket depths, Hfn small, (h/n large), the air pocket 

speed increases with increasing Hfn until at maximum air pocket speed 

is reached. In this case for the conduit horizontal., (Clf Jif) maximum 

= 0,5'Z{, when Hfn = 0,3473. Further increases in HjD up to 0,5 reduce 

the air pocket speed to the value of C1; {ii5 = 0,5 as in the energy 

conserving case. Values of HjJ:?0,5 require an energy input in order 

to sustain a stable air pocket flow. 
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(c) the speed of an air cavity, void or pocket, can also be related to the 

pocket depth rather than the con::lui t dimension. This is shown on 

Fig. 4. 7 plotting cl; foR against Hj D, giving the result that 

Cl = 1/ ..[2 _,. J2 r gH as Hj D varies from 0. 5 down to zero. 

•••••••••••o•eee(4.21) 

Therefore, gravity currents at great flow depths have an upper limit of 

celerity of c1 ~ J2gH. 

4-.1 
FIGURE . &mph of· 

Hfd 

c1/(gH)i as a function of Hfd. 

(d) Benjamin extended this concept to the case of energy conserving flow 

emptying from a horizontal circular pipe of radius R, or diameter D. 

Applying the same principles as the 2-dimensional case argued above, 

Benjamin found the maximum speed of the contirruous cavity to be 

cl/~ = 0,767 or cl/[sB = 0,542 for Ef= O ••••••••••• (4.22) 
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which was later confirmed in experiments by Zukowski (Ref. For 

circular pipes, the zero energy loss case occurs at H;D = 0,437. 

The important point about Benjamins analysis, is that it may provide a 

powerful method for analysing the behaviour of air pockets in the Civil 

Engineering context. If the analysis can be extended to sloping pipes, to 

single air pockets (rather than the contirruous air pocket type which occurs 

on emptying shallow pipes), to non-uniform velocity profiles, to incorporate 

wall shear stress, etc., then it may well prove to be more useful than the 

simple application of empirical correlations which has been a feature of 

most of the Civil Engineering work to date. The first step in this 

direction has been taken by Bacopolous (Ref. ) under the guidance of 

Dr. J. Townson. This will be discussed in Section 4.2. 

Meanwhile it is clear that most Civil Engineering interest in air pocket 

behaviour in horizontal pipes would not necessarily involve a contirruous 

cavity as described by Benjamin above, ~ a single air pocket or single air 

pockets driven by a water velocity. This situation has not been analysed 

as such, but it is now open to analysis following the work of Bacopolous 

(Section 4.2). The application of force/momentum- continuity- energy 

principle would yield the speed of an air pocket for various air pocket 

depths (H/D) and values of water velocity. 

Conventional analyses of slug fiows in horizontal pipes (Wallis Ref. ) 

generally involve much larger air pockets than those generally encountered 

in Civil Engineering. For instance, Wallis proposes a model shown on the 

sketch below, where the area taken up by a passing air slug is given by 

.............. .. (4.23) 

... ---... ........ -'---' 
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Assuming no pressure drop along the length of the pocket, the water film 

on the wall is substantially stationary and we obtain by continuity 

A 
j Ap or V = -2 j 

b Al 

or the air pocket speed vb> j as ~/AI ) 1 

Wallis quotes for Rej~3JOO, Vb~l.2 j 

0 •••••••••••• 0 •• ( 4. 24) 

................ (4.25) 

It is not yet clear bow relevant this is to Civil Engineering type air pocket 

flows. 

(c) Behaviour of air pockets in inclined conduits 

Mbst Civil Engineering interest in air pocket behaviour in inclined pipes 

has generally centred on :-

(i) velocities required to remove or clear air pockets 
downstream from a pipe high point, siphon, dropshaft, etc. 

(ii) air pocket blow-back studies. 

Almost all this work has been experimental, Edmunds (Ref. ) , Gandenberger 

(Ref. ) 1 Kalinske and Bliss (Ref. ) , Kalinske and Robertson (Ref. ) , 

Kent {Ref. ), Wisner et al. (Ref. ), Sailer (Ref. ), Zukowski (Ref. 

to name but a few. 

An analysis of air pocket 'blow-back' and air pocket "clearing" in inclined 

pipes will be carried out in Section 4.3, with experimental evidence presented 

in detail in Section 5.1. This section, 4.l(c), will concentrate therefore 

on general aspects of air pockets in inclined pipes, and in particular, deal 

with rising velocity of continuous and single air cavities in inclined pipes. 

In 1965,Zukowski (Ref. ) carried out an experimental study on the effect 

of viscosity, surface tension and conduit angle on the speed of continuous 

air cavities moving along conduits containing stationary water. Zukowski 

showed that air pocket propagation rates were substantially unaffected by 

viscous effects when Re )2001 where Re · = V R/,,, or put in an alternative o o r v 
manner, when v~;J)>4oo. If we substitute a typical value of rising velocity 

Vr""'0.5 JgD we obtain that the pipe diameter only requires to be 4-5 mm. 
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Even the substitution of very small rise velocities Vr- 0.1~ means that 

the pipe diameter only requires to be ll-12 mm to render viscous effects 

negligible. This will be discussed in more detail in the light of data 

from Wisner et al (Ref. ) who detected viscous effects in rising single 

air pockets up to V rD ;-y"' 105. 

According to Zukowski, surface tension effects are much more significant 

at least for continuous air void behaviour. This is clearly illustrated in 

Fig. 4.2, a plot of the air void rising velocity with pipe diameter assuming 

fluid properties remain constant. It is clear that for conduit angles other 

than vertical, surface tension remains an influence even for pipe diameters 

in excess of l:P mm diameter. 

The effect of conduit angle on the rise velocity of continuous voids is 

shown on Fig. 4.9. Zukowski's results are clearly indicated, and if we 

ignore the effect of increasing pipe diameter (decreasing surface tension 

effect) and discuss only the results for the largest 0.178 m diameter pipe, 

denoted by&. The following points of interest emerge:-

{i) for the vertical case (9= 90°), the rise velocity is given 

by Vrf.[@~0.35 which is the same result as obtained by 

several other authors discussed in (a) under vertical 

corrluits. Presumably the air void is rising up the centre 

line of the pipe rather than a pipe wall. This gives the 

apparently strange result that an air void propagates 

slowest up a vertical pipe. 

(ii) for the horizontal case (9'= 0°) the air void propagation 

rate is Vr/.{gD ~0,53 which is 2!fo less than the propagation 

rate predicted by Benjamin for movement with no energy loss. (E~n.~,n) 

(iii) the effect of conduit angle is clearly shown, with maximum 

air pocket velocities at a conduit angle generally between 

30° and 6o0 to the horizontal. 

This can be at least partly predicted as shown on the sketch 

below. cp is the angle the nose of the cavity makes with the 

pipe wall. L* 
FIG- 4-.lo 
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The vertical distance between 0 and A is H Cos& + L*Sin&, ani applying 

Bermoulli between 0 ani A J with 0 a stagnation point 

2 
H Cos 9 + L* Sine = VA /2g where VAAA = VrAp •••••••••• ( 4.26) 

.......... ( 4.27) 

If we asstune the shape of the nose is parabolic and asymptotic to A, then 

for ¢ = 6o0
, L*/n ~ l.lsH/n or more generally L*/n = ~ ~· The author 

has plotted below the form of Equation ( 4.27) for the particular case of 

Hfn = 0,4"Y(, A.A;~ = o, 58 and r;t = 60°, which is the energy conserving case 

of Benjamin. It can be seen from Fig.4.11 that Equation (4.27) is a good 

approximation to Zukowski Is data especially for e<;o0 but Equation ( 4.27) 

has been plotted for Hj D" L* /n ani ¢ constant. The variation of 

Vr/f gD with conduit angle 9, is at least illustrated to be a function of the 

vertical distance between the nose of the cavity and the point of maximum 

depth of air pocket. 

• • e,....,~(lf.l.?) 1> :l:,rl 

x ....... )( LkiC~s(t (])::O,I1trM) 

9a 0 

flr. '+·II 
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Runge and Wallis (Ref. ) investigated the parameters which affect the rise 

velocity of slugs in still water in an inclined pipe. They concluded that 

•••••••••••••••• ( 4. 28) 

where NF is the inverse viscosity term and NEo the surface tension Eotvos 

Number already discussed under vertical pipes. Fig. 4.12 shows a plot of 

Vr/Vr(goo) against the conduit angle for large values of ~ and If:F, so that 

surface tension and viscous effects are small. The pattern for slugs is very 

similar to the pattern of Zukowski 's data for conti ruous air voids. This is 

.again shown on Fig. 4.9 (alongside Zukowski's data) for a pipe diameter of 

0.0.38 m. 

As a preface to experimental work on clearing velocities for air voids in 

a downward sloping pipe, Wisner et al (Ref. ) conducted tests of the rise 

velocity of single air pockets in stationary water, in a pipe 244 mm diameter 

and sloping at 18. 5°. The result is shown in Fig. 4.13 where the non­

dimensional rise velocity is plotted with the Reynolds Number in the form 

VrD;)}, for various air pocket volumes. n is a measure of air pocket volume 

equal to Vol.;1fn3/4• This is a dubious measure, employed both by 

Gandenberger and Wisner, as it incorporates both the length (Lfn) and depth 

(H/n) of the pocket. It can be seen from Fig. 4.13 that the value of 

Vr/jiD only exceeds 0.5 for large air pocket sizes for single air voids, and 

a comparison with Zukowski's data at 18.5° reveals Vrj JgfS to be in excess of 

0. 6. This may be due to differences in character between continuous and 

single air pockets: Wisner's data relates more to the slug flow data of 

Runge and Wallis. 

The other point of interest in the data of Wisner et al, is that their data 

has been combined with some of Gandenberger' s data to produce the variation 

in rise velocity with Reynolds Number. A Reynolds Number of 105 is required 

to render viscous effects negligible, which is in sharp contrast to Zukowski's 

claim. .t:nat viscous effects are negligible for Re)4oO. This remains an open 

question, but it surely might be of interest to plot Wisner's data with the 

Weber Number ( ~\lvr 2D/6') as surface tension effects are thought to be more 

significant. 

