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List of Main Symbols used in Bubbly Flow Sections

d jet thickness or circular jet diameter

D closed conduit dimension

dp air bubble diameter

dp circular nozzle diameter

dp penetration depth of air bubbles into a pool

Fry jet Froude Number at plunge point (ul//ga)

Fr general Froude Number

g gravitational constant

H height of fall or drop length of a plunging jet

¥ turbulent eddy length

z*max maximum turbulent eddy length

Lp Length ratio, (prototype/model), reattachment length
shear layer

Ld disintegration length of a plunging jet

L droplength of a plunging jet (= H)

Qat rate of air entrainment per unit length (into the
flow

Qan rate of air transport along a closed conduit

Qy water discharge rate per unit length

Re Reynolds Number of flow (4d/v)

R radius of curvature of jet surface disturbances

u, jet velocity at plunge point (sometimes v or v,)

ug mean outlet water velocity in a closed conduit

u* fluctuating turbulent component of velocity

u*/u1 turbulence intensity at plunge point(sometimes Tu)

u¥ inception jet velocity required to entrain air



Yimin

Uomin

minimum jet velocity required to transport
air in a closed conduit

minimum outlet velocity required to transport
air in a closed conduit

entrainment velocity into a shear layer

recirculation velocity around a spreading shear
layer

air bubble velocity in a shear layer

air bubble rise velocity in stationary water

water velocity at circular nozzle exit

Weber Number of flow (Qyzd/o)

streamwise direction

normal to streamwise direction

void fraction (sometimes given as C, concentration)
ratio of air flow to water flow (qy/qy)

air/water ratio of air entrained into a flow

air/water ratio of net air transport along a closed
conduit

magnitude of jet surface disturbance

relative turbulence intensity in shear layer (Thomas)
jet surface disturbance (Ervine)

absolute viscosity (air or water)
kinematic viscosity

density of air, water, foamy mixture
surfac-e tension coefficient

angle of conduit to horizontal




SECTION 2

Bubbly flows - Theoretical models and analysis.

2.1 Inception conditions for air entrainment

2.2 Quantity of air entrained

2.3 Bubble escape and bubble transport mechanisms



2.1 Inception conditions for air entrainment

Every hydraulic situation involving air entrainment requires
certain conditions to be met before air will be entrained. A wide
range of inception conditions have been formulated, based on
velocity, Froude Number, Reynolds/Weber Number, turbulence intensity,
boundary layer thickness, etc. Every case demands that the free
water surface is 'broken' (i.e. overcoming surface tension), with
the major 'breaking' mechanism being turbulent fluctuations in the
flow (u*).

This is certainly the case for wall jets and plunging jets
which require surface disturbances, driven by turbulent fluctuations,
to form an air bubble and entrain it into the flow at the plunge

point (See Fig. 2.1).

It is also the case for natural surface aeration in high
velocity open channel flows. In this case, turbulent fluctuations
near the free surface must produce enough upward force to overcome
surface tension and propel a droplet of water out of the flow.

The droplet entrains an air bubble in its wake.

In the case of hydraulic jumps, the free surface is 'broken'
by the point of discontinuity at the teoce of the jump in the form of
a surface roller. A minimum inception condition of Fr, > 1 is

therefore required.

Our discussion on inception will centre, at least in the first
instance, on wall jets and plunging jets at steeper conduit slopes

than conventional hydraulic jumps.

Formulation of non-dimensional groups for inception velocity for

jets

If we assume that the jet on Figure 2.1 is either circular,
diameter d, or plane, thickness d, and that inception is dependent
on the turbulent fluctuating component u*, the eddy size 2*, and
viscous, gravitational, inertial and surface tension forces are also

important, then we can write

F(u,)/u,e', 9, e,u*) Q’*'d'):o ..... (2.1)

Using the method of synthesis by forming groups having length, we

have, .
‘F( i € 1)’-/3 V' Kt e (202)
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The number of variables not containing density and relevant lengths '
in (2.1) is 5, implying that four of the length parameters in (2.2).
can be chosen along with 2* and d. The four parameters chosen must
contain between them every variable at least once. For instance we

can choose,

. L . h
+(% ) %"%)Ll y“'*,) U ) d) =0 ceres (2.3)

If we now d1v1de through by either &* or d) we may obtain

oy E/)%, ¥, 4 .
This may be written in the form,
£ 2
;(“(9“ ur" (6% ) ceerr (2.8)
a(L" B

Several points can be noted from this relationship.

At the point of inception for air entrainment, the jet velocity u,

is denoted by the inception velocity u}, and the eddy length &* is

given by the maximum eddy length &}.., which is approximately equal
to the bubble diameter dp (Sene, Ref ). Hence from (2.4) we .

might obtain,

2 &
W, (uadb W db (6/0‘3)" db) ceees (2.5)
e d,
J %o b CL
® @ & & &
Now for air entrainment we may assume dp (model) = dy, (prototype)
and hence from @ u,; model ¥ u, prototype for inception, or from @
and @ together (ul/u*)m:du,(ul/u*) prototype. Y¥/u, is the -
turbulence intensity. From @ , (o/pg)y2 is the capillary length ’
and = dy (if capillary length is 2.7 mm and bubbles of approximately

3 mm diameter are entrained). Hence @ might reduce to unity as
an order of magnitude. Thus,
‘_'\_"; = § ws o, é_." (2.8)
%db ", <) e .
where u"’/ul is the turbulence intensity of the flow. It is generally

assumed that db/d is only significant in jets whose thickness is of
the same order as the bubble diameter. That is, for eddies to grow
to a maximum size R*pgzx to be approximately equal to a bubble diameter

1-5 mm, then the jet would require to have at least this order of




magnitude thickness. Hunt (Ref ) states that jet surface
disturbances are reduced if eddy sizes&* are smaller than about 4 times

caplllary length (say 10 mm) Thus for jets, say, >10 mm thickness,

J—“L—b F(“/\M) ceees (2.7)

The inception velocity for air entrainment for larger jét thicknesses

is a function of the turbulence intensity.

A theoretical model

The most cogent argument to date on the nature of the inception
velocity to entrain air was presented by Sene (Ref ) based on arguments

previously outlined by Thomas (Ref ).

Referring to Figure 2.1, a plunging jet with velocity u, enters a
pool where a mixing layer is set up and the receiving water entrained into
the mixing layer also forms a larger recirculating flow of velocity U,
where Upn « uj. Sene indicates a value of Ur/u"VO.035. The dynamic

pressure in the receiving flow is therefore of the order lpou%.

The plunging jet itself is assumed to carry air bubbles into the
mixing layer by the mechanism of surface disturbances on the jet free
surface, indicated on Figure 2.1 by 6. Surface disturbances caused
by fluctuating components of velocity in the flow, u*, and S is approximated
to u*z/gg; the energy head of the turbulent eddies. The length scale of
the turbulent eddies in the jet is given by 2* and it is assumed that most
of the air is entrained at maximum eddy lengths given by 2.« It can be
seen from Figure 2.1 that surface disturbances are assumed to form a shallow
circular arc of radius R on the jet surface. Therefore the pressure set
up by surface tension forces the maintain this shape is given by 20/,

where 0 is the surface tension coefficient.

Sene and Thomas argue that at the point of jet impact, the receiving
flow will try to follow the undulations on the jet surface, and that air
will only be entrained when the receiving water is unable to follow jet
undulations, and a "gap" or pocket is formed which is subsequently trans-
ferred into the mixing layer. Thus the criterion for inception of air

entrainment is given by
L 1
2'6;ﬁi > 2 Qur

In order to obtain an estimate for R, is was assumed that the length of

cees. (2.8a)

a jet surface undulation could be approximated to &},x, the maximum
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length scale of turbulent eddies causing entrainment. Hence from ‘

Figure 2.1
<

R ~ 9.*,,.;7;/35 (whm S~ u/13> vee.. (2.8b)

Combining equations (2.8a) and (2.8b) we obtain that the maximum eddy

length is given by
% !
g v b ) (%)= e (2.9)
mo ——e
(Urfuy) © °
where /gg- is known as the capillary length and for the formation of

air bubbles is approximately equal to the air bubble diameter.

Sene and Thomas argue that the volume of air held in a jet surface
2
undulation is of the order E;ax 5, and at inception only single air

bubbles are formed, so that

*2 b~ i (| )3
QM‘S > T 2_(% ceee. (2.10)

where 4, is the aif bubble diameter. Also at inception, the jet

velocity is the inception jet velocity U%, combining (2.9) and (2.10) we

obtain, " ‘
i @ L
w = < r/a ('6%)1 e (2.11)

4 (wz /i O?-

where u*/ul is the relative turbulence intensity and Cr/p is constant

for air/water. The value of Ur/u, is assumed to be approximately

equal to 0.035.

The value of equation (2.11) is not in the quantitative prediction
of the inception velocity but the implication that the inception
velocity (U% a?%iﬁ7) is proportional to the inversex?:gggéity squared.

This may well represent an oversensitivity of the contribution
of the relative turbulence intensity, as a very smooth jet may have Tu =
0,01 and a very rough jet Tu = 0,1, which would imply a difference in
inception velocity of 100 times in the two types of jet. This has been
shown by Ervine, McKeogh and Elsawy not}be the case, as a jet with Tu ~
0.4% gave U%¥ of 3.6 m/s, whereas a jet with Tu ~8% gave U* of 0.8 m/s,
which is closer to U%

R S
(Tu)%

Experimental and empprical evaluations of the critical inception

velocity
Lin and Donelly (Ref ) investigated the air entrainment ‘



characteristics of circular plunging laminar jets and discovered that
certain conditions of the jet were required before air bubbles were
entrained into the flow. The criterion of inception proposed for their

small scale jets (Re < 10°) was

i
Re ~ 0,045 We e C .. (2.12)

based on the premise that viscous and surface tension effects

dominated the process at least for this scale of jet.

Equation (2.12) can be rewritten in the form

u‘* - 6.22 6'0‘19"':7 . _ K
QQZDG‘}LQS% CLOQ£> - -:£bﬂ94

eeees (2.13)

for air-water at constant temperature.

u% is inception velocity to entrain air bubbles

d is jet diameter at impact point.

The implication of decreasing inception velocity for increasing jet
diameters proved misleading for all jet diameters as the surface tension
forces on the small diameter jets used,dampened surface disturbances in

the jet,reducing the scale of eddies possible.

Later work by Van de Sande and Smith (Ref ) and Ervine (Ref )
indicated that for larger jet dimensions, the inception velocity tended
towards a constant value, and the mechanism of entrainment at the point
of inception was most influenced by surface disturbances on the jet

surface.

This concept was later taken up to McKeogh (Ref ) and Ervine,
McKeogh and Elsawy (Ref ) in testing inception velocities of plunging.
circular jets at various turbulence levels. A photograph overleaf
(Figure 2.2) shows a plunging jet with impact velocity = 3 m/s,

Re = 3 x 10% Fr = 10 and turbulence level = 0,002, entraining no air
bubbles. Previous work had shown that rough turbulent jets had an
inception velocity around 1 m/s. A series of tests was carried out
revealing that the inception velocity was more or less constant with
increasing jet diameter, but varied considerably with increasing jet
turbulence level. A plot of inception velocity with relative intensity
is shown below, indicating that U} for typical rough turbulent jets is

= 0,8 to 1.0 m/s. (See Fl6.2.3)



IMPACT OF A VERY SMOOTH 0.2% TURBULENT JET WITH THE POOL
AND POSITION OF LASER BEAMS FOR VELOCITY AND TURBULENCE
MEASUREMENT. Note the absence of air bubbles. (HCKeogh)

Fie.2.2.
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Figure 2.3 : The critical velocity for air en?zainment
in a plunging circular jet.(Ervine & al)

The implicatiohs of this graph are that

(1) Jet surface disturbances are an important factor in determining

inception velocities (U%)

(2) Small scale Froude models will entrain relatively less air

than prototypes as (U:/U,)model > (Ut/Ul)prototype'

(3) A minimum of model scale can be calculated below which

entrainment will not occur as U} is constant for all scales.

(4) The model turbulence level U*/u,, ideally should be at least -
equal to that of the prototype structure.

2.2 Theoretical models for quantity of air entrained

In this section we will deal with the rate of air entrainment
by a jet plunging through the atmosphere, a wall jet, and a hydraulic
jump, but only in the sense of the total air entrained into the shear
layer at the plunge point. Section 2.3 will deal with aspects of
bubble detrainment (escape) from the shear layer, and bubble transport

downstream with the flow and out of the shear layer.

Air entrainment by jets iS a complex phenomenon and as yet does
not have a definitive theory to describe the phenomenon, nor indeed, a
comprehensive empirical correlation to describe the quantity of air
entrained. Researchers are agreed that factors which contribute to

the gquantity of entrainment into a shear layer might be listed as -

- gravitational, inertial, viscous, surface tension forces,

13



Lg

- surface disturbances on the jet surface characterised by ‘

turbulent velocity components and turbulent eddy lengths.
- ambient pressure of the atmosphere.
- the angle of impinging jet.

- conditions in the receiving flow such as the velocity in any

recirculation eddy, foam layer on the receiving flow, etc.

Analysis is complicated by the fact that at least three fundamental
mechanisms for air entrainment have been proposed (shown overleaf on

Figure 2.4)

(1) Entrainment due to surface disturbances on the jet. (Van de
Sande (Ref ), Ervine et al (Ref ), Sene (Ref )). This

occurs in lower velocity jets (U; < 5-10 m/s).

(2) Entrainment due to a continuous layer of air between jet and
receiving flows (Van de Sande,Sene, etc.). This occurs in

high velocity jets (U, > 10 m/s).

(3) Entrainment along a highly agitated free surface with a deep
layer of foam (Thomas Ref ). This may occur often in .
hydraulic jump entrainment, where air bubbles are entrained
into the shear layer both at the toe of the jump and along

the free surface roller.

Entrainment types (1) and (2) will be analysed in this section, with

analysis for-type (3) in Sections 2.3 and 3.3.

Formulation of non-dimensional groups to describe rate of air entrain- .

ment due to jet surface undulations . -

Consider the jet shown on Figure 2.1 with velocity greater than-
inception so that air is entrained, and assume that entrainment is
achieved in the undulations in the jet surface, caused by U* and g*%,
the fluctuating component of velocity and eddy length. Other
influences on the rate of entrainment are inertial, gravitational,
viscous, and surface tension forces, as well as the absolute value of
jet velocity u,. If the jet is plane, the rate of entrainment is
given by g, and for circular jets q = QA/“d, where yd is the jet
circumference at the point of impact. The droplength L is not included
as it influences the velocity at impact already denoted by U,, the size

of the undulations 6, already denoted by U*, and the eddy length denoted .
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by &*. The exclusion of droplength L, effectively excludes the flow ‘
conditions either at the overflow point or exit nozzle which ever is
the case. In other words we are assuming that amplification of jet

disturbances has not occurred, as in the case of wall jets. We may write
&, FoqQr ‘
F(Q»‘L ’fk’ u,,u,,ﬂ,,ol. cee.. (2.14)
Or by the method of synthesis,

. 1,0
___-.(lgéfji, ‘ V‘{’( w‘ u R4 uf‘v p (2.15)
Jh 9 ("J YW 0uF 3 l&*)eu*"f—*dv) '_.o

We may choose for instance,

q e PYe
F(“'—L'i)lﬁ’%ﬁﬁ)g"#d’) =0

3 W9 W )
or
2

Lo o (T U, 0le, w0 LY

u'ldv gdf YV 6" 3a 'J’ cese. (2.16)
This becomes, for the ratio of air to water

) ®
%‘ ={:( , Re, Ne‘, patl !L ceeen (2.17)
at ) gd.

The term I-J:z— can be rewritten (U—)“LUl and as U’ is already included

gd gd
2

we can denote this as (8—*) , or turbulence intensity squared.
1

Bd

According to Sene and Thomas (Refs ), air is entrained by maximum
L .
eddy lengths given by, Lrax o:(TK)( f5) or as turbulence intensity is
Yo -
already included we may denote Q/d. as ("%’ﬂ) /d : S

Thus we may write

F(Fr,,ﬁ%, Wz;,( (5709), ) ceee. (2.18)

Hunt (Ref - ) has shown that het thickness d is no longer significant
when d > 4( > or 4 times capillary length, or approximately 11 mm.
Thus for jets with d > 11 mm,

¢ ° F-(Ff‘., Rey, W(.“m)z') ceee. (2.19)

According to Kobus (Ref ) Reynolds number is not significant if > 10°%

and we may write,

%@ = F(Frl ,Cﬂo)") Fﬂrk?iogadd?lm@ ceees (2.20) .




Re > 10° is an onerous condition for jets entraining air just past the
inception velocity, as U, = 1 m/s, then d = O.1lm (100 mm) which is

substantial for a model.

If the jet thickness criterion is satisfied in the model, say

d > 10 mm, then to satisfy Re > 10° , we need U, :; 10 m/s.

It should be pointed out that three important parameters have
been omitted from this analysis, the angle of the jet &, the pressure
of the ambient atmosphere Ap/pulz, and the droplength of a ﬁlunging
jet L, which effectively denotes the initial jet conditions, if the

impact jet conditions are already established.

Thus a more complete similitude analysis would be of the form,
- 2 (67 A L,
Q“‘ Q(F"\;QQUN?/',E‘M)(“\.) ,( P:i) , B /D) ceee. (2.21)

which in fact is almost intractable for comparing model/prototype

plunging jet behaviour.

Most of the plunging jet and wall jet tests to be described
have been carried out at atmospheric pressure, and hence Euler Number

may be discarded.

A range of © values has been used, but this may be corrected

approximately to the vertical case, say.

Unfortunately in many cases Re < 10° and d < 11 mm and the best
we can hope for in any correlation of existing data of plunging jets

would be, (67 L

. 7- p L‘
Q .= F(FY‘.,R!', W&;(m) ) ___)_?9 » h
o i ¥
If we could arrange all jets > 10 mm and identical model/prototype
turbulence intensity then 8 = f(Fr, Re, L/qy.

This of course may only apply in the context of low velocity jets
with entrainment due to surface undulations, and will not necessarily

apply with high velocity jets, say U; > 10 m/s.

Quantity of air entrained due to jet surface undulations (Type (1))

It will be noted in the foregoing dimensional analysis, that a
simple theoretical model for entrainment by jets is unlikely. The
simplest models for jets not plunging over long lengths should include
Froude number terms either Fr’ or Fr -1, Reynolds Number Re, turbulence

intensity (Tu) and if possible, an allowance for the inception velocity

ceven (2.22)

7
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U% to entrain air. In some cases the Reynolds number is omitted

(Kobus for Re > 10°) where viscous effects do not have a significant

influence.
Consider the model of Sene (Ref ) and Thomas as already
discussed in Section 2.1 and shown on Figure 2.1. Sene argues that

air is entrained when the circulating eddy in the receiving flow can

no longer follow the surface of the jet undulations, giving the

L6, ) [ r

Le/e 2 3 Pur

Most of the air is assumed to be entrained by maximum eddy sizes &%,

Q,’:“ VN (w%h)( S

%r/a{) f3

criterion,

given by

as already discussed on Page .

The magnitude of surface disturbance § is given>by u*z/gg, where

U* is the turbulent velocity component.

Thus for a plane plunging jet, Thomas argues that the volume of
air held in a single jet surface undulation is given approximately by

Lx2x §, and hence the rate of air entrainment by

- 1
q, v gf:m S u, ceeel (2.23) .

or
R L TR [
~ 8 M oo I/
‘la,. - ‘@7‘1“)'07_ s es cen e (2.24)
For u*® = ulztgf)l- and c??% = constant we have,
u
' u_'?’ ceee. (2.25)

= K (W) T
. - U/ 2
((vc\- /ﬁ ( /(\Ll'/“") -
where U*/U, is the turbulence intensity - o
vRiceity .
Up/U, is thekratio at entrance to shear layer to which Sene

assigns a constant value (= 0.035).
Dividing by the water velocity U, d (for a plane jet).

g)cx = K Fr!z (—r“)q- cee.. (2.26)

indicating an overly strong dependence on turbulence intensity. For a
given turbulence intensity B8 « Fr’ as already advocated by other

authors.

Sene's analysis as applied to plunging circular jets contains two

qualifications:- . .
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(a) the droplength of the jet is much shorter than the jet
disintegration length, so that amplification of surface

disturbances does not occur (see Section 3.1),

(b) the circular jet diameter is sufficiently large so that

surface tension forces do not dampen jet disturbances

The relationship proposed for short circular plunging jets is

By = S0 _ y\,(“*/un)* ull/gd., eee. (2027)

8} 2.
it (Ur/u)
which is of similar form to that of plane jets again implying
g& - q/ ol us ceee. (2.28)
-n-d' [\ % {

For low velocity circular jets.

This result q = u}, has been put forward for low velocity pluhging

Jjets by previous authors

Renner (1975) 8 = K Fr? K = 0.0015 to 0.00275
Kobus & Rao (1975) B8 = K Fr? (general principle)
3
Casteleyn, Van Groen B = K Frl (1-96—8) K = 0.006 to 0.01
& Kolkman (1977) !
0.8,°
Goldring (1979) B = K Fr? (1‘T) K = 0.0025
1
Ervine & Ahmed (1984) B = K Fr? (1-O;U8)3 K = 0.00275 to 0.012
1
Sene (1984) 8 = K Fr’ K = 0.0004 to 0.004

This illustrates a concensus for plane jets that q,« B, or B« Fr*,
with the latter three authors attempting to incorporate the inception
velocity Ut (= 0.8 m/s) discussed in Section 2.1. None has specifically

included turbulence intensity (Tu) as in Sene's theoretical formulation.

Kobus (1984, Ref ) states for the general case of plunging jet
entrainment 8 = K (Re, Tu) Frz, where Re is significant for Re <1CS%.
Kobus (1984) has put forward a tentative framework in Figure 2.5 below,
illustrating the effect of viscosity for Re <10°, incorporating the

inception velocity, and showing 8 = K Fr’ for Re > 10°. This diagram
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requires to be tested against existing data, (a) for each mechanism of

air entrainment gz« U, qQy = U, ., (b) for partially disintegrated
plunging jets, and also (c) to test the Kobus thesis that Turbulence

intensity (Tu) has no significance when R > 10°%,

i 7 5 T 7
'24... S N A .:/ 18 ncreasngt  J
e B 1

° = A P/

-B LT

-#I’-, toep
H

2/ &

@ oir_entrainment gy
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Frouds number Fr

. )

Flow contiguratien with yalimited air supply *"'n, 2,
y;

3 3 1 W

Royraics rumoer Mo s 330 I resp 6

Suggested functional relationship
for the relative air entrainment f3

Figure 2.5 Kobus framework for load self aeration

Quantity of air entrained due to continuous layer of air above jet
surface (Type (2)) |

There is some evidence, Van de Sande and Smith (Ref ), Sene

) that high velocity jets exhibit a different mechanism of
entraining air into receiving water.

sketched below.

(Ref

The model proposed by Sene is

Atmosphere

=

< 0
Q F
o (:i € "f ) .

waky
Figure 2.6

The receiving water is already foamy with reduced density pEP, (1 - Cf).

For the layer of air to penetrate receiving water
i 1 i ER
A .
2 Qe W00 7 30, up eee. (2.20)

and as Up/U1 = 0.035, then air can penetrate receiving water almost with

no foam in receiving water pg/p, > 1.




It can be seen from the sketch above, the pressure difference along
the thin layer of air, thickness 6, from inlet to point of air bubble

formation is
Ap = Q*gg e QFg‘x,'Sm@
and hence net force AP s - egx S’Me S ..... (2.30)
£

This force is balanced by the shear stress imparted to the air layer by
the flow jet below, at speed U,, assuming the contribution from the

recirculating foamy layer is small, Ur <<< U,.

Sene approximated this force to €¥x, and assuming a laminar air

layer

Tx = M %‘— x ceee. (2.31)
Equating forces and calculating the rate of air flow as U, § = g, we
have

Jro uf
q@ ~ ——“'g"e ceens (2.32)
&‘5 iy

Sene modifies the relationship above to account for air velocity profile
in the thin layer to give a revised estimate
3 .
1. = L2 e Y vere. (2.33)
G 9 Sn®

The same relationship applies for circular jets, except qg = Qa/ﬂa.

The application of (2.33) above appears to be for jets of U, > 7-10 m/s

when the jet surface undulation type of entrainment is less significant
possibly due to the fact that surface undulations have reached a maximum

value, or that pre-entrainment of the jet has occurred.

Sene also used this type of analysis to predict (speculatively) the

rate of entrainment at the toe of the hydraulic jump as shown below.

Figure 2.7

( Hydraulc Jump)
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The pressure difference along the gap 4p = Psg Ay,(where e < Dw)

is again balanced by the shear imparted to the air by the jet below

'8 Wy . Hence { ~ O.é_’:“l ‘ 'Il and the air flow q, is given by
$ % b3 N
‘¢

~ Z ’ : f___ een. (2.38)
(Lo. 3 T';ﬁ 59 | 4

Ax/Ay may be approximated for jumps to the jump lepgth, Lr/Yz— N .
Equation (2.34) implies non-similitude between the ratio of air to
water B, and the jet Froude Number (Fr,), but only incorporates
entrainment at the toe of the jump,wheﬂns.air is also entrained into

the free surface roller. (Thomas Ref ).

It is interesting to speculate on the quantity of air predicted

: LAY
from (2.34). For a jump we may assume Ax/Ay = 6, and q, = (f‘ﬁ I)

If we now assume pg = P, and substitute for W ipn, i.€. Bygter f? 9
-3 ~ -5 : n~
1 x 10 and Baip 1.8 x 10 then Hair = Myater/55° Hence we
obtain 3 l ‘/
CL&"—’ 0.13 (j“w l)z. o ﬁ ~ o,:g(ﬂwu, )2.
This becomes &J 9 Pw gdz
v 03l LR VA 0 R,k
el -
b P“&Hd- sd.) (Re)
Even for the highest foam air concentration Cf = 0.5 and Pp = pw/2 we
obtain ‘
% 1\_: 04 ‘S‘F'}
—
(Re)"2
At Re = 10°, B = 0.005 Fr, ) These are shown below compared
Re = 10%, B = 0.0015% Fq ; with Kalinske and Robertson etc.,
Re = 10°%, 8 = 0.0005 Fr, ) giving very low estimates for B.

We can only conclude here, that either the analysis is inadequate or a -
large proportion of air entrainment into hydraulic jumps comes from the
turbulent surface roller as postulated by Thomas. It is more likely

that the above analysis of Sene is applicable to high velocity jumps

hes been
U, = 10 m/s, in which case pre-entrainment of the jump ) ignored.
i /
14~ — =]}
? Kalwske
8y +— R s —\4K'\4
Figure 2.8 '
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Summary of Section 2.2

An estimation of the quantity of air entrained by a plunging wall
jet is complicated by the fact that Froude and Reynolds Number similarify
is required at the same time (or Re > 10°), up to three separate
mechanisms are possible Type (1), (2) and (3), and the.process is sensitive
to the turbulence intensity of the jet (U*/Ux)° Some of three points are

illustrated in Figure 2.9 overleaf.

(1) Van de Sande and Smith covered a wide velocity range of circular
jets showing that at low velocities da = U,*, and at higher velocities
> 10 m/s, qa = U,"%?2. This has important implications for model/
prototype comparisons. If the same is true for plane jets, then
correlations based on q = u,’ of B = Fr,’ may overestimate prototype
entrainment if U, (prototype) is greater than 10 m/s. It is still not
absolutely clear if the regime q5 = U,® ceases for U, > 5 m/s as
experimental data beyond this range is very limited. More tests are

required.

(2) The effect of turbulence intensity is illustrated clearly on
the two low velocity plots by Sene. The upper curve gives the maximum
entrainment possible (upper surface of plane jet) in an artificially
rough jet, while the lower curve . (artifically smoothed jet) gives a

prediction of the minimum possible entrainment.

- 3
Ga(max) = 0-0004 U,

)
; Sene, for low velocity jets.

. 3
da(min) = 0.00004 U,

It is interesting that other low velocity plunging jet data fit between -

these two limits.

A jet entraining air on both surfaces would give values of'qa'

twice as high as predicted by Sene (up to .0008 U,%).

(3) At this stage we have an unresolved problem. Renner and
Kobus state that the ratio of air to water, B = K Fr’, at least for
Froude Numbers less than 10. Therefore for this condition Qg ~ Ul3
irrespective of the velocity acting. By implication, entrainment is
always by surface undulation mechanisms. That is, q u,’, or
aa <« (U:*) Ui, or for a given turbulence level U*/y,» 9a = U* U, =8 U,.
Thus surface disturbances continue to increase with increasing
jet velocity and 6 is always proportional to U*?. This also implies

that a model operating at say 2 m/s will give Qg * (2)* = 8, and a

23
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prototype say at 10 m/s will give q5 = 10° = 1000. In order for this
to occur the ratio of the prototype to model surface disturbances would

have to be (10/2)2 = 25 times.

The counter evidence from Sene and Van de Sande and Smith is that
surface disturbances do not continue to grow indefinitely. From the
limited data it appears that surface disturbances reach a maximum around
5-7 m/s. Therefore just beyond 5 m/s, aQ = 6U, = KU, as § becomes
constant (See Figure 2.9). We might enter then a regime of linear
increases in air entrainment with velocity. Around this stage the
intermittent entrainment by surface disturbances becomes a continuous
layer of air between jet and roller, or qa = U,*/,. This is equivalent
to saying that surface disturbances are no longer significant and
entrainment is comparable to air from the boundary layer of a laminar

jet.

