FLOW CHARACTERISTICS AND PERFORMANCE OF BROKEN-BACK TRANSITIONS (OUTLETS)

LIDSTER

THESIS 1960
May 12, 1960

TO WHOM IT MAY CONCERN:

The thesis "Flow Characteristics and Performance of Broken-Back Transitions (Outlets)" is the result of my own work in substance, form and expression.

William A. Ledder

I typed the above thesis, but did not participate in the collection or organization of the material or in the writing of the thesis.

Louise H. Ball
FLOW CHARACTERISTICS AND PERFORMANCE OF BROKEN-BACK TRANSITIONS (OUTLETS)

by

William Albert Lidster

B.S., Missouri School of Mines and Metallurgy, 1955

A Thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the Degree Master of Science

Department of Civil Engineering

1960
This Thesis for the M.S. degree, by
William Albert Lidster
has been approved for the
Department of
Civil Engineering
by

Date

__

__

Lidster, William A. (M.S., Civil Engineering)

Flow Characteristics and Performance of
Broken-Back Transitions (Outlets)

Thesis directed by Assistant Professor J. Ernest Flack

Due to rising costs of design and construction it has become
necessary to determine an economical yet effective means of providing
a transition for flow of water from conveyance structures to canals
and vice versa. A solution to this problem is to modify the com-
plicated warped transition to a more easily constructed broken-back
transition.

Hydraulic Laboratory studies were made on broken-back transitions
with 12-inch diameter conduits to evaluate the flow characteristics
and performance of this type of structure. It is anticipated that
the performance of the model can be duplicated in prototypes of
various sizes by applying the laws of similitude.

As a means of defining the flow characteristics, the coefficient
of energy loss was used throughout this study. A comparison of this
coefficient gave definite results as to the affect of the various
conditions under which the broken-back transition might operate. It
was found that the flow characteristics were influenced by: (1) the
angle of divergence of the water surface with the center line of the
structure; (2) upstream submergence of the inflow conduit; and
(3) slope of the inflow conduit.
The results of this study will give the designers of hydraulic structures a more realistic value of energy losses through the broken-back transitions.

This abstract of about 210 words is approved as to form and content. I recommend its publication.

Signed

Instructor in charge of dissertation
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Contents</td>
<td>1</td>
</tr>
<tr>
<td>2. List of Figures</td>
<td>11</td>
</tr>
<tr>
<td>3. Acknowledgment</td>
<td>iv</td>
</tr>
<tr>
<td>4. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>5. PURPOSE</td>
<td>2</td>
</tr>
<tr>
<td>6. THE BROKEN-BACK TRANSITION</td>
<td>2</td>
</tr>
<tr>
<td>7. THE THEORETICAL ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>8. INVESTIGATION</td>
<td>10</td>
</tr>
<tr>
<td>9. CONCLUSION AND RECOMMENDATIONS</td>
<td>14</td>
</tr>
<tr>
<td>10. BIBLIOGRAPHY</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The Bernoulli Equation from Point 1 to Point 2 Through the Transition</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>Ratio of the Vector Sum of the Active Forces Between the Model and Prototype</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>The Broken-Back Transition</td>
<td>17</td>
</tr>
<tr>
<td>4.</td>
<td>The Laboratory Installation</td>
<td>18</td>
</tr>
<tr>
<td>5.</td>
<td>General View of Model</td>
<td>19</td>
</tr>
<tr>
<td>6.</td>
<td>Location of Piezometer Taps in 12-inch Inflow Conduit</td>
<td>19</td>
</tr>
<tr>
<td>7.</td>
<td>Pot Gage Installation</td>
<td>20</td>
</tr>
<tr>
<td>8.</td>
<td>Shape of Channel Bed Before Each Test</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>Scour Pattern of Channel Bed as a Result of Flow Through a Broken-Back Transition with θ Equal 20 Degrees</td>
<td>21</td>
</tr>
<tr>
<td>10.</td>
<td>Scour Pattern of Channel Bed as a Result of Flow Through a Broken-Back Transition with θ Equal 25 Degrees</td>
<td>22</td>
</tr>
<tr>
<td>11.</td>
<td>Scour Pattern of Channel Bed as a Result of Flow Through a Broken-Back Transition with θ Equal 30 Degrees</td>
<td>23</td>
</tr>
<tr>
<td>12.</td>
<td>K Versus H_p for α Equal 2:1 with the Horizontal</td>
<td>24</td>
</tr>
<tr>
<td>13.</td>
<td>K Versus H_p for α Equal Zero</td>
<td>25</td>
</tr>
<tr>
<td>14.</td>
<td>ΔV^2/2g Versus K for α Equal 2:1 with the Horizontal</td>
<td>26</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>15.</td>
<td>$\Delta \frac{v^2}{2g}$ Versus K for α Equal Zero</td>
<td>27</td>
</tr>
<tr>
<td>16.</td>
<td>Table 1, Typical Laboratory Computation Sheet</td>
<td>28</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENT

The author wishes to express his appreciation, to the Bureau of Reclamation, Denver, Colorado, for granting permission to use the material presented in this thesis; to James W. Bell and William P. Simmons, Jr., of the Bureau of Reclamation, Denver, Colorado, for their valuable suggestions and criticisms.

The work described in this thesis was performed by the author in the Hydraulic Laboratory of the Bureau of Reclamation, of the United States Department of the Interior, Denver, Colorado. The laboratory is under the supervision of Harold H. Martin, Head of the Hydraulic Laboratory.
FLOW CHARACTERISTICS AND PERFORMANCE OF BROKEN-BACK TRANSITIONS (OUTLETS)

INTRODUCTION

For several years the designers of water conveyance structures have been concerned that the coefficients used in the evaluation of energy losses through the outlets of siphons using broken-back transitions give losses less than actually occur. Use of low coefficients of loss for the design may result in the transition structure becoming a restriction in the canal system. Due to lack of accurate data on the broken-back outlet transition, present design practice assumes a head loss of 0.3 of the velocity head change that occurs as the flow passes from the conduit through the transition into the canal. This value is added to friction loss. Transition losses obtained in this manner are in close agreement with Hinds. To obtain this head loss the transition must expand the stream flow so that the velocity distribution is near that which will exist in the canal. The transition must also be of such shape that the flow follows the walls and provides the necessary drop in free water surface to overcome friction, turbulence, and entrance losses. Tests of models by Benson indicate that the redistribution of flow can be accomplished in a very short distance by placing a submerged lump or obstruction in the flow of the transition.

The determination of the flow characteristics and performance of the broken-back transition may be made by use of hydraulic model

studies. The slope of the incoming pipe, degree of submergence of this pipe crown at the headwall, and the rate of divergence of the sidewalls will affect the flow characteristics and performance.

It is important to designers of water conveyance structures and the water users that the influence of these factors be accurately determined so that the most economical and practical structures may be built.

PURPOSE

This thesis covers hydraulic laboratory studies made to define the flow characteristics and performance of the broken-back type transition used as an outlet structure. The tests were performed on broken-back transitions with sidewalls diverging at angles of 20, 25, and 30 degrees relative with the center line, Figure 3. The information is intended for use as reference material in the hydraulic design of broken-back transitions.

THE BROKEN-BACK TRANSITION

The broken-back transition, Figure 3, was initially used for small pipe culverts of secondary importance. These structures were designed by adaptation from successful structures operating under similar conditions. The simplicity of design and low construction costs have resulted in the extensive use of the broken-back transition by the Bureau of Reclamation in water distribution systems. Through observations the performance of this type of structure seems to be quite satisfactory.
THEORETICAL ANALYSIS

At present there is no satisfactory theory for computing the coefficient of energy loss for water flowing through transitions. This coefficient can only be determined experimentally by using the difference between the total head at each end of the transition.\(^3\)

The coefficient of energy loss, \(K\), was determined for each test by dividing the difference in the elevation of the energy grade line, \(\Delta H_e\), by the difference in velocity head, \(\Delta v^2/2g\), as measured upstream and downstream from the transition.