Bacopolous (Ref. ) conducted experiments on the rise velocity of single 

air cavities in stationary water for pipe slopes up to 1.65% or 0.945° and a 

pipe diameter of 0.219 m. The result is shown on Fig. 4.14 for slopes of 

1.25%, 1.5% and 1.65%, corresponding to conduit angles ttl= 0.716°, 0.86° and 

I '1'"'1 
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The result is plotted with the cavity depth parameter, HID· It 

should be noted that Bacopolous also attempted correlations of the air 

pocket rise velocity Vrl{gn with the overall length of the air pocket (LID) 

am also the air volume Vol/1Tn31 4• The most significant correlations (at 

least for shallow conduit a.Ilgles) are with cavity depth, HID, am the author 

feels that this should be adopted in future correlations, rather than the 

cavity volume. It can be seen from Fig. 4.14 that the air pocket velocity 

varies significantly with HID, in a similar pattern to that of Benjamin 

(Fig. 4.6), with the maximum values of VriJ8P well in excess of 0.5. This 

corresponds closel~ with Zukowski's data for continuous cavities at the same 

conduit slope, suggesting that Wisner's data may represent a slight under­

estimation of cavity speeds, possibly due to differing experimental conditions 

or techniques. 

For the case of air pockets travelling in an inclined conduit under moving 

water conditions one would expect a correlation similar to the drift flux 

model outlined for vertical conduits, 

................ ( 4. 29) 

where co might be 1,2 as for vertical am horizontal conduits am cl might 

vary with HID am the a.Ilgle & as discussed under stationary flow conditions 

above. Typical values of c1 for Zukowski's data (Fig. 4.9) are 0.35~0.63, 

Runge and Wallis c1 = 0.35 .. 0.56, etc. 

Bonneca3e.(Ref. ) investigated slug flow under moving water conditions 

for a pipe sloping from +10° in the upward direction to -10° in the downward 

direction. The data correlates, 

o•••••••••••••••(4.~) 

where the + sign is used for upward sloping pipes and - for downward sloping 

pipes. It is not certain why c1 = 0. 35 remained constant for all pipe 

slopes, as almost all other research reveals a substantial variation with 

conduit slope. 

Ervine am Himmo (unpublished) conducted experiments in a pipe (152 rmn 

diameter) sloping at 1.5° in the upward direction. This will be discussed 

in some detail in Section 4.2. The results were correlated in bands of air 

cavity depth HjD, with the plot of Vb against (j) shown on Fig if-. 19. The 

correlations in Equations ( 4-.Cf.l ) to ( if., 44- ) reveall 
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where f(H/n) is very similar to the pattern produced by Bacopolous for 

stationary flows. For H;D varying from 0.1 to 0.35, the value of c1 
varied from 0.4 to 0.581. 

Thus for Civil Engineering type air pocket flows we might speculate that 

the speed of ail air pocket in pipes sloping upwards (at angle & ) ani umer 

moving water con:iitions, is given by, 

vb '!:: 1-.1.2 < f') + f (H/n;,~) .[@" 

where <J l = (Qa + ~)/A pipe 

··~~·············(4.32) 

f ( H /n) is approximately as predicted by Benjamin or Bacopolous 

f (~) is approximately as predicted by Zukowski, with Zukowski's 

curve for pipe diameter 0.178 m representing the maximum 

air cavity speeds for any value of H/n? 
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Section 4.2. Extension of Benjamin's analysis to the case of single air 

pockets in mildly sloping pipes 

This problem has been recently tackled by Bacopoulos (Ref. ) under the 

general supervision of Dr. J. Townson at the University of Strathclyde, 

Glasgow. Bacopolous formulated theoretical models for both continuous and 

single air cavities. We will confine our discussion to the case of a 

single air cavity shown overleaf on Fig. 4.15. 

are made as follows:-

Several important assumptions 

(a) The cavity moves at a constant speed along a long circular pipe of 

diameter D, the pipe sloping at angleS to the horizontal. 

(b) The water ahead of the cavity is stationary, but the cavity moves 

at speed c
1

• The cavity is brought to rest by applying a relative 

velocity backwards of c
1

• 

(c) For convenience of analysis the 'cavity is sub-divided into four 

zones as indicated 

- Zone OA is of length L1 , and is assumed to be a parabola making 

an angle 60° at point 0, and approaching asymptotically a line 

parallel to the pipe axis at point A. 

cavity (H) occurs at point A. 

The maximum depth of the 

- Zone AE is of length L2 and is a low Fro\rie Number hydraulic 

jump which may either be an undular jump or incorporate a breaking 

wave. Bacopolous used an experimental expression for the jump 

length L
2

, in the form 

(
HjD - 0.14 

+ 0,27 ) 0.55 ................ (4.33) 

- Zone EZ is of arbitrary length 2D (= L3) 

- Zone Z to the end of the cavity is simply the horizontal interface 

between air and water, and is effectively the tail of the air 

cavity. 

(d) the velocity profile at section AAf (see Fig. 4.15) is assumed to be 

rectangular on account of its proximity to the nose of the cavity 001 
where the water starts moving. The resistance to flow in the region 

OOC AA
1 

is unknown, but Bacopolous tries three possibilities 
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No resistance present (i) 
(ii) 

(iii) 

2/3 of water weight in 00 1 AA r balance<j by resistance. 

resistance from D'Arcy-Weisbach using estimates of 

friction factor~ • 

(e) the water velocity profile at section zz
1 

(Fig.4.15) is assumed to be 

parabolic which seems a reasonable first estimate in view of the 

difficulty in estimating boundary layer growth from the front end of 

the cavity to the point zz
1 

for this 3-dimensional case. Bacopolous 

goes to some lengths to calculate the momentum correction factor for 

section zz
1 

to provide a more accurate assessment of the momentum 

flux at that point. 

The analysis (force/momentum, etc.) of the sections AA1 and zz
1 

was 

attempted again using the three possibilities of resistance to flow 

outlined above, under (d). 

Let us now consider the analysis for the relationship between the cavity 

speed ell~ and the cavity depth, Hfn· 
Applying Bernoulli's equation between point B, some distance upstream 

where only a relative velocity of c1 is occuring, and point 0 at the nose 

of the cavity. Point 0 is considered to be a stagnation point with zero 

velocity, and also the datum point for the analysis. 

p c 2 
B + _1 + L Sin~ 

~g 2g 0 

Pair 0 
-- +- + 0 •••••••••••••••• (4.,3lt) 
~g 2g 

The pressure in the air pocket is denoted by Pair" and no resistance to 

flow occurs over this length L
0

• Hence we obtain, 

PB pair 2 
- - -- + L Sin 4ft = - c1 I 2g 
~g ~g 0 

•••••••••••••••• ( 4. 35) 

We now apply force/momentum balance between sections BB1 and AA1 

(Pressure at BB
1

) + (.1\bmentum flux at BB1 ) 

- (Pressure at AA1 ) - (Nbmentum flux at AA1 ) 

+(Water weight between BB1 and oo1 ) + (Water weight 

-(Resistance between 001 and AA1 ) = 0 
•••••••••••••••• ( 4.,;6) 

Assuming the velocity at Point AA
1 

is c2~ the area at AA
1 

is given by A, 

and the pipe is of radius r, we obtain, 
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(PBX 11"z2 + Trz2 x ~grCost7) + ( ~"tr~c12) 

-(Pairrrr
2 

+ egrCose(Acos a+ 2/3 r
2
Sin3aJ) - (~A c2

2
) 

+ ( ~ g iTr~0 Sin 9) + ( ~gSin~ x Volume water between 00
1 

and AA
1

) 

- (Resistance between 00
1 

and AA
1

) = 0 
••••••••••••••.• (4.37) 

It should be noted here that the area of flow (A) in a partially filled 

circular pipe is given by 

•••••••••••••••• (4.~) 

where a is the half angle illustrated on Fig.4.15. 

The resulting hydrostatic pressure force from a partially filled pipe is 

given by 

F •••••••••••••••• (4.~) 

so that when the pipe is full, a = o and F = ~ gr ~ = ~g ~. 

Finally, the energy equation (4.35) can be combined with the force-momentum 

equation ( 4. 37) and also with the continuity equation ( c
1 

iT r 2 
= c

2 
A) where 

A is the area of section AA
1

, to provide a relationship between the speed of 

an air cavity and its depth Hfn· To complete this analysis, Bacopolous 

calculated the volume of water between 001 and AA
1 

assuming the parabolic 

shaped cavity nose. As pointed out previously, three values of resistance 

between oo
1 

and AA
1 

were used. The final resulting relationship for a 
FIG- 'f.. lb H 

con:iuit slope of 1.65%, is shown on the table ~below for various values of In· 

H 0.10 0.20 0.30 o.4o i5 
a) no resistance present 0.4239 0.5:fS7 0.5716 0.5597 

b) ~ of water weight 0.4213 0.5335 0.5682 0.5565 
3 
component is balanced 

by resistance 

c) resistance is given by 0.4239 0.5:fS7 0.5716 0.5597 

the equation of 

turbulent flow. 

Fig. 4.16. 
cl 

Variation of dimensionless air cavity velocity 
1

;
2 (gD) 

with resistance condition. Slope of pipe = 1.65%. 



A few points of interest emerge from Table 4.16 above, 

(i) The inclusion of a flow resistance term from Section 00
1 

to AA
1 

makes no difference to the eventual cavity speed. 

(ii) The air cavity velocity varies with the value of Hfn as shown. The 

trend is the same as that predicted by Benjamin for the 2-dimensional 

case (see Fig. 4.6) of a continuous air cavity. 

(iii) The parameter HjD is nruch more significant in correlating air cavity 

behaviour than other parameters, such as Lfn (the cavity length) or 

the air volume held in the cavity. This was illustrated in the 

experimental correlations of Bacopolous (Ref. ). 

(iv) The author has plotted the theoretical result of Bacopolous (for a 

pipe slope of 1.65% and stationary water) alongside experimental 

data for the same condition. This is illustrated on Fig. 4.17 by 

the points denoted X (theoretical) and + (experimental). It is 

clear that for the range shown, the theoretical prediction of air 

cavity speed overestimates the experimental values. This occurs 

at least for H/n values less than 0.4, but the reverse is the case 

for HjD from 0.4 to 0.5. (not shown). 

Bacopolous continued his single air cavity analysis by calculating a 

theoretical length of the cavity, L;D, and plotting the result against the 

cavity depth, HfD· The total length of the cavity was calculated by summing 

theoretical estimates of the four separate zone lengths, L = L
1

+L
2

+2D+L4. 
The result, for a pipe slope of 1.65% is shown on Fig. 4.18, again for the 

three flow resistance estimates. For this particular angle of conduit, most 

of the air pocket lengths are in the region of 10-15 pipe diameters, although 

this nrust decrease for steeper conduit angles and increase for shallower 

con:iui t angles. 

The analysis of Bacopolous an:i Townson may prove to be a useful tool in 

predicting air pocket behaviour. So far it has been applied only for 

shallow conduit angles, up to 1.65% or 0.945°1 and to stationary flow 

conditions. It would be of interest to see if this work could be extended 

over the full range of conduit angles and also under moving water conditions 

which is nruch more commonly the case. 
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Certainly for the case of a shallow angle of conduit, the work of Bacopolous 

could be easily extended for the moving water case, when an allowance for 

pipe wall friction between sections BB
1 

and 001 would be required. 

