NEW PROBLEMS IN THE THEORY OF BOTTOM CURRENTS IN RESERVOIRS
(Novye vorposy teorii donnykh techenii v vodokhantishchakh)

By

I. I. Levi

Translated from the Russian: Izvestiia Vsesoiuznogo nauchno-issledovatel'skogo instituta gidrotekniki,
No. 78, pp 71-82, 1965

By

D. L. King
Hydraulics Branch
Division of Research

Office of Engineering Reference
Library Branch
Denver, Colorado

August 1969
NEW PROBLEMS IN THE THEORY OF BOTTOM CURRENTS IN RESERVOIRS
(Novy che teorii donnych techenii v vodokhanilishchakh)

By

I. I. Levi

Translated from the Russian: Izvestiia Vsesoiuznogo
nauchno-issledovatel'skogo instituta gidrotekhniki,
No. 78, pp 71-82, 1965

By

D. L. King
Hydraulics Branch
Division of Research

Note: This is a working translation

Office of Engineering Reference
Denver, Colorado
August 1969
Abstract

Bottom currents usually form in deep mountain reservoirs when the depth is greater than 30 to 40 m with suspended sediments of more than 3 to 4 kg/cu m. Unit discharges and depth of water can reach large magnitudes. Under these conditions the assumption of disregarding movement in the upper zone of the reservoir cannot always be considered valid. This paper examines the problem of velocity distribution in reservoirs during formation of bottom currents. A system of differential equations is given for determining the movement of the bottom flow. Values are established for the normal and critical depths of bottom flow, surface velocities, reverse flows, and the line of zero velocities. The system of equations is derived for the practical case of a reservoir with a horizontal bottom. The analysis broadens concepts of steady nonuniform motion of fluids of different densities in reservoirs and makes possible a mathematical determination of velocity distribution curves and line of zero velocity in reservoirs.

Descriptors--/ hydraulics/ *density currents/ water currents/ mathematical analysis/ *reservoirs/ reservoir operation/ Reynolds number/ open channel flow/ laminar flow/ velocity/ suspended sediments/ boundary layer/ hydraulic resistance/ *velocity distribution/ turbidity/ experimental data/ foreign research/ depth

Identifiers--/ USSR/ reverse flow/ current patterns
NEW PROBLEMS IN THE THEORY OF BOTTOM CURRENTS IN RESERVOIRS

By Professor I. I. Levi
Leningrad Polytechnic Institute
named for M. I. Kalinin

Abstract

This paper examines the problem of velocity distribution in reservoirs during formation of bottom currents. It introduces a system of differential equations determining the movement of bottom flow.

It fixes the values of the normal and critical depths of the bottom flow, surface velocities, reverse flows, and line of zero velocities.

The system of equations is derived for the practical case of a horizontal bottom.

1. General Information

In the paper "Theory of Bottom Currents in Reservoirs" (Reference 1) the author examined the problem of nonuniform motion of bottom flow in a reservoir, where the flow has a specific weight γ exceeding the specific weight of water. The patterns of these currents were thoroughly analyzed and the procedures for integration of the basic
equation of motion were pointed out. In the derivation of the equations a number of assumptions were introduced. In particular, it was assumed (1) that the motion of the clear water in the zone of reverse current can be considered negligible in comparison with the motion of the bottom flow, and (2) that resistance at the upper boundary of the bottom flow can be represented, as is usually assumed in hydraulics, in the form of a function proportional to the square of its average velocity.

This method of derivation easily leads to a comparatively simple equation, having the following form for the condition of a one-dimensional problem (Figure 1):

$$\frac{dh}{ds} = \gamma' I_0 - \left(\gamma + \frac{Q^2 B}{2gw^3} \right) \left(\frac{H}{H-h} \right) \frac{Q^2 B}{2gw^3},$$

(1)

Where

- h is the depth of the bottom flow;
- γ equals $\frac{1}{\gamma_1}$
- γ_1 is the specific weight of the moving fluid determined by the quantity of suspended sediment;
- H is the depth of water in the reservoir, in the general case being represented as some function of the coordinate s.

In the case of a straight bottom slope I_o:

$$H = H_1 + I_0 s;$$
H_1 is the depth of the reservoir below the alluvial fan, forming in its upper part; Q is the discharge of the fluid: λ_0 and λ_1 are coefficients of resistance on the lower and upper flow boundaries (Figure 1).