It is more likely that air entrainment generall%(ignoring
contributions from pre-entrainment)would be made up of a combination of

surface disturbances and air boundary layer entrainment in the form

. 3 3
Uz Kiwy + Kou, ceen. (2:340)

In this sense K, may be insignificant at low jet velocities, and

A
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K, may be small at very high velocities. The value of K,; is obviously.
influenced by Reynolds Number (Kobus), turbulence intensity (Sene and
Thomas), and the value of jet thickness but only for jet thickness less

than say 30 mm.

One obvious weakness in the high velocity entrainment argument is
that pre-entrainment possibility is ignored, and as a first order

approximation may scale on Fr,%.

Section 2.3 Bubble escape and bubble transport mechanisms

In Section 2.2 we considered the quantity of air entrained into a
flow for plunging jets, wall jets and to a limited extent, hydraulic
jumps. In this section we will consider air bubble behaviour after the
point of entrainment (in the shear layer, etc.), with the discussion

initially limited to plane wall jets and hydraulic jumps.

Consider first a plane wall jet impinging on a conduit full
condition as shown on Figure 2.11. Assuming the jet velocity u, is
greater than the inception velocity to entrain air U¥, then air bubbles

are carried into the shear layer and are subjected to a range of forces ‘

including buoyancy, drag, inertia, vorticity etc. A recirculating
vortex is usually set up with velocity Un << U,. Water is entrained
into the shear layer from either side, causing a spreading of the
shear layer and eventual reattachment on the other side of the conduit
as shown. In some cases, when D/4 is very large, and the conduit
angle is shallow, it may be possible for the shear layer to return to

the water surface before reaching the opposite conduit wall.

For a low jet velocity, say just greater than U%, the entrained
air bubbles are carried into the flow, but are quickly detrained from
the shear layer, (because of bubble buoyancy) and are recirculated to
the water surface. In this case, no air bubble transport occurs
downstream of the shear layer. This is shown on Figure 2.12 (taken

from Ph.D. thesis of A. A. Ahmed).

At slightly higher velocities the mixing region extends in length
along the conduit, and tiny air bubbles (diameter = 1 mm) extend some

distance beyond the shear layer but net air transport along the conduit

is still not occurring. In this case U# < u U‘min’ the jet
velocity is still smaller than the minimum jet velocity to transport .
air, U npin. This is illustrated on Figure 2.13, again with total air
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-F{G (2.2). Early stage of air entrainment starts in the
Jet surfacs.
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detrainment, or total deaeration. ’

At higher jet velocities, U,

= Uypgine @ point is reached when
air bubbles are transported continuously along the length of the
conduit. This jet velocity is the minimum velocity to transport
air. Initially only small bubble diameters are transported, but at
higher velocities, larger bubble sizes are transported (5 mm). This
transition region is sometimes characterised by a coalescence of air
bubbles on the conduit roof, forming small air pockets, which often

"blow-back". This is illustrated on Figure 2.14,002”909-

At higher jet velocities, U, > a larger proportion of

Uimin®
the total air entrained into the shear layer, is transported along the
conduit. We generally define the total rate of air entrainment into
the shear layer as gt > the amount transported downstream as the net
air transport qg,, and the remainder is detrained and recirculated
back to the atmosphere Qop* In this case the entrainment capacity

of the flow can be said to exceed the transport capacity.

At much higher velocities U, >> a stable condition is

Ulmin’

reached where most of the entrained air is transported along the
conduit. It should be noted here, that in terms of bubbly flows .
the upper limit of transport generally corresponds to a void fraction

of @ = 0.42, or an air/water ratio 8 = 0.72. If the jet is

entraining more air than this upper limit for transport then

recirculation to the atmosphere is likely to occur again. As an

alternative, the bubbly flow can change to slug or air pocket flows,

when B values greater than 0.72 can be transported, especially at

shallow angles.

The factors which influence how much air is detrained and how
much is transported are complex, and will be dealt with in some
detail in this section. In broad terms however, the problem can be
defined by the forces action on a bubble both in the shear layer and
downstream of the shear layer. That is, in the shear layer a bubble
is acted upon by inertial, buoyancy, drag and lift (vorticity) forces,
and bubble progress along a shear layer will depend on the relative
magnitudes of these forces. This will be discussed in the light of
recent work by Auton, Sene, Thomas and Hunt (below), recent experiments
by Ervine and Ahmed, and in the light of a detrainment analysis by

Neale Thomas, applied to Type 3 entrainment, where air is entrained along ‘

the length of a shear layer (such as hydraulic jumps) by a foamy surface



%), Large air bubbles start to move upwards.
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_FI¢_(2./4). Air bubbles coalesce to form large air

bubbles.
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roller. Downstream of the shear layer, vorticity and inertial forces ’

may be considered small compared to drag and buoyancy, and simpler

analyses may be possible.

Let us consider first the most complex section of the analysis,
the behaviour of an air bubble in a turbulent shear field caused by an

impinging jet. The work of Thomas et al is the most relevant.

Simylation of bubble trajectories in vortices in a shear layer

The most recent work on the behaviour of air bubbles in shearing
vortices has been carried out by Thomas, Auton, Sene and Hunt (Ref )
at Cambridge, England. Their work originated from research into
plunging wall jet air entrainment and the influence of shearing vortices
downstream of the plunge point entrapping air bubbles in the cores of

vortices as shown on the sketch below.
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Figure 2.15

Forces on spherical bubble

Ignoring the density of air p, << p,, Auton has written an expression

for the resultant force on a bubble.
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where F is the resultant force on the bubble
v is bubble volume
u is local water velocity vector
Up is bubble velocity vector

Upr is bubble rise velocity in fluid at rest

-CR = 'a—t + U.V

Cym 1is virtual mass coefficient (= 0.5)
Cy, is lift coefficient (= 0.53)
w is the vorticity vector (VAU)

For the simplified case of aUb/at = 0 in the virtual mass force, Sene
(Ref ) has written Equation (2.35) in terms of the acceleration (total
derivative) of the bubble.

du, - —g+ W ¢ du CU-WAR — qfky~ U .
at R Gl e

which becomes br
du di _ 29— 2C ([Uy-wAi £

MW g3 d - brWAW - Up= U\ [ Up=lt |

T 3 T 9 L 29 (% ) bW

U | i
T 1 | T (l¢ b ubr
inertia, buogmj liH(Vorhciﬁg g

Sene has used AU (the velocity difference between shear layer and
recirculating flow) and x (the streamwise direction) to compare the
orders of magnitude of the forces above, giving
rmerhd‘-\ (Buogmﬁr\-\ (‘||C+.(Vori'lc‘dq)—\ (dyas-—\
é__"’l 9 ) N ) 9 T
X X

Thus if Uy, << AU, the lift forces can be neglected compared to -

inertia; inertia can be neglected compared to drag and buoyancy if

AU
X

<< g, and so forth.

Thomas, Auton, Sene and Hunt used a form of Equation (2.36) above to
investigate the behaviour of bubbles rising under buoyancy from a

point below a vortex core (shown overleaf). The resulting trajectories
are shown on Figure 2.16 indicating a certain width w, whereby bubbles
entering within the region are trapped in the vortex core. This was

verified experimentally.
Dimensional analysis showed that this width could be correlated by

wg | f (P%;) .....-(2.37)

g
“Lr
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where I' is the ciruclation in the vortex. The trapping width .

increased with ciruclation in the vortex (Ref ).

Thomas et al went on to simulate bubble injection into a shear layer
using a technique of discrete vortex modelling. Early simulations
revealed a large proportion (80% ;n their case) of bubbles were entrapped
by vortex cores, but a wider range of tests requires to be carried out
before definite statistics can be presented on the proportions of

bubbles trapped by vortices trapped in a free shear layer.

Ultimately this type of analysis by Thomas et al will lead to
more accurate predictions of bubble behaviour in shear layers, including
detrainment, (bubble escape) and bubble transport. The analysis
however requires extensive computer modelling and is not yet at a stage
of development to become common place in the Civil Engineering context.
In the meantime we can use more approximate methods, especially with

regard to closed conduit hydraulic structures.

i
| “II'
J

Figure 2.16 : Paths of bubble with
a rise velocity near
two-dimensional vortex.
Note that bubbles rising
from the region W are

trapped in the vortex
core.

L

A significant finding of Sene's work on bubble escape and bubble

Figure 2.16

behaviour in a shear layer is that the slip velocity of bubbles is close
to the bubble rise velocity Upr. That is, if U is the local water
velocity in the shear layer, and U, the local bubble velocity then

U - Up = Upp. Thus for a bubble in a shear layer at an angle 6 to the
horizontal as shown in the sketch overleaf.



;1\5

water Swhaq.

Figure 2.17

If the velocity in the shear layer U >»Upp, and the velocity profile
in the shear layer is given by U(x,y, then the average bubble velocity

at any section is

@0
It § Uay Yy
- .Y
\,Lb’(x) - —® ) cee.. (2.38)
1Y%9)
where G(x) is the width of the shear layer at any value of x.

The half angle of spread of the shear layer is approximately tan 14°

and we may approximate § ’co)é = 2(X) tan 14°. Furthermore

Reichardt showed SZ @ px,g) dAJ = 0,58 U [xd

Hence, Up@) ~ 058k [Xd o ,,,.,u/x
X Fanie® J?L

Therefore the time taken by the bubble to reach a distance X in the

(2.39)

streamwise direction X J—)q
T = X/u»(X) - d/"”“l

Assume bubbles originate at the plunge point, then during the time
period T,bubbles will rise a certain distance towards the edge of the
shear layer. For bubbles to escape the shear layer, then the

distance in the y direction is §/5 and the time T = Sll/u'br (05D

Thus we have an expression for the average distance (streamwise)

travelled by the bubbles before leaving the shear layer is
X/ ~ 049 ( Vu.,,cose) ceve. (2.40)

Actually the constant Q.19 quoted by Sene, would seem from the
arithmetic to be 0.085, but meanwhile assume X/d, = K.l( ﬁi/ol.br(;,s@)z'
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The question now becomes, can Equation (2.40) be used to gain some ‘
insights into closed conduit behaviour in the context of minimum velocities
to transport air downstream of a shear layer. Sene (Ref ) has conducted
some measurements which reveal that the reattachment length of a spreading

shear layer in a closed conduit is given approximately by

Lr/df_\_/ l"(D/ol—‘) veve. (2.41)

Lr as indicated on the sketch)and this

estimate appears almost independent of

N
conduit angle.

Figure 2.18

Thus we can say as a speculation that the first requirement to transport .

entrained air bubbles downstream of the shear layer is that the average
distance travelled by bubbles given by Equation (2.40) should be at least
equal to the value of L, given in Equation (2.41). Thus our first

criterion becomes
Wy )1 T - )
K /\*\,(059 X (D/d l
or alternatively

u|m\'n ~ 2 (cs9 (s%i __()%L | o | ‘  .-

u‘,r K
ceees (2.42)

where K might be or order 0.1 to 0.2 (after Sene), and U, i is the
jet velocity required to transport air bubbles downstream. (Not to
be confused with U}, the jet velocity required to entrain bubbles into

the shear layer).

In the event of air bubbles being transported downstream out of
the shear layer, the criterion for air bubble transport (ignoring

turbulence effects is simply U, = Upp. Sin6, where U, is the conduit
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full mean velocity. For a 2-dimensional case, this gives
W, .
mmn - D
_— = - Sw?® ceen. (2.43)
T a
which becomes our second criterion for air bubble transport. Actually

a third criterion exists, in cases where air pockets form on the roof of
the contuit downstream of the shear layer. These often blowback
as slugs, even if bubbles can be transported. This is considered in

Sections 4 and S.

A rider requires to be placed on Equations (2.42) and 2.43) in that,
air bubbles are not transported until they are entrained in the first place.
For steep conduits (say > 30°) this criterion is UT = 0.8 - 1.0 m/s or
Uxmin/Ubr > 4, Thus we might say without great justification that
Equation (2.42) becomes

Wimi o Ky Cos® (D)) #

..... (2.44)
Upye
and Equation (2.43) might become
lAhmr'\ (2.45)

_ I) SUng + cree
W, ° Ko 74 4

The second criterion for air bubble transport is much more likely to
apply to vertical shafts, where cos &8 = 0, and in any case is generally

the lesser of the two criteria.

Af this stage it may be of interest to compare theory with some
limited experimental data. A 60° . SQUARE SHAFT (Ervine & Ahmed) give
minimum velocities to transport air as shown on Figure 2.19. This _
data is compared with U;pjn/Upr = K, cos® (D/4q - 1)% + 4, giving K, = 8. ;- -

This form of relationship in fact appears to be satisfactory for2;< 8 '< 900,

For 6 = 90°, Equation (2.45) may be applicable as evidenced by

Figure 2.20 for Ervine and Ahmed's data. In this case
Ry by v OO Yy Swe + 4

For the case of 8 < 20° shallow conduits, the mode of entrainment

is by hydraulic jump surface roller. For inception of air entrainment
a breaking roller must form, say Fr, = 1.3, and according to Thomas
(Ref ) the minimum jet velocity for air transport to occur in a closed

consuit downstream of the shear layer is given by

u min/ = (os®
| /U.b,. ~C e (2.46)



0.55

© o o e
& &
Loln o (¥4} 8

Jot Thiokness / Shaft Size W /D!

(o]
N
o

0.10

0.05

0.00

o 0= 60° Shefe

(Vor = 0.25 mfs)

< L]
=
7
3.
7
o0
g
o
AY’
N
N
+
<

Upe

[~

(infs)

1.0 1.5 2.0 2.5 3.0 35 40 4.5

Critioal Jot Velocity ui.mfn

Fi1g(2.(9) The Influence of the Upstream Jet Thickneese on the
| .
Threshold Jet Velocity to traneport Air Bubbles Along Sheft

{

0.55

e ° o 9
(7] & &
wn o wn g

Jot Thioknese / Shaft Size (d /D)

@

0.05

0.00

Dropehafs
. Gu 90° Shate
(Wy, = 0.25 nfs)
. “lm& D
\ y . :0.6%5»».0##
\ vd |
\\ *
¢ ®
*
(@/s)
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Criticel Jet Velocity U;,m;\

Fig@Z.29 The [nfluence of the Upstrean Jet Thickneee on the

Threehold Jet Velocity to transport Air Bubblee Alai Shaft

[S.8]
©o



where € is the turbulence intensity in the shear layer, usually of order
0.1 to 0.2, and for shallow conduit angles cos 6 1, U . /Upr = 5 - 10
or Uipin® 1.5t0 2.5 m/s. The value of U ;, remains constant for all D/d
values. This is at least partially borne out in Ervine and Ahmed's data
for 10° shaft shown in Figure 2.21. Equation (2.46) is applicable only
to surface roller entrainment (Type (3)) usually found.in hydraulic jumps
at shallow conduit angle (see Thomas analysis). Thus, by way of summary,
we can state that the proportion of entrained air which is transported or
detrained in a closed conduit, will depend primarily on the value of the
jet velocity compared to the minimum jet velocity to tranpsort air U -
The value of U,pi, as can be seen in the foregoing discussion is dependent
on the angle (or slope) of the conduit, the bubble rise velocity in a

shear layer, the ratio d/D, jet thickness to conduit depth, the turbulence

intensity generated in the shear layer, etc. As a first estimate the
jet velocities required to transport air can be given by
~ 3
Wimasy, = KiGse (Dy-0)" + & by 20°4 B < 90°
(K' a4 5“!0)
U, ~ _

(kl~ 0, b)

\

[ ST,

LT -

= (st br 6< 20°
(€~ %%y

Jet velocities less than U 5, will not transport air, and greater than

Uimin will transport air. These estimates of course apply only to
conditions where the mixing region is well short of the exit of the

conduit.

The proportion of air transported and detrained when Uy > Ulmin

Once air transport begins in a conduit downstream of the mixing
region, U > Unpin» @ proportion of the air is detrained back to
atmosphere and the remainder transported. Thomas (Ref ) carried
out a detrainment analysis for the case of surface roller entrainment
(as in a hydraulic jump) when the majority of air is entrained into
the shear layer from a deep layer of foam above the shear layer. As we
shall see below, the most important parameter is the effective bubble

rise velocity over the entrainment velocity into the shear layer.
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Thomas air bubble detrainment analysis

Thomas (Ref ) postulated a detrainment analysis for air
bubbles in a spreading turbulent shear layer. The model is shown over-

leaf and contains several assumptions.

(1) The free surface plunging jet penetrates the receiving water)
generating a surface roller and entraining air bubbles into the shear
layer. A thick layer of foam is generated on the surface of the
receiving water and air bubbles are entrained into the shear layer

from the foam above.

(2) For single phase flows the spreading half angles would be Gé as
indicated on the sketch. Due to the presence of air bubbles in the
shear layer, the free streamline (s) is deflected upwards by an angle §&;.
The lower boundary of the shear layer is also deflected upwards so as

to make a new half angle 6%, where 63 < 6.

(3) Air bubbles above the streamline S are detrained back to the
foam layer and air bubbles below 6§ are entrained into the flow. Thus

net air entrainment into the flow occurs over a spreading angle Gé + 8}

(4) The plunging jet is assumed to have a uniform velocity of V, with
this velocity considered to act on an air bubble in the mixing layer as
shown. The air bubble is also considered buoyant as indicated by the
2 components of bubble rise velocity. The bubble spreads through

the shear layer by means of the entrainment velocity V., where Ve/vlz
Sé = €. the entrainment coefficient. For single phase flows, Thomas

estimates Ve/y to be —‘%o to "é .
1

(5) Thomas assumed plane penetrating shear layers as can be seen in
Figure 2.22, and as such may not apply directly to hydraulic jumps

with strongly curved shear layers.

Referring to Thomas's model, the net quadity of air entrained into

the shear layer is given by

Lo = Cn (Vl‘ Vbr3'5\9)(sf* o8 ) ceee. (2.47)

where q, is the air flow rate per unit width
Cm is the air void fraction (or concentration) in the shear
layer

§, = 8¢ L and §g = Gg L as indicated on the sketch.

Expression (zé@kan be made meaningful for realistic estimates of C“

and 51 + GB'

4l
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An estimate for Cj the air bubble concentration in the shear layer
can be obtained from a continuity expression for the air bubbles from
the foam layer being entrained into the mixing layer along length L
being equal to the transport of air across the entire shear layer.

Namely,

entrainment of air bubbles from foam

CF(VQ,— v},r (058) L-

layer ees.. (2.48)
Ch (W‘VbrS’u'\QXSB*Sf_) = entrainment and detrainment
out of shear layer cev.. (2.49)
|
Now Sj'_ = S& = Y_& as already assumed
L Vi

S‘B - Ve - ‘\i:,, (s

Hence we obtain an expression for Cp in the form,
¢, = G (1= Ver s )
" Ve

- _ r‘ e
(g2 )1 - 55

The limit of equation (5) where buoyancy effects are negligible gives

eve.. (2.50)

Thomas postulated that S_L_ z

ceee. (2.51)

Cm '—'in, , or the air void fraction in the mixing layer is half layer
is half that of the foam layer. If the foam layer concentration is
typically 0.5, then Cm = 0.25. This will be discussed later in the
context of plunging free jet entrainment where values of C; over 0.4

have been measured.

An expression for (8§, + § in Equation can be obtained by

g
continuity of the water flows entrained into the shear layer from below
(see sketch) and that moving out of the shear layer below the

streamline S.
Vel = VilSe-Sa) + (1-C)V, (5)+ 55) ceeen (2.52)
Using the same argument as before, we obtain

S8y = (I— Vb_%?) S (1~Cw) ceven (2.53)
Equations(l.‘Sl)and(?..53)can be substituted into Equation(L‘Fl)to obtain
an expression for the net air flow rate. This can be divided by the
water discharge (U, d) to derive an e*pression for the ratio of air to
water. The resulting air/water ratio splits into a non-buoyant scale
independent section and a buoyant scale dependent section, the latter

being given by,
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Q‘ Vb%:‘—‘g)( Vbrubs QIL\L‘ G I“ ceev. (2.54) .

1= Cm

For the case of C¢ = 0.5 and V'D'fs‘“g <<<1, equation (1.94){‘educes to

(l—v“ws) /(]—\/br(ow ceee. (2.55)
3Ve 4

which effectively is a detrainment scale factor.

It is further argued by Thomas (see Notes of Inception speeds for
Air Entrainment)that as Vg = ¢€V,, where € is the entrainment coefficient
or the half angle of spreading shear layers, that at the balance point
for inception of air bubbles into the shear layer, Ye = Vir 56 = € (1’:'

(U*l* is the critical inception speed). Then Equation 2.55 becomes

U_ %)L / (, - ‘%u.\ vev.. (2.56)

The final relationship for air/water ratio of net entrainment proposed

by Thomas is,
b= K( Fr-1) Q_u%‘)z/(‘,%j“‘) ceeen (2.57)

which is applicablé mainly to low Froude Number situations (F, < 10), .
shallow conduit angles 0, situations with a thick layer of foam at the

plunge point,and‘ cases where the transport capacity of the flow down-

stream of the shear layer in a closed conduit is adequate to carry the

net rate of air entrainment. Having stated that Thomas's analysis may

be applicable to hydraulic jumps at shallow conduit angles, ..Lt should

be noted that Equation (2.5]) above gave an excellent representation of

the entrainment in model siphons where 6 = 45° and a thick layer of o

foam did not exist (Casteleyn et al) and the shear layers were of the o

penetrating type.
Also it ignores entrainment at the toe of the jump.

Thomas does not state his reasoning for the ratio of air to water
scaling on Fr - 1, but by implication and using the example of a
hydraulic jump, if the rate of entrainment is dependent on the length
of the jump, then for low Froude Numbers L = K (y, - y.) = Ky, (yz/yl- 1).
The value of y, /yl , scales approximately on the Froude Number(yz /yl oc Fr)‘
hence L « y, (Fr, - 1) where y, = d. Thus the air flow rate g = U.L,
where Un is the velocity of the recirculating roller, and q, = (Un/U,)U, L,
where U,/U, according to Sene is 0.035. Hence q5 « 0.035U,d (Fr - 1) .
or B «,035 (Fr - 1). The value of K given by Thomas in Equation (2.57)
is approximately 1740 = 1/30.



If is interest to note that the relationship proposed by Thomas
is in a similar form to hydraulic jump entrainment by Kalinske and
Robertson (Ref ) 8 = 0.0066 (Fr, - 1)'°“. Kalinske and Robertson
were probably correct in assuming that B scaled on Fr-las shown above,
but failed to recognise that bubble dynamics in the shear layer would
probably not be scaled in Froude Models;l?br cos 6 remains approximately
constant in model and prototype, whereas water velocity terms U, or Ue
scale with Lr%. The other point highlighted by Goldring (Ref ) is
that Thomas assumed plane penetrating shear layers, whereas hydraulic
Jjumps have curved attaching shear layers. A lot of research still
requires to be carried out into hydraulic jump entrainment and
detrainment, this being one area which has not received extensive

analytical treatment. It is discussed in Section 3.3 in more detail.

ks



SECTION 3

BUBBLY FLOWS - EXPERIMENTAL EVIDENCE AND EMPIRICAL
CORRELATIONS

3.1 Jets plunging through the atmosphere.
Entrainment and dispersion.

3.2 Wall jets in hydraulic structures including
siphons and dropshafts. Entrainment,
detrainment and bubble transport.

3.3 Hydraulic Jumps. Entrainment and bubble
transport.
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3.1 Air entrainment by circular jets plunging through the atmosphere .

Air entrainment by circular jets issuing from a ¢ylindrical nozzle
at low intensity is a great deal more complex phenomenon then entrainment

by wall jets or hydraulic jumps. The reasons for this are outlined as

follows.

(1) If the jet is initiated by a nozzle, then the Reynolds Number of the
nozzle flow and the development of turbulent boundary layers in the nozzle

(=« length) have a strong influence on initial surface disturbances of the

issuing jet.

(a) A short slightly converging
smooth nozzle, taking flow from

a large undisturbed source of
water will produce a very
smooth jet with a laminar

core even at relatively

high Reynolds Numbers. This
has been shown to have a

strong influence not only

on the rate of air entrainment
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at the plunge point but
also the inception velocity
to cauée air entrainment
(see Section ), and the
disintegration length of

the plunging jet. Evidence \\\
® laos |

for this is given on Figure ik
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(b) A long nozzle or inlet pipe
allows the development of
boundary layers and can
produce fully developed
turbulent flow as the jet
issues into the atmosphere.
The lateral velocity fluctutating
components U* (say = V*
in the axial direction)
induce surface disturbances
which become amplified during

the plunge.

(2) The surrounding air becomes dragged
along by the plunging jet, setting

up an air boundary layer. The relative
movement of air and water generates

a shear stress at the interference

(as shown) which may further disturb
jet surface undulations. (This

may be a similar mechanism to the
generation of sea waves by wind).
Further acceleration of the jet and
amplification of jet surface disturb-
ances may eventually cause the jet

to disintegrate into a train of drop-
lets. This combination of hydro-
dynamic and aerodynamic forces is

much more in evidence in plunging

jets than wall jets and hydraulic
Jumps. This is also evidence that

the air resistance effect may only

be significant for Wb > 10 or Qa“-?'d'/G'
> 10, which corresponds generally

to a high velocity range.

ho3de




(3) The problem is further complicated
at the plunge point. Consider the
sketch opposite where air is entrained
into the receiving water by a jet

with surface disturbance ¢, and
surrounding boundary layer. Air
enters the pool, assume at the same
velocity as jet impact U,, then air

may enter either from the jet surface
undulations and/or the surrounding
boundary layer. The exact proportion
of each is still an open question

and in fact makes an analytical solution
extremely difficult. Even empirical
correlations show wide divergence.

On entering the pool, the high shearing
stresses produce air bubbles of diameters
generally 1 - 10 mm which are then
transported downwards in the shear
layer. The transport capacity of .
the shear layer may in fact be jyst as
important in determining the maximum
rate of air entrainment as the

jet characteristics. It could be
argued for instance that the maximum
air concentration in the shear layer
may be approximately 40 - 50%, then

the maximum quantity of air transported

might be, aa(mQ*) ~y 0,5- u,| (Tr._g:’-)
q-

Conditions at plunge point

Figure 3.4
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(4) The discussion has centred so far

Qq

0-3

on low velocity plunging

ue
Jets acceleratingjto gravity.

A different category of jet
results for high velocity

of exit from the nozzle.

A classical study by Van de Sande
and Smith (Ref ) shows three

distinct phases of entrainment

with increasing jet velocity.

A [ —qlmlll

At low velocity q i, = Ulz"” and e NS S | LA
1 10

intermittent entrainment occurs, Jd' wo“hj

a transition stage qui, = U, Figure 3.5

and finally for high velocity jets
a® lL."'g'”‘ . This phenomenon has important implications for
for hydraulic structures especially in comparing model/ prototype
entrainment. Van de Sande and Smith postulated that air
resistance was of importance only in the high velocity region
(say > 10 m/s above) but given generally by Wb > 10 where §b =

Qq,u:' d’/s’ . Beyond this point air entry is continuous and '
surface disturbances,important in low velocity jets, become less

important.

Empirical rleationships for air entrainment by circular jets

plunging through the atmosphere

air
Early work onXentrainment by plunging circular jets by

Oyama et al (Ref ) contained a complex relationship using a

range of non-dimensional numbers each related to conditions at

the nozzle.
1- - 0.7 L

2413 0.28(
b = O} 05 (Re, m(b 3‘—) (a(,‘) ceeee (3.1)

This work did not in€orporate the initial relative turbulence

intensity of the jet which has been found by the author to have

considerable influence on subsequent jet surface roughness and

eventual jet disintegration. However all the jets in this

study were of small scale with the turbulence intensity reflected

in the Reynolds Number term. The terms RQ, \v‘b and L/cL both reflect

the surface roughness of the jet and its eventual break-up, with .

1
v" /‘jL , as Froude Number, reflecting the effect of gravity of the
jet behaviour. It is of interest to note here that Froude scuhmJ

for the air/water ratio is not possible as the non-scaled portion

reduces to %(?mb}qungdd,) = @I" o L:ﬂog



In other words, the air/water ratio increases almost linearly with
Froude model scale. Thisthpnot be strictly accurate, as already
seen under inception velocities, that a velocity (or model scale)

exists below which there is zero entrainment of air.

Bin (Ref ) has correlated experimental data for cir¢klar
jet air entrainment from Van de Sande (Ref ) Cumming (Ref )
Ervine et al (Ref ), Henderson et al (Ref ), Kumagai and .
Imai (Ref ) and Van de Donk (Ref ). His correlation, which

has been corrected for jet angles other than vertical; is of the

form, Q&/Qw ~ 0505 F‘_O.S‘b (L/dh) 0.4

. e (3.2)
where o2 Wi/l (G Biued Fom
Whoe & = it/ 5dn )

The data correlations are shown on Figure 3.6. d, is the nozzle

n
diameter. Of interest here is the observation that the Reynolds and
Weber number of flow are absent, ignoring viscous or surface tension
influence. Most of the jets in the data correlations are of relatively
small scale, and thus viscous and surface tension forces must influence
not only the nature of the surface of the plunging jet but also the
inception condition for entrainment, and viscous influence in the

shear layer eddies after the point of impingement. Presuhably it can
be arsued that the parameter L/dn reflects growing jet surface rough-
ness and break up. Initial turbulence intensity is also omitted, but
Bin indicates the sensitivity of the data correlations to the length

of the jet nozzle which in turn reflects the development of turbulent
boundary layers within the jet at the point of entering the atmosphere.
Relationship (3.2) implies Froude scaling for air bubble entrainment.
From the data correlations in Figure 3.6 it can be seen that ratios of
air to water as high as 10 have been recorded, which is around tﬂo

orders of magnitude larger than typical hydraulic jump entrainment.