Regarding the speed of air cavities under moving water conditions, Ervine 

and Hirnmo (not yet published) have recently measured air pocket speeds along 

a perspex pipe (152 rnrn diameter) over a wide range of water velocities. The 

work( which will be described in detail in Section 5.2,) is a study of air 

pocket formation at the junction of a vertical dropshaft and a horizontal or 

almost horizontal tunnel outlet. A series of successive air pockets travel 

along the turmel under the influence both of buoyancy and moving water, as 

shown on Fig.5. • The tests described below apply to the tunnel section 

inclined at an upward angle of 1. 5° which is slightly steeper than that of 

Bacopolous (0.945°), and with the air pockets shape and speed measured by 

Churchill wave probes. 

The air pocket shape approximates very closely to that sketched by 

Bacopolous on Fig. 4.15 with three discernible sections, the initial nose, 

the hydraulic jump and the tail of the pocket. Before discussing the 

experimental data of the air pocket speed Vb, we should note that the speed 

of air pockets (or slugs) has been shown by previous authors to have the 

.. 



form, 

v b = co < j) + cl ['@' ••o••••••••••••e(4olto) 

where (j> is the mean velocity of the whole air-water mixture (QA + ~)/Ap, 

which is a better measure for the case of successive air pockets passing 

along the pipe. We have already seen that for the vertical pipe case at 

high Reynolds Numbers c-0-1.2 and Cl"" OJ35, whereas for inclined pipes 

cl at least increases above 0.35. 

The experimental results of Ervine and Himmo are shown on Fig. 4.19 which 

is a plot of the air pocket speed Vb against the mean velocity of the 

flowing mixture \ j) • The slope of this data should then be equal to C0 

and the intercept equal to c1 { gD" where D = 0 .152 m. On inspection of the 

data, it was found that a series of almost parallel lines could be drawn, 

corresponding to each range of the cavity depth, H;D" which was also 

measured. The value of C0 which was expected to be 1,2 varied slightly with 

each range of HjD between-1.055 and 1.11. Regression analysis of each band 

of HjD revealed, 

0.1 <. HjD < 0.2, 

vb = l.ll(j) + o.4 j@ ................ ( 4.41) 

0.2 < HjD ~ 0.25, 

Vb = 1.076 (j) + 0. r5JlfgD ••••••••••••••• 0 ( 4. 42) 

0.25 < HjD < 0.3, 

vb = • 1.055 (j) + o.5r:P[@ ooooeeeeeeeeoeee(4o43) 

0.3 < H/n<0.35, 

vb = 1.096 <j) + o.581Jgn o o o • o o eo • o • • • c • o ( 4.44) 

all for a conduit slope of 1.5°. This indicates quite clearly that although 

the value of C
0 

may be approximately constant, the value of c1 varies with 

Hjn, for a given conduit slope. We have already seen that c1 varies with 

slope of conduit in Section 4.1. The author has plotted the experimental 

values of c1 above with the experimental and theoretical data of Bacopolous 

<ce = 0.945°) on Figure 4.17 (points marked ®), showing good agreement. By 

implication, if the work of Bacopolous can be extended to any conduit angle 

9 , then accurate values of c1 can be predicted for the full range of H;D 

and conduit angle, and because C0 remains fairly constant between 1 and 1.2 

we may be able to predict air pocket speeds accurately over a wide range of 

conditions. 
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Section 4.3. Analysis of air pocket 'blow-back' and cleaning conditions 

for downward sloping pipes 

In Sections 5.1 and 5.2 we will investigate experimental evidence for 

blow-back and cleaning conditions for air pockets at a dropshaft/tunnel 

junction (5.1.) and downward sloping pipes (5.1.). Both scenarios are 

sketched below, and in each case the air pocket may remain stationary, blow 

backwards against the flow, or be cleared downstream with the flow. 

FIG· 4-.2o (b) 

Drop§tr.H / t'l4,,eL jl.tttb~f\ 

' ' ' 
F'IG- 4-.20 ( lt) doi.\lhWCll'd.. Slop\~ V'rt 

For the case of the dropshaft/tunnel junction we will concent~~te ~n the 

work of Townson (Ref. L Golding (Ref. ) and Ervine and Himmo (Ref. 

in Section 5 ."l .• 

For the case of high points and downward sloping pipes we will concentrate 

on the work of KaJ.inske and Robertson (Ref. ) 1 KaJ.inske and Bliss (Ref. ) , 

Edmunds (Ref. L Gandenberger (Ref. ) , Wisner et al (Ref. ) , 

Kent (Ref. ) , Sailer (Ref. ) and Golding (Ref. ) , in Section 5. L 

In this section it is intended to explore a slightly more fundamental 

approach to the problems of blow-back and cleaning, although this may prove 

somewhat speculative in nature. 

Blow-back 

The author proposes below a tentative scheme to predict air pocket blow­

backs in a straight downward sloping pipe, where the air pocket is formed by 

a coalescenc;.eof entrained air bubbles, downstream of a hydraulic jump, for 

instance. Air bubbles are assumed to be uniformly distributed passing 

section oo1 and are assumed to have coalesced into the. air pocket at a 

distance L1, as shown in Fig. 4.21. The water velocity averaged over the 

entire pipe area is V0 , but is modified to account for the volume occupied 
v 

by air bubbles to give a velocity ...JL
1 

= V (1+ B), where Qis the ratio of 
-0( 0 . t' 

air to water. The air pocket is assumed to be stationary, but on the point 



of blow-back1 so that it might take up a shape similar to that sketched. 

The velocity to be calculated V is1 therefore 1 the velocity required to 
0 

keep the air pocket stationary1 and velocities less than this would allow 

blow-back to occur. Two methods of analysis which might be employed are 

(i) simplified energy method and (ii) force/momentum balance 

.. 

F l G· Lt-. 2\ 'Pcd<d· an it~t poi~ of- bloLI)baclt. 

(1) Simplified energy procedure 

Assuming no energy loss occurs between 0 and A on the air pocket surface 

(energy loss is concentrated in the jump) and assuming that Point 0 is a 

stagnation point1 we may apply Bernoulli between these two points. If the 

pocket length between 0 and A along the pipe is L* and the pocket depth 

normal to the pipe wall is H1 then the vertical distance between 0 and A is 

given by H Cos~ + L* Sinti • The application of Bernoulli assuming the 

same air pocket pressure at 0 and A gives 

0 pair 
HCos<e + L*Sin& +- + -- = 2g g 

which becomes 

v2 
:g = HCos f) + L* Sin 9' 

v 2 P. 
0+~+~ 

2g g 

•••.•.••••••••.• (4.45) 

................ ( 4.46) 

If we now apply contirnrl. ty between BB1 and M1~ with a distribution of air 

bubbles at Section BB1 we obtain 



eo • o e • e • o • • o • e o • ( 4 o 47) 

where Ap is the full pipe area1 and AA the area of flow at Section AA
1 

AA is depen:lent on Hfn1 and is given by AP (1 - lSo + s~~a) 1 as already 

discussed under the work of Bacopolous in Section 4.2. Combining equations 

( 4.46) ani ( 4.4 ) we obtain 

............... . (4.48) 

a Sin2a 
where AA/A is given by 1 - IBO + 21T' • 

p 

This relationship when solved for a range of H/n values (ani hence AA/Ap 

values) will give the water velocity required to keep a pocket from blowing­

back in a straight downward sloping pipe. The main point of difficulty is 

an estimation of the value of L* In· Using the reasoning of Bacopolous that 

the curve OA is a parabola with vertex at A ani passing through 0 1 making an 

angle ¢ at that point. It can be shown that 

L*/n = 2 H/n lftanrp o••e••••••••••••{4.49) 

A value of ¢ proposed by Von Karrn<Ul and also Benjamin is fiJ0 
1 whereas visual 

observations (photographic) reveal the angle of the nose often to be less 

than 6o0
• If we simply assume ¢ 'V 60° meanwhile1 then L*/n""Ll5 H/n. The 

author has used equation ( 4.48) for conduit angles up to ;JJ0 ani for values 

of Hfn between 0.1 and 0.51 to predict the velocity (or Froude Number) 

required to keep an air pocket stable. The result, using the energy equation 

and ¢:: 6o0 
1 is shown on Fig. 4.22 by the dashed line1 revealing that for 

downward sloping pipes9<;JJ0
, for typical air pocket depths O.l<.H/n<0.5, a 

Frowe Number of the region of 0. 5-"0. 7 is required to keep an air pocket from 

blowing-back. This is a first order estimate showing that blow-back conditions 

are strongly dependent on the cavity depth H;D ani the conduit slope & • 

Fig. 4.22 does obscure possible variations in the angle of the nose of the 

air pocket ¢. For steeper con:luit slopes it is quite possible the ¢ may 

reduce from 60°. If we take an extreme reduction in¢ say from 60° to 30° 

then from equation (4.49), L*/D will increase from 1.15 H;D to 3.46 H;D·· 

When this is substituted into the energy equation we obtain much higher 

values of the Frou:ie Number required to prevent blow-back in a straight 

downward sloping pipe. In fact, a wide range of values of Voj .jiiD can be 

obtained, depending on the choice of ¢1 9- 1 and HjD• 
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cii) 
The author has aJ.so analysed this situation using a force/momentum baJ.ance 

and continuity between BB1 and ~ combined with Bernoulli applied between 

B and 0. The anaJ.ysis is similar to that of Bacopolous (Section 4.2) ani 

reveaJ.s a solution for the Frou.de Number required to prevent an air pocket 

from blowing back in the form 

2 A l. 3 D 
( v 0 ) = _co_s_(_l_-_A_/_~;;...c_o_s_a-_'/~3_s_i_n-::-a_)_+_(_w_t_. w_a_t_e_r_f_r_o_m_o_o-=1~t_o_AA....;1:../____;:e.~gA-=P:.........=./ 2 ) 

{gD (1~)2 (2(APfA\-l) 

oee~•••••••••••••(4.:;c)) 

Further details may be obtained from the author, but the result is shown 

on Fig. 4.22 represented by the solid lines for 0.1 <Hfn<.o.s, and for a 

constant angle of the front nose of the cavity ¢:::. 6o0 • The theoreticaJ. 

curves presented on Fig. 4.22 are in close agreement with the "limit bubble" 

data of Veronese and in the same region as the void removaJ. and blow-back 

data plotted by Golding and shown on Fig. 5. 

Clearing 

In the section above, the velocity (or Fro~e Number) required to keep an 

air pocket stable or from "blowing-back" was discussed. It might be 

postulated that velocities higher than this would cause clearing of the 

pocket downstream aJ.ong the conduit. The problem is more complicated than 

this, for the reasons outlined below. 

(1) The velocity required to clear an air pocket (V ) must be somewhat c 
greater than the velocity required to hold the air pocket from blowing-back. 