The experimental investigations made it possible to determine, by using Equation (1), the value of the overall coefficient of resistance

$$\lambda = \lambda_0 + \lambda_1 \frac{H}{H - h}$$

as a function of the Reynolds Number of the bottom flow $Re = \frac{\gamma h}{\nu}$ and to develop a solution with practical results. However, a number of problems remained unsolved, particularly the problems of the magnitude of the reverse velocity in the upper zone of the current and the thickness of the transition zone between the bottom current and the clear water. It was also established that it was not always possible to consider as negligible the movement in the zone of the reverse current in comparison with the movement of the bottom flow. Formation of bottom current most often takes place in sufficiently deep mountain reservoirs ($H > 30 - 40$ m) with suspension of small sediments, more than $3 - 4$ kg/m3. The unit discharges and depth of water in these reservoirs reach large magnitudes; in such conditions the assumption of the possibility of disregarding the movement in the upper zone of the reservoir cannot be considered as strictly valid.
Frequently there are also cases, where clear water enters the intake and spillway structures with the turbid water. In this way the flow becomes more complicated; leading to an accumulation of the turbid water, filling the lower zone of the reservoir. At the same time the clear water moves by degrees in the direction of the hydro-complex 1/ (Figure 2). The present work is devoted to a detailed investigation of the problem of nonuniform, smoothly changing flow of a fluid in a reservoir with bottom currents.

2. System of the Equations of Motion

We will examine the one-dimensional problem concerning the movement of fluid in a reservoir with a condition of formation of bottom currents and the assumption that all the discharge of the bottom flow proceeds through the dam with the clear water remaining in the reservoir. The movement has an established smoothly changing character (Figure 1). The unknown values are: the velocity of the current U, in particular the maximum velocity U_1, the surface velocity of the reverse current of clear water U_2, the depth of the bottom flow h, the slope of the free surface of the water in the reservoir i.

The given values are: the unit discharge of the bottom flow q and its unit weight γ_1, the slope of the bottom I_0, the coefficient of

1/Translator's note: This term is used in the USSR to indicate all the structures of a hydraulic installation located at one site, not any particular combination of structures.
resistance of bottom flow γ related to the average velocity of bottom flow v_j, and the depth of water in the reservoir H.

To solve the problem we propose four equations: two equations of motion for the bottom flow and the total flow in the reservoir and two equations of constant discharge under the same conditions.

For finding the magnitude of the motion and the average current velocity v, it is necessary to know the velocity distribution. For this purpose it is possible to employ experimental data, which has now accumulated in sufficient quantity: experiments in the streambed laboratory of the Leningrad Polytechnic Institute, in the National Laboratory of France in Chateau, in the Peking Institute of Water Management, and field observations on a series of operating reservoirs in several countries. The study of these data makes it possible to assume the following relationship for velocity distribution along the flow section:

$$u = u_1 \left[(1 + \zeta) e^{-k \xi} - \zeta \right].$$

(2)

Where u_1 - maximum velocity of the bottom flow, for which we assume a velocity near the bottom, if the type of curve agrees with Figure 3; ζ - the ratio of the surface velocity u_2 to u_1: $\zeta = \left| \frac{u_2}{u_1} \right|$; k - a certain parameter, determined from the experiments. Analyses of test data carried out by us made it possible to assume $k = 0.7 \text{ H/h}$.
We will write a system of equations for conditions of nonuniform movement. For the first approximation we assume that the turbidity of the flow has a constant value through the depth h, and in the surface zone it is equal to zero. Next we will substitute for the true turbidity curve a step graph, as is shown on Figure 3.

The equation for the quantity of motion for the bottom flow takes the form

$$
\gamma' \left(I_0 - \frac{dh}{ds} \right) h = \frac{\gamma \phi^2}{2g} + \frac{\gamma}{\eta_1} i h + \frac{d}{ds} \int_0^h \frac{u^2}{g} \, dy + \frac{\tau_{1p}}{\eta_1 h}. \quad (3)
$$

The equation for the quantity of motion for the total flow is

$$
\gamma' \left(I_0 - \frac{dh}{ds} \right) h = \frac{\gamma \phi^2}{2g} + \frac{\gamma}{\eta_1} iH +
+ \frac{d}{ds} \int_0^h \frac{u^2}{g} \, dy + \frac{d}{ds} \int_h^H \frac{\gamma}{\eta_1} \frac{u^2}{g} \, dy. \quad (4)
$$

The equation for constant discharge for the bottom flow is

$$
q = \int_0^h u \, dy. \quad (5)
$$

The equation of constant discharge for the total flow is

$$
q = \int_0^h u \, dy + \frac{\gamma}{\eta_1} \int_h^H u \, dy, \quad (6)
$$

The velocity u is determined according to Equation 2.
Equating Equations 5 and 6 we find the relation between the velocities u_2 and u_1. We calculate to this end the integral $\int u dy$

$$\int u dy = H \int (u_1 + u_2) e^{-k'\eta} d\eta - Hu_2\eta = Hu_1 [(1 + \zeta) \varphi (\eta) - \eta \zeta]. \quad (7)$$

Further we designate the value of η_1 with the ratio h/H. Equating Equations 5 and 6 we obtain

$$\frac{1}{\eta_1} \int_0^H u dy = Hu_1 \frac{1}{\eta_1} \left\{ (1 + \zeta) \left[\varphi (1) - \varphi (\eta_1) \right] - \zeta (1 - \eta_1) \right\} = 0 \quad (8),$$

or

$$\frac{1 + \zeta}{\zeta} = \frac{1 - \eta_1}{\varphi (1) - \varphi (\eta_1)}, \quad (9),$$

where $\varphi (\eta) = \int e^{-k'\eta} d\eta$ - the integral known from the theory of probability.