Several authors have employed more physical approaches to the
quantity of air entrained by circular jets. The most common assumes
the rate of air entrainment to vary with the flux of jet energy.
(QdZVJ) Van de Sande (Ref ) emplq¥ed this approach for low velocity
jets Using the nozzle diameter andXvelocity as a reference point, he

incorporated the jet length L, to derive an empirical expression

] 3 , 2,3 hc -bs
R, = 0.0iSY he (wmx = dy u L™ Suy “')
(do‘dh)
Again this was correlated by Bin (Ref ) for other data sets with

the result shown on Figure 3.7. = is the jet angle to the horizontal.
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From equation (3.3) is can be seen that the air/water ratio for

entrainment scales on the length scale (or model scale) er for Froude

models. McKeogh (Ref ) produced an empirical correlation for the
}
rate of air entrainment for high turbulence intensity low velocity

Jjets. The total rate of air entrainment given by,
{ 0'7 .
QC\/ 3 (K
Qw'v g (/ W, + Qa Quw ceen. (3.4)
where H is the plunge length (= L)

Ly 1is the jet disinteération plunge length

and an the rate of air entrainment for zero plunge length.

McKeogh found the value of L4 experimentally to be 4.6 Qw°'2.
Equation(%.u)implies a strong dependence of the quantity of air
entrained to the surface roughness of the jet and the jet
velocity. Ignoring the entrained air quantity at zero length of
plunge it can be seen from(BLQ)that the upper bound value of air/
water ratio at the point of jet disintegration is g = 0.3(11 where
U, is the jet impact velocity. This value must be suspect for
higher velocity flows (prototypes) as B rarely exceeds 3 for highly
turbulent jets.

The most interesting facet of McKeogh's relationship(3.¢)is

that for H/Ld:"; Qaéﬁﬁm)ﬁwn Q=0.34%, Q, = U,? d,%, or the quantity

of air entrained is a function of the momentum of the jet. This is

in contrast to the relationship by Van de Sande and Smith (Ref )

who found for jet plunge lengths greater than 90% of the jet disintegration
length that Q5 = K + 0.0825 U,? cfn which 1is proportional to the flux

of energy of the jet.

A further physical interpretation of air entrained by low velocity
plunging circular jets was attempted by Ervine and McKeogh (Ref - ).
This was based on a simplified model as shown on the sketch below.
The falling jet is supposed to increase in effective diameter by virtue
of the fact of surface undulations (idealised here as a sinuous wave
form of amplitude €). The air held within the surface undulations
is assumed to have the same speed as the plunging jet and to contribute
to the total rate of air entrainment. A tentative expression is also
derived for the total rate of air entrainment possible from the surrounding

Boundary layer.
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The discharge of entrained air therefore is given by,

€a = U, C('TT(Q"' F2€r+rt)— mrt)
“hy = FlEI+ 269)]

or the ratio of air to water is a function of the surface roughness
at any point during the plunge.

eeee. (3.5)

The value of €/r, local surface
roughness/local jet radiu$ could not be predicted analytically and

hence resort was made to high speed photographic measurements.
Typical measurements of €/r are shown below, and correlated with the
ratio L/Ld, plunge length/disintegration plunge length, and the jet

velocity at nozzle exit, V,.

1mr

4 v =4anms
o V,=3ms
x V,=2mws

FI¢.3.9

Surtace roughness/Jel radius,s/?

Very rough turbulent jets
Turvulence level >5%

001 n
o0 01 1
Height of fall/Break-up tength, VL

Non-dimensional plot of increass in jet surface roughness falling through
the atmosphere for various values of nozzie velocity V,
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The value of this work was not in a quantitative or empirical

estimate of the ratio of air/water by plunging circular jets, but as
evidenced in the correlation below, an indication that the value of

B is highly dependent on the jet surface roughness at the point of
impact (or the local jet diameter accounting for the surface
undulations). It can also be seen in the Figure below that a
substantial contribution to air entrainment comes from the surrounding
boundary layer, sometimes as high as 50% of the total air entrained.
The maximum air/water ratio is around 3, which is an order of magnitude

higher than that of typical hydraulic jumps.

3 *
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i turbulence levels

The analysis used by Ervine and McKeogh above was roughly based on

a technique developed by Van de Sande and Smith (Ref ) for predicting
air entrainment by high velocity circular jets. They proposed
&o.," = Q . “’ Q(L

(total) Llundulsbons) Q)Oundq-\j la.je,.) seeee (3.6)

To determine the amount of air entrained in jet undualtions, Van de Sande

et al used photographic technique to show %1 = O' %9 (We ReL)'/G

where D* is jet diameter at any point, D is initial jet diameter.

We = Qo.. Q%D/g’ ad RQ'L = eq ulL/;Km

)

-4 3
A X We Re - | ceeee (3.7)
e.)(undulqi’«m) N ( L) 7




For a calculation of air carried by the laminar boundary, Van de Sande

assumed an air velocity distribution around the jet (Ref ) such that
610. = j.“b V.. Ame Ch' (3.8)
b.2. P ceeen .
R*

Var de Sande and Smith achieved good correlation between their theory
and experimental data at least in the case of the air boundary layer

still laminar.

An important finding from their high velocity data, revealed
. = Ra 1532 - 293 X
that i& 4(1' oL u,‘ , compared with U, for low velocity
data.

Empirical correlations for rectangular jets plunging through the
atmosphere

A rectangular plunging jet falling freely through the atmosphere
will not retain its rectangular shape. Surface tension
' will encourage the jet to eventually assume a
circular shape. A range of shapes may evolve during the transition
from a rectangular to circular. There is also some evidence for

diveqsing growth development (Ref ) of the rectangular jet.

Ervine (Ref ) investigated the rate of air entrainment by
a rectangular jet issuing from a rectangular nozzle. Droplengths were

limited so that the jet essentially retained its original shape.

The major parameters controlling air entrainment rates were
droplength, velocity and jet thickness. ver the range of parameters

tested it was found

%0. o« (uh‘ “"‘) dn‘/l L‘/‘l—
. [
o B Bfy, (1- “‘%,J("/c\..) h
A final correlation was obtained in the form,

b7 00 af (- Fh)

where U% is inception velocity to entrain air (= 1.1 m/s).

For wide rectangular jets b/p“i % and the total entrainment from both

jet surfaces

6“ ~ 0,13 (L/t(,.)o#%("' u%,) ceer. (3.10)

This correlation is suspect in the sense that none of the plunging
Jets approached disintegration length, and over the range tested qg

varied with L%. This is not the case for greater values of L. Also
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the rate of entrainment would also become independent of d at higher .
values of d, hence the correlation on d% is applicable only over
smaller values of d. The correlation did serve to highlight the

concept of inception velocities for air entrainment.

Rogala (Ref ) investigated the rate of entrainment by a wide

rectangular plunging nappe as shown on the sketch below.
tigne d énergle
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Figure 3.11

Three scale models were tested, giving a correlation for air entrain-

ment from the underside of the nappe in the form,

l-S‘ "'
= K Fr Re veee. (3.11)

where Fr is given by V!/Jal at the impact point. .
Re i queaby Viho/y | awd K= 0,734 X0

This relationship scales on Lr"‘S which is likely to give an over-
estimate of prototype values of 8. A possible explanation is that
for higher Reynolds Numbers ()5 x 10" or 10°) and greater values of d,
the entrainment rate should become independent of R (see Kobus

(Ref )).  Turbulent dampening in the jet is no longer significant
and jet surface roughness will be fully developed compared with small
models. This same argument applies to the initial turbulence level at

the crest overflow and also the shearing vortices at the point of impact.

Thus Re!"' may be applicable in the range of models tested, but
when R > 10°%, B is likely to depend only on Fr,;, hence a new relation-
ship might be formed p =K2_F%hs‘(for Re > 10°).JKobus and westrich
(Ref ) investigated the reoxygenation of cooling water by plunging
rectangular jets entraining air into a receiving pool below. Maximisation
of air entrainment into the pool can be achieved by cooling water issuing
from a a number of slots in parallel rather than say just a single slot.
This has the effect of greatly increasing the surface area in contact with

the air at the point of jet impact. The Figure below shows the air/

water ratio as a fupction of the plunge length of the jets, for 4 jets and

6 jets in parallel.
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The advantage of this system is obvious. If the rate of entrainment by
a jet is given by Qg = qoB = U:B (as an order of magnitude, then the
same velocity U, will exist at the impact point no matter how many jets are
used (approx) and the total air entrained will increase by the term B, the

total jet width for all n jets, 4, 6, etc.

It is of interest to note that B varies approx with Hy2 above, Ervine's
correlation for a wide rectangular jet gives B8 = 0.13 (H/4,)**.  From
the diagram above at the maximum point H = 3.25 m from the slot exit and
d, = 0.16 m (Ref ). This gives B = 0.49 for one single slot.
Assuming a pro-rata increase for 4 and 6 jets we have B (4 jets) = 1.99

and 8(6 jets) = 3 which is in close agreement with Kobus and Westrich.

Other research into plunging jet entrainment has centred on oxygen uptake
studies at overflow weirs. Avery and Novak (Ref ) produced a relation-

ship for the oxygen deficit ratio in the form

r-1 = K F",ms Re *73

where K = 0.627 x 10~"* for tap water
A= Viffd ond Re = An/p

r is the oxygen deficit ratio given as deficit upstream of weir

deficit downstream of weir

and is clearly always Z 1.

Although influenced by water quality, salt content, depth of plunge pool,
temperature, etc., the value of r - 1 is heavily dependent on air/water

ratio (8) from the plunging jet, and Novak's relationship can be compared

60
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in its form to that of Rogola (Equation3.!! ). The same comment can be

made that for Re > 10° approx., Equation 3.12 above may overestimate

8 and hence r,¢ -1.

Kobus (Ref ) makes an interesting comment that previous studies
on the value of 1" - 1 may underestimate prototype r - 1 values if
correlated with the droplength alone, i.e. r = 1 = f(H). That is, if H
is held constant for both model and prototype, then model air entrainment
8 will be much higher than prototype. This can be seen clearly in
S

’.

Ervine's relationship B = (H/4)° when Hpogel = Hprototype' and

dmodel <<dprototype thengln > Bprototype-

Author's comments on plunging jet entrainment

It is apparent that a wide range of empirical correlations are
available for air entrainment due to jets plunging through the atmosphere.
A unified correlation procedure may be more difficult for plunging jets
than wall jets or hydraulic jumps etc. There are a range of reasons why

models may underestimate prototype entrainment. These are summarised as

follows:
(1) A minimum velocity is required to initially entrain air. This is .
of the order of 1 m/s but is dependent on turbulence intensity of the

flow. Models operating at this range of velocity will entrain

relatively small amounts of air.

(2) Viscous effects are important in air entrainment for Rg < 10°
(Mobus) . The turbulent eddies are suppressed by viscosity for lower
Reynolds Numbers, which in turn influences the intensity of jet surface
roughness and the shearing vortices at impingement point. Both these

factors contribute to air entrainment.

(3) The absolute value of jet thickness at impact may be significant

in the entrainment process (i.e. not just a function of Rg). The

scale of eddies causing jet surface roughness is likely to be proportional
to the jet thickness (d). If this is or order of magnitude size the

same entrained air bubbles then entrainment may be suppressed. Some of
the circular jet tests have jet diameter < 5 mm, and jet thickness may

suppi esc entrainment for d < 10#20 mm.

(4) Plunging jets undergo a gradual prccess of increasing surface
roughness and disintegration. According to limited research carried

out to date, this process is not Froude scaled but much more dependent .

on the initial Reynolds Number of the flow. This phenomenon




requires to be taken into account much more in plunging jets than

hydraulic jumps for instance.

(5) There is some evidence that high velocity jets (say U, > 6 m/s)
behave differently from low velocity jets. This is characterised by

Ulzes

correlations for entrainment scaled on for lower velocity jets

and U,'*® for higher velocity jets. Care must be exercised for model

3

extrapolations based on q, ‘@ UJ,* which may in fact not apply at higher

velocities.

Before we discuss some of these points in more detail, it may be
useful to investigate scaling factors (model/prototype) for existing

correlations.

Scaling for air/water ratios for air entrainment by plunging jets

Froude models of prototype air entrainment situations invariably
underestimate air/water ratios. Models at low Reynolds Numbers cause
dampening in turbulent fluctuations in the falling jet, reducing entrain-
ment. Apparently plunging jets do not disintegrate according to
Froude scaling. Inception velocities are required to initiate entrain-
ment, and also do not conform the Froude scaling. This author has
outlined approximate scalings for air/water ratio (prototype/model)
based on some empirical relationships postulated to date for jets

plunging through the atmosphere.

Scaling @p/@m =Br
Van de Sande ( ) ) Circular jets - L2
Reported by Bin ( )) Boc Fr 0036 (L/o(.\) *
(high velocity)
Vande Sande ( ) Circular jets Lr,o'g.
Qa oc V¥ 4¥2 | 3
(low velocity
. 0'8
McKeogh ( ) Circular jets Bqul'i) Lro"
(smooth turbulent) (L,ia(&'as)
v
McKeogh ( ) Circular jets &&Q—/L&)Oﬂ Wy Ln ©.25
(rough turbulent) ; X
£ ulent) (L4 Qe
Ervine ( ) Narrow rectangular Scales on absolute
jet %N. LH/D) Y2 'U_ ',) velocity rather than
u, model scale. High
velocities = L‘;.
Roquia () wile rectungular Jer 3‘! I Rl L 165 -
r

Figure 3.13
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Previous correlations for air entrainment by plunging jets have

generally ignored (a) the effect of increasing jet thickness with
droplength and velocity held constant (b) the effect of increasing drop-.
length with initial jet thickness and velocity held constant and (c)

the effect of increasing jet velocity over a wide range when jet thick-

ness and jet droplength are held constant. These can be explained as

follows:-

() Vanition 1w ni Q. A F——> Indeptident

' .
- . —_— er
o air enfimnmged por T4, : oF {8 Hudiness
uni
bfd‘ swfa lowih . !
wilh vilogdg () |
a |
and dmplengti, (L) constt .
lo-lowm
N
) Jot Hcknw (d)
4
Figure 3.14
For higher jet thickness gy is independent of d for wide rectangular
jets andé%%'is independent of d for circular jets, i.e. Turbulent
suppression no longer important for higher d values. The independence
of d appears to happen for d > 10-20 mm and Reynolds Numbers >5 x 10%, .

depending on initial turbulence levels in the jet and air bubble sizes.
Most experimenters have used values of d < 20 mm, especially in circular

jet research, and hence not generally in independent region.

(b) Jet droplength

A typical sketch of variation of entrainment with droplength is

below.
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Most correlations are taken from the region AB when q, <« L% approx.
This is not the case for greater droplengths and hence cannot be

extrapolated past the jet disintegration length Ld. . .

(c) The effect of increasing velocity with L and d held constant.

q .
1?027 [Lq dd (onshwt']

fa. U2

v u' Sy
prar B ek vt (1mpad
O&q Figure 3,16
For low velocity jets McKeosh (Ref ) found the entrainment rate
to vary with U,?, Van de Sande,u,l-'z:‘ Renner (Ref ) U,%, Ervine et al
(Ref )y (U, - 0.8)%, Sene (Ref ) U,*, while for high velocity
jets Van de Sande (Ref ) U'™?% Sene (Ref ) U, % illustrating

the divergence in the power of the impact velocity, Uln.

Thus for plunging circular jets, L and d constant,

Wira = K"

[H]

where n 2 * 3 at low velocity
in = 1 *2 at high velocity
and rectangular jets
Qo. = Klu,"

where n = 3 for low velocity jets

Incorporating the parameter d, we obtain for circular jets,

Qo . A

— d ; Fl(d) *

Kup d Fi () whee F, () - forsort
¢ iht be '
__‘}'- = 'F‘).. (d‘) {‘t& d/ R

ou "

We can assume that f,(d) = constant when d > 20mm or Re > 5 x 10* or 10°%.
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Finally to |'ncorpon£h’, the effect of jet break-up with increasing plunge .

length, we obtain,

Circular jets

n ?
. - " L ol"-ao‘ﬂ
Qo = K od g hid) (/Lal,) ceer. (3.13)
Rectangular jets, ; '
A L 013 0.
Ta = K W f(d) (/Lv() ceees (3.14)
where L is droplength and L4j disintegration droplength.

Translating these into air/water ratio terms,

-1 ¢ . -
loroiar) B = Ky uy ‘_'%) (%i)ma“ ceeer (3.15)
( rectanqalas ) E) = Klu"\-l F&i (L/L‘L)U.?—?O'? cee.. (3.16)

For the case of a plunging rectangular jet n = 3, and for the case of

d > 20 mm should give from (3.16) ﬁ = K Fr? (L/Ld)°"" 8  which is
similar to wall jets, except for the term (L/Ld) describing jet break-up.
A lot more research is required on plunging jets especially at larger

scales and velocities.

Bubble dispersion for jets plunging into unconfined pools ‘

There appears to be a minimal amount of research carried out on
the nature of the two phase conical diffusion region in the plunge
pool. A good deal of work has been carried out on submerged jets but
very little on plunging jets entraining large quantities of air

bubbles.

If we consider first a jet entraining no air bubbles (single
phase) then a system of spreading shear layers will develop as shown

overleaf:
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Jef The sharp discontinuity between jet velocity

and ambient fluid immediately sets up high

turbulence intensity shearing eddies which,

transfer energy and momentum to the ambient

fluid. The jet is rapidly decelerated and

counterbalancing this, ambient fluid is
accelerated and entrained into the spreading

core.

Jet analysis 1is carried out on the
assumption of constant momentum flux at any
cross section in the core, the mixing eddy
length is proportional to b, and b/x the

angle of spread is approximately constant.

The velocity profile at any section

Mv‘"‘f shows similarity in the form

€ddics 5 ©nl 2
V/V.,\ = 6(-1‘/2.6‘ ) (3.17)

-

where ¢ is the standard deviation and

equal to the value of r where v = 0.605V,.

Figure 3.17

That is, at any value of r/o, ;— = constant.
m

If we assume momentum flux is constant for all cross sections then
2 2 b
g Vo %_do < (’f v: 2me dr ceee. (3.18)
°
Thus with V «Vp at any value of T/g

b
jb v: ame dr sz'j arrdr L\ EH ceves (3.19)
c © )

We obtain V, dj = Vpb

Now ig spreading angle approximately constant, b/x = const, or b « x.

Thus Vo dg <« sz, = constant.

This indicates that the cantre line velocity V, decays linearly with x.

(Vp = 1/,) the distance from the plunge point.

Albertson (Ref ) showed from experimental data that
de
\/m/\/o ~ b ( /x,) ceve. (3.20)

The question now presents as to how the turbulent core tehaves with the
introduction of large duantities of air bubbles. If behaviour was

identical to that in Equation (3.20) then we could calculate approximate

penetration depths for air bubbles.
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X . Ve
/do x 6( c/Vm> ceees (3.21) ‘

Assuming air bubbles descend with the flow until a point when Vi

is equal to the bubble rise velocity (= 0.25 m/s), then x the
penetration depth = dp =~ 24 Vo do. This of course is not possible as
the air bubble concentration affects the angle of spreading cone and

turbulence intensity in the shear layer.

With substantial quantities of air now entering the spreading cone
the characteristics of the cone will change considerably. We can
postulate initially that the spreading shear layer will have a greater
angle of spread due to the presence of air bubbles, and hence the centre
line velocity will decay more rapidly than the case with no air bubbles
present. Also the penetration depth of air bubbles will be considerably
reduced due to the more rapid decay of jet velocity. Evidence for this
is given overleaf in two photographs (McKeogh) of plunging jets with
identical velocity and diameter at the point of impact but one jet with
a low turbulence intensity and the other high. (Figures 3.18 and 3.19J
It can be seen that the low intensity turbulent jet entrains small
quantities of air and has a deep penetration depth, whereas the higher
turbulence jet entrains large amounts of air, has a smaller penetration ‘
depth and hence a greater spreading angle of shear layer. Further
verification of this phenomenon is given on Figure 3.20 (from McKeogh's
Ph.D. Thesis, Ref ) comparing a jet with no air entrainment to the
case of the jet with flow turbulence intensity and small air concentrations
(<2%). For no air entrainment Vm/V° = c(do/x) as in the case of
Albertson, whereas with a small amount of air entrainment vm/Vo = 3
(dﬂ/x). Thus for this particular case, the centre line velocity decay
is twice as great with modest amounts of air entrainment. This is
also reflected in the angle of spreading shear 1ayerc(~, which ié
approximately 1/6 for a jet with no entrainment, but % for the case of

air entrainment with air concentration = 2%.

One would expect therefore, that if air bubbles penetrate to
Vm = 0.25 m/s then for McKeogh's cases of small air concentration that
x = dp = 12 Vo do which is half the value of that postulated from

Albertsons non air entraining case.

McKeogh did not measure the penetration depth for smooth turbulent

jets, but instead measured this value for rough turbulent jets of the
type commonly found in civil Engineering structures. He correlated .

experimental results to give

¢.1
dP : 2.6(\/" C(n) ceee. (3.22)



68

SRR

TS

3

v

r<

IR X

oLy
37

DN EAINE -
i

2Tt Y

o
gk

T

2

ey
i

3
)

AC 3.8

ENTRAINMENT PATTERN PRODUCED BY A JET OF IMPACT TURBULENCE
INTENSITY LESS THAN 1.3%. Note the depth of penetration
and low bubble intensity.



69

e S

.ﬁf m»\.”xwr

&

Fle3.9

ENTRAINMENT PATTERN PRODUCED BY A JET OF IMPACT TURBULENCE

Note the depth of penetration

2

o
K

INTENSITY OF APPROXIMATELY S

and the high bubble intensity.

3

7.

reduced from that of Fig.




JET dic = 9mm.
€°/o 30‘2./0 €°/o=]'0°/o
| Vi m/sec | Vi_m/sec
o} 33 o] 33
] 39 ° 39
¥
Vo (E’ relative  Furbulene l’r\hnS]ﬁ)
10 +
08 [
06
N NO AIR ENTRAINMENT
0L |
AIR ENTRAINMENT
02
[H 1 1 i | U W S | 1 1 i {
1.0 24 L0 60 680 100 L0-0
x/do
Fig. 3.20
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where V;, and d, are the velocity and diameter at the nozzle. (For
long jet plunge lengths it is difficult to measure V and d at the point

of impact).

Vigander (Ref ) also measured the penetration depth for rough
turbulent high velocity jets varying in diameter from 6 mm to 38 mm.

The result is shown below, giving

olr/dn ~ |5 V"/Vbr ceeen (3.23)

Assuming Vi, the bubble rise speed is = 0.25 m/s, we obtain dp = 6 Vndp.
Both results are plotted on Figure 3.22 for comparison. It is noted
that penetration depths for rough turbulent, high air entrainment jets
(= 6V,d,) are approximately 50% of that postulated for smooth turbulent,
low air entrainment jets, and approximately 25% of that postulated for

jets with zero air entrainment.

The obvious conclusion from this

work is that for the case of

3

[
I

-

3

o 3 8 5 3 &

ysanar -Im - :‘.’l‘;“'-mm_ - A .

puthi-hiperi ——— unconfined hydraulic structures,
—— O : — 100
———t0 rough turbulent jets may entrain

more air, but the air and the
spreading jet penetrate to smaller
depths and hence exhibit much
greater energy loss efficiency.
Figure 3.23 shows a typical plot

of variation of penetration depth

L) ) 0 © 0 & L) ] W 00 10 120 (30 160 13 1@ N
NOZZILE £RIT WATER VILOCITY/ SUBRLE fEAMINAL vOLOCITY RATO with increasing turbulence intensity.

Figure 3.21

Bubble penetration depth
correlation (Vigander)

Section 3.2

Experimentai and empirical evidence for wall jet air entrainment,
detrainment and air transport in siphons and dropshafts

In Section 3.1 the rate of air entrainment by jets plunging through
the atmosphere was discussed, with the conclusion that the total rate of
entrainment gyt, was influenced not only by jet velocity and turbulence
level, but also the degree of 'break-up' in the jet. The same break-up
phenomenon is not as evident in the wall jet entrainment and hence
simpler correlations may be possible. Also in Section 3.1, the emphasis
was placed on the total rate of air entrainment into a large pool area at

the point of impingement, whereas the thrust of Section 3.2 will be the

11
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net rate of air transport, qg,, along the conduit downstream of the
point of impingement. Hydraulic jump entrainment and transport will

be investigated in Section 3.3.

It is important in this section that the reader is aware of the
distinction between the total rate of air entrainment (qat) by a
supercritical wall jet into the shear layer, detrainmeht of air bubbles
out of the shear layer recirculating back to atmosphere (qap), and the
net air transport out of the shear layer downstream along the conduit
(qan). The latter is the parameter of most practical interest,
certainly in the case of siphons and dropshafts. These separate
process have already been discussed in Section 2.2 and 2.3, and the
reader>is referred to these sections for a background of ph&sical

conjectures and more analytical treatment of air entrainment.

The behaviour of siphons with regard to air entrainment and transport

A siphon is essentially a closed conduit inverted U-tuﬁe, which
transfers water from a higher to lower water level with a portion of the
siphon length above the hydraulic gradient line. The upper part of the
siphon is therefore at sub-atmospheric pressure, with the upper limit of
sub-atmospheric pressure around - 10m head of water, at which point
cavitation is likely to occur. Most siphon designers use an upper limit
of negative pressure around -7.5m head of water so that cavitation

problems might be avoided.

A siphon can be short in length, such as 'saddle' siphons over
the crest of a dam, or low-head wéter level control siphons as in river
engineering works. Siphons are often of con§iderable length, such as
the high points (above hydraulic grade line) in long pipelines, or a
component in the cooling water system of a power station (Goldring,
Ref ). In most cases the siphon will only run-full when the air
trapped in the upper portion of the pipe is removed, usually either by
air entrainment and transport, or by air vacuum pump. Siphons which
remove air by jet entrainment and transport are said to be 'self-

priming".

Once the process of jet air entrainment and transport had been
set up, it may proceed uncontrolled until the siphon runs full. This
is a blackwater siphon and commonly found in storm-water systems.
Reservoir and river siphons are nowadays generally designed to have
controlled air entrainment and transport. .ThA is)air allowed to
enter the siphon at the upper end, so as to replace transported air
at the siphon exist. This type of siphon behaves as a smooth valve in

the sense that it is capable of remaining stable at any value of water
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inflow to the siphon, and the exiting air flow is exactly balanced .
by the incomihg air flow. This is an air-regulated siphon, and

exhibits a fine control of the upstream water level which is of

particular value in river engineering woiks. A typical stage-

discharge relationship for an air regulated siphon is shown below

(Figure 3.24) for the case of a short siphon where the inlet lip is

a short distance above the siphon crest level, Four separate

stages of flow ensue.

3,
(I) Weir flow - when Q = C, L hlz ,(h is head above crest level.)

(II) Sub-atmospheric weir flow, Q = C, L ( W&ybr)yi, where the siphon
has begun to entrain and transport air, the upper air pocket is under
partial vacuum, and we might assume hydraulic criticality at the crest

(Yer)» giving an upstream apparent head of = ;&ycr in the reservoir.

ERVINE

b

Overflow weir ,”

/ (b} Sub-atmospheric weir flow

{d) Blackwater flow )

)
S s /
/ \ (== !

—f——f e e e~ — Lip fevel /

Reservoir head over crest: m
-

CJ
~
— - —————— — —

T R //Qat M Buckwater .
(a) Weir flow = // “‘7"
levet O § o,
/
Siphon discharge : m /s

°o

F"J.'~3-2'+Typical priming characteristic for a siphon spillway

(III) Partialised flow, which is a well mixed two-phase flow. In this
case the air pockets are essentially removed and regulating air from the
inlet disperses through the water flow. In this case & o J2gH where H .

is the head across the siphon from upstream to downstream water levels.
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(IV) Blackwater or siphon full flow, when all air is removed, no
further air enters from the inlet and @ = Cd Ao \’JJH , where Ag is
the cross-sectional area of the siphon barrel and Cq is generally

0.7 to 0.9 depending on siphon design.

Thisrocess is illustrated by a series of photographs Figure 3.25(a)
to (f) for a low head siphon where the means of air entrainment is by a
plunging jet, and a further series of photographs Figure 3.26(a) to (h)
for a high head reservoir siphon where the means of air entrainment is by
a jet impinging on a wall, causing a surface roller in a manner similar
to a hydraulic jump. A third common type of entrainment is simply a
wall jet remaining in contact with the lower siphon wall and entraining
air at the plunge point entry into the siphon full condition . This

hag been discussed in detail in sections 2.2 and 2.3.

Air entrainment theories for siphons (1975-85)

In the interests of brevity, only a selection of air entrainment
theories over the last 10 years will be considered. These are limited
to Ervine (1975), Renner (1975), (Kobus and Rao 1975), Casteleyn,

Van Groen and Kokman (1977), Thomas (1978)(1982), Goldring (1979, 1980,
1984), Ervine and Ahmed (1984), and Sene (1984).

A good deal more research than above has been carried out on
siphons in the last 10 years, but the intention is to concentrate on
research quantifying rates of air entrainment. For instance,
Professor Markland (University College, Cardiff) has been engaged in the
most innovative aspects of siphon design. Further references én
siphons can be obtained from, B.H.R.A. Conf. on Design of Siphons and

Siphon Spillways, London, England, May 1975.

Ervine (Ref ) measured the rate of air entrainment in three
siphon models of a reservoir siphon scales 1:7, 1:10 and 1:20, and the
rate of entrainmemt for three low head river siphons also at scales
1:7, 1:10 and 1:20. The measured rates of entrainment are in fact the
rates of air transport through the siphon (B8g5,) and are indicated in
Figure 3.27. (The design on the reservoir siphons are as shown on the
photographs, Figure 3.26 and the low head siphons as shown on Figure

3.25).

It can be seen from Figure 3.27 that the low head siphons in
particular revealed large scale effects in the rate of transported air.