This is due to the fact that an air pocket must change shape before clearing, 

as shown below 

---

Fig. 4.23 (a) Pocket stationary but Fig.4.23 (b) pocket stationary, but 
on the point of blow-back. on the point of clearing. 

The nose of the cavity facing the oncoming flow must flatten, so that ¢ < 60° 

for clearing. .We have aJ.ready used the energy principle for blow-backs 



(¢ ~ 60°)~ illustrating that the blow-back velocity is a function of 

HID~ ~ and ¢. Suppose that the energy principle can be used for clearing~ 
this time with ¢ < 60° with the nose facing the oncoming flow still 

approximating to a parabola of shape LID = 
2ltancp.H;D. This is put 

forward without much justification. If we assume~ as an order of magnitude~ 

that¢ reduces to ;IJ0 say~ then LID~3.46 HID~ and the energy equation for 

clearing becomes 

................ (4.51) 

where H is the maximum cavity depth and AA is the area of flow under the 

cavity at this point. The author has calculated Vel .[i,D for various conduit 

slopesS ~ with the result shown on Fig. 4.24 for HID = 0.1 and HID = 0.3. 

Equation ( 4.51) is also compared with experimental data from Kent~ Wisner and 

Gandenberger. For H;'D = 0.3~ the equation is very similar to the data of 

Kent~ and is practically identical to the median value of Wisner's data. 

Gandenberger's data for larger air volumes (say n)0.5) corresponds 

approximately to HID-.~0.2. Clearly it is possible to use Equation (4.51) 

to correlate any experimental cleaning velocity data~ depending on the choice 

of ¢ and air pocket depths~· HID· A question which remains~ can¢ or HID 

be predicted for any experimental set-up? This is presently being investig­

ated. 

(11) Air pocket clearing downstream in a downward sloping pipe is further 

complicated by concept of partial clearing by hydraulic jump entrainment at 

the downstream end of the air void. This is illustrated in the sketch 

below~ Fig. 4.25. It is often the case with substantial upstream Froud.e 

rn.unbers Vol[@ and larger air pocket depths (HfD)~ that the Froude Number 

under the air pocket Vll{ gA/B is greater than one~ a hydraulic jump forms~ 

and air is carried out of the jump by entrainment. The entrained air may 

further coalesce at some point downstream but may well be transported because 

the values of HID are much smaller than the main air pocket. See Equation 

(4.51). When this occurs~ and the main air pocket is not fed with air 

transport from upstream~ then the cavity may reduce in size until it~ HID 

value is small enough for the pocket to be clear bodily. The rate of air 

transport from the jump may be calculated either from Kalinske and Robertson's 

equation~ Thomas equation or the Ervine and Ahmed equation~ all discussed in 

Sections 3.2 and 3.3. This type of entrainment will cease when the Frou:le 
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SECTION 5 

AIR POCKET FLOWS - Experimental evidence and 

empirical relationships. 

5.1. Air pocket blow-back and clearing in 

downward sloping pipes. 

5.2. The formation1 blow-back and clearing of 

air pockets forming at dropshaft/tunnel 

junctions. Analysis and experimental 

evidence. 
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Section 5.1. Air pocket blow-back and clearing in downward sloping pipes 

The type of air pocket formation to be discussed in this section is 

illustrated in Fig. 5.4(a)-(c). In (a), pockets may form downstream of 

a hydraulic jump due to the coalescence of small air bubbles, a.r.d the 

resultant air pockets may 'blow-back' towards the jumpJ> remain stationary 

or clear downstream. In (b) a pocket may form at a high point in a pipe­

line or siphon and removal of the pocket might proceed either by entrainment 

of air at a jump, or the bodily sweeping out of the pocket. In (c), a 

stationary or equilibrium void might occur, where buoyancy and drag forces 

are in balance. 

Several experimenters have investigated clearing of air pockets, but, to 

the authors knowledge, no investigation to date has been set up specifically 

to look at air pocket blow-back. When blow-back has been mentioned in past 

experimentsJ> it usually features as a side-effect, with an inadequate set of 

flow parameters for detailed analysis. 

Some photographs are presented overleaf, Fig. 5.1, 5.2 and 5.3, illustrating 

air pocket clearing and blow-back in a downward sloping pipe with angle 1.5° 

below the horizontal. Fig. 5.1 illustrates how an air void might be removed 

by the gradual entrainment of air at the downstream end of the void. Fig. 5.2 

shows a typical small air void being swept along the conduit in the same 

direction as th~ now. Fig. 5.3 shows small air pockets blowing-back against 

the direction of the flow. In ma.ny cases, whether sweeping out or blowing 

back, a small breaking wave often exists at the downstream end of the pocket. 

The purpose of this sectionJ> therefore, is to determine the conditions and 

now parameters which lead to the various modes of air pocket behaviour. 

Blow-backs and clearing in downward sloping pipes - experimental evidence 

This problem has been recently reviewed by Goldring (Private Communication -

Feb.l985) in which he states that the specific problem of blow-back has 

received little or no attention. Mbst of the work is concentrated on either 

air entrainment or air pocket removal in downward sloping pipes. Gold1'"'in9 

highlights three types of experiments which have been carried out, as shown 

on Fig. 5.4. Fig. 5.4( a) is the only one where the now parameters at 

blow-back were measured and published, Fig. 5.4(b) relates to experiments 

designed to determine the flow parameters to remove an air pocket from a 

high point··in a pipe line and, Fig. 5.4(c) relates to now parameters designed 

to keep an air pocket stationary. 
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The earliest reference to "blow-back" is highlighted in a paper by 

Kalinske and Robertson (Ref. ) # while investigating the air entraining 

capacity of a hydraulic jump formed downstream of a gate in a downward 

sloping circular pipe ( 9 ~ 16. rro) ani pipe diameter 0 .15 m. "The air 

pumped by the jump would form a large bubble just beyond the jump ••••••• 

periodically this large bubble would blow out over the jump ••••••• ". They 

show a graph# Fig. 5.5# which is a plot of the fractional depth Yl/ ani 

the Froude Number just upstream of the jump Vl/jgA-1/Bl# below whichDonly 

a fraction of the entrained air would be transported. We may assume that 

blow-backs occur up to this limiting Froude Number. As the fractional 

depth (Yl/n) has been specified# we may translate this limiting upstream 

Froude Number# Fr1# into a limiting pipe-full Froude Number Vo; ~ ~ 

which blow-backs will occur. This is shown on Fig. 5.6 ani compared with 

the authors theoretical equation for blow-back Eqn. 4.48 ani 4.49 with ¢ 

constant at 6J0 • The data of Kalinske ani Robertson represents an upstream 

fractional depth of 0.15 and 0.3 respectively. 

It can be seen from Fig. 5.6 that the authors energy equation for ¢ = 6o0 

is generally an underestimate of the limiting Froude Number for blow-back 

except for very shallow conduits# say&<l0 • The reason for this must be 

related to the author's naive energy model# where the length of the cavity 

L* to the point of maximum cavity depth H, (see Section 4.3) is assumed in 

this case to be L*/D = 2H/D 1/ta.n3# where ¢is the angle of the cavity nose 

to the pipe wall. (6o0 ). A good correlation with Kalinske and Robertson's 

data can be achieved by the simple expedient of increasing L* in the energy 

equation ( 4. 48) # by reducing ¢ from 6J0 to somewhere around ,:,J -4o0 
• 

Unfortunately# Kalinske did not provide enough data on the shape# depth ani 

ler:gth of the air cavity downstream of the hydraulic jump to provide a 

meaningful comparison with theory. It is of interest to rote, however, 

that the limiting Froude Number Voj'~increases with the upstream fractional 

depth, Yl/n# as shown on Fig. 5.6 for the cases Yljn= 0.15 ani Y1/n = 0.3. 

According to Kalinske's data, when Yljn = 0.15, Fr1~15-20# ani the air/water 

ratio approaching the air cavity should be around 0.3-0.4. When Y1/n = 0.3# 

Fr1 ~5-7 and the ratio of air to water for 0.06-0.l. If we now return to 

the full energy Equation ( 4. 48) # it has been shown that 
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+ i-'* /nSin '& •••••••••••• (5.1) 

indicating that the limiting blow-back Froude number will decrease with 

increasing~ • In this particular case, Voj [iD should ratio on 

(1 + 0.35)/(1 + 0.08)~1.25, which is approximately the case for the two 

values of Y1/D shown. Clearly a more definite study of blow-back is 

required before the influence of the upstream air/water ratio, the cavity 

depth H;D, the cavity length L*/n and the angle of the cavity nose ¢ can 

be properly ascertained. The important point meantime, is that Kalinske 

and Robertson propose that blow-back will occur when the Froude Number is 

less than the limiting Froude Number. 

This is in sharp contrast to the findings of Sailer (Ref. )who 

reported that the U.S.B.R. had analysed the flows in the downslopes of 21 

different siphons ranging from 0.61 m to 2.82 m diameter. The results 

were plotted on the same graph as Kalinske and Robertson (Fig. 5.7), 

indicating that blow-backs occurred when the flowing Froude Number was 

greater than the limiting Froude Number, whereas conditions, on, or less 

than Kalinske and Robertson's curves did not produce blow-back. Goldrj~ 

has translated Sailer's upstream Froude Numbers into pipe-full Froude 

Numbers Vo;~ and has proposed, tentatively, as shown on Fig. 5.8, that 

Sailer's blow-back problems were confined to flows where the pipe-full flow 

is supercritical, and hence it is not possible for a hydraulic jump to form. 

(Vo;{iD) 1). If the hydraulic jump cannot form at the downstream erxi of 

the air pocket, then the pocket cannot even partially clear by air entrain­

ment, and hence it is probable that an air pocket in the downstream leg of 

the siphon would develop a large cavity depth Hj D.r a long length L* /n.r and 

would only be removed by bodily sweeping. This is the worst possible 

condition and a warning perhaps to avoid supercritical pipe-full flows if 

possible. Sailer did not have any problems with blow-backs in sub-critical 

pipe full flow as illustrated by points marked A on Goldtin!(s graph 

(Fig. 5.8). 