For the material in this study to be utilised for transitions of various sizes, it was desirable to present it in dimensionless form. In this study the loss coefficients were based on the change in the elevation of the energy grade line from a point one diameter upstream from the transition to a point 3.8 channel surface widths downstream from the transition. This length was obtained by observation as the location where the velocity redistribution caused by the transition was essentially complete.

The coefficient of energy loss can be obtained in dimensionless form as follows:

FIGURE 1

THE BERNOULLI EQUATION FROM (1) TO (2) THROUGH THE TRANSITION

\[
Z_1 + \frac{P_1}{\gamma} + \frac{V_1^2}{2g} = \frac{P_2}{\gamma} + \frac{V_2^2}{2g} + Z_2 + h_L
\]

\[
Z + \frac{P}{\gamma} + \frac{V^2}{2g} = \text{Energy head } H_e
\]

\[
H_{e1} = H_{e2} + \text{Loss}
\]

\[
H_{e1} - H_{e2} = \text{Loss}
\]

\[
\Delta H_e = \text{Loss}
\]

This loss, in feet of water, may be expressed as some factor, \(k \),

times \(\Delta H_y \), or
\[
\text{Loss} = K(\Delta H_v)
\]

\[
\text{Loss} = K \left(\frac{v_1^2}{2g} - \frac{v_2^2}{2g} \right)
\]

then

\[
H_{e1} - H_{e2} = K \left(\frac{v_1^2}{2g} - \frac{v_2^2}{2g} \right)
\]
or

\[
K = \frac{H_{e1} - H_{e2}}{\frac{v_1^2}{2g} - \frac{v_2^2}{2g}} = \frac{\Delta H_v}{\Delta \frac{v^2}{2g}}
\]

It was concluded that the coefficient of loss hereafter referred to as K was influenced by the following variables as defined in Figure 4: (1) the angle of divergence of the sidewalls from the center line of structure, θ; (2) upstream submergence of inflow pipe crown in terms of pipe diameter, d/x; (3) slope of inflow pipe, α; (4) the variation in velocity head between Points 1 and 2, $\Delta \frac{v^2}{2g}$, and (5) the mean velocity in the pipe, v. The variables, θ, d/x, α, $\Delta \frac{v^2}{2g}$, and v, were put into dimensionless parameters with this resulting relationship:

\[
K = \phi (\theta, \frac{d}{x}, \alpha, \frac{\Delta v^2}{2g}, \mathcal{F})
\]

The parameter, \mathcal{F}, is the Froude number and is equal to:

\[
\mathcal{F} = \frac{v}{\sqrt{gd}}
\]
where:

\[V = \text{mean velocity in the pipe, ft/sec} \]
\[d = \text{nominal diameter of inflow pipe, ft} \]
\[g = \text{gravity, 32.2 ft/sec}^2 \]

The advantages of using \(L_p \) rather than \(V \) or \(Q \) is that it takes gravitational and inertial forces into consideration, and it is a convenient parameter to utilize the laws of similitude.

The coefficient of loss \(K \) determined by this investigation may be used in all size prototypes, provided the Froude number of the prototype is within the limitations of this investigation. This may be proved as follows:\(^4\)

Geometric similarity between two systems or bodies exists when the ratios between all corresponding linear dimensions are equal.

Length similarity can be expressed as follows

\[L_T = \frac{L_p}{L_m} \]

where \(L_T \) denotes the length ratio, \(L_p \) and \(L_m \) are corresponding linear dimensions in prototype and model.

Kinematic similarity exists in two geometrically similar systems when the ratios of velocity and acceleration of all homologous

particles are equal throughout the system. The flow will then be
kinematically similar and the paths of the homologous particles will
also be geometrically similar.

Dynamic similarity is the ratio of all homologous forces required
to maintain the geometric and kinematic similarity in the two related
systems, model to prototype, and must be the same at each homologous
point. These active forces are: force due to pressure variation,
force due to gravity, viscous shear force, force due to surface
tension, and the force resulting from elastic compression. The forces
due to surface tension and elastic compression are relatively small and
can be safely neglected. Equating these active forces to the force of
inertia may be accomplished by applying Newton's second law of motion.