The value of By, increased almost linearly with model scale (L),
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(e) Partialised flow

(f) Black water flow
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whereas the high head siphons, at larger velocities, showed an increase .
in the air water ratio Ban approximately with Lry2 or less. There was

no consistent pattern with the scale effect. One thing did become clear,
thaf siphons did not transport air according to Froude scaling. The
reasons postulated for this by Ervine were:- (a) a minimum velocity

(= 1 m/s) was required to entrain air initially, hence models operating
at velocities around 1 m/s would entrain relatively little air. This
effect would become progressively smaller as the velocity is the siphon
barrel or the scale of the model increased, as witnessed by the high head
siphons, (b) air evacuation would also depend on the ratio of the air
bubbles rise velocity to the outlet water velocity in the siphon. As
the bubble rise velocity Upp is approximately constant in all three

scale models,

then Upr/Ug or U° - Uppr is not scaled according to Froude law,

and a distortion in air transport scaling results.

] o 1/7 siphon ©1/7 siphon
| 01/10siphon 01/10 siphon
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. Typical air/water ratio curves for (a) the three high head siphons during
priming, (b) the three low head siphons during priming

Figure 3.27




In 1975, Renner (Ref ) reported on an experimental investigation
into anVQSpmiﬂ of siphon air entraining behaviour. This was also reported
extensively by Kobus and Rao (Ref ). A 2-dimensional jet issues from
a slot impinging on a wall which may be inclined at any angle « to the
horizontal. A turbulent surface roller is formed as shown on Figure 3.28
and according to Renner air is entrained at the toe of the roller.

Thomas has since conjectured that air is in fact entrained into the roller
itself as well as the toe of the roller. A proportion of the entrained
air is transported along with the flow and the remainder is recirculated
to the atmosphere. A correlation for two wall angles of the net rate of
air transport is shown on Figure 3.28. From this it can be seen that

for Froude Numbers less than 9, and for a given angle of wall =, the

ratio of air to water can be given by

5“‘ : \h’/Qu = K F']L ceve. (3.24)

or « U} where U, is the jet velocity.

Qair

Kobus argues that air entraining situations which are not influenced by
boundary scale, and where viscous effects are no longer significant, say

Ry > 10°, then we may write

9 * {;(u,, (’w)ﬂ) . (3.25)

or from dimensional analysis

=
29

This result is very attractive because of its simplicity. The values

= constant, which is the result of Renner.

of K reported by Renner are generally in the range 0.00172 and 0.00275

depending on the wall angle «,

Renner's result brings into question a lot of assumptions régarding

air entrainment and transport outlined in Sections 2.2 and 2.3.

(1) What type of air entrainment mechanism is this? Type (1) entrain-
ment due to jet surface roughness might give B = K,Fr‘z F(Tu) SO we
could assume that Renner's results were of the same order of magnitude

turbulence intensity. Type (2) entrainment at higher velocities with a

continuous layer of air at the toe of the surface roller would give
1af&117% which is obviously not the case from Renner's results.

Type (3) entrainment due to a surface roller might give a correlation

on Fr-1 for Froude Numbers less than 9, which appears not be be the

case either.



85

-—— Water flow
0 . ——+ Motion of
?""i‘&m \ air bubbles
ae "Ya
Ait B
entrainment
Qe ’ . Streamline of separation
L \ _ Stagnation point
de| —==
7
v
@ ’ Boundary of

q,, =V e diffusion zone

Transport
9w*9a

3.a8
Fig. Ilustrative sketch of air entrainment model (Rennw )

AR X
Region of saturation
NN NN
. | — «(=90°
s /A 3l
2 { d=45°
< /}//2 o
B s - ol A
< deve i -
2t——— r—a-~ L1
. ‘;I(% n |
Fr =Fry '
10" . 7 |
C pekert L f ‘
of=90% k= 27510 ol d, a a/d,

{ )
d=45% k= 1721072 /) . 90°4%° cm em - .
l e o« 6 38 633
] )(,‘. . 28 467 ]
. 7'ﬂ : e o 4 38 95
; Yt ° 28 70
/ . 2 38 190
/’ / / . 28 280
2 i ° 21 105 |
7/ o 1 38 380
| a 28 280
i s 21 21,0
- | > 05 21 420
1 2 3 4 5 FraveVgde 20 30 40

.2
Fig. Relative rate of air entrainment for a free
plane jet as a function of Froude number. (knmy)




teducd

86

(2) What type of air evacuation is this? The forces acting on an air
bubble in the mixing region of the surface roller are inertial, buoyancy,
vorticity and drag. Even is inertial and vorticity components are of

no significance in this situation, buoyancy and drag will not scale on é
Froude basis because of the same size of bubble in model and prototype.

We can only assume that drag forces on the bubble say = U} are much
greater than bubble buoyancy, which would only be the case at higher jet
velocities, especially U, D 2.5 m/s. Renner tested only up to velocities
of 5 m/s. Thus comparing with Thomas detrainment theory (Section 2.3)
bubble detrainment appears with Renner's data to have no significance in
this situation certainly with regard to scaling. This, in fact, might

be the case in Renner's physical configuration as conventional penetrating

shear layers are not occurring due to the proximity of the wall.

(3) Why does the angle of impingement into the wall have so much affect
on the rate of entrainment? It can be seen from Figure 3.28 that a
reduction in impingement angle from 90° to 45° causes a reduction in air
entrainment (= 62%) at the same jet velocity. If, according to Renner,
all the air is entrained at the +toe of the roller, then at the same jet
velocity, the same quantity should be entrained at 45° and 90° angles.
Maybe more air is detrained at smaller wall angles. If on the other hand,
air is entrained into the flow aloﬁg the length of the surface roller, then
this length will be reduced as the angle reduces from 90°. As a first
approximatign we might say that the length of the roller is proportional

to the rate of change of momentum)then for a given U, and d the length will
decrease approximately with Sin®. Thus the reduction in entrainment from
90° fo 45° would be of the order, 100%:71% which is not as much as the
measured value 100%:62% . Maybe more air is detrained at smaller impact

angles.

(4) Renner noted from this data that jet thicknesss d < 10-15mm pfoduced
rates éf entrainment. This is in line with observations from other
authors, Ervine and Ahmed (Ref ) and Sene (Ref ) etc. This is
liinked to the fact (not only of Re < 10%) but a dampening of surface
disturbances by surface tension when the scale of eddies is less than

about four times the capillary length (= 11 mm) Hunt (Ref ).

In 1977, Casteleyn, Van Groen and Kolkman (Ref ), reported on
air trahsport measurements in two model siphons at scale 1:20 and 1:7.
The siphon design is shown on the sketch overleaf, with a total length
of 100m (approx), a conduit dimension of 3.2m, and a variable level on

the downstream side of the siphon.
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Air entrainment (or air transport more correctly) measurements were

made in the two scales of model siphon, with the downstream leg almost
full,and the point of jet impingement generally just downstream of the

point of criticality; i.e. the Froude Numbers at jet impact, I < uog§1<_l,g,
An attempt was made at extrapolation of air transport measurements to

prototype behaviour.

The physical reasoning for extrapolation was straight forward and
similar in a sense to that of Thomas, Sene etc. If the rate of air

entrainment q, is proportional to the volume of air held in the jet

surface disturbances and the jet velocity at impact, then we might have
. ig /" _ 3
Q.o Wi H(5) = (“'/9) = U‘l/ﬂ ceees (3.26)

Casteleyn et al found that in fact that for a given value of ha/D,
where hy; is defined on Figure 3.29, and D is the conduit

dimension, that the rate of entrainment varied with, q, = U,*"*®

. In
order to generate a U} relationship, an additional term was introduced
Uc, where qg = (U, - Uc)s. The value of Ug required to form this
cubic relationship was 0.8 m/s, which by coincidence is the approximate
jet velocity to entrain air into a flow. Using this revised cubic

arrangement, the data from the 1/20 model and 1/7 model could be

$F




correlated on one curve as shown below on Figure 3.30. (er he case of hﬂ/p’—Ofw)
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The correlation thus gave,

1o ® (“l‘“cf ﬁ(“‘*/v) | ceee. (3.37)

and for h,/D values greater than 0.6, this could be approximated to
- 3
Qe = 0.0005 =3 Q.00 (ul-uc)

This was later modified by Thomas to

Ban = 0005 5 0.00 B (1- ‘%;)3 ceen (3.28)

Prototype data confirming this relationship is still awaited.
Several points of interest emerge from Equation (3.28).

(1) Can the relationship a, « (U, - Uc)® be sustained for prototype
conditions where the velocity at impact U, is likely to be as high as

7 m/s? This would mean that surface roughness disturbances would

have to increase with Uf /g. That is, for U « 7 m/s, Uc/uy << 1, then

B =0Q.005-% 0.~qFrf . This is an abnormally high rate of entrainment by a
Jjet entraining only on thz upper surface. Sene (Ref ) found an
upper limit of$~ 0.004 Frf which is approximately half of that to be
expected from kolkman's prototype data. Thus we must ask, in the

light of Figure 2.9, Section 2.2, if the rate of entrainment will not be

reduced from the (U, - U.)® relationship when the Jjet velocity U,>5 or

g8
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6 m/s corresponding to prototype conditions?

(2) Counterbalancing this possible reduction in air entrainment based
on the (U, - 0.8)° relationship,(with higher prototype velocities) we
have that possibility of greater air transport out of the penetrating
shear layers in the prototype where the outlet velocities acting on
entrained air bubbles will be greater. The drag forées on an entrained
bubble are now much greater than buoyancy effects and scale effects from
this source may be negligible compared with either the 1/20 or 1/7 scale

model.

In terms of prototype predictions we may use the graph produced by
Ahmed and Ervine (Figure3.36 ) to give likely estimates of B,, for the
case of Casteleyn et al siphons. Most of their siphon data gives Fr,
= 1 + 3, and prototype velocities 5 + 7 m/s. Assume transport scale
effects are negligible, then from Figure 3.3 we have for Fr, = 2 and U,
= 6 m/s, Ban = 0.04.

One point not mentioned by Casteleyn, Van Groen and Kolkman is the
possibility of air pocket formation at the start of the horizontal
outlet section of the siphon. Air bubbles from the entrainment mixing

region may accumulate at the roof of the conduit with a possible blow- ‘

back tendency at low outlet Froude Numbers, say

It is assumed that this problem did not arise.

In 1978, Thomas (Ref ) produced a scaling analysis for air
transport out of a penetrating shear layer with a thick layer of foam on
top of the shear layer, and air bubbles entrained into the shear layer
along its upper length. This was subsequently reproduced and modified
in a paper by Goldring, Mawer and Thomas (Ref ) and a paper by

Thomas in 1982 (Ref ).

The analysis is presented in detail in Section 2.3, and the
relationship presented by Thomas for the ratio of air to water B8,,,
is in the form of a scale independent entrainment into the shear layer
term, and a scale dependent air bubble detrainment out of the shear

layer term.

Entrainment into the shear layer is given as,

B « (Fr - 1) for Fr < 10
and 8 « Fr? for Fr > 10
Bubble detrainment as indicated in section 2.3 is given by, .

(l— u%.)L (i - u."w‘)



Thus for an air entraining situation with jet Froude Number less

ean= K(Fh“)[("u%u )L (" U"Zu') ceves (3.29)

where the value of K accordingbto Thomas ought to be around 0.025.

than 10,

This relationship is proposed for the net rate of air transport. One
point of confusion in Thomas's relationship is connected with the value
of U}, which Thomas has called the entrainment inception velocity. It
is not clear if this is meant to be the inception velocity to entrain
air into the shear layer U}, as discussed in Section 2.1, or the minimum
velocity to commence air bubble transport U‘min as discussed in Section
2.3. For Equation (3.29) to make any sense, the entrainment inception
velocity should in fact be U, jn, below which there is no net air
transport, but there may be entrainment into the shear layer and

subsequent total detrainment.

Thomas used a value of U,nin, of 1 m/s to correlate the data of
Casteleyn, Van Groen and Kolkman. This is smaller than predicted
values of U‘min in Section 2.3, because the shear layer in the Delft
siphons is reaching the exit of the conduit, or to be more precise, the
start of the horizontal length. Thus the minimum jet velocity to
transport air U, i, is practically as small as the inception velocity
to entrain air U} for this particular case. Generally, though, for
long conduits the value of Ui, in the Thomas equation should be

around 1.5 + 2.5 m/s.

The correlation of Equation (3.29) with Casteleyn et al siphon
data is shown in Figure 3.31, indicating excellent correspondence with
both model scales(énd a prototype extrapolation. Thus for the
prototype case of Fry = 2 and U, = 6 m/s we obtain,eﬂ- '(/w(l—l) [.-%}L/U‘V'F)]
which is 8, = 0.02. This value is half of that predicted by Ervine
and Ahmed (B8 = 0.04).

S0
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In his paper in 1982, Thomas compared data correlations from three

separate siphon configurations

Renaer %M ~  0.00112 =7 0. 0275 Fi—-"' ceees (3.30)
L #
oldnig By ~  Ci00RS Frt ( (- “‘/x‘)g ceeer (3.31)

Castele ~ 0,005 0.0l Frt ,__O-iiu 3 ceees (3.32)
+Koi2:wn ban ! ( /‘)

in an attempt to obtain an explanation for the large ranges of K(.0017 + .01)

obtained in the above correlations.
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Thomas argued from photographic evidence and experiments at Cambridge,
that two types of flow were possible, (1) when the shear layers
penetrate into the flow and are almost plane as in the case of the
Casteleyn et al siphons, and (2) where the shear layers are strongly
curved and reattach either on the free surface or just a small distance
along the conduit. This is generally accompanied by a thick layer of
foam and is characteristic of the air-entraining siphon flow of Goldring.
Goldring's siphon also exhibited curvature of the free surface impinging
jet, which in turn contributed to the curvature of the shear layer and
the reduced ambunt of air bubble transport compared with the Delft
siphons. Thomas postulates that detrainment effects are comparable in
Goldring's model compared with Casteleyn et al's model, but entrainment
into the shear layer from the jet is greatly reduced in Goldring's

model. This is still gpeén to question.

Goldring investigated the priming performance of a siphon which
constituted a component part of a cooling water outlet system for a power
station, as shown on Figure 3.32. This work was reported both for

model and prototype data in Reference , (1979) and Reference

(1984), and Ref. (19%)

If we concentrate dn Goldring's aif entrainment work, he measured
the rate of air transport through the siphon by indirect means using
a step-by-step procedure based on the time taken for the siphon to prime
and assuming hydraulic criticality at the siphon crest. That is, the
air entrainment rate was assumed from one of the known formulae and checked
against the actual rate of air removal from the air void in the siphon

crown.

A correlation was attempted first with the model siphons using

Equation (3.28) by Thomas. The best fit relationship was found fo‘be,

e} ~ 0 00""(‘:’"')@" ybq)?—/(" é’u‘)] ceee. (3.33)

from which it is noted that the K value (= 0.0066) is approximately one
quarter of that used in the correlation of Casteleyn et al siphons. As
already discussed, Thomas postulated the bi-model entrainment structure
to explain this difference. Also Goldring used U, i, of 1 m/s to
commence air bubble transport which must be also open to question, as it
coincides with the velocity required to entrain air into the shear layer.

Thses are two separate criteria.



Goldring correlated model results with the

developed by Casteleyn, Van Groen, and Kolkman,

B~ 00025 At (1= 0% Y

Again the coefficient K (= 0.0025) is only one

Casteleyn et al. Again we have the assumption

port occurs when U, = 0.8 m/s which is open to

empirical relationship

finding,

third to one quarter of

(3.34)

that air bubble trans-

question.
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Goldring in his 1984 paper (Ref

) discussed prototype measure-

ments of air entrainment in the siphon design which had been subject to

the previous model tests.

The surprising conclusion was that the Thomas

equation which had proved satisfactory for model correlations, proved

unsatisfactory in correlating prototype data.

The value of K which had

correlated as 0.0066 for model results, varied substantially in the

prototype, 0.007 to 0.017, depending on D-d,

(the conduit dimension less

93




the jet thickness). The non-correlation with prototype data was
attributed by Goldring to the fact that Thomas's correlation can not
be applied to Mode 2 flows (i.e. curved shear layer attaching on the
opposite conduit wall) which leaves the obvious question as to why

it proved satisfactory for scale models.

Goldring's model and prototype data obviously requires further
analysis to find an explanation for this discrepancy. Perhaps the
Thomas equation is more applicable not only in plane shear layers as
opposed to curved, but also at lower water velocities in the shear
layer where shearing vortices have a less coherent structure. This
model data correlations with a small value of U, (jet velocity) (for
Casteleyn et al this was < 2.5 m/s) may not translate into prototype

velocities with more coherent vortex structures. (S?nz, Rﬁp )

Ervine and Ahmed (Ref and ) carried out on an extensive
series of air entrainment tests in a square conduit (0.14 m square)
with the conduit angle ranging from 10° to the horizontal to vertical.
Although this work is intended to be as applicabl: to dropshafts as
siphons, a description of the work will be included below under

siphons, and referred to (briefly) under dropshaft entrainment.

The purpose in testing such a wide range of conduit angles was
to make the result applicable to dropshafts, siphons, hydraulic jumps
in conduits, etc. The final result for air transport in closed
conduits probably suffers from the fact that it attimpts to include
all types of entrainment and detrainment at all angles of conduit in a

single expression.

A schematic diagram of the conduit is shown on Figure 3.33 with
the experimental parameters appended. At each conduit angle, the total
rate of air entrainment into the shear layer (q,¢), and the net raée of
air transport out of the shear layer downstream (d,,) were measured
independently over a range of jet velocities up to 6 m/s and jet thickness
up to 120 mm. All the results (from Section 2.3) could be said to be
low velocity (i.e. < 10m/s). Working on the premise that entrainment
due to jet surface undulationscales on U,?, and a minimum jet velocity
of 0.8 m/s was required to entrain any air, a correlation for total air
entrainment was attempted along the lines 9at = (U; - 0.8)°. The
constant of proportionality here proved not be a constant, but varied with
the Froude Number uvaﬁil and the conduit angle, as shown on Figure 3.34.

This variation in K has many parallels with the variation in K found by
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Goldring in his prototype data. Further more, the value of K found by .

Casteleyn et al for Froude Numbers around 2, was 001 which was very
similar to the values on Figure 3.34. The value of K appears to be

constant only for high Froude Number Flows (Fr, > 10).

The net air transport downstream out of the shear layer was

plotted as a ratio of the net air transport to the total air entrainment
{qan/qat) against a team incorporating the outlet velocity in the
conduit, (Uy = Uy nin)/Upp- Uy min is the conduit full outlet velocity
required to commence air bubble transport and has been already described
in Section 2.3. (uc,,,;"-' u‘.,.,\ d/D) The result for all conditions tested
is shown on Figure 3.35, where it is clear that full transporting
capacity of entrained air is effectively possible for(uc" ucm.;\)/ubr 21
That is, when the outlet velocity in the shaft exceeds the minimum
outlet velocity to transport air by a value equal to the bubble rise

velocity in still water, = 0.25 m/s.

Ahmed and Ervine have thus proposed two separate scale factors
for air transport, (1) a scale factor for entrainment into the shear

0,8, \3
layerU - O’;{M) and (2) a scale factor for transport out of the shear
layer f‘(uo‘uo..'.\/ub,-) A final relationship was produced in the form .

B = ko Fr}[(l—0'3/(;,)3(l—e’z(“—u““‘)/u"")] e (3.39)

. —0.35 .
where K = 0' 00135—( I_'_ q_‘s"e' 0.3 (F"l l))

This complicated form is plotted on Figure 3.36 for a range of velocities
U, , but with the transport scale factor considered negligible. This
relationship has proved reasonably accurate in correlating experimental
data from Casteleyn et al siphons, as well as dropshaft data from
Whillock and Thorn (see Ref ).

It can be seen from Figure 3.36:-
(a) Air entrainment scale effects are small for jet velocity U, >5 m/s.

(b) The upper limit for air entrainment is very similar to prototype

data Campbell and Guyton, etc. By, = 0.04 (Fr, - 1)%%.

(c) Previous correlations based on (Fr - 1)®, and Fr*’, generally cross
velocity bands when the jet Froude Number is increased. This has
resulted in spurious correlations as air en}:rainment is only

partly governed by Froude scaling, and partly scales on the absolute

velocities acting. . .
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The behaviour of dropshaft with regard to air entrainment and transport

Dropshafts have generally been associated with the outlets of large
dams where excess floodwaters are transferred from reservoir level via
a circular vertical shaft to a horizontal conduit passing under the dam.
Other applications include vertical flow structures in sewer systems, and
more recently cooling water outlets of nuclear power stations have been

included dropshafts (See Figure 3.37).

The air entraining characteristics of dropshafts are generally more
complex than lower velocity, shorter length siphons. In fact their
behaviour is also more complex than disintegrating jets plunging through

the atmosphere. The reasons can be summarised as follows.

(1) During low flows, the hydraulic gradient in the outlet tunnel
usually produces a low shaft-full level somewhere close to the shaft/
tunnel junction. The annulus jet plunging down the dropshaft, may

often produce high velocity entrainment at the plunge point.

(2) The plunging jet may also be partly disintegrated due to large
plunge lengths, and pre-entrainment of the jet may have occurred, as in

the case of free surface aeration.

(3) For low shaft-full levels the rate of air entrainment or air
transport into the horizontal tunnel may be as high as the total entrain-
ment rate at the plunge point. This is because the mixing region extends

to the tunnel section.

(4) Air pockets may form at the tunnel/dropshaft junction at the
conduit roof and 'blow-back', or at least cause instabilities and reduced

discharge.

(%) For higher flows, the shaft-full condition is closer to the upper
end of the dropshaft. the plunge length is less but all the problems

mentioned above may still occur.

(6) Only when the shaft is completely submerged at the upper inlet will
air entrainment problems cease. One method of overcoming some of the
problems above has been the use of vortex inlets producing lower rates
of air entrainment at the plunge point. This has met with partial

success.,

Before we consider some of the experimental and empirical correlations
for dropshaft entrainment, perhaps we might consider some of the author's
speculations for scaling of dropshaft entrainment. Like the case of

siphons the process can be sub-divided into total entrainment into the
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shear layer, bubble detrainment and bubble transport downstream of

the shear layer along the shaft.
(a) Total entrainment into the shear layer.

Consider a circular annular jet plunging down the drop shaft and

impinging on the shaft full condition as shown on the sketch below.

-

<

A
.

As in Section 2.2 we need to consider L /
(2

the rate of air entrainment per unit

LA a4

surface area. In this case the
surface length entraining air is given Lounla’
by, ,aaa’?
T (D - 24) H

where D is the conduit diameter and

d the jet thickness.

Thus q/«( s Qa/n,v(l_l%)

The value of qg will depend primarily

on the jet velocity at the plunge point.
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For low velocity jets q5 = U} and for

high velocity jets gy % u¥h 2 Figure 3.38
(excluding pre - exbrasi menk)
Let us consider first, the likely effect of testing a series of scale
models at increasing scale for a given value of H/p, the droplength over
the conduit diameter. The likely variation in Qg with jet impact velocity

is shown in the sketch below.
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Consider five models with increasing scale (1 + 5), and hence .

increasing U, at a constant value of H/p.

Model 1 is extremely small and is entraining no air because the
inception velocity to entrain air has not yet been reached U, < 1 m/s.
This model will give B,4 = 0, which is an underestimate of prototype

entrainment!

Model 2 is larger than model |, but may still give a low rate of
air entrainment into the flow, as the jet velocity at impact W, is only
slightly larger than U, *, the inception velocity. If we attempted to

correlate Ba on Fr?, for model 2, and underestimate of Bay for the

t
prototype may still be obtained.

Model 3 is considered to be operating close the the upper limit
for low velocity jets where entrainment is due to surface undulations.
In this region qg =k? orB8 « Frf. The value ofB,. obtained from
model scale 3 is usually larger than the value of B8_; obtained from
models 1 and 2. At point 3, approximately the same value ofB_ ¢ would
be obtained for all model scales if, q <= U} remained the case for

increasing jet velocities beyond this point. This in fact may not be
the case. .

Models 4 and 5 may have now entered a new regime of air entrain-
3
ment where ultimately q, = UJ‘ for very high jet velocities? Thus

it would be possible to obtain, in terms of the model scale ratio

Lp = Lproto/Lmodel' " Lfyh ;
w 2
1a= kuf"* or @ z K‘/d: oL . ° Lo

That is, for models tested in the high velocity range only, the value of
air/water ratﬂ:@at may decrease with increasing model scale for a
constant H/D and 4/D. Thus, it is quite possible for model (scale) 3
to overestimate prototype total entrainment, and great care must be
placed in correlating low and high velocity dropshaft entrainment

data. It will be seen later in this section that larger scale drop-
shaft models often produce smaller air/water ratios than smaller
dropshaft models, especially if pre-entrainment is not evident in any

of the models.

A further problem in correlating total air entrainment data for

dropshaft models, is the effect of increasing water discharge in a

given model. There are two main effects (1) the droplength H decreases, .
hence does the jet velocity at impact U,, and hence the rate of entrainment

per unit surface length decreases, (2) the value of jet thickness

increases, hence (D - 2d)T decreases, (the surface length available for
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entrainment), hence the total volume of air entrained (Qag also decreases.
Thus an increase in water discharge will invariably produce a decrease

in total air entrainment rate. This argument of course will not hold
for small jet thickness at the impact point, say 4 < 10 mm, where the jet
thickness itself will influence surface disturbance growth, eddy lengths
and also air entrainment rate. That is, for jet thickness d < 20 mm,

the rate of air entrainment may well increase with jet thickness, etc.

A further phenomenon of circular dropshafts at increasing water
discharges is illustrated in Figure 3.38. The diameter of air core at
top of the shaft may become too small to cop@ with the quantity of air
being entrained at the plunge point. The plunging jet, if it remains
attached to the droﬁshaft walls will also continue to accelerate under
gravity until it reaches a terminal velocity, comparable to normal depth
in open channel flows. Thereafter the jet might increase in thickness
due to pre-entrainment if surface tension is overcome by turbulent
fluctuations. The shape of the air core is ncw similar to a Venturi.

If the air core becomes small, and the total air demand cannot be

satisfied, then a sub-atmospheric air pressure will exist in the air core

and accelerate air through the core from the atmosphere. In this case

Qa > ACVC, the air flow is greater than the area of the core times the

water velocity at that point. For the case of an annular hydraulic jump
occurring at the plunge point, the quantity of air passing the core will

be required to satisfy only the net air transport (which is typically

8an = 0.1 to 0.5), with a large proportion of the total air entrained, detraining

and recirculating in the air core back to the plunge point.
(b) Dropshaft bubble detrainment and transport.

The total entrainment into an annular hydraulic jump will depend
primarily on the jet velocity at the plunge U, , and the turbulence -
intensity (U*/U,), Reynolds Number and jet thickness(for d <20 mm and Re
< 105) At long droplengths and smaller values of d/D, the ratio of air
to water (Bgzt) often exceeds one and in some cases is as high as 2 or 3.

(This is comparable to plunging jet entrainment). Clearly, the shaft-

full flow downstream of the plunge point is incapable of transporting
this ratio of air to water. Wallis (Ref ) indicates that the
maximum void ratio (a) for bubbly flows is around 0.42, which gives an
upper limit of B,, for vertical bubbly flow of 0.72. Even this value is
uncommon in vertical downward flows. Typical upper limits of downward

bubbly flows appear to be around 0.4 to 0.5 for Ban- Thus, a large
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proportion of entrained air must be immediately detrained. This is

sketched below indicating a possible increase in air transport when the

mixing region reaches the conduit exit. .

TC‘::zo MR::;MFP [Gannel

Junchoy

Figure 3.40

This type of detrainment cannot be prodicted by analyses such as
Thomas (Ref ), as bubble buoyancy terms U, .cos® and Up.siné are
negligible compared with velocities in the shear layer. It is much more ‘
informative to compare bubble rise velocities with the shaft full velocity
Ubr/Uo- We might assume for instance that the real bubble downward
velocity in the shaft full condition is approximately Uy - Upp (where Upr
* 0.2 to 0.3 m/s), in which case, as the air concentration (a) increases
towards 0.42, there will be an increasing tendency towards bubble
coalescence; air pockets may form and blow back to the free surface due
to increased buoyancy. This type of air pocket formation and blow back
is likely until the downward Froude Number of the flow uo/C[EE; exceeds
0.4 to 0.5, beyond which, even air pockets may be transported with the

flow.

To the author's knowledge, no satisfactory entrainment or detrain-
ment analysis exists for dropshafts. Recourse must be made therefore to

experimental/empirical correlations.

Viparelli (Ref ) presented a correlation for net air transport

in vertical dropshafts in the form,

6(% = 0on (h/D)o‘é ..... (3.36)

where h is the height of fall of the plunging wall jet and D the conduit

diameter.

This is a crude correlation on two counts:



(1) Ban increases ad infinitum for large h/p values.

(2) The relationship is essentially a Froude scaled phenomenon for air
entrainment which might only be true for high velocities, turbulence level,
Re > 10°, d > 20 mm etc. etc. Even at high velocity there is a suspicion
(ag ¢U?h') that Froude scaling is not necessarily applicable for B,,.
After the point of jet impingement air bubble§do not travel at the same
speed as the water, and hence it is difficult to see how Froude scaling
might apply in comparing model + prototype. However the correlation may
provide rough estimates of entrainment rate. Wijeyesekera (1969) (Ref

carried out a series of experiments on a dropshaft at five different

scales, measuring both total entrainment and net air transport downstream of

the annular hydraulic jump. This result is shown on Figure 3.41 revealing

that values of B, i for total entrainment are often as high as 1 to 2, but
decrease with increasing water discharge (or d/p). The net air transport

downstream of the plunge point did not exceed 0.4 for Banin any of the

dropshafts, and conformed closely to the correlation presented by Viparelli.