Kalinske and miss (Ref. ) investigated air void removal from a high 

point in a pipeline as shown on Fig. 5.4. Two pipes of 0.1 m and 0.15 m 

diameter were used and downward slopes up to 8.5° were tested. Their data 

line is shown on Goldri~)s graph (Fig. 5.8) and essentially represents an 

equilibrium air-void line above which air pockets would be removed down-

stream. Their work was similar to the previous work of Kalinske and 
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Robertson, except that fractional depths Yl/n, were not controlled by a 

sliding gate mechanism. They employed a simplified drag/buoyancy 

relationship to show that the velocity required to clear an air pocket 

downstream could be given by 

f.n"f{ ................ (5.2) 

where K is a constant, S the downstream slope of the pipe and Cd the drag 

coefficient of the water on the air pocket. This relationship was used by 

Kalinske and Bliss to show that if Cd could be considered constant, then 

the clearing Froude Number would be proportional to {tan'&- or / Sin& • 

Unfortunately, Kalinske and Bliss did oot produce enough data on Fractional 

depths, upstream Froude Numbers, shape and size of air pockets, etc. to make 

a detailed analysis. We are simply left with the curve shown on Fig. 5.8 

and to speculate on the obvious questions of (i) why smaller Froude Numbers 

are required for clearing than the blow-back Froude Number data of Kalinske 

and Robertson, and (ii) why their data does oot coincide with comparable 

data of Gandenberger, Kent, etc. 

Kalinske and Bliss indicate that a hydraulic jump occurred at the down­

stream end of the upper air void, entraining air and transporting along the 

sloping con:iuit. If the conduit is relatively short, then a large or 

substantial proportion of air may have been transported in the form of small 

bubbles (as in Sections 2 and 3), although it is clear that secon:iary air 

voids did occur downstream of the jump, and were responsible for blow-backs 

into the upper air void. This type of bubbly mixture transport (if it did 

occur) does not scale on Froude Number Vo; ;g& as the size of bubbles 

produceO. at the plunge point are similar in model and prototype. The bubble 

transport phenomenon is dependent on absolute velocities, whereas air pocket 

transport scales on Froude Number. What happens if a mixture of the two 

types of transport occurred, not only with Kalinske and Bliss but also 

Kalinske and Robertson? 

Suppose, hypothetically, that small air bubble transport was dominant, 

then according to Thomas (Ref. ) the upstream jet velocity to transport 

air might be given by U lmin;\J /br ~Cos 8;£, where t the turbulence intensity 

is say lj 20 _,. -ft:.. For small angles Cos e ~1 and we find Ulmin ~ 4 ~20Ubr, or 

u 
lmin anywhere from 1 to 5 m/ s. The pipe full velocity to transport air 

is then given by Vo = Ul Al/Ap = f (Ul Yl/n), and thus will increase with 
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increasing fractional depth. This is illustrated for the data of Kalinske 

and Robertson, Fig. 5.9, for Ylln varying from 0.1 to 0.5. For bubbly 

mixture transport only, V o 1 {iiD will vary with varying conduit dimension 

D, as Vo remains constant for a given a and Y1ID value irrespective of the 

conduit dimension. 

The other end of the spectrum requires that all air transport is in the 

form of air pockets and will thus scale on a Froude Number Vo I{@· The 

main e£fect of Ylld would then be the amount of air entrained by the jump, 

p, and its effect on possible blow-back conditions. That is, small Ylln 

values generally correspond to high upstream Froude Numbers, Fr
1

, 

corresponding to high~ values, corresponding to lower blow-back Froude 

Numbers. A secondary effect might be the positioning of the secondary air 

pocket downstream of the wake of the jump. 

Thus we cannot make definitive analyses of this work as details of the 

mode of air bubble transport are not given. It is surprising that the 

Kalinske and Bliss data falls on one curve, and may be an indicator that 

only a small range of values of Ylln were obtained for the limiting Froude 

Number, and also that these values of Ylln would appear to lie in the 

region of 0.05 to 0.2 as shown on Fig. 5.9. As already pointed out, 

Kalinske and Bliss had no control of Ylln values. 
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Extrapolation of the Kalinske and Bliss curve beyond 8.5° slope is not 

advisable as it is not clear how the limiting Froude Number varies with the 

fractional depth Y1/D1 for steeper angles. 

Kent (Ref. carried out an experimental study of air pocket movements 

in a 4" diameter ( 0 .1 m;t) downward sloping pipe at angles ranging from 15° 

to 60°. The type of experiment is essentially the equilibrium void type 

as shown on Fig. 5.4(c) 1 and the emphasis rests on the pipe-full water 

velocity required to keep the air void stationary. Velocities greater than 

this limiting value would cause the air void to move downstream. 

Using a buoyancy-drag analysis, Kent proposed, 

( ~ w- fa) g Y Sin f)' = ~ C d A 1 f w V o 2 •••••••••••• (5.3) 

where Y is the air pocket volume 

'S is con:iui t angle 

A1 is the area of the pocket exposed to the oncoming flow 

Cd is a drag coefficient 

V is the velocity required to keep the pocket stationary. 
0 

Assuming that V/A
1 

is proportional to the air pocket length L1 which in 

turn has geometric similarity with the conduit dimension D, Equation (5.3) 

reduces to 

v 
0 

.••••••••••••••• (5.~) 

where K is a function of the drag coefficient ani given by Kent to be equal 

to 1.62./f" • Tlie value of 3 is 0. 58 for air pocket lengths greater than 

Lfn '> 1.5. That is, for longer air pockets, Lfn ) 1.5, Equation (S'·Lf-) 

becomes, 
v 

V
0 
~ 1.2)4 r gDBin ij or '~ 0: 1.2)4 J Sin 6 ........... (5.5) 

This is an approximate fit to Kent's data, which is illustrated on Fig. 4.24, 

Fig. 5.8 ani Fig. 5.9. Kent's data for air pockets of L;D ~1.51 differs 

from other data in the sense that it does not in:iicate a broad range of 

equilibrium Froude Numbers correspon:iing to a range of fractional depths 

un:ier the air pocket Yl/n· One can only assume that Yl/n just upstream of 

the jump did not vary significantly, otherwise a wider spread of results 

would have occurred. The other important point is that for a conduit angle 

of 60°, Kent required supercritical pipe-full Froude Numbers to keep the 

pocket stationary. It must be re-emphasised here, that a hydraulic pump is 

(1-) 



unlikely to occur at the downstream en:l. of the air pocket in this case, and 

a different mechanism might be assumed to be operating. 

In a:rry case we are in a position to make use of the authors energy 

equation in Section 4.3 combined with an experimental observation of Kent. 

This observation is that the velocity required to hold the pocket stationary 

is independent of the pocket length once it exceeds a value of LjD ~ 1.5. 

The geometrical parameters are sketched on Fig. 5.10 below, 

··---> 

FIG-S', IO 

If we assume that LfD for Kent's air pockets is approximately equal to 

L*/n required for the energy equation, i.e. L* is the pocket length from 

the upstream nose to the maximum cavity depth point H, then we might assume 

that L*/n -v 1.5 and the energy equation (4.48) (ignoring ~ meanwhile) is 

then given by, 

AA is the area of flow at the point Yl• 

1 
2 

+ 3 Sin 9) 

oee•••••••••••••(5.6) 

Kent tested the anglese = 15°, 30°, 45° and 6o0
, but did not publish either 

Hfn or Y1;D at the downstream en:l. of the void. However an approximate fit 

using Equation 5.6 is shown bel'ow for Kent's data using H;D 1\J 0,4 and 

L* /n""l.5. 
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Using constant values of HID and L*ln is a crude approximation but it 

does illustrate (Fig. 5.11) that a close approximation to Kent's data may 

be obtained. Furthermore, the assumption of Hln.- 0.4, implies 

Y1 1 D '\/ 0 1 6, ani when comparing Kent 's data with Kalinske and Robert son 1 s 

data on Fig. 5.9 we see that Y11D of 0,6 is not an unreasonable mean 

estimate. 

We can also see from Fig. 5.9 why Kent's data predicts apparently higher 

equilibrium Froude Numbers than Kalinske ani Bliss. The flow depth 

parameter under the air pocket, Y11D' is much greater in the case of Kent's 

work, i.e. Kent must have been operating almost exclusively in the higher 

range of Y11D' say comparable to Ylln) 0.5 in Kalinske ani Robertson's 

work, whereas Kalinske and Bliss appear to have been operating in the range 

Ylln<0,2. 

There is also some doubt over the form of Kent 1 s empirical relationship 

Vol(@ = K Jsin9 , as it will grossly under-predict equilibrium Froude 

Numbers for small conduit angles and over-predict .for angles approaching 

900. For the vertical conduit ( rJ = 90°) 1 Kent predicts an equilibrium 

Froude Number Vol.[@ ""1,234, whereas Martin (Ref. ) and other authors 

have shown that air voids may clear vertically downwards at Froude Numbers 

Vol[@ )0,7. 

Wisner, fuhsen ani Kouwen (1975, Ref. examined the removal of air 

from a downward sloping pipe at angle 18.5° and pipe diameter 0.244 m. 

Commencing with a dimensional analysis to determine the parameters governing 

the bodily sweeping out of an air pocket, they proposed the sweeping-out 

velocity in the form, 

v s 

foD 
............... . (5.7) 

and point out that the pocket length parameter LID, might be replaced by 

the non-dimensional air volume, n = V/( 1fn3 14). They also point out that 

Re (viscous effects) is not important when Re > 105. Equation (5.7) is 

over simplified in the sense (i) previous authors found surface tension 

effects more significant than viscous effects, and (ii) it is clear from 

the energy equation, that the cavity depth term HID is just as significant 

as the cavity length term LID, ani it may be misleading to lump them both 

together in the form of an air volume. Therefore, bodily sweeping of an 

air pocket with no hydraulic jump at the downstream end of the pocket might 

be more accurately described by, 
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v 
s = f (L/D ~ H/D ~ 'e ~ Re~ Wb) •••••••••••••••• (5.8) 
gD 

For the case of air pockets clearing by a combination of air entrainment 

at a hydraulic jump at the downstream end of the pocket~ together with an 

element of sweeping~ we might propose~ 

......... (5.9) 

Note that 

term H;D. 
the fractional depth is not included~ but is implicit in the 

The term V1/ ~ (water velocity just upstream of the jump over 
Vbr 

the bubble rise velocity)~ is included to account for undoubted scale 

effects associated with entrainment at the jump~ giving a total of three 

possible scale effect terms~ Vlfv ~ Re and Wb. Both Re and Wb will be 
br 

insignificant for pipe diameters greater than 0.15 to 0.2 m. According to 

Kobus._ (Ref. ) entrainment scale effects are negligible for 

V1Y1/-y )105~ where Yl is the flow depth at the upstream side of the jump. 

This reduces to V1Yr )0.1. For a pipe say 0.2 m diameter~ and the cavity 

taking up half the pipe depth~ then Yl = 0.1 m~ and Vl would only have to be 

1 rrv's to satisfy the Kobus criterion. In the author's view~ this is 

unreasonably low because of extensive detrainment out of the jump when 

Vl = 1 rrv's (see Thomas~ Section 2.3). A more realistic criterion for 

negligible entrainment scale effects is likely' to be Vl~ 2.5 to 5 rrv's~ in 

the absolute sense~ rather than being strictly related to a Reynolds Number 

term. 