Newton's second law of motion can be written:

Vector sum of forces = -Ma

\[F_p + F_g + F_v = -Ma \]

or

\[F_p + F_g + F_v + F_i = 0 \]

where

- \(F_p \) = force due to pressure variation
- \(F_g \) = force due to gravity
- \(F_v \) = viscous shear force
- \(F_i \) = the inertia force = -Ma

When similarity in two fluid motions occur, the ratio of the
inertia forces between the model and prototype must equal the ratio
of the vector sum of the active forces between the model and prototype. This force ratio may be shown by the vector polygon, Figure 2.
From the similar polygons in Figure 2 it may be shown that if the ratio between the force due to gravity, F_g, viscous shear force, F_v, and the inertia force, F_i, are the same, then the ratio of the force due to pressure variation must also be the same.

$$L_T = \frac{(F_g)_p}{(F_g)_m} = \frac{(F_v)_p}{(F_v)_m} = \frac{(F_p)_p}{(F_p)_m} = \frac{(Ha)_p}{(Ha)_m} = \frac{(F_i)_p}{(F_i)_m}$$

then

$$L_T = \frac{(v_1 - v_2)_p}{(v_1 - v_2)_m}$$

and

$$L_T = \frac{(H_{o2} - H_{og})_p}{(H_{o1} - H_{og})_m}$$

or

$$L_T(\Delta H_o)_m = (\Delta H_o)_p$$

$$L_T(\Delta V)_m = (\Delta V)_p$$

by definition

$$K = \frac{(\Delta H_o)_p}{(\Delta H_v)_p} = \frac{L_T(\Delta H_o)_m}{L_T(\Delta H_v)_m}$$

hence

$$K = \frac{(\Delta H_o)_p}{(\Delta H_v)_p} = \frac{(\Delta H_o)_m}{(\Delta H_v)_m}$$
INVESTIGATION

The Laboratory Installation

The broken-back transitions shown in Figures 4 and 5 were tested at the Bureau of Reclamation Hydraulic Laboratory, Denver Federal Center, Denver, Colorado. Flow was provided to the installation by a 12-inch, 100-horsepower centrifugal pump capable of delivering 4,750 gallons per minute and a pressure of 103 feet of water. The rate of flow was measured by a 6-inch Venturi meter located near the pump. To obtain the water pressure in the inflow conduit one diameter upstream from the transition, pressure taps (piezometers) were installed as shown in Figure 6. The resulting pressures were transmitted to a pot gage, Figure 7, by rubber tubing. Water levels in the pot gage could be read to 0.001 foot by means of a point gage equipped with a vernier scale. The water surface in the channel was measured by a point gage located 3.6 channel surface widths downstream from the outlet end of the transition. The point gages were correlated to the invert of the outlet end of the transition by use of a DStretch level. They were further checked by ponding the channel.

The three transitions used in this study were constructed using 3/4-inch plywood. All dimensions were in terms of pipe diameter, d. The conduit leading to the transition was a 12-inch steel pipe installed on a 2 to 1 slope, and horizontally, thus giving a good representation of the slopes on the prototype.

The channel bed consisted of ungraded sand with a base width of 1.667 d (20 inches) and side slopes of 1-1/2 to 1. The bed was
carefully shaped before each run by means of a template, Figure 6. Water level in the channel was kept at constant depths by means of a tail gate.

The Test Procedure

Water was pumped through the transition and the quantity of flow was adjusted and measured with a Venturi meter to give the desired velocity. The depth of upstream submergence was varied by adjusting the tail gate until the water surface in the canal was just in contact with the previously set point gage located downstream from the transition. Air was bled from the piezometer line that was attached to the conduit upstream from the transition. After allowing the flow to become steady the water surface in the pot gage was read by means of a point gage. Pot gage readings were made two or more times for each submergence and flow. The measurements obtained from the pot gage were correlated with the water surface in the canal to give a difference in pressure head. The respective velocity heads were added to the pressure heads thus giving energy heads. Dividing the difference in energy heads by the difference in velocity heads gave the coefficient of loss, Table 1. The piezometer lines were continually checked to guard against air pockets and possible leakage, and care was exercised to allow the flow to fully stabilize for each condition of flow and submergence.