By implication, large amounts of air are detrained, with an exception

possibly at small values of H/D when Bat is of the same order as Ban'

The Hydraulics Research-Station, Wallingford, U.K. (Ref ) carried
out an investigation into the net air transport in a vertical dropshaft
for Plover Cove, Hong Kong. Three models were tested at scales 1:10,

1:20 and 1:30, with the results plotted as 8 against H/D shown on

an
Figure 3.42. An attempted extrapolation to prototype conditions is

also shown. The most interesting feature of this correlation is
decreasing air/water ratio with increasing model scale. The curves shown
represent the upper limit of air transport in each model and therefore -
correspond to a high outlet water velocity where the slip velocity of air
bubbles is not significant. Why then is there a scale effect in the
entrainment rate? In order to find the answer, a complete analysis of
the plunging jet profile would be required to be carried out for each
model scale after the fashion of Dawson and Kalinske (Ref ). The

jet velocity U, and the jet surface length available for entrainment

T(D - 2d) could then be calculated for each plunge length. A graph of

q, or Q“/“n'p(l-ld/p) against U, could then be plotted for each dropshaft
model. As a first order of magnitude however, if the dropshaft wall
roughness is modelled correctly, the jet velocity at impact (U, ) should
scale on a Froude basis (er) and hence U, for 1/10 model will be higher
than the 1/10 and 1/30 models, and if B, scales on Frf or (Fr - 1) then

the same air/water ratio will be obtained for all 3 scale models. If on

)
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the other hand, the higher velocities in the 1/10 model produce a .
different regime of air entrainment (say z"“.(l?‘) whilst the 1/20 and

1/30 models scale on 8,4 K Fr{ then the result shown on Figure3 42 .

might result.

A simpler explanation based on wall surface roughness might be
employed. Assuming that each model was constructed in the same
material (say per:spex), then wall roughness will be underestimated in the
larger model. That is for Froude models, Mannings 'n' scales on L;{‘,
which in comparing the 1/30 to 1/10 models should give "('/.o)/n(./,,) ~ |2
or the model material should have a Mannings 'n' value 20% higher than
the 1/30 model. If this is not the case, the l/10 model will effectively
overestimate the droplength required to reach terminal velocity and will

overestimate terminal velocity.

r\(\
\
Therefore the larger model, if it ¢|_ \
is too smooth, may overestimate jet JQ :
thickness and underestimate velocity
N dropshatl
during the gradually varying section of : UG«
its flow profile, even though the mod h
terminal velocity is higher in the foo Smoott, :
smoother model. This is hardly likely \
to account for such a wide discrepancy in A
. . ? ’A—' \)
air/water ratios' Pop?r waf( ) \
loughnn melby " \h N
\
1} AY
wWhillock and Thorn (1973, Ref } carried out a more fundamental

study of dropshaft air entrainment, using square dropshafts (to reduce the
number of variables) at sizes ranging from .15 m square x 1.94 m long, to

0.3 m square x 3.88 m long. The net air transport was measured in each

case, with a sketch of the apparatus shown on Figure 3.43 (a). The jet
thickness can be controlled independently of the jet velocity, providing a more
comprehensive range of data. Results for the .15 x .15 x 3.78 m long shaft are
shown on Figure 3.43 (b) and the 0.3 x 0.3 x 3.88 m long shaft on Figure

3.43 (c), with the data plotted as the air/water ratio Ban against droplength

H. The first point of interest is the increase in net air transport with

water discharge {(or outlet velocity Ug) until a limiting condition is

reached where no further air transport is achieved. 'ﬁlis can be seen by
taking a horizontal line across at any given droplength H. The limiting
condition for air transport corresponded to an outlet shaft-full velocity ‘

of = 0.5 m/s. Whillock and Thorn showed that the minimum outlet velocity
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to transport any air was approximately 0.15 m/s, hence maximum transport .
capacity is achieved at '
Weo- u.o y -
(] min NV 0-5 G.IS' = ,'L}"

lbb,. - .25
If we now compare this with the result of Ervine and Ahmed on Figure

3.35 we obtain excellent correspondence, as full transport is achieved

at = 1.5.

The other point of interest is the comparison of air/water ratios

for the two models (b) and (c). The larger model appears to give lower
values of B8; this is misleading. Ervine and Kolkman (Ref ) and
Ahmed and Ervine (Ref ) have calculated the water surface profiles

for each of Whillock and Thorns dropshafts, revealing that the jet Froude
Number at a given value of H is often lower in the larger model than the
smaller one. Hence if q, = U}, for jet surface entrainment, then B « Fr®,

then the larger model may seem to give lower entrainment.

The data of Whillock and Thorn was compared for all three models

against the relationship developed by Ahmed and Ervine

Qq,f W [(" ”%,)3 ( - Q:z(“v-uv""')lu" )] ceees (3.37)

where Uy min was taken around 0.15 m/s as suggested by Whillock and .

Thorn. The result for all three scale models is shown on Figure 3.44,

giving good correspondence at each model scale. It is possible that a
comparable correlation could be achieved using the Thomas equation
possibly in the form,

@a.\‘ KAl [(l“’;l'n_-h)" /U.. i}_ag..s)] ceer. (3.38)

i 3

where the value of U ;, could be estimated as Uy pip D/a = 0.15 D/q.
The value of K in the Ervine and Ahmed equation varies with Froude Number
but {$ generally 0.003 - 0.004 for this set of data. This is in close

correspondence with the estimates of Sene (Ref ).

If it not possible to include all the vast range of literature on
air entrainment in vertical shafts. The reader is referred to the review
by Falvey (Ref ) Whillock and Thorn (Ref ) and the review by
Haindl (Ref ) for more detailed information. 0Of particular interest is
the work of Hack (Ref ) in predicting dropshaft air flow ratio when the
outlet is not pressurised and free flow exists, the work of Haindl (Ref )
predicting the rate of air transport downstream on an annular hydraulic jump

60‘5 o.oz(Fr, - |)°'B" , and the work of Curtet and Djonin (Ref ) in




predicting the length of a deaeration zone (L) downstream of a plunge Pohf
"4

VoL
There is considerable scope for reanalysis of past dropshaft air

A, 0.06 for small values of bubble slip velocity (< 0.2m/s).

entrainment data. More attention requires to be given to the following

points:-

(a) The plunging jet condition, its profile calculation, (d and U,),
its boundary layer thickness (6*/d) for estimation of pre-entrainment.
Its turbulence level (U*/Ul), Reynolds, Froude and Weber Number at the

jet at impact.

(b) Plotting is required for the rate of entrainment per surface length
Qas (or Qﬁ/-n‘b(l— 7‘/0) . for an annular jet) against the jet velocity

U,, to determine if q « Uf,(s « Frz)or if the jet has reached high velocity
entrainment region za.g u,’h? Care must be exercised in extrapolating not
only from low velocity tests, but also from small jet thicknesses d < 20 mm,

when for higher jet thickness a, is independent of jet thickness.

(c) Attention is also required to detrainment and transport characteristics,
with the model operating as far as possible with the outlet velocity as close
to the prototype outlet velocities as possible, or at least Ug(model) :;

0.5 m/s. This ensures that the effect of bubble slpp velocity is

negligible. z
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Section 3.3 Hydraulic jump entrainment and transport .

This section, which may prove to be somewhat speculative in nature,
will concentrate on air entrainment and transport by hydraulic jumps in -
closed conduits when the conduit slope, is horizontal, or in the upward
or downward direction, and the conduit is filled by the downstream depth
of the jump. Even a cursory review of previous data correlations will

reveal a standard correlation

(3” c K( Fr,"l)n ceene (3.39)

where n seems to vary anywhere between 0.85 and 1.4

Fr, the upstream Froude Number (u‘/,[g—d or ul/|/3n'/5|)

and K varies from 0.0066 to 0.04.
Equation (3.39) appears to be satisfactory:-

- for a wide ruange of conduit angle.
- for all almost all conditions of the upstream supercritical flow,
velocity U,, turbulence intensity (U*/u,), pre-entrainment,
Reynolds Number, etc.
- bubble detrainment appears to have no significance (or it scales on the
jet Froude Number) in the reattaching mixing region of the jump. .
- bubble transport capacity downstream of the jump also aﬁpears to scale
on the jet Froude Number.
- the inception condition for air bubble transport appears to be a

supercritical jet (Fr, > 1).

Let us consider some of these points in more detail.

(1) The conduit angle

It is the author's opinion that this is one of the most sensitive
parameters governing the amount of air transport along a conduit downstream
of a hydraulic jump. Assuming for the time being that air entrainment into
a jump is correlated at B and Fr - 1 as suggested, then let us look at the

transport capacity of the flowing mixture downstream of the jump.

(a) For an upward sloping conduit angle, entrained air is easily transported

(due to buoyancy) and a (Fr - 1) correlation may be possible.

(b) For a horizontal conduit (¢ = 0), air is again easily transported

downstream in the absence of buoyancy effects.

(¢) For a downward sloping conduit, g <20°, a completely different

regime of behaviour occurs in long conduits. Air is initially transported .

downstream of the jump in the form of air bubbles which soon rise o the
conduit roof forming air pockets (or slugs). We will see in Section 4

that once an air pocket forms, a certain conduit-full Froude Number is



required to transport the pocket along the conduit, otherwise the

pocket simply grows in size and will eventually blow back. This limiting
Froude Number to clear air pockets depends not only on the conduit slope-§,
but also the air pocket depth H/p. (See Figureh21 ). As an order of
magnitude we will assume that even for small downward s}oping angles (say 1°),
the required Froude Numbervﬁqgs is in the region of 0.5 to 0.7 as shown on
Figureo?nll . Thus, air transport will not commence until this Froude

Number downstream of the jump is reached. For initiation of air

transport for downward sloping pipes 8 > 0° we may write

u% ¥ 0.6 whre [ Ap = WA (3.40)

U, and A, are upstream velocity and Area of flow

Ap is the full pipe area TMD* /4.

The upstream Froude Number may now be calculated to achieve this condition,

(for various values of d/D, fractional depth)

Taking the case of a circular pipe, we obtain from (3.%v)

u ¥y f
'/@T;; v Oob(n%l) * lt_;_‘_"__“ ceee. (3.41)

where the upstream Froude Number is calculated on the basis of a flow

depth, equal to the area of flow divided by the surface width.

The author has used Equation (3.41) to determine the upstream Froude

The angle 'a’' is
specified on the

sketch opposite. ﬂnql,

Number required to transport air, and compared the result with the date,
of Kalinske and Robertson (Ref ). The result is shown on Figure

3.45 giving a good correspondence.
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This has important implications for the transport of air downstream .
of a jump. If d4/D is 0.2 (say) then a Froude Number of 10 will be required
to commence air transport along a long conduit, that is, for conduits even
at a slight downward angle. If the conduit is horizontal or sloping slightly

upwards, no such limitation exists..

Even for a fractional depth of one half (d/D = 0.5) an upstream Froude
Number in excess of 2 is required to commence air transport in downward
sloping pipes. Any correlations of air entrainment and transport by
hydraulic jumps should therefore make careful reference to the slope of the
conduit and a correlation for downward sloping pipes should contain an
air pocket 'detrainment' or blow back term (albeit on a Froude basis) to
account for the limiting Froude Number to transport air. Thus we might

write for downward sloping pipes

%m\’ K(ﬁ]_l)ﬂ F(Fy.l.- ﬁ"(hmif)) ceer (3.42)

where the value of Fr‘(limit) is given approximately by Figure 3.45.
(2) Bubble detrainment from the reattaching shear layer.

So far we have discussed a limiting condition for air pocket blowback
downstream of a jump when the conduit slopes at a downward angle. However, .
at any conduit angle (upwards, horizontal or downwards) air bubbles have a
natural propensity to detrain as already seen in the analysis of Thomas
(Section 2.3). Thomas's analysis was for plane penetrating shear layers,
unlike the case of a hydraulic jump with a strongly curving reattaching

shear layer, as shown below.

S . e, S . . e~

ar Shear
. Iagev
1& S u'" &” o
- ai —3 f)
oty  W—> g:u,(,

e e S~ 1((\\\\ RSS2

F16-3. k. Hydmuki, Juwp (UprSmo w smalt)

The principle however remains the same. If we ignore contributions from ‘

vorticity holding air bubbles in their cores, then a bubble rise-velocity



of Ubr cos 0 exists, tending to detrain air bubbles out of the shear layer,
whilst at the same time and entrainment velocity Ug exists, tending to
carry bubbles into the shear layer. As a crude approximation we might say
that bubbles are detrained when Uy, cosb > Ue, or the point of commencement
of air bubble transport is Uppcosé = Ug. of course, the real velocity
required may be less than this as air bubbles can be ret ained in vortex
cores for at least the length of the shear layer. According to Sene this
influence becomes prevalent when 8U is 5 - 10 times the bubble rise

velocity,or Uy = 1.25 - 2.5 m/s. (Au s U-Up = u,)

Thomas specified the entrainment velocity U, as €U,, where € is the
half angle of the spreading shear layer which is aproximately equal to the
turbulence intensity in the shear layer. Thus for air bubble transport
we need U, > Upp cosB /e, when the value of & might be 1/10 tol/s for a

jump, and hence for shallow angles U, > 1 + 2.5 m/s for commencement of air

bubble transport dowusheqw o(' h J\mp.

In any case, at slightly higher jet velocities bubble transport may still
be influenced by detrainment, and we may speculate for hori3ontal and upward

sloping conduits.
@(m’ K—(F"r')h F( I - ul,,,CosO) cene. (3.43)

and for downward sloping conduits

ben = k(B P18 ) FooFo) 5.aa)

en,
For downwards sloping conduits we must take account not only of air bubble

detrainment, but air pocket blow back. At upstream jet velocities say
greater than 2.5 m/s, detrainment may not be significant if air bubbles

are transported by vorticity.

(3) Bubble entrainment into a hydraulic jump.

Consider first the inception correlations to entrain air into the
flow. In previous sections we have seen that a velocity is required Uf
to entrain air bubbles in a flow, for steeper conduits. In shallow
conduits with a hydraulic jump, the only criterion for air entrainment is a
breaking surface roller (Fr, = 1.3) and air is carried into the shear layer.
If Fr, =1.3 also coincides with a low supercritical velocity, say < 1 m/s,
then entrained air is simply detrained and no transport occurs along the
conduit. That is, for U, < 1 m/s, then Uy, cose > Ue generally, and

also vortex cores are not sufficiently developed to tranpsort air,

1é
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By, < 5 - 10 Upr.- Thus as an order of magnitude for hydraulic jumps, ‘
a dual criterion for air bubble transport occurs which is U, > 1 m/s and
Fry >1 and this applies only horizontal and upward sloping conduits, as .

downward sloping conduits have a further limitation for blow back, in that
lko/r@ 7 0.5 approximately.

Secondly, in order to obtain a correlation for air entrainment into
a jump we must decide on the predominant mechanism for entrainment. There

are three possible mechanisms:-

(a) Entrainment at the toe of the jump, with air entrainment coming from
the volume of air held in the jet surface undulations. This has been dealt
with in Section 2.2 with the conclusion that the air flow rate gy is
proportional to the jet velocity U? (qa = 1} ) ‘and independent of jet
thickness, with the exception of small jet thickness, d < 20 mm say.

An alternative way of expressing this quantity of air entrained is in

the form, qa/qw =K Frf as seen in previous sections. Thus, for the case
of air entrainment by surface undulations at the jet surface(whose volume

scale on U} /g,)we have the case as illustrated on the sketch below.

P
Jer @ I ~
air % JQ_:? D
— dy —u, ol J
y
S — T T T T
Figure 3.47

Jets of the same velocity entrain the same quantities of air, but when
expressed as an air/water ratio 8, jet (1) has a higher B than jet (b) by

virtue of its higher Froude Number {(or smaller depth). -

One point noted by Ahmed and Ervine (Ref ), albeit for steeper
flows, is that for jet Froude Numbers less than about 10, (and incidentally
for larger values of 4/D) the value of K in the relationship g = K ng,

did not remain constant. An inspection of Figure 3.34 reveals that

for Fr, < 10, the value of K varies approximately as 1/Frl , or K gﬂ.%,
giving an approximate value for g of 8 = 0.03 Fr; if we ignore the term

(1 - 0.8/U,)® for first order magnitudes. Replotting the data for Fr, ¢ 10,
did in fact reveal a correlation for g on Fp - 1, as shown on Figure 3.36.

This is the same form as hydraulic jumps, even though it was derived from
wall jet entrainment at steeper conduit angles. .



(b) Surface roller entrainment.

Thomas (Ref ) has hinted at a possible physical reasoning for
correlations of B on Fry - 1, for low Froude Number jumps. This has not
been published and is merely surmised here by the author. Thomas assumed

entrainment into a low Froude Number hydraulic jump occurred possibly by

the mechanism of free surface entrainment into the surface ro“ll? 1:‘i.s e Qis

may be similar to natural surface aeration in high velocity flows and will
depend therefore on surface tension forces being overcome by highly turbulent
fluctuating components, U*. (A droplet of water is ejected by the turbulence,
which entrains an air bubble as it reenters the flow). Alternatively, air
bubbles may be entrained into the surface roller by the action of small
breaking waves, etc. Air bubbles are then entrained into the shear layer
from the layer of foam at a rate which must be dependent on the entrainment
velocity Uy, into the shear layer. We can state further that Ug = U, the
upstream jet velocity. The rate of entrainment gz must also be dependent

on the length of the roller which Thomas denoted by D-d, (or y, - y; in
hydraulic jump notation). In reality, the length of a jump is generally

= 4 (D-d), but for the time being we may write

W = K (w)D-a)
o f =W, = k(D)

In the case of an open channel hydraulic jump, D/3q scales on the Froude

eeee. (3.45).

Number Fr, and we obtain @ = K (Fr - 1). This argument would only hold
for the case of the sequent depth of the jump being approximately equal

to the conduit dimension.

It is not absolutely certain if Thomas postulated the exact argument

outlined above.

An equally valid argument can be put forward for scaling on Fr-1 based
on observations of Ervine and Ahmed for low Froude Number jumps. If we
refer again to Figure 3.47 with hydraulic jumps occurring at the same velocity
but different fractional depths d/D, we may assume that entrainment occurs
primarily at the toe of the jump based on q, = U or 8 = Fr{ as outlined
in Section 2.2 and 3.2. When d/D is increased, the length of the roller
available for detrainment decreases. Thus we might assume that less
detrainment and hence more air bubble transport occurs in Jump (2) with

higher d/D. We may write as a speculation

g
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%o( Frt F(d/b> e (328) .

for a closed conduit when Fr, <10.

Now for hydraulic jump flows, D/d « Fr, as a first order approximation,
and hence from (3.46), B = f(Fr,) and thus scaling of @ on Fr-1 may be
possible. This has certainly been attempted for the data of Ervine and
Ahmed as already shown in Figure 3.36 where B =0.04 (Fr, - 1?'85 F(Sc;ll fqdm),
although this is generally for steeper flows. If we attempt to linearise
this expression for (Fr-1) we obtain 8 = 0.03 (Fr; - l)F(S&l(!. fadms) In
any case,correlations on (Fr-l)“‘. are only possible by crossing velocity
bands as in the work of Kalinske and Robertson. It is most likely that

B scales on Fr, - 1 for low Froude Number jumps, but some account must be

made for air pocket detrainment, etc., highlighted in (1) under"conduit angle'.
(c) High velocity entrainment.

This has been discussed in Section 2-2, where it has been proposed by
Sene (Ref ) that high velocity supercritical flows may produce a
continuous layer of air under the roller (Type (2) entrainment, Fig.F ).
In this case q; <= U?l’-, and hence would not scale on the Froude Number.

This type of correlation may well be relevant to prototype jump data. I

Empirical correlations for hydraulic jump entrainment

The first reported work on closed conduit hydraulic jump entrainment
was by Kalinske and Robertson (ref ). Experimental studies were
carried out in a 150 mm diameter pipe with a downward slope ranging from
0—30%. As already discussed, Kalinske and Robertson found a Froude
Numberu'/m/; below which only a small proportion of air was transported,
this limiting Froude Number varying with d4/D (Fig 3.45 ). They proposed a
relationship for net air transport, presumably once the limiting Froude

Number was exceeded, in the form, -

%m\ = 0. 0066 (Fr' - ')'.q’ ..... (3.47)

No air pocket blow-back term was inforporated, which is surprising
as an outlet Froude Numberuo/ﬁﬁ_of at least 0.5 is required to transport
air over most of the conduits slopes tested. By implication Equation
(3.47) would reveal the air entrainment rate to vary approximately with
Ufi but also to give increasing q, with larger upstream flow depths, or
as only one pipe was used, larger d/D values. The air entrainment rate
into the shear layer should be independent of upstream flow depth d, but
entrainment and/or detrainment may well be influenced by the length scale .

of the roller (= D-d), perhaps best correlated in the form, f(d/D).
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Further correlations for air transport were carried out by Campbell
and Guyton (Ref ) and Wisner (Ref ) producing separate scalings

for low and high Froude Number jumps.

For i<y Q4% Oy (Fp-0%% ceeen (3.48)

Fov P78 %”3 0,0l (Fr,—l)"q' IEREEES (3.49)

the latter equation being in the same form as Kalinske and Robertson
Equation (3.4]) but the constant 0.014 twice as high as that given in
Equation (3.47]). Of course Wisner used larger dimension models than
Kalinske and Robertson, the largest size being 0.5 m x 0.5 m which is of
order 3 to 4 times greater. This in turn would imply jet velocities
approximately twice as high for Wisner's data. It is of interest
therefore to compﬁﬁgethe correlation for steeper flows proposed by Ervine
and Ahmed on FigureXpredicting higher values of By, for higher absolute
jet velocities. That is, providing air pocket transport problems do not

exist, and Uy is large.

Haindl (Ref ) and (Ref ) carried out extensive testing of
hydraulic jump entrainment, again correlating Ban on a (Fr, - 1) basis.
His data is shown on Figure 3.48 , together with that of Wisner, and
other published prototype data. Haindl suggests an upper envelope for
all data in the form

@a»\ - 0.015 [ﬁi-l),'q' ..... (3.50)

In conclusion,
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SECTION 4
AIR POCKET FLOWS - THEQRETICAL MODELS
4.1, Behaviour of alr pockets in closed conduits (General)

(a) Vertical conduits
(b) Horizontal conduits
(e¢) 1Inclined conduits

4.2 Extension of Benjamins analysis to single air
cavities in stationary and moving water
corditions.

4.3, Analysis of ailr pocket 'blow-back' and air

pocket 'clearing' in dowrward sloping pipes.
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Major symbols used in Sections 4 and 5 on alr pocket flows .
A area of flow under an ailr pocket

Ap cross-sectional area of pipe

B width of flow at surface in a circular pipe

CO,C1 constants used in air pocket flows in moving water

C1 speed of an alr pocket (used by Benjamin, Bacopolous, etc.)

D conduit diameter

Frl Froude Number of flow under an air pocket or upstream of a jump
Fr, Pipe-full Froude Number, Vo / {gﬁ'

g gravitational constant

H depth of air pocket

<> volumetric flux for slug flows (% + Qw)/Ap
L Total length of an alr pocket

L* Length of ailr pocket from nose to point where pocket reaches

meximmm depth, H. .

n non-dimensional alr pocket volume = Vol/AT /- 1)

Alr flow rate

Water flow rate

Q‘a
R berd radius at dropshaft/tumel junction
Rb bubble radius

Re

Reynold's Number

Vb alr pocket velocity in moving water conditions

Vr alr pocket velocity in stationary water conditions

Voo rise velocity of air pocket in vertical pipe (stationary water)
Vc pipe-full water velocity required to clear an air pocket

\' pipe-full water velocity required to prevent air pocket blow-back

V1 (or Ul) water velocity under an air pocket or upstream of a jump

We (or Wb) Weber Number
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A

depth of flow under an air pocket or upstream of a jump
equivalent depth of flow in a circular pipe (A/p)
void fraction
ratio of rate of alr flow to water flow (Qa/Qw)~
angle between nose of an alr pocket ard pipe wall
absolute viscosity |
Kinematic viscosity
density of alr
density of water

surface tension coefficient.
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Section 4.1. The behaviour of air pockets in closed conduits

In Sections 4 and 5, discussion will be
limited to the behaviour of larger air
bubbles, plug flow and slug flow, as
1llustrated in the sketches opposite,
presented by Falvey (Ref. ). The
classical air pocket shape as en-
countered in many Civil Engineering
applications is also sketched below in
Fig.4.1l.

The lower limit of air pocket sizes is
difficult to define, but if we stipulate
that the bubble behaviour is dominated by
inertia and buoyancy, then a suitable
1imit would be bubbles of equivalent
dlameter of over 10 mm, thus excluding all
of Sections 2 and 3.

The upper limit is equally difficult, but
moving air pockets rarely exceed B/D>0,5 in
the Civil Engineering context especially at
shallower conduit angles. Pure slug flow,
say H/DD> 0.5, does however sometimes occur,
especially in cases such as blowbacks in
vertical conduits, etc.

The term "alr pocket" is thus used to cover
any of the categories above, and a wide
diverSdg of theory and practice is employed
from slug flow research, air bubble research
and alr pocket research.

FIG &1

(-_._.;;gf I L L ™)
DS >
— S  — < A .

Tﬁp.c@b ((l"‘ M(‘ S"IGPQ

128




126

(a) The behaviour of alr pockets in a vertical conduit

If we consider first the case of stationary water in a vertical conduit, .
then the behaviour of an air pocket will be governed by the balance between
inertia, buoyancy, viscous and surface tension forces. Wallis (Ref. )
has proposed three non-dimensional mumbers describing the ratio of buoyancy
to the other three forces,

2
Inertia Qv Lo P C 95 B
buoyancy &b W ea
Viscosity Vo M, (4.2)
buoyancy &0 ( (O %)
Surface tension S (4.3)
buoyancy &D( €, R)

It can be seen that for Qa << ewa.nd Vi, Q(_ISD,Equations (4.1), (4.2) and
(4.3) above, become a type of Froude Number, Reynolds Number ard Web er
Number respectively.

For the case of viscosity and surface tension effects considered negligible
then from Equation (4.1)

—Jﬂ_b' = K‘jﬂ_D- teeeeeeaneaeeea (bl

for the case of air and water.

The value of Kj 1s of the order of 0,345, with 0,35 being a commonly
excepted value. Equation (4.4) is an important result in air pocket
behaviour with 1ts implicit suggestion of Froude scaling provided viscous
and surface tension 1s neglectable. Definitions of its applicability will

be given overleaf.

It is of interest to note that the rising velocity of single air bubbles
in an infinite body of water was shown by Davies and Taylor (Ref. ) to be
Vg = 2/3 féﬁ: » applicable to bubbles greater than 10 mm diameter. R,
is the radius of curvature of the bubble nose. With the bubble spherical
nose making an angle of approximately 100°, the volume of the bubble can be
calculated, and the rise veloclity v, related to the equivalent bubble
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radius Ry,  The result gives Vo = qR, .

When such bubbles rise in a pipe of diameter D, the rise velocity of the -
bubble can be expressed as a function of db/D, where dy, is the equivalent
bubble diameter (= 2Ry). Collins (Ref. ) has shown that the rise
velocity for larger bubbles can be given by '

©Q

;1: _ 0,496 (%) : e ereeeeeenaaa(15)

and when combined with V = ngb s ylelds, Vr' = 0.35 / s which is the
same resust as that obtained for slug flow.

- For the case of viscosity being the dominant force, we have from

equation (%4.2),

w € 2
Vo= Kg%ésDai K, &5 cerereenenecenns(B.6)

for air and water, where ) is Kineimatic viscosity (of order 10'6) and K2
of order 1072 (Wallis, Ref. ).

We may now eliminate the air pocket veloclty in Equations (4.1) and (4.2)
by taking the square root of Equation (4.1) and dividing by Equation (4.2).
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The resulting term is the dimensionless inverse viscosity, denoted by Ne.

o Peecee]®, @
£ K Y

Viscosity is dominant when Nf-<.2, which, for an air/Watef mixture corresponds
to a pipe diameter of less than 1 mm. Viscosity has an influence, however,

ceceserecsacnass(B.T)

for values of Np up to 200 at least, giving a corresponding pipe diameter of
2 nm. It would appear that viscosity is not an importamt factor in the
Civil Engineering context for air/water flows, although Wisner et al (Ref. )
have detected viscous influence (for air pockets rising in a pipe inelined

at 18°), for Reymolds Number up to 105, where Re = veDfy . If we

translate the result of Wisner to the vertical case where V,,%0,35 foD,

we obtain Viscous influence up to 0.35 L2221.4,105 » which gives a pipe
diameter of 200 mm. v

For the case of surface tension being the dominant force, Equation (4.3)
may be used in the form Ga~€a)802/6’ » known as the ES8tvos Number. Wallis
recommends this value to be greater than 100 in the vertical pipe case, gilving
a pipe diameter in excess of 27 mm to have neglectable surface tension effects.
Experimental work by Zukowski (Ref. ) indicates that this criterion may be
sufficient for the vertical pipe case, but is inadequate for horizontal or
inclined pipes where the alr pocket rises along the conduit wall. It can be
seen from Fig. 4.2 that a pipe diameter of 150 mm to 200 mm would be
required to produce negligible surface tension effects, giving an E6tvos
Number criterion of Npg > 3000 .