Wisner~ 1\bhsen ani Kouwen essentially investigated the removal of an air 

pocket from a high point in a pipeline~ as illustrated in Fig. 5.4. Their 

data is shown on Fig. 5.9 with fractional upstream depths 
1-

0.273 to 0.818~ ani again on Golding's graph~ Fig. 5.8. 

ranging from 

A 
effect of Yl/n is not quite as significant 

but of a comparable order of magnitude. 

of Kent~ and Kalinske and Robertson~ Fig. 

Apparently~ the 

as say Kalinske and Robertson~ 

They plotted their data with that 

5.9~ and proposed a lower bound 

envelope for air pocket clearing in the form~ 

v 
r~ = 0.25 (iin9 + 0.825 ................ ( 5.10) 

In the author's view~ this empirical relationship is an unreasonable over-

simplification~ in view of the fact that clearing of an air pocket is a 

complex phenomenon involving the pocket length~ depth~ fractional depth~ 
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velocity under the pocket, etc. 

out the following, and I quote, 

,. 
Golding (private communication) points 

). 

"Wisner, M:>hsen and Kouwen (1975) examined the removal of air from 

water lines by the water flow. They plotted the non-dimensionalised 

water velocity in a full pipe to just remove air voids versus the square 

root of the sine of the pipe slope. They used equilibrium void results 

from Kent (1952), blow-back results from Kalinske and Robertso~ (1943), 

and void-removal results from their own tests in a 0.245 m diameter pipe 

with an 18.5° downslope. They drew a straight line (an envelope curve) 

above all the plotted results ani called this the "lower bound" for the 

clearing velocity so that void clearance would be assured if this lower 

bound was exceeded. However, they then say that "Values of the velocity 

parameter should not be much higher than the lower bound as this will 

introduce a problem of blow-back". In the subsequent discussion (Wisner 

et al, 1976), they enlarge upon this as follows. "When the velocity was 

increased significantly beyond that recommended by the envelope curve, a 

different flow pattern developed. In this pattern, large parts of the 

air pocket would tear and quickly rise to the high point. The collected 

air at the summit would again be forced down in smaller sizes. The 

back-and-forth movement of the air continued at a seemingly unpredictable 

rate ani caused significant pressure pulsations". They found that "blow­

back did not occur when the velocity parameter was within 5% of the lower 

bound". This work tends to corroborate Sailer's prototype findings, but 

the plotting of equilibrium void results and blow-back results on a 'void 

removal' axis is not particularly helpful". 

In other words, clearing of an air void occurs just above the recommended 

envelope, but at higher velocities still, blow-back may occur. Presumably, 

this is the supercritical pipe-full Froude number problem already discussed 

under Sailer's work. It does serve to emphasise, however, that separate 

criteria may be required in properly describing sub-critical ani super­

critical blow-back and clearing. 

Gandenberger carried out extensive testing on the water velocities required 

to clear air pockets along downward sloping pipes. His work was published 

in German (1953 and 1957) but summarised by Mechler in English (Ref. ) • 

Gandenberger' s work stemmed from air pocket problems in two 900 mm diameter 

water mains from Lake Constance to Stuttgart, Germany. As well as 

observations in these pipelines, experiments were carried out in glass pipes 

I 'to 



10.5 mm to 45 mm diameter_, and a steel pipe 100 mm diameter_, all of which 

may have been subject to either viscous or surface tension scale effects_, 

albeit very small in the 100 mm pipe. His data covered the full range of 

conduit slope 0° to 90°_, and a range of air pocket volumes n = 0.02 to 

n)l. The results are plotted below in the form of the water velocity 

required to clear air pockets along a 1 m diameter pipe. 
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The clearing velocity for any other pipe diameter can be obtained thus 

vc = vwlF •••••••••••••••• (5.11) 

Gandenberger's data has been replotted in a non-dimensional form on Fig. 4.24 
r 

and also on Golding's graph_, Fig. 5. 8_, for n) 1. It can be seen from 
), 

Fig. 5.8 that Gandenberger's limiting Froude Number is less than Kent and 



Wisner's comparable situation~ and in fact fits more closely to the small 

fractional depth (Yl/D) blow-back data of Kalinske and Robertson. It is 

unfortunate again that Gandenberger did not separate cavity depth and 

cavity length rather than employing the "global" air volume term~ as 

detailed analysis still cannot be carried out on this set of data. The 

application of either force/momentum balance or energy principle requires 

more data on the shape and size of the air pocket. 

Summary 

Several points of interest emerge from our discussion in Section 5.1. 

( i) No one (to IY\~ knowledge) has yet carried out a comprehensive study 

of either blow-backs or air pocket clearing where all the relevant parameters 

have been measured. 

(ii) These parameters would include air pocket lengths Lfn, depths H;D , 

upstream fractional depths Yl/n 1 angle of the cavity nose to the pipe 

wall, ¢1 pipe slope CU 1 velocity profiles around the cavity~ separate criteria 

for sub-critical and super-critical pipe-full flows~ variations in the air/ 

water ratio entering the upstream end of the air pocket, etc. 

~ii) Scale effects are still not properly understood, espec .ially the case 

of air pocket clearing by hydraulic jump entrainment. This might involve 

comparison between prototype and model studies, or at least model studies 

at different scales. 

(iv) The author has put forward in Section 4.3 possible tentative analyses 

based on simplified force/momentum or energy principles. These could be 

verified if all the parameters are known, but this has not been the case to 

date. 

( v) Goldrin~' s graph, Fig. 5.8, highlights several discrepancies between 

previous investigations, and also highlights the necessity to differentiate 

between blow-back velocities, equilibrium-void velocitiess and clearing 

velocities, which in the past have often all been plotted on the same axis. 



Section 5.2. Air pocket behaviour at the junction of dropshaft and 

tunnel systems 

Vertical dropshafts joining up with a horizontal (or nearly horizontal) 

tunnel system are often constructed at the outlet to dams 1 hydroelectric 

power systems, or more recently, the outfall systems of nuclear power 

plants. A plunging nappe in the upper part of the shaft will often 

entrain small air bubbles (<10 mm diameter) which may coalesce during 

downward movement in the shaft1 or at the tunnel soffit at the dropshaft/ 

tunnel junction. Continued coalescence at this junction gives rise to 

air pocket formation1 which in turn may lead to discharge reduction 

(trapped air pocket) 1 "blow-backs" (structural d.~mCA.~e. ani possible mass 

oscillation) 1 or "blow-backs" (may also lead to structural damage, 

vibration, mass oscillation, etc.). 

The subject has received some attention in the past, mainly related to 

"morning-glory" spillways, (which will be reviewed very briefly), but is 

again attracting attention in the context of the outfall systems of nuclear 

power stations. We shall concentrate on the latter, and in particular the 

work of Townson (Ref. ) 1 Goldl"in5 (Ref. 

ani Ervine and H1mmo 

(Ref. ) • A typical 

drop shaft/tunnel 

arrangement is shown 

opposite 1 indicating 

possible air pocket 

formation at the sharp 

bend. (Fig. 5. 13 ) . 
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Unsatisfactory flow conditions leading to blow-backs and vibration were 

reported by Hall (Ref. ) in 1944). The performance of two dams near 

Oakland, California, namely San Pablo dam and Chabot dam, were observed. 

At the San Pablo dam, (constructed in 1917-1920), air entrainment caused 

serious problems in that small bubbles were carried down the vertical shaft 

and into the horizontal leg, where they accumulated in large air pockets 

along the roof. These pockets moved slowly along the grade of the tunnel 

towards the outlet and discharged periodically with explosive violence 

throwing water a5 spray to a height of about 15 m in the air. The 

vibration caused in the tunnel following each of these air discharges also 

led to serious difficulties. 

In 1956, Bradley (Ref. reported on the prototype behaviour of 

different shaft spillways one of which was the Owyhee Dam Spillway, 

completed in 1932 by U.s. Bureau Reclamation. In this dam an unusual 

phenomena was observed. For low heads, 0.3 m to 0.6 m above the inlet 

gate, the water fell in a solid sheet toward the centre of the shaft. Air 

was entrained faster than it could be released by the outlet end of the 

tunnel causing the pressure to increase until it was sufficient to nblow­

backn, when air emerged with sufficient force to carry spray 15 m or 20 m 

above the level of the gate. 

l'lbre recently in early Spring 1982, a blow-back of compressed air damaged 

the intake of a Norwegian Power Station, see F.ICT (5".1~). This information 

was sent to the author by Mr. Kare Trinnereim, Head of Norwegian Hydro­

dynamic Laboratories, in a letter dated 14th October 1982. 

In 1966 Colgate (Ref. ) reported on the Canadian River project. The 

project included an aqueduct system, pumping plants and regulating 

reservoirs, with the water flowing in the main pipeline under gravity. The 

pipeline was designed so that at normal now the hydraulic gradient will 

be parallel to the average ground profile with the water pressure not 

exceeding ?f) m head. A tower-type check structure as shown on Fig. (5 .15) 

was designed and situated in the main pipeline to prevent adverse conditions 

such as over-pressures, water hammer and surging caused either by the 

operation of filling, draining or air entrainment. Each tower consisted 

of an inverted U-tube with an air vent open to the atmosphere at the 

summit, and designed so that during normal operation the hydraulic gradient 

will be above the top of each tower causing the system to now full. For 

now less than normal, or no flow, this arrangement ensured the conduit 
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between towers remained full. The open pipe at the top of the tower 

prevented over-pressure damages when there was surging in the conduit during 

transient conditions. The open air vent pipe also allowed air entrain­

ment at low discharge in down-stream leg of tower when flowing partially 
• .,d. 

full. Air passed through the vent_Abecame entrained in the flow in the 

form of bubbles1 which either moved upstream or downstream depending on 

the pipeline slope1 discharge and bubble size. Studies were carried out 

to obtain the best conduit slope to allow the air bubbles to vent back 

upstream to the air vent and to be removed from the line. It was found 

that a downward conduit slope of 5° downstream from the vent was enough 

to ensure that all entrained air was recirculated back to the vent. 

Water level surges caused by air entrainment and air pocket formation was 

experienced at the out fall of several power stations and other hydraulic 

structures. For example1 level instability and surging in dropshaft/ 

tunnel systems has been reported within the U.K. on projects for the South 

of Scotland Electricity Board and CEGB by Goldring1 (Ref. )1 

Miller (Ref. ) , Brook et al. 1 (Ref. L 
Maximum water level surges of 9 m have been reported. In these cases, 

water level surges have generally arisen by the collapse or blow-back of an 

air pocket at a dropshaft/tunnel junction, the air pQ~ket having been formed 

in the first place by entrainment of air in the upper part of the dropshaft. 