The ranges of flow and submergence used for each transition and each slope of inlet pipe, i.e., horizontal and on a 2 to 1 slope, are as follows:
<table>
<thead>
<tr>
<th>Velocity in Pipe</th>
<th>Upstream Submergence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00 fps</td>
<td>a/3</td>
</tr>
<tr>
<td>2.50 fps</td>
<td>a/3</td>
</tr>
<tr>
<td>3.00 fps</td>
<td>a/3</td>
</tr>
<tr>
<td>2.00 fps</td>
<td>a/6</td>
</tr>
<tr>
<td>2.50 fps</td>
<td>a/6</td>
</tr>
<tr>
<td>3.00 fps</td>
<td>a/6</td>
</tr>
<tr>
<td>2.00 fps</td>
<td>0</td>
</tr>
<tr>
<td>2.50 fps</td>
<td>0</td>
</tr>
<tr>
<td>3.00 fps</td>
<td>0</td>
</tr>
</tbody>
</table>

The coefficient of loss K was plotted against the Froude number for each condition, Figures 12 and 13, and also plotted against the change in velocity head ($\Delta V^2/2g$) for each condition, Figures 14 and 15.

The pipe velocities used in this investigation resulted in Reynolds numbers between 1.6×10^5 and 2.5×10^5. With Reynolds numbers of this magnitude the frictional resistance and turbulence in the model will be nearly the same as in the prototype and the model will predict prototype performance with reasonable accuracy by Froude criteria alone.

Influence of Angle of Divergence (θ)

The angle of divergence between the sidewalls and the axis of the structure of 20, 25, and 30 degrees resulted in a variation in the values of the coefficient of head loss, K. Where θ was equal to 25 degrees, low optimum values of K were obtained, Figures 14 and 15. From Figures 12 and 13 it was concluded that the value of K be 0.6
where the Froude number was greater than 0.45. Where the Froude number
was less than 0.45, the value of \(K \) should be 0.5.

Influence of Outlet Submergence, \(\alpha/x \)

The amount of submergence has a distinct affect on the values of \(K \)
as seen in Figures 12 and 13. A submergence between zero and \(\alpha/6 \)
affects the value only slightly whereas a submergence of \(\alpha/3 \) increases
the value of \(K \) about 20 to 30 percent. In the design of the prototype
a submergence of zero is commonplace.

Influence of Slope of Inflow Conduit, \(\alpha \)

Values of the slope of inflow conduit, \(\alpha \), chosen for this inves-
tigation were zero and 2 to 1 with the horizontal. These values are
within the usual range of conduit slopes found in the prototype. The
effects of the slope of the inflow conduit are shown in Figures 12, 13,
14, and 15. From Figures 13 and 15 it can be seen that when the slope
of the inflow conduit was zero, the flow followed the boundaries of the
transition, thus showing distinct effects the angle of divergence of the
sidewalls (\(\theta \)) had on the values of the coefficient of energy loss \(K \).

From Figures 12 and 14 where the slope of the Inflow conduit was 2 to 1
with the horizontal, the coefficient of energy loss \(K \) was concentrated
about the value of 0.6, thus minimizing the effects of the angle of
divergence of the sidewalls. This minimizing is due to the flow being
lifted away from the transition boundaries.

It was observed that the distribution of flow was better in the
model tests where the slope of the inflow conduit was 2 to 1 with the
horizontal. This slope also gave less erosion in the streambed,
Figures 9, 10, and 11.
The Effects of Inertia and Gravitational Forces

As stated in the theoretical analysis, the assumption was made that inertia and gravitational forces would be variables influencing \(K \). For simplicity, the mean velocity in the conduit was chosen to make the analytical comparison. This mean velocity was used to compute the dimensionless parameter \(N_p \). The range of values of \(N_p \) used in this study were 0.35 to 0.55. Figures 12 and 13 show the influence of \(N_p \) on the values of \(K \). It is noted that the slope of the \(K \) versus \(N_p \) plots are relatively flat, thus showing the values of \(K \) are constant for the given range of the Froude number.