Translated into the Civil Engineering context, and physical modelling in
particular, we may state that pipes of diameter approximately 150 mm or
greater should produce negliglble surface tension or viscous effects; and
the rise velocity of an alr pocket in a vertical conduit dominated by inertia
and buoyancy, can be given by

Vo X 0,35@ BN €. 8 <)

Equation (4.8) is applicable to the stationary water case only and requires
to be modified if the water is moving either upwards or dowmwards along the
pipe. TFor the upward flow case, Wallis (Ref. ) proposes a simplified
relationship based on the drift flux model. The alr pocket velocity is
given by

Vp = J+ Vg .................(4.9)
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where J is the volumetric flux of the flowlng mixture (QA+QWXA, i.e. the

alr flow plus water flow rate averaged over the pipe area A. Equation (4.9)
requires further modification to account for the fact that the air pocket —
moves relative to the actual water velocity profile in the pipe, (a function
of Reynolds Number and pipe wall roughness) and not just the average velocity
welghted over the plpe area. A more accurate representation of the air

pocket velocity is thus

VI, = C°<J> + Cl Vw .-o.............(4.10)

C, is approximately 1.2 for higher Reynold's Number flows (Rea)r8x103,
and Rey = 3P/y ) . C; is unity, except for the case of the alr pocket
rising along the vertical pipe wall when Clell.4 (Martin Ref. ). Thus,
the rise velocity of an air pocket in upward moving vertical flows is given

by

Q
V1,2 (%?i) + O,BSJEﬁ'

N C XA Y

or in the case of the air pocket rising along the pipe wall,

V. 1,2 (QA+QW) + 0,495 [ED (4.12)

: o [ ceeereenneeeeeea(he
For the case of downward water flow, alr pockets may elther rise or descerd,

depending on the relative magnitudes of the air and water velocities. An
investigation of this phenomenon has been carried out by Samuel Martin
(Ref. ), in three vertical pipes of diameter 0.026 m, 0.1016 m and O.14 m.
In each case water flowed vertically dowrward, and the air pocket (or slug)
would then either ascend, descend or remain stationary. A typical result
for the pipe 0.14 m diameter is shown in Fig. 4.3 below.

f. ol FiG. 4.3 (Magw)
E e ]
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A A n i
20 -8 -100 -4 -1 -8 N -8 -4 -n L}
TOTAL VOLUMETRIC FLUX <j> amime

Fig. Bubble velocity—tlux pjane for D = 14 cm
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For dowmnward velocity flux (of the mixture ) up to 0.8 m/s, the air .
pocket ascended the pipe, and for veloclty fluxes above 0.8 m/s in the
dowrward directlon, the alr pocket descended. In this case, the point of —
air pocket equilibrium is when V, = 0, and'“f10.8 m/s and hence
Vo/{g_ﬁ ~ 0.68, or a downward Froude Number in excess of 0.68 is required
to ensure dowmward air pocket movement. This work has lmportant implications
for blow-back and clearing studies and will be discussed further in
Section 5. The other point concerns the correlation of air pocket velocity.
This is given by Martin as

Vy = Co{JIy + C1\fED PR ¢ T &

For the case shown, C°~O.86 which is very much smaller than (i) the 1.2
found for upward moving water flows, (ii) the value of 1.0 to 1.2 commonly
fourd in horizontal slug flows and (iii) 1.05 to 1.11 found by Ervine and
Himmo for a pipe inclined at +1.5° above the horizontal. Martin attributes
the lowering of Co values for dowrward flows to the tendency for the air
pocket to become eccentrically shifted from the pipe axis and hence it is
moving relative to a veloclty smaller than the cross sectional average.

The value of Cl shown is 0.58 which is a good deal larger than either ‘
Equation (4.11) or (4.12) for upward flows, but in fact comparable to data '
of Ervine and Himmo in Section 4.2,

(b) The behaviour of alr pockets in horizontal conduits
In this work, it is intended as far as possible to treat the behaviour of
air pockets in horizontal or slightly inclined conduits in the same manner

as density curremts or gravity currents, after the example of Brooke Benjamin
(Ref. ). DNumerous observations of alr pockets in shallow conduits reveal
great similarities in behaviour as shown in the sketch below, especia_lly when
the alr pocket depth (H) occupies less than half the pipe diameter (D), or
B/, €0,5. For values of H/D>o, 5, the flow regime will be that of fully
developed slug flow, with analysis outlined by Wallis (Ref. ), and in any
case is not particularly relevant in the Civlil Engineering context.
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- Let us consider first, energy conserving flow for the simple two-dimensional
case below, where an air vold is propagating along the conduit atcelerity Cl’
conduit dimension D, and air pocket depth H. The air void is continuous to
the exit of the conduit, such as in the case of liquid emptying from a long
horizontal conduit.
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meéf' ‘. Specifications of analogous steady flow past a cavity.
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We may bring the air void to 'rest', by applying relative velocity Cl to .
the water just upstream of the stagnation point O, with the relative velocity

under the cavity becoming 02.
Applying Bernoulli along the free surface (at atmospheric pressure) to the
stagnation point, we have

022= 2gH = 2g(D-h) secesasasacacese(H.14)

The flow force at a point upstream obtained by adding pressure forces to the

momentum flux gives,

S, = %Qw (012D+gD2) cecesesescsssses(4.15)

ard similarly at a point downstream gives,
2

S, = @, (Cooh + tend) P (1)
Combining Equations (4.14), (4.15) and (4.16) with comtinuity ClD = Cgh, and
with S 2, Benjamin found that for flow with no loss of energy,

2.2
2 D-h")D

02 = >D-nh cesescscscssases(8.17)

which yields the solutions,
| h=2, H =7
=75 or 2. » the alr pocket occupies exactly

one half of the conduit depth, and,

C C
1 - 1 am -3 F cesecesesnscscss(%4.18)

J& &
It can be noted that for energy conserving flows in a horizontal conduit
Cl = 0.5 ,’gD, which gives a higher air pocket velocity, than the vertical
corduit case (0.35 ‘(gD), and also the receding stream Frouie Number

02/ J_)l and hence is supercritical.

Benjamin extended this simplified analysis to the 2-dimensional case where
energy loss occurs. It can be seen from Fig. 4.4 that most of the energy
loss is likely to occur at the jump just behind the cavity nose. Denoting
the head loss by A , Equation ( &.14 ) becomes

022 = 2g(D-h-A) cocacsesrasesess(4.19)

and again combining with equations of momentum and contimmity, an expression
was fourd for the head loss A which had a maximum value of A/D =« 0,021.
The revised expression for the non-dimensional air void speed is given by,



Cl, thg-hgz % -
E = [Dz (2D-1) . seessessscssnsse(4.20)

which is plotted on Fig. 4.6 in the form of Cl/JEB against either B/p (the
depth of flow beneath the cavity) or H/D (the air cavity depth).
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Several points emerge from this graph:-

(a)

(b)

For a given conduit angle (in this case horizontal), the air pocket
speed can be given in the form C]/{'gD' =f (H/D) as shown on Fig. 4.6.

For small air pocket depths, H/p small, (B/p large), the air pocket
speed increases with increasing H/p until at maximum air pocket speed
is reached, 1In this case for the conduit horizontal, (c]_/@) maximum
= 0,527, when H/p = 0,3473. Further increases in H/D up to 0,5 reduce
the alr pocket speed to the value of Cl/@ = 0,5 as in the energy
conserving case. Values of H/I}O »5 require an energy input in order
to sustaln a stable air pocket flow.
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(¢) the speed of an air cavity, void or pocket, can also be related to the .
pocket depth rather than the conduit dimension. This is shown on
Fig. 4.7 plotting Cl/Jgﬁ against H/p, giving the result that

C; = 1/{'5 -9(2- {gH as B/p varies from 0.5 down to zero.
......'....D...l(a.el)

Therefore, gravity currents at great flow depths have an upper limit of
celerity of clg ‘QgH.

l ¢, = ar thﬁj SPJMD

24}

0 1 1 i -l
0 01 02 03 04 05
. H/d
7
Figure . Graphof 7 o /(gH )t as a function of H id.

(d) Benjamin extended this concept to the case of energy conserving flow
emptying from a horizontal circular pipe of radius R, or diameter D.
Applying the same principles as the 2-dimensional case argued above,
Benjamin found the maximum speed of the contimuous cavity to be

c c - =
1/JE§=0,767 or 1/@-0,542 for =0 sovieonces.(4.22)




which was later confirmed in experiments by Zukowski (Ref. ) For

circular pipes, the zero energy loss case occurs at H/D = 0,437.

The important point about Benjamins analysis, is that it may provide a
powerful method for analysing the behaviour of air pockets in the Civil
Engineering context. If the analysis can be extended toAsloping pipes, to
single air pockets (rather than the contimious air pocket type which occurs
on emptylng shallow pipes), to non-uniform velocity profiles, to incorporate
wall shear stress, etc., then it may well prove to be more useful than the
simple application of empirical correlations which has been a feature of
most of the Civil Engineering work to date. The first step in this
direction has been taken by Bacopolous (Ref. ) under the guidance of
Dr. J. Townson. This will be discussed in Section 4.2.

Mearmwhile it 1s clear that most Civil Engineering interest in air pocket
behaviour in horizontal pipes would not necessarily involve a contimous
cavity as described by Benjamin above, but a single air pocket or single air
pockets driven by a water velocity. This situation has not been analysed
as such, but it is now open to analysis following the work of Bacopolous
(Section 4.2). The application of force/momentum - continuity - energy
principle would yleld the speed of an air pocket for various air pocket
depths (HVD) and values of water velocity.

Conventional analyses of slug flows in horizontal pipes (Wallis Ref. )
generally involve much larger air pockets than those generally encountered
in Civil Engineering. For instance, Wallis proposes a model shown on the
sketch below, where the area taken up by a passing air slug is given by

A1=Tr(g_g)2 R ¢ -1, )

N . AN e

Ir

WATER, A
RiR su6 NATER

L

=
‘\\\\\\.\\wg\\\ = -

~ O~ O~ N

FIG, 4.2 (Wal(«'s)

/136



/3%

Assuming no pressure drop along the length of the pocket, the water film
on the wall 1s substantially stationary and we obtain by continuity

A
1 jo
= =
VbA JAp or V AlJ cesessosennscass(Be24)

or the air pocket speed V> J as AP/A| >1

Wallis quotes for Re,>» 3000, V. x1.2 j

J b

Q
or V_ 1.2(A::W>= 1.2 V_ (14) PN ¢ 3-1))

It is not yet clear how relevant this is to Civil Engineering type air pocket
flows.

{c¢) Behaviour of air pockets in inclined conduits

Most Civil Engineering interest in alr pocket behaviour in inclined pipes
has generally centred on :~

(1) velocities required to remove or clear air pockets
downstream from a pipe high point, siphon, dropshaft, etec.

(11) air pocket blow-back studies.

Almost all this work has been experimental, Edmunds (Ref. ), Gandenberger
(Ref. ), Kalinske and Bliss (Ref. ), Kalinske and Robertson (Ref. Ys
Kent (Ref. ), Wismer et al. (Ref. ), Saller (Ref. ), Zukowski (Ref. )

to name but a few.

An analysis of air pocket 'blow-back' and air pocket "clearing" in inclined
pipes will be carried out in Section 4.3, with experimental evidence presented
in detail in Section 5.1. This section, 4.1(c), will concemntrate therefore
on general aspects of alr pockets in inclined pipes, and in particular, deal
with rising velocity of contimuous and single alr cavities in inclined pipes.

In 1965,2ukowski (Ref. ) carried out an experimental study on the effect
of viscosity, surface tension and conduit angle on the speed of contimuous
alr cavities moving along conduits containing stationary water. Zukowski
showed that alir pocket propagation rates were substantially unaffected by
viscous effects when Reo>200, where Reo-= Vr R/v » or put in an altermative
manner)when VI,D/0>400. If we substitute a typicalvalue of rising velocity
Vr~0.5 Jg_Dwe obtain that the pipe diameter only requires to be 4-5 nm. .
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Even the substlitution of very small rise velocities Vr~0.l gD, means that

the pipe diameter only requires to be 11-12 mm to render viscous effects

negligible. This will be discussed in more detail in the light of data

from Wisner et al (Ref. ) who detected viscous effects in rising single
~302

alr pockets up to VrD '/ ) 10-,

According to Zukowski, surface tension effects are much more significant
at least for contimious air void behaviour. This is clearly illustrated in
Fig. 4.2, a plot of the air void rising velocity with pipe diameter assuming
fluid properties remain constant. It is clear that for conduit angles other
than vertical, surface tension remains an influence even for pipe dlameters

in excess of 150 mm diameter.

The effect of conduit angle on the rise velocity of continuous voids is
shown on Fig. 4.9, Zukowski's results are clearly indicated, and if we
ignore the effect of increasing pipe diameter (decreasing surface tension
effect) and discuss only the results for the largest 0.178 m diameter pipe,
denoted by ®. The following points of interest emerge:- '

(1) for the vertical case (9= 90°), the rise velocity is given
by Vr/@ «0.35 which is the same result as obtained by
several other authors discussed in (a) under vertical
corduits., Presumably the air void is rising up the centre
line of the pipe rather than a pipe wall. This gives the
apparently strange result that an air void propagates
slowest up a vertical pipe.

(11) for the horizontal case (€= 0°) the air void propagation
rate is VP/JE-D 0,53 which is 2% less than the propagation

rate predicted by Benjamin for movement with no energy lo_ss.(EQn.Q-,zz)

(iii) +the effect of conduit angle is clearly shown, with maximum
alr pocket velocities at a conduit angle generally between
30° and 60° to the horizontal.

This can be at least partly predicted as shown on the sketch
below. ¢ is the angle the nose of the cavity makes with the
pipe wall.

FIG i.lo
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The vertical distance between O and A is H Cos® + L*Sin®, and applying
Bermoulli between O and A )with 0 a stagnation point

2
HCos®+ L* sin® = V,"/2g where VA, = VrAp cosecessss(4.26)
Ay
This ylelds Vr/fs_ﬁ = 5 \/2H/D Cos® + 2L* sy Sinb R € 210/
p

If we assume the shape of the nose is parabolic and asymptotic to A, then
for g = 60°, L*/ = 1.15H/D or more generally L* . = t_i_xﬁ % The author
has plotted below the form of Equation (4.27) for the particular case of
H/y = 0,437, AA/Ap = 0,58 and ¢ = 60°, which is the energy conserving case
of Benjamin. It can be seen from Fig.4.ll that Equation (4.27) is a good
approximation to Zukowskli's data especially for §<€20° but Equation (4.27)
has been plotted for H/p, L* , and @ constant. The variation of

Vr./{—gD with conduit angle @, 1s at least illustrated to be a function of the

vertical distance between the nose of the cavity and the point of maximum
depth of ailr pocket.

o E,u.hg(q.u) ?ﬁ:éa" oy
Xe-oe X 2ukowskt (D=0)175m)

© Slope of condiit
e 6o Y 20 %

Fle. 41|
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Runge and Wallis (Ref. ) investigated the parameters which affect the rise

veloecity of slugs in still water in an inclined pipe. They concluded that .
Vrfs_ﬁ = f(NE\, I\%a’ B' ) .oooo.ouoonooooo(4028)

where NF is the inverse viscosity term and I%o the surface tension EStvls
Number already discussed under vertical pipes. Fig. 4.12 shows a plot of
VI'/Vr.(900) against the conduit angle for large values of Ngs and Np, so that
surface tension and viscous effects are small. The pattern for slugs is very
similar to the pattern of Zukowski's data for contimous air voids. This is
.again shown on Fig. 4.9(alongside Zukowski's data) for a pipe diameter of

0.038 m.

As a preface to experimental work on clearing velocities for air voids in
a dowrward sloping pipe, Wisner et al (Ref. ) conducted tests of the rise
velocity of single air pockets in stationary water, in a pipe 244 mm diameter
and sloping at 18.5°. The result is shown in Fig. 4.13 where the non-
dimensional rise velocity is plotted with the Reynolds Number in the form
VrD/ﬁ), for various air pocket volumes. n is a measure of alr pocket volume
equal to Vol./‘ITD3/4. This is a dubious measure, employed both by
Gandenberger and Wisner, as it incorporates both the length (L/p) and depth ‘
(H/D) of the pocket. It can be seen from Fig. 4.13 that the value of |
Vr/JES only exceeds 0.5 for large air pocket sizes for single air voids, amd
a comparison with Zukowski's data at 18.5° reveals Vr/ ) to be in excess of
0.6. This may be due to differences in character between continuous and
single air pockets: Wisner's data relates more to the slug flow data of
Runge and Wallis.

The other point of interest in the data of Wisner et al, is that their data
has been combined with some of Gandenberger's data to produce the variation
in rise velocity with Reynolds Number. A Reynolds Number of 100 is required
to render viscous effects negligible, which is in sharp contrast to Zukowski's
claim .tnat viscous effects are negligible for Re)400. This remains an open
question, but it surely might be of interest to plot Wisner's data with the
Weber Number (QuVrQD/G') as surface tension effects are thought to be more
significant.

Bacopolous (Ref. ) conducted experiments on the rise velocity of single
ailr cavities in stationary water for pipe slopes up to 1.65% or 0.945° and a
pipe diameter of 0.219 m. The result is shown on Fig. 4.14 for slopes of .
1.25%, 1.5% and 1.65%, corresponding to conduit angles € = 0.716°, 0.86° ard
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0.945°, The result is plotted with the cavity depth parameter, HVD. It
should be noted that Bacopolous also attempted correlations of the air
pocket rise veloeity Vf/JEB with the overall length of the air pocket (L/D)
and also the air volume VOI/TTD3/)+° The most significant correlations (at
least for shallow conduit angles) are with cavity depth, H/D, and the author
feels that this should be adopted in future correlations, rather than the
cavity volume. It can be seen from Fig. 4.14 that the air pocket velocity
varies significantly with H/D, in a similar pattern to that of Benjamin
(Fig. 4.6), with the maximum values of VI’/ =D well in excess of 0.5. This
correspords closely with Zukowskl's data for continuous cavities at the same
conduit slope, suggesting that Wisner's data may represent a slight under-
estimation of cavity speeds, possibly due to differing experimental conditions
or techniques.

For the case of air pockets travelling in an inclined conduit under moving
water corditions one would expect a correlation similar to the drift flux
model outlined for vertical conduits,

v, = C, i o+ Cl{g_D‘ tecsescsessesass(4.29)

where Co, might be 1,2 as for vertical and horizontal conduits and C; might
vary with H/D and the a.nglee’as discussed under stationary flow conditions
above.  Typical values of C; for Zukowski's data (Fig. 4.9) are 0.35-0.63,
Runge and Wallis C; = 0.35%0.%6, etc.

Bonneca3e(Ref. ) investigated slug flow under moving water conditions
for a pipe sloping from +10° in the upward direction to -10° in the downward

direction. The data correlates,

v,x 1.2 <i>+ 0.351515' RN € 15 )

where the + sign is used for upward sloping pipes and - for downward sloping
pipes. It is not certain why Cl = 0.35 remained constant for all pipe
slopes, as almost all other research reveals a substantial variation with

conduit slope.

Ervine arnd Himmo (unpublished) conducted experiments in a pipe (152 mm
diameter) sloping at 1.5° in the upward direction. This will be discussed
in some detail in Section 4.2. The results were correlated in bands of air
cavity depth H/D, with the plot of V, against {J» shown on Figh.19. The
correlations in Equations (4.4 ) to (&4.44 ) reveal,



V. 1.05-1.11 {3 + £ (VD) (gD_. eeeeererenoonne(h.31)

where f(H/D) is very similar to the pattern produced by Bacopolous for

stationary flows. For H/D varying from 0.1 to 0.35, the value of C;
varied from 0.4 to 0.581.

Thus for Civil Engineering type air pocket flows we might speculate that
the speed of anh air pocket in pipes sloping upwards (at angle® ) and urder
moving water conditions, is given by,

Ve 1125 + f (H/D,%)JE AR ¢ 95 -3

where (J7 = (Qa + Qu)/A pipe

f (H/D) 1s approximately as predicted by Benjamin or Bacopolous

£ (8) is approximately as predicted by Zukowski, with Zukowski's
curve for pipe diameter 0.178 m representing the maximum
alr cavity speeds for any value of H/D‘?




Section 4.2. Extension of Benjamin's analysis to the case of single air
pockets in mildly sloping pipes

This problem has been recemtly tackled by Bacopoulos (Ref. ) under the
general supervision of Dr. J. Townson at the University of Stratheclyde,
Glasgow. Bacopolous formulated theoretical models for both continuous and
single alr cavities. We will confine our discussion to the case of a
single air cavity shown overleaf on Fig. 4.15. Several important assumptions
are made as follows:-

(a) The cavity moves at a constant speed along a long circular pipe of
diameter D, the pipe sloping at angle® to the horizontal.

(b) The water ahead of the cavity is stationary, but the cavity moves

at speed Cl’ The cavity is brought to rest by applying a relative

velocity backwards of Cl'
(¢) For convenience of analysis the cavity is sub-divided into four
zones as indicated

- Zone OA 1is of length L. and is assumed to be a parabola making
an angle 60° at point O, and approaching asymptotically a line
parallel to the pipe axis at point A. The maxinmum depth of the
cavity (H) occurs at point A.

- Zone AE 1s of length L2 and is a low Froude Number hydraulic
Jump which may either be an undular jump or incorporate a breaking
wave. Bacopolous used an experimental expression for the jump
length L2, in the form

B/ o0.14
D
L2/D = 0,45 + (——3’-5;{——)0.55 P € %55)

- Zone EZ 1is of arbiltrary length 2D(f L3)

- Zone Z to the end of the cavity is simply the horizontal interface
between air and water, and is effectively the tail of the air
cavity.

(d) the velocity profile at section AA, (see Fig. 4.15) is assumed to be
rectangular on account of its proximity to the nose of the cavity OO'
where the water starts moving. The resistance to flow in the region

OO‘ AA‘ is unknown, but Bacopolous tries three possibilities -

A4
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(1) No resistance present

(ii) 2/3 of water weight in 00, AA, balancedby resistance,

(iii) resistance from D'Arcy-Weisbach using estimates of
friction factor)\ .

(e) the water velocity profile at section ZZ' (Fig.4.15) 1s assumed to be
parabolic which seems a reasonable first estimate in view of the
difficulty in estimating boundary layer growth from the front end of
the cavity to the point ZZ' for this 3-dimensional case. Bacopolous
goes to some lengths to calculate the momentum correction factor for
section ZZ’ to provide a more accurate assessment of the momentum
flux at that point.

The analysis (force/momentum, etc.) of the sections AAland ZZ‘ was
attempted again using the three possibilities of resistance to flow

outlined above, under (d).

Let us now consider the analysis for the relationship between the cavity
speed Cl/]EB and the cavity depth, E/D'

Applying Bermnoulli's equation between point B, some distance upstream
where only a relative veloclty of C; is occuring, and point O at the nose
of the cavity. Point O is considered to be a stagnation point with zero
velocity, and also the datum point for the analysis.

2
P C P
B 1 air 0
—_— + —_— + LSin% = —_— + 0 s cs 0000000 )'l".
e 2g o CIE (8.34)

The pressure in the alr pocket is denoted by Pair’ arnd no resistance to
flow occurs over this length Lo' Hence we obtaln,
s Tatr
e ¢8

We now apply force/momentum balance between sections BB'and AA'

2
+ LOSin3:= - Cl /ég ceesescecscasees(#.35)

(Pressure at BBl) + (Momentum flux at BBl)

- (Pressure at AAl) - (Momentum flux at AAl)

+Qﬂater weight between BB1 and OOl) + (Water weight between OOl and AAl)
- (Resistance between 00, and AAl) = 0
S €. 5 +)

Assuming the velocity at Point AAl is 02, the area at AAl is given by A,

and the pipe is of radius r, we obtain,



(Pg x W2 + W2 x pgrCos® ) + (@wrC)?)
-(p alp e + erCose[ACos a + 2/3 r°Sin ]) - (QA C22)

+ ( Qg "TraLo Sin®) + ( QgSin'Bx Volume water between OOl and AAl)

- (Resistance between 00, and AAl) = 0 e (B237)

It should be noted here that the area of flow (A) in a partially filled
circular pipe is given by

A = o (1-55 + S eeeereeneennna(4.38)

where a is the half angle illustrated on Fig.4.15.

The resulting hydrostatic pressure force from a partially filled pipe is
given by

F = ger (A Cosa + 2/3 r2 Sin:a) N L )|
so that when the pipe is full, a =0 ard F = egr A = Q81TP3-

Finally, the energy equation (4.35) can be combined with the force-momentum
equation (4.37) and also with the continuity equation (Cl‘arr2 = 02 A) where
A 1s the area of section AAl, to provide a relationship between the speed of
an air cavity and its depth H/D. To complete this analysls, Bacopolous
calculated the volume of water between OOl ard AAl
shaped cavity nose. As pointed out previously, three values of resistance
between OO and AA. were used. The final rifulting relationship for a

1
conduit slope of 1.65%, is shown on the table)pelow for vardous values of /D-

assuming the parabollc

H

o) 0.10 0.20 0.0 0.40
a) no resistance present 0.423% 0.5%7 0.5716 0.5597
b) E,Of water weight 0.4213 0.5335 0.5682 0.5565

compbnent is balanced
by resistance

¢) resistance is given by 0.42% 0.5367 0.5716 0.5597
the equation of
turbulent flow.

Cy1
Fig. 4.16. Variation of dimensionless air cavity velocity —————7—

(eD)*
with resistance cordition. Slope of pipe = 1.65%.




A few points of interest emerge from Table 4.16 above,

(1) The inclusion of a flow resistance term from Section OOl to AAl

makes no difference to the eventual cavity speed.

(ii) The air cavity velocity varies with the value of H/p as shown. The
trend is the same as that predicted by Benjamin for the 2-dimensional
case (see Fig. 4.6) of a contimous alr cavity.

(i11) The parameter H/p is much more significant in correlating air cavity
behaviour than other parameters, such as L/p (the cavity length) or
the air volume held in the cavity. This was illustrated in the
experimental correlations of Bacopolous (Ref. ).

(iv) The author has plotted the theoretical result of Bacopolous (for a
pipe slope of 1.65% and stationary water) alongside experimental
data for the same condition. This is illustrated on Fig. 4.17 by
the points denoted X (theoretical) and + (experimental). It is
clear that for the range shown, the theoretical prediction of air
cavity speed overestimates the experimental values. This occurs
at least for H/D values less than 0.4, but the reverse is the case
for B/ from 0.4 to 0.5. (not shown).

Bacopolous continued his single air cavity analysis by calculating a
theoretical length of the cavity, L/b, and plotting the result against the
cavity depth, H/D. The total length of the cavity was calculated by summing
theoretical estimates of the four separate zone lengths, L = Ll+L2+2D£L4.

The result, for a pipe slope of 1.65% is shown on Fig. 4.18, again for the
three flow resistance estimates. For this particular angle of conduit, most
of the air pocket lengths are in the region of 10-15 pipe diameters, although
this must decrease for steeper conduit angles and increase for shallower
cordult angles.

The analysis of Bacopolous ard Townson may prove to be a useful tool in
predicting air pocket behaviour. So far it has been applied only for
shallow conduit angles, up to 1.65%8 or 0.945°, and to stationary flow
conditions. It would be of interest to see 1f this work could be extended
over the full range of condult angles and also under moving water corditions

which is much more commonly the case.
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2.0 THEORETICAL RIR CAVITY LENGTH IN INCLINED PIPES (B=o,9¢$9
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Certainly for the case of a shallow angle of conduit, the work of Bacopolous
could be easily extended for the moving water case, when an allowance for

pipe wall friction between sections BBl and OO1 would be required.

Regarding the speed of air cavities under moving water conditions, Ervine
and Himmo (not yet published) have recently measured air pocket speeds along
a perspex pipe (152 mm diameter) over a wide range of water velocities. The
work(which will be described in detail in Section 5;2,)15 a study of air
pocket formation at the junction of a vertical dropshaft and a horizontal or
almost horizontal tunnel outlet. A series of successive alir pockets travel
along the tunnel under the influence both of buoyancy and moving water, as
shown on Fig.5. . The tests described below apply to the tunnel section
inclined at an upward angle of 1.5o which 1s slightly steeper than that of
Bacopolous (0.9450), and with the air pockets shape and speed measured by
Churchill wave probes.

The air pocket shape approximates very closely to that sketched by
Bacopolous on Fig. 4.15 with three discernible sections, the initial nose,
the hydraulic jump and the tail of the pocket. Before discussing the
experimental data of the air pocket speed Vi, we should note that the speed
of ailr pockets (or slugs) has been shown by previous authors to havebthe



form,

Vo= € KI> cl{g_ﬁ veeeeeenneaneena(4.40)

where (J} is the mean velocity of the whole alr-water mixture (QA + Qw)/Ap,
which is a better measure for the case of successive alr pockets passing
along the pipe. We have already seen that for the vertical pipe case at
high Reynolds Numbers C-o“' 1.2 and Cy o~ 0)35, whereas for inclined pipes

C1 at least increases above 0.35.

The experimental results of Ervine and Himmo are shown on Fig. 4.19 which
is a plot of the air pocket speed Vb against the mean velocity of the
flowing mixture {jv . The slope of this data should then be equal to Cg,
and the intercépt equal to Clqr;B; where D = 0.152 m. On inspection of the
data, it was found that a series of almost parallel lines could be drawn,
corresponding to each range of the cavity depth, H/D, which was also
measured. The value of C, which was expected to be 1,2 varled slightly with
each range of H/D between 1.055 and 1.11. Regression analysis of each band
of H/D revealed,

0.1 € H/p <o.2,

v, = 1113y + 0.4 [op N € 29
0.2 <H/p<o.25
Vb =l.076<j> + Ooml SD 0000000000000000(4.42)

0.25 < H/p < 0.3,
Vy = ,1.055(J) + 0.5%/gD PPN € 2. 5))

0.3 </p<0.35,
Vp = 1.096 3> + 0.581@ BN C R 12

all for a corduit slope of 1.5°. This indicates quite clearly that although
the value of C, may be approximately constamt, the value of Cl varies with
Hyb, for a given conduit slope. We have already seen that C; varies with
slope of conduit in Section 4.1. The author has plotted the experimental
values of C; above with the experimental and theoretical data of Bacopolous
(P = 0.945°) on Figure 4.17 (poimts marked o), showing good agreement. By
implication, if the work of Bacopolous can be extended to any conduit angle
95 then accurate values of C; can be predicted for the full range of H/D

ard corduit angle, and because Cy, remains falrly constant between 1 and 1.2
we may be able to predict alr pocket speeds accurately over a wide range of

corditions,
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Section 4.3. Analysis of air pocket 'blow-back' and cleaning conditions

for dowrward sloping pipes

In Sections 5.1 and 5.2 we will investigate experimental evidence for
blow-back and cleaning conditions for air pockets at a dropshaft/tunnel
Junction (5.2) and downward sloping pipes (5.l.). Both scenarios are
sketched below, and in each case the alr pocket may remain stationary, blow

backwards against the flow, or be cleared downstream with the flow.
' 2

:4 4
E i g FIG 420 (b)
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\ 9
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F16 4,20 (0) downward Sloping plpﬂl

il ek =
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For the case of the dropshaft/tunnel junction we will concent;éﬂé on tﬁe
work of Townson (Ref. ), Golding (Ref. ) and Ervine and Himmo (Ref. )

in Section 5.2.