A new Central Electricity Generating Board (CEGB) project at Thameside 

Power Station (Ref. ) exhibited flow instability in the downshaft1 

Fig. (S. 16) during periods of certain air/water flow requirements. These 

level surges have caused anxiety among the CEGB engineers about the ability 

of such outfall structures to withstand this phenomenon for the life of the 

power station. Field data on localized pressure changes caused by the 

collapse or movement of air pockets have not been adequate for a civil 

engineering design appraisal and it has been suggested (Ref. ) that a 

large scale instrumentation survey be mounted on at least one project to 

tain more insight into the structure - air pocket - level surge - damage 

relationship. 
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The Hunterson "B" Power Station, Fig. (5.17), is another example which 

exhibited flow instability due to air entrainment ani air pocket formation 

in the water filled shaft/tunnel system, and took the form of oscillations 

in both land ani pit shaft as shown on Fig. (S.l~). This was reported by 

Townson, 1975 (Ref. ) • These conditions increased gradually until the 

seal pit weir was submerged and spillage occUITed at the lani shaft. It 

was observed that oscillations were accompanied by variations in average 

shaft density and presence of an air cavity at the tunnel roof. From 

model scale studies it was found that entrained air was the main cause of 

the oscillations. In the shaft, air bubbles circulated in vertical 

direction according to their size and position in the flow. Some of the 

air returned to the surface while the rest was carried around the bend into 

the roof of the tunnel forming a cavity ol"' air pocket, (see Fig. (5. 18)). 

Townson carried out a mass oscillation analysis of the system, shown 

on Fig. 5 .19), by idealising it to a three shaft system, assuming the sea 

outfall end to have infinite area, ani also introducing density variations 

in the intake shaft. On writing the equations of motion and continuity, 

' 
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two modes of oscillation were predicted (for the case of infinite sea area), 

w1 and w2• These are shown on Fig. S". 19 below and compared with model and 

prototype data. It is clear that the lower frequency mode I.V 1, is sensitive 

both to the density ratio, (~1 is the reduced density in the intake shaft 

due to the presence of air bubbles) and also the area ratio ao I A.. (a 0 is 

the cross-sectional area of the intake shaft and A the tunnel cross 

sectional area) • <t0 was introduced into the analysis on account of the 

variation in intake shaft area, in the region of the conical diffuser. 

The 1/32 scale model of the system using clear water revealed that the 

prototype mode of oscillation could be achieved 1but quickly decayed, unlike 

the prototype. An injection of detergent at the seal pit weir was found 

necessary to simulate the large sustained oscillations found in the 

prototype. This, however, produced an adverse side effect of air "hold-up" 

in the tunnel system. Townson introduced paraffin oil at the tunnel 

soffit just downstream of the bend, so that the cavity behaviour could be 
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studied in more detail, free from the chaotic nature of air bubble flows 

in the intake shaft and berxi. The paraffin oil cavity test revealed that 

a periodic collapse of the cavity nose back in to the shaft~arxi the 

corresponding reduced density of flow in the shaft ~11 was coupled with 

natural frequencies of the system to produce sustained oscillations. 

The following recommendations to avoid oscillation were reported:-

(a) Delay of oscillation could be achieved by covering the seal-pit weir 

nappe with rubber sheeting, thus reducing the degree of aeration. 

This has proved quite effective in prototype tests. 

(b) Adjustments of length ani diameter of shaft so that natural 

frequencies are small compared to cavity oscillation in separating 

zones. 

(c) Control of separation zone size by local conduit geometry and/or 

venting. 

(9o 



(d) Allowing the air to be swept through the system to a point where it 

could be released. 
r 

Golding ( 1983, Ref. ) has carried out an experimental investigation 
).. 

into the behaviour of air pockets at a dropshaft/tunnel junction for the 

particular case of the ratio of air to water (coming down the shaft) less 

than 2%. This is of particular relevance to systems with air coming out 

of solution, but of limited interest to dropshaft spillway studies, etc., 
r 

where the ratio of air to water often exceeds 0.4 (4o%). Golding tested 
).. 

up to four different pipe diameters, 0,072 m, 0.1 m, 0.14 m and 0.19 m ~. 

and up to four bend radii for each pipe diameter, R;D = 0.5, 0.75, 1.0 

and 1.5. An RjD of 0.5 is a completely sharp bend, with R measured from 

the centroid of the inner bend radius to the centre-line of the pipe. 

Four regimes of behaviour were shown to exist: -

(a) At low Froude Numbers, any air pocket which started to form at the 

inside of the bend would vent back up the shaft. 

(b) At higher Froude Numbers. a stable void formed with the upstream 

nose located on the curved inner radius of the bend and the tail 

(downstream end) in the form of a hydraulic jump. In this case 

the air pocket was short, with the jump almost drowning back to 
... 

the bend. Golding referred to this as a partly ventilated void. 
}. 

(c) At higher air flow rates, this stable void extended in length (and 
t' 

depth) with a stable jump forming at its downstream end. Golding 
>. 

referred to this as a fully ventilated void. 

(d) At higher Froude Numbers still, the pocket at the bend cleared. 

These four regions are shown on the sketch below, in the form of 

a plot of the air/water ratio ( < 2%) against the upstream Froude 

Number, Vol[@-

0 
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The effect of berrl radius R/n~ is shown on Fig. S'.ll for the case of the 

0.14 m diameter bend. It is clear that back-venting (vertical lines) is 

a problem in the sharp radius bend (R/n = 0.5) only up to a Froude Number 

of 0.3 .. whereas it is a problem in the smoothest radius bend (R/n = 1.5) 

up to a Froude Number in excess of 0.6. The same applies to air pocket 

clearing (inclined lines). An air pocket clears most efficiently in the 

sharpest bend and less efficiently in the smooth radius bends. On both 

counts~ the sharpest bend is the optimum choice. Clearing Froude Numbers 

are ~nerally 0.5 to 1.0~ in a similar range to that of downward sloping 

pipes in Section 5.1. 
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FIG. .-Void Behavior In Benda of Various RJd and 5.5 ln. (0.14 m) dlam; Cor-
relations and Experimental Results {5olcAnhj) 

The effect of pipe diameter is shown on Fig.S.22for the four pipe diameters 

but a constant R;D of 1.0. It is clear from this diagram that larger pipe 

diameters produce lower clearing Froude Numbers~ and an extrapolation of 
T' 

Golding's data would produce a very low clearing Froude Number for large 
~ 

diameter conduits found in practice. 
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The concept of a greatly decreasing clearing Froude Number with 

increasing pipe diameter has not been commented on by previous authors in 

the case of downward sloping pipes. On Fig. 5.8 for instance, Wisner's 

data was obtained from a 244 mm ft pipe, and Kent's data from a 100 mm ft 
pipe giving roughly comparable data. In other words the scale effect is 

r 
not apparent. Golding's data on Fig.5·2lis therefore a novel departure 

).. 
for clearing of air pockets when clearing occurs by hydraulic jump entrain-

ment at the tail of the pocket. 

By way of explanation, Golding proposes essentially that an air void will 

clear from the bend when the flow velocity under the void is greater or 

equal to the minimum velocity to entrain air U~, approximately 1 m/s. He 

proposed an empirical relationship describing the clearing Froude Number in 

the fonn, 

Fr 
c 

( 0.5 + 0.25 ./i + 20~) u~ 
............... . (~.12.) 

Thus for a given r;D 

* * U/.fiD" and as u1 is 

pipe diameters, D. 

JSD 
ani~, the clearing Froude Number is proportional to 

a constant, then Fr will reduce greatly for larger 
c 

In the author 1 s opinion, this represents an over-

emphasis on the velocity under the pocket, with no reference to the fact 

that the Froude Number under the pocket must also be greater than unity, 

for the jump to form in the first place. Therefore, if we had a dual 

criterion for clearing, 

and 
................ c 5'. r3 ) 

then the second of these two criteria might mean that the clearing Froude 

Number Do;J;n for prototype sizes might be in the same range as the four 

pipes tested by Golding. 

For instance, if we take the case of a typical air pocket depth 

Hfn~0.5 at the tail of the pocket, or Y1/D~0.5. That is, the pipe half­

full. The value of Fr
1 

then is given by u
1 

= 2U
0

, A
1 

=1fn2/s and B = D, 

hence Fr
1 

becomes 

Frl 

2U 
0 ~ 3.2 

/gn~s 

u 
~ =3.2 Fr 
f e"'-' o 

.....•... (S.IC+ ) 

193 



If the pocket clears when u1 "> 1 m/s ani Fr1 ') 1, then assuming for a large 

diameter pipe that u1 "> 1 m/s is easily satisfied, then from (S'.I~) 

Fr c ~ Fr1; 3 •2 ~ 0.31. For a large diameter pipe Fr c = 0.31 is likely to 

give a much higher clearing Froude Number than the simple application of 

u1 ~ 1 m/s, and the range is more in line with the experimental values of 
t" 

Golding. 
).. 

Clearly, much work still requires to be done, on the scale effects 
I" 

involved in clearing air pockets by entrainment, but Golding's work shows 

" very clearly, not only the different regimes of air pocket behaviour and 

the regions of back venting, but also that clearing of such air pockets 

from a sharp berxi may be less of a problem in a prototype structure compared 

with a Froude model. fHimmo (together with the author) is currently 

carrying out an experimental study of air pocket formation at dropshaft/ 

tunnel junctions. The apparatus shown on Fig.S'.2~ in longitudinal profile, 

consists of a dropshaft 152 rnm diameter arxi a tunnel section 8.3 m long and 

again 0.152 m diameter. The tunnel section has been tested (a) in the 

horizontal position a = 0, (b) with the tunnel pipe inclined slightly 

upwards~ = +1.5°, and (c) with the tunnel pipe inclined slightly downwards, 

~ = ~1.5°. The purpose of the variation in tunnel slope is to investigate 

not only air pocket formation at the sharp bend, but also air pocket 

behaviour in upward sloping pipes (See section 4.2) arxi air pocket behaviour 

in downward sloping pipes, i.e. blow-back arxi clearing properties. 

The bend radius RjD has also been tested over the range 0.5, 1.0 and 1.5 

for each of the three tunnel slopes -1.5°, 0°, +1.5°, giving a total of nine 

geometrical configurations. Water arxi air flow are controlled independently 

as shown on Fig. 5.23, with 16 air inlets each 5 rnm diameter ensuring a range 

of bubble sizes found in nature. The water flow can be increased up to 

4o l;s, giving pipe full velocities as high as 2 m/s, and the air flow range 

up to about 20 1/s, giving an air/water ratio of 0.51 even at the highest 

water flow rates. Use is made of Churchill wave monitors, not only to 

measure air pocket depths (HfD), but also the speed of air pockets moving 

along the tunnel section and their shape development. 

(i) Air pocket formation at the bend. 