From Equation 9 we get the relation between the ζ and η_1

$$\zeta = \frac{\varphi (1) - \varphi (\eta_1)}{1 - \eta_1 - \varphi (1) - \varphi (\eta_1)}. \quad (10),$$

Thus knowing that $h = \eta_1 H$ we determine the surface velocity of the reverse current.

Then, using the two equations of constant discharge and the relation for the velocity distribution, we obtain a formula which makes it possible to compute ζ as a function of the relative depth of flow h/H: $\zeta = f \left(\frac{h}{H} \right)$.

Now we exclude from Equations 3 and 4 the slope of the free surface i,

7
just as we did in our earlier work (Reference 1); for this purpose subtracting Equation 3 from Equation 4 we obtain

\[
\frac{\gamma}{\gamma_1} i (H - h) + \frac{\tau}{\gamma_1 h} \frac{d}{ds} \int_{h}^{H} \frac{u^2}{g} dy - \frac{\tau_{rp}}{\gamma_1 h} = 0, \quad (11)
\]

From here we find

\[
\frac{\gamma}{\gamma_1} i = \frac{\tau_{rp} - \tau}{\tau_1} \frac{d}{ds} \int_{h}^{H} \frac{u^2}{g} dy
\]

Substituting Equation 12 into Equation 3, we obtain an equation which contains only the unknown depth \(h \) and an expression for the quantity of motion, the tangential stress, and the resistance forces

\[
\tau' \left(I_0 - \frac{d}{ds} \right) = \frac{\gamma v^2}{2gh} + \frac{\tau_{rp}}{\gamma_1} \left(\frac{1}{h} + \frac{1}{H - h} \right) + \frac{1}{h} \frac{d}{ds} \int_{0}^{H} \frac{u^2}{g} dy - \frac{\gamma}{\gamma_1} \frac{d}{ds} \int_{h}^{H} \frac{u^2}{g} dy.
\]

We must select a relation for the tangential stress on the upper boundary of the bottom flow; the motion of the bottom flow may be regarded as a movement of a turbulent jet in a submerged space. It gives us the right to assume for \(\tau_o \) the relation of L. Prandtl

\[
\tau_{rp} = \frac{l^2}{\gamma} \left(\frac{du}{dy} \right)^2 \bigg|_{y = h},
\]

where \(l = ch \). The value of \(c \) should be determined experimentally.

3. Calculation of the Integrals and Functions used in the Equations

Into Equation 13 we enter three values which it is necessary to calculate, using relation (2) for the velocity distribution, namely:
1. v^2, 2. $\int u^2\,dy$ and 3. du/dy.

We find first of all the value of the average velocity of the bottom flow v, expressing it through u_1 with the help of relation (7)

$$v = \frac{q}{h} = \frac{H u_1}{h} [(1 + \zeta) \varphi(\xi_1) - \zeta \eta_1],$$ \hspace{1cm} (15)

where $\eta_1 = h/H$.

Next,

$$\frac{k v^2}{2gh} = \frac{\lambda H^2 u_1^2}{2gh^3} M(\eta_1),$$ \hspace{1cm} (16)

where

$$M(\eta_1) = [(1 + \zeta) \varphi(\xi_1) - \zeta \eta_1]^2.\quad (17)$$

Further we calculate with some approximation the integral for the quantity of movement k:

$$\frac{gk}{\eta_1} = \int_0^h u^2\,dy + \frac{\zeta}{\eta_1} u_{2}^2 \left(1 - \frac{h}{H}\right) H = \frac{\zeta}{\eta_1} \zeta^2 u_1^2 (1 - \eta) H +$$

$$+ (1 + \zeta)^2 u_1^2 \int_0^h e^{-k^2 \eta^2} \,dy - 2 \zeta u_1^2 (1 + \zeta) \int_0^h e^{-k^2 \eta^2} \,dy + \zeta^2 \eta H u_1^2 \approx$$

$$= u_1^2 H \left[\zeta^2 + (1 + \zeta)^2 \varphi_1(\eta_1) - 2 \zeta (1 + \zeta) \varphi(\eta_1) - u_1^2 H N_1(\eta_1),\quad (18)\right.$$

where $\varphi_1(\eta_1) = \int_0^\frac{\eta_1}{\sqrt{\zeta}} e^{-2k\eta^2} \,d\eta$.