For the case of high points and downward sloping pipes we will concentrate

on the work of Kalinske and Robertson (Ref. ), Kalinske and Bliss (Ref. ),
Edmunds (Ref. ), Gandenberger (Ref. ), Wisner et al (Ref. ), .

Kent (Ref. ), Sailer (Ref. ) and Golding (Ref. ), in Section 5.l.

In this section it is intended to explore a slightly more fundamental

approach to the problems of blow-back and cleaning, although this may prove
somewhat speculative in nature.

Blow-back

The author proposes below a tentative scheme to predict air pocket blow-
backs in a stralght dowrward sloping pipe, where the air pocket is formed by
a coalescenceof entrained air bubbles, downstream of a hydraulic jump, for
instance. Air bubbles are assumed to be uniformly distributed passing
section OOl and are assumed to have coalesced into fhe,air pocket at a
distance Ll’ as shown in Fig. 4.21. The water velocity averaged over the
entire pipe area is Vb, but is mod%fied to account for the wolume occupied
by air bubbles to glve a velocity —2— = V6(1+ g), where @is the ratio of

l1-o
alr to water. The air pocket is assumed to be stationary, but on the point




of blow-back, so that it might take up a shape similar to that sketched.

The velocity to be calculated V 1s, therefore, the velocity required to

keep the air pocket stationary,oand velocities less than this would allow
blow-back to occur. Two methods of analysis which might be employed are
(1) simplified energy method and (ii) force/momentum balance

L‘A‘

FIG 421 Podket an The peiat of blowl‘)a\d\L\.H

. (1) Simplified energy procedure

Assuming no energy loss occurs between O and A on the air pocket surface
(energy loss is concentrated in the jump) and assuming that Point O is a
stagnation point, we may apply Bernoulli between these two points. If the
pocket length between O and A along the pipe 1s L*¥ and the pocket depth
normal to the pipe wall is H, then the vertical distance between 0 and A is
given by H Cos® + L* Sin® ., The application of Bermoulli assuming the
same alr pocket pressure at O and A gives

P v P .
HCos@+L*Sin9+£—+'air=O+-—a—+ﬂ
2g g 2g g
.0‘-....0.'.0..0(4.45)
which becomes
VA2
rFrui HCos® + L* Sin®¢ R €. 32753

If we now apply contimuity between BBl and AAl, with a distribution of air

bubbles at Section BBl we obtain
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Vo(l +Q)Ap =V, A coccsecccsecenss (B U4T)

where Ap is the full pipe area, and AA the area of flow at Section AAl
H a_, Sin2s

A, is dependent on /ps and is given by Ap 1 - 156 o7 )s as already

discussed under the work of Bacopolous in Section 4.2. Combining equations

(4.46) and (4.4 ) we obtain

vV _(1+8) A *
_9_$= A /eH/DcOse f RS0 v (288)

\ISD A P
a Sin2a y S .
where AA/A is given by 1 - 156 + o7 ° (W W dﬂhned. in F'ﬁ 141,15-)

hol

A
This relationship when solved for a range of H/D values (and hence B/ Ap

values) will give the water velocity required to keep a pocket from blowing-
back in a straight dowrward sloping pipeeo The main point of difficulty is
an estimation of the value of L*/D. Using the reasoning of Bacopolous that
the curve OA 1s a parabola with vertex at A and passing through O, making an
angle ¢ at that point. It can be shown that

L*/y = QH/D l/tantp B C )

A value of ¢ proposed by Von Karman and also Benjamin is 600, whereas visual
observations (photographic) reveal the angle of the nose often to be less

than 60°., If we simply assume @ ~ 60° mearwhile, then L*/p~1.15 H/D. The
author has used equation (4.48) for conduit angles up to 30° and for values

of H/p between 0.1 and 0.5, to predict the velocity (or Frowde Number)

required to keep an air pocket stable. The result, using the energy equation
and @ =60°, is shown on Fig. 4.22 by the dashed line, revealing that for
downward sloping pipes 8<2%0°, for typical alr pocket depths 0.1 <H/p<0.5, a
Froude Number of the region of 0.5-»0.7 is required to keep an air pocket from
blowing-back. This is a first order estimate showlng that blow-back conditions
are strongly dependent on the cavity depth H/p and the conduit slope B.

Fig. 4.22 does obscure possible variations in the angle of the nose of the

air pocket ¢. For steeper cordult slopes it is quite possible the & may
reduce from 60°. If we take an extreme reduction in @ say from 60° to 500
then from equation (4.49), L*/p will increase from 1.15 H/D to 3.46 H/D'.

When this is substituted into the energy equation we obtain much higher

values of the Froude Number required to prevent blow-back in a straight

dowrward sloping pipe. In fact, a wide range of values of VO/ /E-D can be ‘
obtained, depending on the choice of @, &, and H/D.
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(i)
The author has also analysed this situation using a force/momentum balance .
and continuity between EBl ard AAl combined with Bernoulli applied between
B and O, The analysis is similar to that of Bacopolous (Section 4.2) and
reveals a solution for the Froude Number required to prevent an air pocket
from blowlng back in the form

Vs f _ Cos (]__AA/I-\PCos:,1..1/3 Sinja) + (Wt.water from 00, to AA,, / egAPD /2)

[® (1) (2% 1)

ceceseescsccssss(4.50)

Further detalls may be obtalned from the author, but the result is shown

on Fig. 4.22 represented by the solid lines for 0.1 <H/D <0.5, and for a
constant angle of the front nose of the cavity @=60°, The theoretical
curves presented on Fig. 4.22 are in close agreement with the "limit bubble"
data of Veronese and in the same region as the void removal and blow-back
data plotted by Golding and shown on Fig.5.

Clearing
In the section above, the velocity (or Froude Number) required to keep an .
alr pocket stable or from "blowing-back" was discussed. It might be
postulated that velocities higher than this would cause clearing of the
pocket downstream along the conduit. The problem is more complicated than

this, for the reasons outlined below.

(1) The velocity required to clear an air pocket (Vc) must be somewhat
greater than the velocity required to hold the alr pocket from blowing-back.
This 1s due to the fact that an air pocket must change shape before clearing,

as shown below

>y,
[ ) ﬁv
Fig. 4.23 (a) Pocket stationary but Fig.4.23 (b) pocket stationary, but
on the point of blow-back. on the point of clearing.
The nose of the cavity facing the oncoming flow must flatten, so that ¢ < 60° ‘

for clearing. .We have already used the energy principle for blow-backs



(8 ~ 60°), illustrating that the blow-back velocity is a function of

I@&» T and 4. Suppose that the energy principle can be used for clearing,
this time with ¢ < 60° with the nose facing the oncoming flow still
approximating to a parabola of shape L/D = 2/tan¢ﬁ@ﬁy This is put

forward without much justification. If we assume, as an order of magnitude,
that @ reduces to 20° say, then L/D'XB.% H/D’ and the energy equation for

clearing becomes

I ;\f‘- Jz H/Cos D + 3.46 H/psin® ...iiiieiinaa..(B.51)
Jeo o

where H 1s the maximum cavity depth and AA 1s the area of flow under the
cavity at this point. The author has calculated VC/ &D for various conduit
slopes®, with the result shown on Fig. 4.24 for H/D = 0.1 and H/D = 0.3.
Equation (4.51) is also compared with experimental data from Kent, Wisner and
Gandenberger. For H/D = 0.3, the equation is very similar to the data of
Kent, and is practically identical to the median value of Wisner's data.
Gandenberger's data for larger air volumes (say nD>0.5) corresponds
approximately to HVb”‘O.E. Clearly it is possible to use Equation (4.51)

to correlate any experimental cleaning velocity data, depending on the choice
of ¢ and air pocket depths,'HyD. A question which remains, can ¢ or H/p

be predicted for any experimental set-up? This is presently being investig-
ated.

(11) Air pocket clearing downstream in a downward sloping pipe is further
complicated by concept of partial clearing by hydraulic jump entrainment at
the downstream end of the air void. This is illustrated in the sketch
below, Fig. 4.25. It is often the case with substantial upstream Froide
mmbers Vb/Jgﬁ and larger air pocket depths (H/p), that the Froude Number
under the air pocket Vi/JEK7§'is greater than one, a hydraulic jump forms,
and air is carried out of the jump by entraimment. The entrained air may
further coalesce at some point downstream but may well be transported because
the values of H/D are much smaller than the main air pocket. See Equation
(4.51). When this occurs, and the main air pocket is not fed with air
transport from upstreém, then the cavity may reduce in size until it% H/D
value is small enough for the pocket to be clear bodily. The rate of air
transport from the jump may be calculated either from Kalinske and Robertson's
equation, Thomas equation or the Ervine and Ahmed equation, all discussed in

Sections 3.2 and 3.3. This type of entraimnment will cease when the Froude
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SECTION 5

ATR POCKET FIOWS -~ Experimental evidence and

~empirical relationships.

5.1, Air pocket blow-back and clearing in
downward slopling pipes.

5.2. The formation, blow-back and clearing of
air pockets forming at dropshaft/tunnel
Junctions. Analysis and experimental

evidence.
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Section 5.1. Alr pocket blow-back and clearing in dowrward sloping pipes .

The type of air pocket formation to be discussed in this section is
illustrated in Fig. 5.4(a)-(c). In (a), pockets may form downstream of
a hydraulic jump due to the coalescence of small alr bubbles, and the
resultant air pockets may 'blow-back' towards the Jump, remain stationary
or clear downstream. In (b) a pocket may form at a high point in a pipe-
line or siphon and removal of the pocket might proceed either by entraimment
of air at a Jjump, or the bodily sweeping out of the pocket. In (e), a
stationary or equilibrium vold might occur, where buoyancy and drag forces
are in balance.

Several experimenters have investigated clearing of air pockets, but, to
the authors kmowledge, no investigation to date has been set up specifically
to look at alr pocket blow-back. When blow-back has been memtioned in past
experiments, 1t usually features as a side-effect, with an inadequate set of
flow parameters for detailed analysis.

Some photographs are presented overleaf, Fig. 5.1, 5.2 ard 5.3, illustrating
air pocket clearing and blow-back in a dowrward sloping pipe with angle 1.5°
below the horizontal. Fig. 5.1 illustrates how an air void might be removed
by the gradual entrainment of alr at the downstream end of the void. Fig. 5.2 ‘
shows a typical small alr voild being swept along the conduit in the same
direction as the flow. Fig. 5.3 shows small alr pockets blowing-back against
the direction of the flow. In many cases, whether sweeping out or blowing
back, a small breaking wave often exists at the downstream end of the pocket.
The purpose of this sedtion, therefore, 1s to determine the conditions and
flow parameters which lead to the various modes of air pocket behaviour.

Blow-backs and clearing in dowrward sloping pipes - experimental evidence

This problem has been recently reviewed by Goldring (Private Communication -
Feb.1985) in which he states that the specific problem of blow-back has
received little or no attention, Most of the work is concentrated on eilther
alr entraimment or air pocket removal in dowrnward sloping pipes. Gold’ring
highlights three types of experiments which have been carried out, as shown
on Fig. 5.4, Fig. 5.4(a) is the only one where the flow parameters at
blow-back were measured and published, Fig., 5.4(b) relates to experiments
designed to determine the flow parameters to remove an air pocket from a
high point-in a pipe line and, Fig. 5.4(c) relates to flow parameters designed

to keep an alr pocket stationary. .
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The earliest reference to "blow-back" is highlighted in a paper by .

Kalinske and Robertson (Ref. ), while investigating the air entraining

capacity of a hydraulic Jjump formed downstream of a gate in a downward

sloping circular pipe ( ® € 16.7°) and pipe diameter 0.15 m. "The air

pumped by the jump would form a large bubble just beyond the jumpee.eeces

periodically this large bubble would blow ocut over the Jumpe.cse...'. They

show a graph, Fig. 5.5, which is a plot of the fractional depth Y1 /p

the Froude Number Jjust upstream of the Jjump Vl/ﬁ—AI;; l’ below which only

a fraction of the entrained air would be transported. We may assume that

blow-backs occur up to this limiting Froude Number. As the fractional

depth (¥1 /D) has been specified, we may translate this limiting upstream
Froude Number, Frl, into a limiting pipe-full Froude Number Vo/ \/'él‘) below
which blow-backs will occur. This is shown on Fig. 5.6 and compared with
the authors theoretical equation for blow-back Eqn. 4.48 and 4.49 with ¢
constant at 60°, The data of Kalinske and Robertson represents an upstream
fractional depth of 0.15 and 0.3 respectively.

It can be seen from Fig. 5.6 that the authors energy equation for @ = 60°
is generally an underestimate of the limiting Froude Number for blow-back
except for very shallow conduits, sa,v9<l°. The reason for this must be ‘
related to the author's nalve energy model, where the length of the cavity
I* to the point of maximum cavity depth H, (see Section 4.3) is assumed in
this case to be L*/D = 2H/D l/tana’, where ¢ is the angle of the cavity nose
to the pipe wall. (60°). A good correlation with Kalinske and Robertson's
data can be achieved by the simple expedient of increasing L* in the energy
equation (4.48), by reducing ¢ from 60° to somewhere around 30-40°,
Unfortunately, Kalinske did not provide enough data on the shape, depth and
length of the air cavity downstream of the hydraulic jump to provide a
meaningful comparison with theory. It is of interest to note, however,
that the limiting Froude Number Vo gD increases with the upstream fractional
depth, -Yl/D, as shown on Fig. 5.6 for the cases Y1/D= 0.15 and Yl/D = 0.3,
According to Kalinske's data, when Y1/p = 0.15, Fry~15-20, and the air/water
ratlo approaching the alr cavity should be around 0.3-0.4. When Yl/D = 0.3,
Fry~5-7 and the ratio of ailr to water for 0.06-0.1. If we now return to
the full epergy Equation (4.48), it has been shown that
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V(1 +p) ) A

(sD Ao
indicating that the limiting blow-back Froude mumber will decrease with
increasingp . In this particular case, VO/["gD should ratio on
(1 +0.35)/(1 + 0.08)as1.25, which is approximately the case for the two
values of Y1 /D shown. Clearly a more definite study of blow-back is

M/pcos® + 22/ 518 el (501)

required before the influence of the upstream air/water ratio, the cavity
depth H/p, the cavity length L*/, and the angle of the cavity nose # can
be properly ascertained. The important point meantime, is that Kalinske
and Robertson propose that blow-back will occur when the Froude Number is
less than the limiting Froude Number.

This is in sharp contrast to the findings of Sailer (Ref. ) who
reported that the U.S.B.R. had analysed the flows in the downslopes of 21
different siphons ranging from 0.61 m to 2.82 m diameter. The results
were plotted on the same graph as Kalinske and Robertson (Fig. 5.7),
indicating that blow-backs occurred when the flowing Froude Number was
greater than the limiting Froude Number, whereas conditions, on, or less
than Kalinske and Robertson's curves did not produce blow-back. Gold.r'ins .
has translated Sailer's upstream Froude Numbers into pipe-full Froude
Numbers Vo /\/g-l_)-' and has proposed, tentatively, as shown on Fig. 5.8, that
Sailer's blow-back problems were confined to flows where the pipe-full flow
is supercritical, and hence it is not possible for a hydraulic Jjump to form.
(Vo /,/ED »1). If the hydraulic jump cannot form at the downstream end of
the air pocket, then the pocket cannot even partially clear by air entrain-
ment, and hence it is probable that an alr pocket in the downstream leg of
the siphon would develop a large cavity depth H/D, a long length L* /D2 and
would only be removed by bodily sweeping. This 1s the worst possible
cordition and a warning perhaps to avold supercritical pipe-full flows if
possible. Sailer did not have any problems with blow-backs in sub-critical
pipe full flow as illustrated by points marked A on Gold;t"mg’s graph
(Fig. 5.8).

Kalinske and Bliss (Ref. ) investigated air void removal from a high
point in a pipeline as shown on Fig. 5.4, Two pipes of 0.1 m and 0.15 m
diameter were used and dowrnward slopes up to 8.5° were tested. Their data
line is shown on Goldr‘mg‘s graph (Fig. 5.8) and essentially represents an
equilibrium air-void line above which air pockets would be removed down-
stream. Their work was similar to the previous work of Kalinske. and .
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Robertson, except that fractional depths Yi/D, were not controlled by a
sliding gate mechand.sm. They employed a simplified drag/bucyancy
relationship to show that the velocity required to clear an air pocket
downstream could be given b&

— = ~ oooooo..oooooooo(592)
‘l gD Cd
where K 1s a constant, S the downstream slope of the pipe and Caq the drag

coefficlent of the water on the air pocket. This relationship was used by
Kalinske and Bliss to show that if Cy could be considered constant, then
the clearing Froude Number would be proportional to [tan® or j Sinb .

Unfortunately, Kalinske and Bliss did not produce enough data on Fractional
depths, upstream Froude Numbers, shape and size of air pockets, etc. to make
a detalled analysis. We are simply left with the curve shown on Fig. 5.8
ard to speculate on the obvious questions of (i) why smaller Froude Numbers
are required for clearing than the blow-back Froude Number data of Kalinske
and Robertson, and (ii) why their data does not coincide with comparable
data of Gandenberger, Kent, etc.

Kalinske and Bliss indicate that a hydraulic jump occurred at the down-
stream end of the upper air void, entraining air and transporting along the
sloping conduit. If the conduit is relatively short, theh a large or
substantial proportion of air may have been transported in the form of small
bubbles (as in Sections 2 and 3), although it is clear that secorndary air
volds did occur downstream of the jump, and were responsible for blow-backs
into the upper air void. This type of bubbly mixture transport (if it did
occur) does not scale on Froude Number Vb/\/gr: as the size of bubbles
produced at the plunge point are similar in model and prototype. The bubble
transport phenomenon is dependent on absolute veloclities, whereas alr pocket
transport scales on Froude Number. What happens if a mixture of the two
types of transport occurred, not only with Kalinske and Bliss but also
Kalinske and Robertson?

Suppose, hypothetically, that small air bubble transport was dominant,
then according to Thomas (Ref. ) the upstream jet velocity to transport
alr might be given by Ulmin/U/br ZCosa/E, where g the turbulence intensity
is say 1/20"11;,. For small angles Cos® -1 and we find Ulmin ¥4 920Uy, or

1)
1min anywhere from 1 to 5 m/s. The pipe full velocity to transport air
i1s then given by Vo = U1 A1/Ap = £ (U1 Y1/), and thus will increase with



N

increasing fractional depth. This 1s illustrated for the data of Kalinske .
and Robertson, Fig. 5.9, for Yl/D varying from 0.1 to 0.5. For bubbly
mixture transport only, Vo/ / gD will vary with varying conduit dimension

D, as Vo remains constant for a given D and 5t /p Value lrrespective of the
condult dimension.

The other end of the spectrum requires that all alr transport is in the
form of alr pockets and will thus scale on a Froude Number VO/ D"’ The
main effect of Yl/d would then be the amount of air entralned by the jump,
F, ard its effect on possible blow-back conditions. That is, small Yl/D
values generally correspond to high upstream Froude Numbers, Frl,
correspording to high@values, corresponding to lower blow-back Froude
Numbers. A secondary effect might be the positioning of the secondary air
pocket downstream of the wake of the jump.

Thus we camnot make definitive analyses of this work as details of the
mode of alr bubble transport are not given. It is surprising that the
Kalinske ard Bliss data falls on one curve, and may be an indicator that
only a small range of values of Yl/D were obtained for the limiting Froude
Number, and also that these values of Yl/D would appear to lie in the

region of 0.05 to 0.2 as shown on Fig. 5.9. As already pointed out, .
Kalinske amd Bliss had no control of Yl/D values.
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Extrapolation of the Kalinske and Bliss curve beyond 8.5° giope is not
advisable as it is not clear how the limiting Froude Number varies with the
fractional depth ¥y /D* for steeper angles.

Kent (Ref. ) carried out an experimental study of alr pocket movements
in a 4" diameter (0.1 mg) downward sloping pipe at angles ranging from 15°
to 60°. The type of experiment is essentially the equilibrium void type
as shown on Fig. 5.4(c), and the emphasis rests on the pipe-full water
velocity required to keep the alr void stationary. Veloclties greater than
this limiting value would cause the air vold to move downstream.

Using a buoyancy-drag analysis, Kent proposed,

(Qw-ea) sVsmB = %chl(JWVOe N ¢ 75)

where v-is the air pocket volume
9P is conduit angle
Al is the area of the pocket exposed to the oncoming flow
c 3 is a drag coefficient
Vo 1s the velocity required to keep the pocket stationary.

Assuming that Y/AT is proportional to the air pocket length L, which in
turn has geometric similarity with the conduit dimension D, Equation (5.3)

reduces to
V. = K[D cin J P 1. 3|

where K is a function of the drag coefficient anmd given by Kent to be equal
to 1.62 g . The value of Sis 0.58 for alr pocket lengths greater than
L/p> 1.5. That is, for longer air pockets, L/p » 1.5, Equation ($-4)
becomes,
A
v o~ 1.234 [epsin® or —= >1.234 [sin O...........(5.5)
./EB‘

This is an approximate fit to Kent's data, which is illustrated on Fig. 4.24,
Fig. 5.8 amd Fig. 5.9. Kent's data for air pockets of L/D > 1.5, differs
from other data in the sense that it does not indicate a broad range of
equilibrium Froude Numbers correspording to a range of fractional depths
under the alr pocket Yl/D' One can only assume that Yl/D Just upstream of
the jump did not vary significantly, otherwise a wider spread of results
would have occurred. The other important point is that for a conduit angle
of 60°, Kent required supercritical pipe-full Froude Numbers to keep the
pocket stationary. It must be re-emphasised here, that a hydraulic pump is
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unlikely to occur at the downstream end of the air pocket in this case, and ‘
a different mechanism might be assumed to be operating.

In any case we are 1n a position to make use of the authors energy
equation in Section 4.3 combined with an experimental observation of Kent.
This observation is that the velocity required to hold the pocket stationary
is independent of the pocket length once it exceeds a value of I-‘/D } 1.5.
The geometrical parameters are sketched on Fig. 5.10 below,

Fl6¢5. 10

If we assume that L/D for Kent's alr pockets is approximately equal to
L*/5 required for the energy equation, i.e. L* is the pocket length from
the upstream nose to the maximum cavity depth point H, then we might assume
that L*/p ~ 1.5 and the energy equation (4.48) (ignoring E mearwhile) is
then given by,

Vo//E =~ AA/Ap

N

(2 H/, Cos® + 35in®)

cececessscassses(5.6)

Ay 1s the area of flow at the point Y.,

Kent tested the angles B = 15°, 30°, 45° and 60°, but did not publish either
H/p or n /D at the downstream end of the void. However an approximate fit
using Equation 5.6 is shown belfow for Kent's data using H/D~ 0,4 and

*
L/p~1,5.




Using constant values of H/D and L*/D is a crude approximation but it
does illustrate (Fig. 5.11) that a close approximation to Kent's data may
be obtained. PFurthermore, the assumption of H/p~ 0.4, implies
Yl/D‘V 0,6, and when comparing Kent's data with Kalinske and Robertson's
data on Fig. 5.9 we see that Y1/, of 0,6 is not an unreasonable mean

estimate.

We can also see from Fig. 5.9 why Kent's data predicts apparently higher
equilibrium Froude Numbers than Kalinske and Bliss. The flow depth
parameter under the air pocket, Yl/D‘, is much greater in the case of Kent's
work, l.e. Kent must have been operating almost exclusively in the higher
range of Yl/D, say comparable to Yl/D> 0.5 in Kalinske and Robertson's
work, whereas Kalinske and Bliss appear to have been operating in the range
Y1/,<0,2.

There is also some doubt over the form of Kent's empirical relationship
Vo/@ = K fSin® , as 1t will grossly under-predict equilibrium Froude
Numbers for small conduit angles and over-predict for angles approaching
90°,  For the vertical conduit (§ = 90°), Kent predicts an equilibrium
Froude Number Y, /@ ~1,234, whereas Martin (Ref. ) and other authors
have shown that air voids may clear vertically dowrwards at Froude Numbers

Vo/{g—ﬁ >0,7.

Wisner, Mohsen and Kouwen (1975, Ref. ) examined the removal of air
from a downward sloping pipe at angle 18.5° and pipe diameter 0.244 m.
Commencing with a dimensional analysis to determine the parameters governing
the bodily sweeping out of an air pocket, they proposed the sweeping-out
velocity in the form,

= - ¢ (Y Re, D) N R o

/&

and point out that the pocket length parameter L/D, might be replaced by
the non-dimensional air volume, n = V/(T[Dj/4). They also point out that
Re (viscous effects) is mot importamt when Re > 102, Equation (5.7) is
over simplified in the sense (i) previous authors found surface tension
effects more significamt than viscous effects, and (ii) it is clear from
the energy equation, that the cavity depth term H/D is just as significant
as the cavity length term L/D, ard it may be misleading to lump them both
together in the form of an air volume. Therefore, bodily sweeping of an
air pocket with no hydraulic jump at the downstream end of the pocket might
be more accurately described by,
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S L H

- = f(/D’ / ,B, Re, wb) oolotoo.li-.oooo(5.8)
8D .

For the case of alr pockets clearing by a combination of air entrairment

at a hydraulic jump at the downstream end of the pocket, together with an

element of sweeping, we might propose,

v v
= oo (Y L, B, A, Re, Wb) eeerreen.(5.9)
(8 T )

Note that the fractional depth is not included, but is impliecit in the
term H/D. The term Vl/V , (water velocity just upstream of the jump over
the bubble rise velocity)?ris included to account for undoubted scale
effects associated with entraimment at the Jjump, giving a total of three
possible scale effect terms, Vl/Vbr’ Re and Wb. Both Re and Wb will be
insignificant for pipe diameters greater than 0.15 to 0.2 m. According to
Kobus. (Ref. ) entrainment scale effects are negligible for

VlYl/g >lO5, where Yl is the flow depth at the upstream side of the jump.
This reduces to V1% »0.1. For a pipe say 0.2 m diameter, and the cavity
taking up half the pipe depth, then ¥1=0.1 m, and V] would only have to be
1 m/s to satisfy the Kobus criterion. In the author's view, this is
unreasonably low beéause of extensive detrainment out of the jump when

Vi = 1 m/s (see Thomas, Section 2.3). A more realistic criterion for
negligible entrainment scale effects is likely to be Vl'_v 2.5 to 5 m/s, in
the absolute sense, rather than being strictly related to a Reyrolds Number

term.

Wisner, Mohsen and Kouwen essentially investigated the removal of an alr
pocket from a high point in a pipeline, as illustrated in Fig. 5.4. Their
data is shown on Fig. 5.9 with fractional upstream depths ranging from
0.273 to 0.818, and again on Gold‘:\'ing's graph, Fig. 5.8. Apparently, the
effect of Y1 /D is not quite as significant as say Kalinske and Robertson,
but of a comparable order of magnitude. They plotted thelr data with that
of Kent, and Kalinske and Robertson, Fig. 5.9, anxd proposed a lower bound
envelope for air pocket clearing in the form,

= 0.25 Sine + 00825 0000000000000000(5010)

&) |~

In the author's view, this empirical relationship is an unreasonable over-
simplification, in view of the fact that clearing of an air pocket is a
complex phenomenon involving the pocket length, depth, fractional depth,
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r
velocity under the pocket, ete. Gold':\Lng (private communication) points .
out the following, and I quote,

"Wisner, Mohsen ard Kouwen (1975) examined the removal of air from
water lines by the water flow. They plotted the non-dimensionalised
water velocity in a full pipe to just remove air voids versus the square
root of the sine of the pipe slope. They used equilibrium void results
from Kent (1952), blow-back results from Kalinske and Robertson (1943),
and void-removal results from their own tests in a 0.245 m diameter pipe
with an 18.5° downslope. They drew a straight line (an envelope curve)
above all the plotted results and called this the "lower bound" for the
clearing velocity so that volid clearance would be assured if this lower
bound was exceeded. However, they then say that "Values of the velocity
parameter should not be much higher than the lower bournd as this will
introduce a problem of blow-back". In the subsequent discussion (Wisner
et al, 1976), they enlarge upon this as follows. "When the velocity was
increased significantly beyond that recommended by the envelope curve, a
different flow pattern developed. In this pattern, large parts of the
alr pocket would tear and quickly rise to the high point. The collected
air at the summit would again be forced down in smaller sizes. The .
back-and-forth movement of the air contimued at a seemingly unbredictable
rate ard caused significant pressure pulsations”. They found that "blow-
back did not occur when the velocity parameter was within 5% of the lower
bourd". This work tends to corroborate Saller's prototype findings, but
the plotting of equilibrium void results and blow-back results on a 'void
removal' axis i1s not particularly helpful.