Regarding the formation of an air ppcket at the dropshaft/tunnel bend 

there appear to be several regimes of behaviour. These are shown on 

Fig. 5.'24 for the particular case of the tunnel horizontal ( 9 = 0°) arxi a 
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R single mitre sharp bend In = 0.5. The graph is plotted as the air/water 

ratio,~ , against <J:>, or Q,A~ or Fr (1+ ~). 
{@ Ap,f@ o 

Regime (1) is the region where the air pocket forms, lengthening and 

deepening, but also having the capability to vent back into the shaft. 

This corresponds to the region Vo;fgb(l+~) <.0.3-0.4. 

Regime (2) is similar to (1) except that back venting of the pocket into 

the shaft does not occur. The flow under the air pocket is still sub­

critical, i.e. vl/r;t;f. < 1. 
~- 1/B 

Regime (3) is characterised by supercritical flow under the air pocket 

with a hydraulic jump forming at the tail of the pocket. The jump may 

take up a position either (a) close to the bend where it behaves almost 

as a drowned jump, (b) in a stable position some distance downstream of 

the bend or (c) the jump may travel out of the tunnel section completely 

and blow into the end tank. In this case, stratified flow exists over 

the total 8.3 m length of the tunnel. 

Regime (4) is characterised by the air pocket at the bend clearing 

completely. Further air corning down the shaft may form a new pocket at 

the bend, but this is again cleared, so that a succession of air pockets 

travel along the tunnel, with none remaining stable at the bend. 

The line AB on Fig.S.11ft;hus represents clearing criteria for air pockets at 

a sharp bend, comparable with the clearing criteria outlined in Section 5.1 

for downward sloping pipes. 

(ii) Clearing and blow-back criteria. 

Fig.5.1Sshows the clearing and blow-back lines for the case of the 

horizontal tunnel and for three bend radii R;D = 0.5, 1 and 1.5. The graph 

is plotted as~ against Vol[@" the pipe full FI'Il!llde Number. We will 

discuss this graph along with Fig.S."which is a plot of the clearing and 

blow-back Froude Numbers for the same R;D values, but in this case the 

tunnel inclined upwards at an angle of +1.5°. The following initial 

conclusions can be drawn. 

- Clearing of the bend air pocket becomes increasingly more difficult 

as RjD increases from 0. 5 (sharp bend) to 1. 5 (smooth bend). This is 

related to the position and angle of the nose of the air pocket at the 

inner bend radius, and also the development of secondary currents and 
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swirling for sharper bends. 

- Clearing of the bend air pocket becomes increasingly difficult as the 

air/water ratio~ (or void fraction) of the flow coming down the shaft 

increases. This is urrloubtedly related to the fact that the air pocket 

volume# length and depth each increase for increasing air/water~ # for 

a constant water discharge. It can be seen from Section 5.1 that 

larger air volumes# lengths and depths of the cavity require larger 

Froude Numbers for clearing. 

- Comparing Fig. S'.lSand Fig.S'~it appears that clearing of an air pocket 

from a bend is more difficult with the tunnel section sloping upwards 

( + 1. ~) compared with the horizontal. This is somewhat surprising in 

view of the fact that in the upward sloping pipe# air pocket buoyancy is 

acting in the same direction as the flow. 

- the upper limit for back venting of the air pocket into the dropshaft is 

indicated by dashed lines on Figs. 5.15and 5. ~ • It is clear that the 

ben:i radius R;D is significant# in that# the smoother an::l. more gradual 

the ben:i (larger R/n) # then back venting occurs of a larger range of 

Froude Numbers. In this case# smoother ben:is allow the air void to take 

up a position on the inner radius of the bend such that the nose of the 

air pocket is closer to the dropshaft and hence back venting more likely. 

For the single mitre sharp bend (R,In = 0.5)# the nose of the pocket forms 

on the edge of the bend and hence back venting is much less of a 

possibility. 

(iii) The depth of the air cavity at the drop shaft/tunnel bend. 

The depth of the air cavity has been measured for the various geometrical 

configurations outlined# R,ID = 0.5# 1.0# 1.5 and 8 = -1.5°# 0° and +1.5°. 

A schematic diagram showing the variation of HID with Froude Number Vo;J gD 

is shown on Fig.S'.l1overleaf. Three distinct patterns emerge -

(a) At low Froude Numbers corresponding roughly to Regimes (l) and (2) on 

Fig. S.1.'t (when the flow under the pocket is general~ subcritical) we 

obtain a region of increasing air pocket depth with increasing Froude 

Number. This is indicated as the "separation model" on Fig. 5',1-::f 
In this region the air pocket depth# H;D# also increases with air/water 

ratio#~ • 
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(b) The second stage involves the formation of supercritical flow under 

the beni air pocket with a hydraulic jump at the tail. Air pocket 

depths fall on or arouni the curve indicated by -o- on Fig. S.l:;r 
This is equivalent to Regime (3) on Fig.S'.l't 

(c) Finally 6 air pockets clear from the bend along vertical dashed lines 

as indicated., corresponding to the onset of Regime ( 4) on Fig. ~·llt­

It is possible J for low values of air/water ratio~ ., to proceed 

directly from "separation model" region to clearing., bypassing the 

seconi stage completely. 

Himmo is currently engaged in developing theoretical models for each of 

these stages. Let us consider a theoretical model., using energy., force/ 

momentum ani conti:rruity principles., for the case of Stage (b)., with super­

critical flow under the pocket., a stable air-fed air pocket at the bend., 

and a hydraulic jump at the tail of the pocket. 
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Applying Bernoulli's theorem between points A, Band C 
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height of point A above the assuned datum nt top 
of pipe 

pressure at point B 

velocity at B 

velocity correction factors at B nnd C. 



1 ) 

h = height of nose of pocket above uatuo r (1 - sin ~) ~ 
p 

c 

v 
c 

pressure at C = PB 

velocity at C 

air-pocket depth 

p . 
a~r 

V02 
losses at bend= 1.2 2g 

= 6 1 + friction losses 

From E~. (5.15) we get 

PB 
2 

Za 
~vb 

- h -61 pg 2g 

abVb2 v 2 
PB fg [~a r ( 1- sin <p) - 1.2 ~g J 2g 

('g [za - r 
v 2 

+ 1 .2) J PB ( 1 sin <j) b 
~ 0:. - ---2g 0 

p a V 2 
~ z ...£.....£..._ + H - ~2 pg a 2g 

(v v )2 
a V 2 1 .2V b2 b; c J 

p pg [za 
c c 

+ H -
AL ---c 2g 2g D 2g ..... 

Applying continuity eguation betv1een section Bf and CC V 
0
Ap = V cAc 

where A 
p 

A 
c 

v 
c 

a 

2 pipe area = n;r 

area of partially 
full pipe 

2( 1 a 3in 2a) 
:tr - 1t + 2:t 

\.Ap (S./S) 
Ac 

= angle in radians 

( s: lb) 

(S.t7) 

0 If we have a 9U sharp edge bend then r v. Hence h = 0, also t ~e point 

of separation is exactly at the oend. 

The assumptions to be made here are as follows: 

(a) 6
1 
and~ can be neglected 

(b) 

(c) 

(d) 

(( 

b 
a 

c 
1.0 

/ , 
resistance between BB and CC can be neglected 

0nifor~ pressure distribution at the bend (r.ot co~~ec:; 



From equa tions(5o I~ )and( 5'·11)where P .a 
2 

'\ vb 
fe[za 2g J = fg[za 

2 
abvb 

= F = p . 
c a~r 

a V 2 

c c + Hl 
2g J 

+ H 2g 

a V 2 

....£...£... 
2g --------

Substituting for V from the corrtirruity equation (S.~)~ we obtain 

c .;. CA 2 

H;D = 0.5 ~ L(A!) - 1] •••••••••••••••• (~ .·lo) 

(~b:, ol.c.: 1) 
Due to the presence of air bubbles approaching the berrl from the shaft~ 

we must modify Vb to account for the presence of air bubbles. That is~ 

if V
0 

is the shaft full water velocity averaged over the entire pipe area 

~~~~ then Vb(l- o<.) = V0~ whereO(is the void fraction~ ani hence 

Vb = V0(1+~)~ or Equation (5·2o) becomes 

% ~ o.s v~ (l+fl2t~) 
2
-1] •••• 0 •••• 0 0 •• 0 •• (S'.ll) 

Equation (5".2.1) has been solved for a range of Froude Numbers~ ani values 

of@~ ani compared with experimental data from the sharp bend case R;D = 0.5 

when supercritical flow exists. The result is shown on Fig.S.23giving 

reasonable correlation between simplified theory ani experiment. 

We may attempt a similar analysis using simplified force/momentum 

balance using the same simplifying assumptions as above referring to 

Fig.5.1~ and~ 

..... -Applying ~omentum equation between BB and CC :-

~ ~ 

P:o[ - Pee = · i\iomentum at CC - i·,r!mentum at BE + resistance 

section BB and CC ( 5 .. 22.) 

Pro 
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.20b 

where P .iJB ... 

Pee 

From Fig{S.3D) section 

1t ... 

? air ~ + J (' gh dA 
a 

(a-a) 

"" h = r cos a+ r cos (Jt - 9) 

r (cos a - cos 9) 

dA 2 r sin (Jt- 9) db( 

"' 1T-e J.A 
2 r sin e dh 

~~(S"."3o) Sc<:..\\o\1\(0..-0..) 

sin (Jt- e) ds 

sin e ds 

r sin e d6 

! fgh"" dA =] 2pgr3 (cos a- cos 8) sin2e d6 
a a f 

(A 2 2 . 3 ) 
= ~ gr c cos a + 3 r s~n a 

Pee =Pair~ +fgr (Ac cos a+ 5 l 
homentum at m( = ~of V·b 

2 
Ap 

, 
l•lomentum at CC 

2 
= "v A 1 c c 

( p = :·t • e . F. ) 
0 

Substituting into equation (5.22) l~tlel"'l~ K?.SI5b2fl(£. Be' cc,1 

2 2 ~ 
P. Ap+f'grL-P. AP+.ngr(A cosa+-r sinJa) 
a~r . --p a~r ,. c 3 

2 2 
= fVc Ac - PJ'Vb Ap 

Divided by Y>gr ~) :-
v 2 .A 
_c_ ......£ 

A 
2 

2 
1 + ......£ cos a + - L 
~ 3~ gr A 

p 

Sub. eq.(S·Ig)into the above equation for V 
c 

A v 2 
~ 

v 2 
......£ L sin3a = ..J?_ b 

+ cos a + Po g;-Ap 3Jt gr A c 

A 
2 

sin3a 

v 2 Ap 
......£ cos a + 3Jt 

_b_ (A" - po) 
~ gr 

c 



The simplified force/momentum equation (S'.l') is shown plotted on 
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