CONCLUSION AND RECOMMENDATIONS

1. The coefficient of loss, \(K \), obtained from the following relationship

\[
K = \frac{H_e}{\frac{V_1}{2g} - \frac{V_2}{2g}} = \frac{\Delta H_e}{\Delta H_v}
\]

is influenced by four factors:

(a) \(K \) is affected by the angle of divergence of the sidewalls from the center line of the structure, \(\theta \). The value of \(K \) being optimum with \(\theta \) equal to 25 degrees.

(b) \(K \) is affected by submergence of inflow conduit, \(d/\ell \). A submergence between zero and \(d/6 \) affects the value of \(K \) only slightly, whereas a submergence of \(d/3 \) increases the value of \(K \) by 20 to 30 percent.

(c) \(K \) is affected by the slope of the inflow conduit, \(\alpha \). As the value of \(\alpha \) increases from horizontal to a 2 to 1 slope the value of \(K \) converges on a value of 0.6.
(d) \(K \) is affected only slightly by the variation in inertia or gravitational forces as represented by the dimensionless parameter, the Froude number, in the range of field application, Figures 12 and 13, provided the above three parameters remain constant.

2. For design purposes the value of \(K \) may be taken from Figures 14 and 15 with an average value of \(K \) equal to 0.60. The energy loss equals

\[
0.60 \left(\frac{v_1^2}{2g} - \frac{v_2^2}{2g} \right)
\]

3. The limitations of \(K \) are for values of Froude number between 0.35 and 0.55.

4. This type of structure may be used on large inverted siphons where saving of energy head is not a prime factor.
BIBLIOGRAPHY

BROKEN-BACK TRANSITION
PLAN

SECTION A-A

TRANSITION STUDIES
LABORATORY INSTALLATION

FIGURE 4
Figure 5. General view of model

Figure 6. Location of piezometer taps in 12-inch inflow conduit
Figure 7. Pot gage installation

Figure 8. Shape of channel bed before each test
A. Inflow conduit horizontal

B. Inflow conduit sloped 2:1

SCOUR PATTERN OF CHANNEL BED AS A RESULT OF FLOW THROUGH A BROKEN-BACK TRANSITION WITH θ EQUAL 20 DEGREES
SCOUR PATTERN OF CHANNEL BED AS A RESULT OF FLOW THROUGH A BROKEN-BACK TRANSITION WITH θ EQUAL 25 DEGREES
SCOUR PATTERN OF CHANNEL BED AS A RESULT OF FLOW THROUGH
A BROKEN-BACK TRANSITION WITH θ EQUAL 30 DEGREES
EXPLANATION

Submergence of inflow conduit where d is the diameter of conduit in inches and X is a constant to give desired submergence.

- d Submergence of inflow conduit
- x Slope of inflow conduit
- α Angle of sidewall divergence

For θ equal to 20 degrees
For θ equal to 25 degrees
For θ equal to 30 degrees

FIGURE 12

TRANSITION STUDIES

k versus N_F for α equal 2:1 with the horizontal.
The image contains a handwritten mathematical problem involving calculations and equations. The text appears to be part of a math exercise or homework problem, although the handwriting is quite challenging to read due to its hurried nature. The content includes fractions, variables, and arithmetic operations. Some parts of the text are unclear due to the quality of the image and handwriting.
EXPLANATION

Submergence of inflow conduit where \(d \) is the diameter of conduit in inches and \(X \) is a constant to give desired submergence.

\(\alpha \) Slope of inflow conduit

\(\Theta \) Angle of sidewall divergence

For \(\Theta \) equal to 20 degrees
For \(\Theta \) equal to 25 degrees
For \(\Theta \) equal to 30 degrees

TRANSITION STUDIES

\(K \) versus \(N_F = \frac{V}{\sqrt{g d}} \)
EXPLANATION

Submergence of inflow conduit where \(d \) is the diameter of conduit in inches and \(X \) is a constant to give desired submergence.

\[
\frac{d}{X}
\]

\(\alpha \) Slope of inflow conduit

\(\phi \) Angle of sidewall divergence

- For \(\phi \) equal to 20 degrees
- For \(\phi \) equal to 25 degrees
- For \(\phi \) equal to 30 degrees

TRANSITION STUDIES

\[
\frac{\Delta V^2}{2g} \text{ VERSUS } K
\]

\(\alpha \text{ EQUAL 2:1 WITH THE HORIZONTAL} \)

FIGURE 14
EXPLANATION

- Submergence of inflow conduit where d is the diameter of conduit in inches and X is a constant to give desired submergence.
- α: Slope of inflow conduit.
- Θ: Angle of sidewall divergence.