In other words, clearing of an air vold occurs just above the recommended
envelope, but at higher velocities still, blow-back may occur. Presumably,
this is the supercritical pipe-full Froude mumber problem already discussed
urder Saller's work. It does serve to emphasise, however, that separate
criteria may be required in properly describing sub-critlical and super-
critical blow-back and clearing.

Gandenberger carried out extensive testing on the water velocities required
to clear alr pockets along dowrward sloping pipes. His work was published
in German (1953 and 1957) but summarised by Mechler in English (Ref. ).
Gandenberger's work stemmed from air pocket problems in two 900 mm diameter
water mains from Lake Constance to Stuttgart, Germany. As well as
observations in these pipelines, experiments were carried out in glass pipes .



(8]

10.5 mm to 45 mm diameter, and a steel pipe 100 mm diameter, all of which
may have been subject to elther viscous or surface tension scale effects,
albeit very small in the 100 mm pipe. His data covered the full range of
conduit slope 0° to 900, and a range of alr pocket volumes n = 0.02 to
n>l. The results are plotted below in the form of the water velocity
required to clear air pockets along a 1 m diameter pipe.

e unt pocket .n=1

) ()

R NP

Pocket volume = nTl’03/ 4

air_poc ket

Fic.5. 12 ’3
Gundenbergeis. data 241
for qir pocl(tf dﬂlm»f 20
lowg o, doumwond s 16
Slopiy pipe, Ay & f__ 12
ppe Im. diamdoy > 08

0.

0

0 %0 20 30 40 S0 60 70 80 90
pipe angle (8 )

The clearing velocity for any other pipe diameter can be obtained thus
v, = vWl ’D ceesssesscsssees{(5.11)

Gandenberger's data has been replotted in a non-dimensional form on Fig. 4.24
'l

and also on Goldi.ng's graph, Fig. 5.8, for n21. It can be seen from

Fig. 5.8 that Gandenberger's limiting Froude Number is less than Kent and



Wisner's comparable situation, and in fact fits more closely to the small
fractional depth (¥j/p) blow-back data of Kalinske and Robertson. It is
unfortunate again that Gandenberger did not separate cavity depth ard
cavity length rather than employing the "global" air volume term, as
detalled analysis still cannot be carried out on this set of data. The
application of either force/momentum balance or energy principle requires
more data on the shape and size of the air pocket.

Summarx
Several points of interest emerge from our discussion in Section 5.1.

(1) ©No one (to my knowledge) has yet carried out a comprehensive study

of eilther blow-backs or air pocket clearing where all the relevant parameters

have been measured.

(ii) These parameters would include air pocket lengths L/D, depths H/D ’
upstream fractional depths Yl /D ? angle of the cavity nose to the pipe

wall, ¢, pipe slope9 » veloclty profiles around the cavity, separate criteria

for sub-critical amd super-critical pipe-full flows, variations in the alr/
water ratio entering the upstream end of the alr pocket, etc.

(1ii) Scale effects are still not properly understood, espec .lally the case
of alr pocket clearing by hydraulic jump entrainment. This might involve
comparison between prototype amnd model studies, or at least model studies
at different scales.

(iv) The author has put forward in Section 4.3 possible tentative analyses
based on simplified force/momentum or energy principles. These could be
verified 1f all the parameters are known, but this has not been the case %o
date.

(v) Goldﬁng's graph, Fig. 5.8, highlights several discrepancies between
previous Investigations, and also highlights the necessity to differentiate
between blow-back velocities, equilibrium-void veloclties, and clearing
velocities, which in the past have often all been plotted on the same axls.

1§80
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Section 5.2. Air pocket behaviour at the junction of dropshaft and

tunnel systems

Vertical dropshafts joining up with a horizontal (or nearly horizontal)
tunnel system are often constructed at the outlet to dams, hydroelectric
power systems, or more recently, the outfall systems of miclear power
plants. A plunging nappe in the upper part of the shaft will often
entrain small air bubbles (€10 mm diameter) which may coalesce during
downward movement in the shaft, or at the tumnel soffit at the dropshaft/
tunnel junction. Continued coalescence at this Jjunction glves rise to
air pocket formation, which in turn may lead to discharge reduction
(trapped air pocket), "blow-backs" (structural damage and possible mass
oscillation), or "blow-backs" (may also lead to structural damage,
vibration, mass oscillation, etc.).

The subject has received some attention in the past, mainly related to
"morning-glory" spillways, (which will be reviewed very briefly), but is
again attracting attentlon in the context of the outfall systems of muclear
power stations, We shall concentrate on the latter, and in particular the
work of Townson (Ref. ), Goldring (Ref. )
and Ervine and Himmo
(Ref. ). A typical
dropshaft/tunnel
arrangement is shown
opposite, indicating
possible air pocket FIG-§. 3

formation at the sharp
berd. (Fig. 5.13 ).

Air. pocket
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Unsatisfactory flow conditions leading to blow-backs and vibration were
reported by Hall (Ref. ) in 1944). The performance of two dams near
Oakland, California, namely San Pablo dam and Chabot dam, were observed.

At the San Pablo dam, (constructed in 1917-1920), ailr entraimment caused
serious problems in that small bubbles were carried down the vertical shaft
and into the horizontal leg, where they accumilated in large air pockets
along the roof. These pockets moved slowly along the grade of the tunnel
towards the outlet and discharged perdiodically with explosive violence
throwing water as spray to a height of about 15 m in the alr. The
vibration caused in the tunnel following each of these alr discharges also
led to serdous difficulties.

In 1956, Bradley (Ref. ) reported on the prototype behaviour of
different shaft splllways one of which was the Owyhee Dam Spillway,
completed in 1932 by U.S. Bureau Reclamation. In this dam an unusual
phenomena was observed. For low heads, 0.3 m to 0.6 m above the inlet
gate, the water fell in a solid sheet toward the centre of the shaft. Alr
was entrained faster than it could be released by the outlet end of the
tunnel causing the pressure to increase until it was sufficient to "blow-
back”, when alr emerged with sufficient force to carry spray 15 m or 20 m
above the level of the gate.

More recently in early Spring 1982, a blow-back of compressed air damaged
the intake of a Norweglan Power Station, see FIGC (5.%). This information
was sent to the author by Mr. Kare Trinnereim, Head of Norweglan Hydro-
dynamic Laboratories, in a letter dated 1li4th October 1982.

In 1966 Colgate (Ref. ) reported on the Canadian River project. The
project 1ncluded an aqueduct system, pumping plants and regulating
reservolirs, with the water flowing in the main pipeline under gravity. The
pipeline was designed so that at normal flow the hydraulic gradient will
be parallel to the average ground proflle with the water pressure not
exceeding 30 m head. A tower-type check structure as shown on Fig. (5.15)
was designed ard situated in the main pipeline to prevent adverse conditions
such as over-pressures, water hammer and surging caused elther by the
operation of filling, dralning or air entrainment. Each tower consisted
of an inverted U-tube with an air vent open to the atmosphere at the
sumit, and designed so that during normal operation the hydraulic gradient
will be agbove the top of each tower causing the system to flow full. For
flow less than normal, or no flow, this arrangement ensured the conduit .
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between towers remained full. The open pipe at the top of the tower
prevented over-pressure damages when there was surging in the conduit during
transient conditions. The open air vent pipe also allowed alr entrain-
ment at low discharge in down-stream leg of tower when flowing partially
full. Air passed through the vengrgécame entrained in the flow in the
form of bubbles, which elther moved upstream or downstream depending on
the pipeline slope, discharge and bubble size. Studies were carried out
to obtain the best condult slope to allow the air bubbles to vent back
upstream to the alr vent and to be removed from the line. It was found
that a dowrward conduit slope of 5° downstream from the vent was enough
to ensure that all entrained air was recirculated back to the vent,

Water level surges caused by alr entraimment and air pocket formation was
experienced at the out fall of several power stations ard other hydraulic
structures. For example, level 1nstability and surging in dropshaft/
tunnel systems has been reported within the U.K. on projects for the South
of Scotland Electricity Board and CEGB by Goldring, (Ref. = ), . . ..
Miller (Ref. )s . Brook et al., (Ref. ),

Maximum water level surges of 9 m have been reported. In these cases,

water level surges have generally arisen by the collapse or blow-back of an
alr pocket at a dropshaft/tunnel junction, the ailr pocket having been formed
in the first place by entraimment of air in the upper part of the dropshaft.

A new Cemtral Electricity Generating Board (CEGB) project at Thameside
Power Station (Ref. ) exhibited flow instability in the downshaft,
Fig. (5. 1§) during periods of certain ailr/water flow requirements. These
level surges have caused anxiety among the CEGB engineers about the ability
of such outfall structures to withstand this phenomenon for the life of the
power station. Field data on localized pressure changes caused by the
collapse or movement of air pockets have not been adequate for a civil
engineering design appraisal and it has been suggested (Ref. ) that a
large scale instrumentation survey be mounted on at least one project to
tain more insight into the structure - alr pocket - level surge - damage
relationship.
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Fig. (5.16) Cooling Water System in Thameside Power
Generating Stations (Goldring, 1980).

The Hunterson "B" Power Station, Fig. (5.17), 1s another example which
exhibited flow instablility due to air entraimment and air pocket formation
in the water filled shaft/tunnel system, and took the form of oscillations
in both land and pit shaft as shown on Fig. (5.i%). This was reported by
Townson, 1975 (Ref. ). These conditions increased gradually until the
seal pit weir was submerged and splllage occurred at the land shaft. It
was observed that oscillations were accompanied by variations in average
shaft density arnd presence of an air cavity at the tunnel roof. From
model scale studies it was found that entrained air was the main cause of
the oscillations. In the shaft, air bubbles circulated in vertical
direction according to thelr size ard position in the flow. Some of the
alr returned to the surface while the rest was carried around the bend into
the roof of the tunnel forming a cavity or alr pocket, (see Fig. (5.18)).

Townson carried out a mass osclllatlion analysis of the system, shown
on Fig,5.19), by idealising it to a three shaft system, assuming the sea
outfall end to have infinite area, and also introducing density variations
in the intake shaft. On writing the equations of motion and continuity, .
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two modes of osclllation were predicted (for the case of infinite sea area),
wl and W,.  These are shown on Fig. §.19 below and compared with model and
prototype data. It is clear that the lower frequency modeb)l, is sensitive
both to the density ratilo, (el i1s the reduced density in the intake shaft
due to the presence of air bubbles) and also the area ratio 8/p (ao is
the cross-sectional area of the intake shaft and A the tunnel cross
sectional area). @Rg was introduced into the analysis on account of the
varlation in intake shaft area, in the region of the conical diffuser.

The 1/32 scale model of the system using clear water revealed that the
prototype mode of oscillation could be achieved,but quickly decayed, unlike
the prototype. An injection of detergent at the seal pit weir was found
necessary to simulate the large sustained oscillations found in the
prototype. This, however, produced an adverse side effect of air "hold-up"
in the tunnel system. Townson introduced paraffin oil at the tunnel
soffit just downstream of the bend, so that the cavity behaviour could be
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studied in more detail, free from the chaotic nature of air bubble flows
in the intake shaft and bend. The paraffin oll cavity test revealed that
a periodic collapse of the cavity nose back in to the shaft,and the
corresponding reduced density of flow in the shaft el,was coupled with

natural frequencies of the system to produce sustained oscillations.

The following recommendations to avoid oscillation were reported:-

(a) Delay of oscillation could be achieved by covering the seal-pit welr

(b)

(e)

nappe with rubber sheeting, thus reducing the degree of aeration.
This has proved quite effective in prototype tests.

Adjustments of length ard diameter of shaft so that natural
frequencies are small compared to cavity oscillation in separating

zones.

Control of separation zone size by local conduilt geometry and/or

venting.

[90
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(d) Allowing the air to be swept through the system to a point where it

could be released.

Gold%ng (1983, Ref.

) has carried out an experimental investigation

into the behaviour of alr pockets at a dropshaft/tunnel junction for the
particular case of the ratio of alr to water (coming down the shaft) less
than 2%. This is of partlicular relevance to systems with air coming out
of solution, but of limited interest to dropshaft spillway studies, etc.,

where the ratio of alr to water often exceeds 0.4 (40%).

r
Golq%ng tested

up to four different pipe diameters, 0,072 m, 0.1 m, 0.14 m and 0.19 m ¢,
and up to four bend radii for each pipe diameter, R/D = 0.5, 0.75, 1.0

ard 1.5.

An R/D of 0.5 is a completely sharp bend, with R measured from

the centroid of the lmmner bend radius to the centre-line of the pipe.

Four regimes of behaviour were shown to exist:-

(a)

At low Froude Numbers, any air pocket which started to form at the

inside of the bend would vent back up the shaft.

(b) At higher Froude Numbers, a stable voild formed with the upstream
nose located on the curved inner radius of the bend and the tail

(downstream end) in the form of a hydraulic jump.

In this case

the air pocket was short, with the jump almost drowning back to

the bend.

(e)

r
Golé%ng referred to this as a partly ventilated void.

At higher air flow rates, this stable void extended in length (and

N
depth) with a stable jump forming at its downstream end. Golé%ng
referred to this as a fully ventilated void.

(d)

At higher Froude Numbers still, the pocket at the bend cleared.

These four regions are shown on the sketch below, in the form of
a plot of the air/water ratio (< 2%) against the upstream Froude

Number, VB/VEE;

2%,
z8a

Qw

(@)
Backnnwhf
of air

pocket

(@ Flly

\
\

\
~
~—

tb) »
Vewkilaked
Yoid

-

veubilated
Yoid

-

L)
aﬁari»y of
arr vord

7:V%<hﬁ5



952

The effect of berd radius R/, is shown on Fig.$.2! for the case of the .
0.14 m diameter bend. It is clear that back-venting (vertical lines) is

a problem in the sharp radius bend (R/b = 0.5) only up to a Froude Number

of 0.3, whereas it is a problem in the smoothest radius bend (R/D = 1.5)

up to a Froude Number in excess of 0.6. The same applies to air pocket

clearing (inclined lines). An ailr pocket clears most efficiently in the

sharpest bend and less efficliently in the smooth radius berds. On both

counts, the sharpest bend 1s the optimum choice. Clearing Froude Numbers

are generally 0.5 to 1.0, in a similar range to that of dowrward sloping

pipes in Section 5.1.
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FIG. 2.'—Vold Behavior In Bends of Various R/d and 5.5 in, (0.14 m) diam; Cor-
relations and Experimental Results ( 50 ldnn j)

The effect of pipe diameter is shown on Fig.5.22 for the four pipe diameters
but a constant R/D of 1.0. It 1s clear from this diagram that larger pipe
diameters produce lower clearing Froude Numbers, and an extrapolation of
Goléing's data would produce a very low clearing Froude Number for large
diaﬁgter conduits found in practice.
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5.2
FIG. —Void Behavior in Bends of R/d = 1.0 and Various Pipe Diameters; Cor- .

relations and Experimental Results ( g Dldn"\j )
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The concept of a greatly decreasing clearing Froude Number with
increasing pipe diameter has not been commented on by previous authors in
the case of dowrward sloping pipes. On Fig. 5.8 for instance, Wisner's
data was obtalned from a 244 mm ¢ pipe, and Kent's data from a 100 mm &
pipe giving roughly comparable data. In other words the scale effect is
not apparent. Goldzng's data on Fig.&ilis therefore a novel departure
for clearing of alr pockets when clearing occurs by hydraulic jump entrain-
ment at the tail of the pocket.

By way of explanation, Golding proposes essentially that an air void will
clear from the bend when the flow velocity under the void is greater or
equal to the minimum velocity to entrain air U*, approximately 1 m/s. He

b3
proposed an empirical relationship describing the clearing Froude Number in

r *
) (0.5 + 0-256’“ 20p) U]
e
‘/SD
Thus for a given I/p a,ndg, the clearing Froude Number is proportional to
* *
Ul/vzi; and as Ul is a constant, then Frc will reduce greatly for larger

the form,

Fr P L 7

pipe diameters, D. In the author's opinion, this represents an over-
emphasis on the velocity under the bocket, with no reference to the fact
that the Froude Number under the pocket must also be greater than unity,
for the jump to form in the first place. Therefore, if we had a dual
criterion for clearing,

¥*
15-2;1 m/s
and ceees

U
Fr, = 1<IEQ;ZZB:> 1

then the second of these two criteria might mean that the clearing Froude
Number UO/ D for prototype sizes might be in the same range as the four
pipes tested by Golding.

creereneess (513 )

For instance, if we take the case of a typical air pocket depth
H/D‘: 0.5 at the tall of the pocket, or Yl/Dﬁ 0.5. That is, the plpe half-
full. The value of Fr, then is glven by Uy = 2U_, A, ~-WDP/g ard B = D,

hence Frl becomes

1 1

vereeeen (SY)
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If the pocket clears when U1>l m/s and Fr1> 1l, then assuming for a large ‘
diameter pipe that Ul)»l n/s is easily satisfied, then from (5.14)

Frc‘.\: Frl /3.21 0.31. For a large dlameter pipe Frc = 0,31 1s likely to

give a much higher clearing Froude Number than the simple application of

Ul z;l m/s, arnd the range is more in line with the experimental values of

Gold%ng.

Clearly, much work still requires to be done, on the scale effects
involved 1n clearing air pockets by entraimment, but Golqgng’s work shows
very clearly, not only the different regimes of air pocket behaviour and
the regilons of back venting, but also that clearing of such ailr pockets
from a sharp bend may be less of a problem in a prototype structure compared
with a Froude model. rﬁimmo (together with the author) is currently
carrylng out an experimental study of air pocket formation at dropshaft/
tunnel junctions. The apparatus shown on Fig.5.23 in longitudinal profile,
consists of a dropshaft 152 mm dlameter ard a tunnel section 8.3 m long and
again 0.152 m diameter.. The tunnel section has been tested (a) in the
horizontal position B = 0, (b) with the tunnel pipe inclined slightly
upwards § = +1.5°, and (e¢) with the tumnel pipe inclined slightly dowrwards,
9 = 21.5°, The purpose of the variation in tunnel slope 1s to investigate .
not only alr pocket formation at the sharp bend, but also alr pocket
behaviour in upward sloping pipes (See section 4.2) and air pocket behaviour

in dowrward sloping pipes, i.e. blow-back arnd clearing properties.

The berd radius R/D has also been tested over the range 0.5, 1.0 and 1.5
for each of the three tunnel slopes -1.5°, 0°, +1.5°’ giving a total of nine

geometrical configurations. Water ard air flow are controlled independently
as shown on Fig.5.23, with 16 air inlets each 5 mm diameter ensuring a range
of bubble sizes found in nature. The water flow can be increased up to

40 l/s, giving pipe full velocitiles as high as 2 m/s, and the alr flow range
up to about 20 1/s, giving an alr/water ratlo of 0.5,even at the highest
water flow rates. Use is made of Churchill wave monitors, not only to
measure alr pocket depths (H/D), but also the speed of ailr pockets moving
along the tunnel section and their shape development.

(1) Air pocket formation at the bend.

Regarding the formation of an alr ppcket at the dropshaft/tunnel bend
there appear to be several regimes of behaviour. These are shown on
Fig. 5.2 for the particular case of the tunnel horizontal (8 = 0°) ard a ‘
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single mitre sharp bend R/D = 0.5, The graph is plotted as the air/water
Q
ratio,% , against 512, or A

[ AP
Regime (1) is the region where the alr pocket forms, lengthening and
deepening, but also having the capability to vent back into the shaft.
This corresponds to the region Vo/{'é‘D(l+p)(o.3-O.4.

or Fro(l+ F ).

Regime (2) is similar to (1) except that back venting of the pocket into
the shaft does not occur. The flow under the air pocket is still sub-

critical, i.e. Vy, < 1.
1/g

Regime (3) 1s characterised by supercritical flow under the air pocket
with a hydraulic jump forming at the tall of the pocket. The jump may
take up a position either (a) close to the bend where it behaves almost
as a drowned jump, (b) in a stable position some distance downstream of
the bend or (c¢) the jump may travel out of the tunnel section completely
and blow into the end tank. In this case, stratified flow exists over
the total 8.3 m length of the tunnel.

Regime (4) is characterised by the air pocket at the bend clearing
completely. Further air coming down the shaft may form a new pocket at
the bend, but this is again cleared, so that a succession of air pockets
travel along the tunnel, with none remaining stable at the bend.

The line AB on Fig.S.¥ghus represemts clearing criteria for air pockets at
a sharp bend, comparable with the clearing criteria outlined in Section 5.1
for dowrward sloping pipes.

(ii) Clearing and blow-back criteria.

Fig.S25shows the clearing and blow-back lines for the case of the
horizontal tumnel and for three bend radii R/D = 0.5, 1 and 1.5. The graph
is plotted as%against Vo / 2D’ the pipe full Fraude Number. We will
discuss this graph along with Fig.S-uwhich is a plot of the clearing and
blow-back Froude Numbers for the same R/D values, but in this case the
turnel inclined upwards at an angle of +1. 59, The following initial

conclusions can be drawn.

- Clearing of the bend air pocket becomes increasingly more difficult
as R/D increases from 0.5 (sharp bend) to 1.5 (smooth bend). This is
related to the position and angle of the nose of the air pocket at the
inner bend radius, and also the development of secondary currents ard
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swirling for sharper bends. .

- Clearing of the bend air pocket becomes increasingly difficult as the
air/water ratio% (or void fraction) of the flow coming down the shaft
increases. This is undoubtedly related to the fact that the alr pocket
volume, length and depth each increase for increasing air/waterp , for
a constant water discharge. It can be seen from Section 5.1 that
larger air volumes, lengths and depths of the cavity require larger
Froude Numbers for clearing.

- Comparing Fig.5.26and Fig.52%it appears that clearing of an air pocket
from a bend is more difficult with the tunnel section sloping upwards
(+1.5°) compared with the horizontal. This is somewhat surprising in
view of the fact that in the upward sloping pipe, air pocket buoyancy is
acting in the same direction as the flow.

- the upper limit for back venting of the air pocket into the dropshaft is
indicated by dashed lines on Figs. 5.%8and 5.26 . It is clear that the
berd radius R/D is significant, in that, the smoother and more gradual
the berd (larger R/D), then back venting occurs of a larger range of
Froude Numbers, In this case, smoother berds allow the alr void to take .
up a position on the inner radius of the bend such that the nose of the
alr pocket 1s closer to the dropshaft and hence back venting more likely.
For the single mitre sharp bend (R/p = 0.5), the nose of the pocket forms
on the edge of the bend and hence back venting is much less of a
possibility.

(1i1i) The depth of the air cavity at the dropshaft/tunnel bend.

The depth of the air cavity has been measured for the various geometrical
configurations outlined, %/D = 0.5, 1.0, 1.5 ard ® = ~1.5°, 0° and +1.5°.
A schematic diagram showing the variation of H/p with Froude Number Vo /J'J
is shown on Fig.s.ﬂoverleaf. Three distinct patterns emerge -

(a) At low Froude Numbers correspornding roughly to Regimes (1) ard (2) on
Fig.S5.2% (when the flow under the pocket is generallg subcritical) we
obtaln a region of increasing alr pocket depth with increasing Froude
Number. This is indicated as the "separation model" on Fig.S5.2%F
In this region the air pocket depth, H/D’ also increases with air/water

ratio, @ .
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(b) The second stage involves the formation of supercritical flow under ‘
the berd air pocket with a hydraulic jump at the tail. Air pocket
depths fall on or around the curve indicated by ~0— on Fig. 5.2%
This is equivalent to Regime (3) on Fig.S.2%

(¢} Finally, alr pockets clear from the bend along vertical dashed lines
as indicated, corresponding to the onset of Regime (4) on Fig.$-24
It is possible,for low values of air/water ratiop » to proceed
directly from "separation model" region to clearing, bypassing the
second stage completely.

Himmo is currently engaged in developing theoretical models for each of
th@se stages. Let us consider a theoretical model, using energy, force/
momentum and contimiity principles, for the case of Stage (b), with super-
critical flow under the pocket, a stable alr-fed alr pocket at the bend,
and a hydraulic jump at the tail of the pocket.

A A s T (onsider  Himmos  simphtyd
o0y and forg, /mommﬁA

M : anahasfs-
J .
wetesiy— | ‘
Drotile Za Fi¢s.28
ot 32?2
«~ -9 .'3 v ¥
/) ¢ <
3 .
R O\\r.‘so cKet
d\os\'\\w\
xﬁ l//
\\
N ~— - ==
Likely Vel iy =y
Profile VR =C B’\ —__‘ Ve )
L.,cx
Applying Bernoulli's theorem between points A, B and C
2
PA Va PB abe2 EQ acvcz
= == 4+2a = =2 4 +h+d, = - - 3
re " 2g re T 2g 1= P T e 18,
.. (5.15)
where PA = pressure at point A = atmospheric pressure
VA = velocity at point 4 = ©
Za = height of point A above the assumed datum at top
of pipe :
PB = pressure at point B
Vb = velocity at B

@ & = velocity correction factors at B and C.



h = height of nose of pocket above datum = r (1 - sin @) 203

PC = pressure at C = F,, = Pair
Vc = velocity at C
d = air-pocket depth
V2
A1 = losses at bend = 1.2 g
AN 5 =L\1 + friction losses
W2 ¥
= 12 7™ + = =
2g L 2g
From ET (S'JS) we get
2
Py Ve
-~ = 23 = —— =~ h -0
(g 2g 1
a V. 2 V,2
. b b . b.
Py =Pg[&a- 5. - r(1-51n<p)-1.2——2g3

Vb2 )
Py = /’g[za—r(1 - sin '»‘)-E-g— \ab+1.2)1 (5-!6)
Pc ach2
/7_g = Za - > + H - A2
v V 2
("b + "),
a V2 1.2V. 2 —_—
c 'y AL 2
P, = ps ‘:Za T 2g +H- 2g B 2g ] seee (5'17)
LApplying continuity egquation between section BS and ¢C VbA_j = VCAC
where Ap = pipe area = nr2
Ac = area of partially
full pipe
2 a 3in 2a
= ;:A(1— - + o )
V = _‘E seoe e (s-' ’8)
c Ac
a = angle in radians
1) If we have a 900 sharp edge bend then r = C. Hence h = 0, also the point
of separation is exactly at the vend.
The assumptions to be made here are as follows:
(a) 61 and A, can be neglected
a4 = =
(v) . o 1.0
(c) resistance between BB/ and CC' can be neglected

(d) Jniform pressure distribution at the bend (not correct,



From equations(§l‘;)and(S'.ﬂ)where P, =F =P

5 B c air
a, V a V
/Jg [Za- ngb 1 = /Ag[za - czgc +Hl
: 2 2
ocbe ) a V
R RIS

Substituting for LA from the comtimuity equation (§.8), we obtain

vV A2
By - 0.5 22 [(j-f) Y [RPSRNCS
(olp=ole 1)

Due to the presence of air bubbles approaching the bend from the shaft,
we must modify Vb to account for the presence of air bubbles. That is,
if Vo is the shaft full water veloclity averaged over the entire pipe area
Qw/Ap' then Vi (1- &) = V_, whereXis the void fraction, and hence
vy, = Vo(l+ﬁ) s or Equation (5:2¢) becomes
v?2 Ay 2
H/D=o.5-fj—‘D(1+(3)2 (KE) -1 PR (1))
e (where, Vigqp = Fr,%)

Equation (5.2l) has been solved for a range of Froude Mumbers, and values
of@, and compared wilth experimental data from the sharp bend case R/D = 0.5 .
when supercritical flow exists. The result is shown on Fig.5.25giving
reasonable correlation between simplified theory amd experiment.

We may attempt a similar analysis using simplified force/momentum
balance using the same simplifying assumptions as above referring to
Fig.5.W and,
Applying Momentum equation between B and CC :=
PBB/ - PCC/ = - Momentum at CC/ - diomentum at BB‘ + resistance
section BE and CC ccene (5.29_)
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" _ U
where PBB = PBAP +/-"‘g§ AP

= Fair Bp vET A

n P
Pec = Tair p +{th dA
From Fig{S.Bo) section (a-a)
P
h = rcosa+rcos (n-6)
= r (cos a - cos 9)
dA = 2rsin (n-0)dy
= 2 r sin & dan” .
al5.20) Seckion(a-a)
) Yq(.39
dh = sin (n - 8) ds

= sin © ds
= r sin © 46
. f/)gh/dA =f 2 gr3 (cos a - cos 6) sin28 46
a a

= pgr (Ac coS a + % r2 sin 38)

. . 2.2 .3
.o PCC _PairAP+/)gr (Ac cosa+3r sin’ a)

w2 o
liomentum at BE = BO/)Vb Ap (BO = 4.C.F.)

Momentum at CC =/;vV 2 A
¢ e
Substituting into equation (5.,22) lt\;«,ncr:;x; esistane. B8' ¢!
P. A, +pPgrid, -P _ A +per (A cosa+gr2sin3a)
airzP -gAP air P TPE c 3
2
=/)VcAc-Bcf>vb Ap

Divided by (pgr AP):-

2 2
1+i cosa+gr—‘2 sin3a = VL-A—C - B -V—b—
3 T gr A

A’P p o gr

Sub. eq.(S.IX)into the above equation for V

c
g 2 2
. A 2 .3 Ty Ap b
.o 1 + —™ cosa+ 3= sinfla=s — —=~ - 3 —
A 3n gr A o gr
P c
2
P b2 ainda o 2 (2 g
- AP cos a + 7= sin = ar Ac o

ASSU\mu'\X Bo=l ad Vy= Vo (H‘E)), we obtam .

j— _A%P(os(\. + %”Sw@& = 2 By ('*ﬁ)z (%“’) —-——(.n



26F

The simplified force/momentum equation (5.23) is shown plotted on

Fig. S3i using the same experimental data but giving a poorer correlation.
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