<table>
<thead>
<tr>
<th>Line Style</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid</td>
<td>For Θ equal to 20 degrees</td>
</tr>
<tr>
<td>Dotted</td>
<td>For Θ equal to 25 degrees</td>
</tr>
<tr>
<td>Dashed</td>
<td>For Θ equal to 30 degrees</td>
</tr>
</tbody>
</table>

TRANSITION STUDIES

$\frac{\Delta V^2}{2g}$ versus K for α equal to zero.

FIGURE 15
<table>
<thead>
<tr>
<th>Submergence of Inflow Pipe</th>
<th>Depth of Water in Canal</th>
<th>Q</th>
<th>Velocity in Pipe</th>
<th>V_p^2/g</th>
<th>V_{c_1}/g</th>
<th>Plotometer Head on Pipe</th>
<th>Relative Pipe Head</th>
<th>Velocity in Canal</th>
<th>V_c^2/g</th>
<th>Canal Head</th>
<th>Total Pipe Head</th>
<th>Total Canal Head</th>
<th>Δ Head</th>
<th>$V_p^2/g - V_c^2/g$</th>
<th>$\frac{2g}{3} \frac{V_{c_1}^2}{g} - \frac{2g}{3} V_p^2$</th>
<th>k = $\frac{\Delta}{\frac{2g}{3} \frac{V_{c_1}^2}{g} - \frac{2g}{3} V_p^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>d/6 10"</td>
<td>1.571</td>
<td>1.964</td>
<td>2.00</td>
<td>0.062</td>
<td>0.774</td>
<td>1.981</td>
<td>0.647</td>
<td>0.801</td>
<td>0.833</td>
<td>0.840</td>
<td>0.033</td>
<td>0.055</td>
<td>0.60</td>
<td>0.42</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>d/6 10"</td>
<td>1.571</td>
<td>1.964</td>
<td>2.00</td>
<td>0.062</td>
<td>0.774</td>
<td>1.981</td>
<td>0.647</td>
<td>0.801</td>
<td>0.833</td>
<td>0.840</td>
<td>0.033</td>
<td>0.055</td>
<td>0.60</td>
<td>0.42</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>d/6 10"</td>
<td>1.571</td>
<td>1.964</td>
<td>2.00</td>
<td>0.062</td>
<td>0.774</td>
<td>1.981</td>
<td>0.647</td>
<td>0.801</td>
<td>0.833</td>
<td>0.840</td>
<td>0.033</td>
<td>0.055</td>
<td>0.60</td>
<td>0.42</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>0 8"</td>
<td>1.571</td>
<td>1.964</td>
<td>2.00</td>
<td>0.062</td>
<td>0.774</td>
<td>1.981</td>
<td>0.647</td>
<td>0.801</td>
<td>0.833</td>
<td>0.840</td>
<td>0.033</td>
<td>0.055</td>
<td>0.60</td>
<td>0.42</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>0 8"</td>
<td>1.571</td>
<td>1.964</td>
<td>2.00</td>
<td>0.062</td>
<td>0.774</td>
<td>1.981</td>
<td>0.647</td>
<td>0.801</td>
<td>0.833</td>
<td>0.840</td>
<td>0.033</td>
<td>0.055</td>
<td>0.60</td>
<td>0.42</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>0 8"</td>
<td>1.571</td>
<td>1.964</td>
<td>2.00</td>
<td>0.062</td>
<td>0.774</td>
<td>1.981</td>
<td>0.647</td>
<td>0.801</td>
<td>0.833</td>
<td>0.840</td>
<td>0.033</td>
<td>0.055</td>
<td>0.60</td>
<td>0.42</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

Typical Laboratory Computation Sheet ($\theta = 30$ degrees, $\alpha = 2:1$)