In the first approximation for small etas (less than 0.2) it is possible to assume

$$\frac{gk}{\eta_1} = u_1^2 H \left[(1 + \zeta)^2 \varphi_1(\eta_1)\right] = u_1^2 H N_1(\eta_1),\quad (18')$$

where $N_1(\eta) = (1 + \zeta)^2 \varphi_1(\eta)$.
Into Equation (13) is entered the product of this integral along s, which, as with u_1 and eta, also is a function of s (we have expressed z both as a function of eta and as a function of s).

The third term in Equation (13), $\frac{\tau_{rp}}{\Gamma_1}$, is determined from the derivative $\frac{du}{dy} \bigg|_{y=h}$, which equals

$$\frac{du}{dy} \bigg|_{y=h} = \frac{1}{H} \frac{du}{d\eta} = -\frac{2u_1z^2}{H} (1 + \zeta) \gamma e^{-2k\gamma}, \quad a/f$$

when

$$\tau_{rp} = \frac{4u_1z^2k^4}{gH^2} \gamma^2p^2 (1 + \zeta)^2 e^{-2k\gamma} =$$

$$= \frac{4k^4c^2u_1^2}{g} \gamma^2(1 + \zeta)^2 e^{-2k\gamma} = \frac{u_1^2}{g} P(\eta), \quad (19)$$

where

$$P(\eta) = 4k^4c^2\eta_i^2(1 + \zeta)^2 e^{-2k\gamma}. \quad (20)$$

Let us substitute the values of the three quantities shown above in Equation (13), as a result of which we obtain the following equation:

$$2g \left(I_0 - \frac{dh}{ds} \right) \gamma' = \frac{\lambda H^2}{h^3} u_1^2 M + \frac{2u_1^2 H}{h(H-h)} P +$$

$$+ \frac{2H}{h} \frac{d}{ds} [u_1^2 N(\eta)] - \frac{2i}{\eta_1 (H-h)} \frac{d}{ds} [u_1^2 [N(1) - N(\eta)]]. \quad (21)$$

Let us note that with a large value H/h the last component of the last member of Equation (21) may be neglected and then the equation acquires a more simple form:

$$2g \gamma' \left(I_0 - \frac{dh}{ds} \right) = \frac{\lambda H^2}{h^3} u_1^2 M + \frac{2u_1^2 H}{h(H-h)} P +$$

$$+ \frac{2H}{h} \frac{d}{ds} [u_1^2 N(\eta)] - \frac{2iH}{\eta_1 (H-h)} \frac{d}{ds} [u_1^2 N(1)], \quad (22)$$

$\text{a/Author's note: Here } y = \eta H, \text{ that is } \eta \text{ is the variable.}$
in which as a first approximation we neglected the slight change in H along the line of flow.

Combining the expressions containing u_1^2 and $\frac{dU_1^2}{ds}$, and neglecting in the first approximation $\frac{dN}{ds}$, it is possible to change the equation to the following form more suitable for integrating:

$$2g' \left(I_0 - \frac{dh}{ds} \right) = A u_1^2 + B \frac{du_1^2}{ds}, \tag{23}$$

$$A = \frac{\gamma H^2}{h^3} M + \frac{2PH}{h(H - h)}; \quad B = \frac{2H}{h} N(\eta_i) - \frac{2\gamma H}{\eta_i(H - h)} N(1). \tag{24}$$

In this equation the coefficients A and B are complex functions of η, which is also a function of s. Therefore, to obtain an acceptable numerical solution from the point of view of accuracy, the integration must be done by an approximate method. It is necessary to break up all the parts of the reservoir under investigation into a series of separate parts, within the limits of which we may consider A and B as constants, while determining them according to the average values. Let us consider the desired value u_1^2 as a function of s.

With u_1 determined, it is possible to calculate by Formula (2) the velocity distribution; to find u_2 and the changing depth of flow along the current; and to simultaneously determine the levels at which the velocity of flow will be equal to zero.
4. Solution of Equation (23) for special cases

Let us find the minimum and the maximum of the function \(u_1^2 \). For this purpose let us assume the derivative \(du_1^2/ds = 0 \). Then it is possible to obtain the corresponding values \(h \) and \(u_1^2 \). From Equation (23) we obtain:

\[
\begin{align*}
\frac{\rho H^2}{h^3} M + \frac{H}{h} (H-h) P &= 2g \gamma' I_0; \\
\end{align*}
\]

\[
\begin{align*}
u_1 &= \sqrt{\frac{2g \gamma' I_0 h}{\frac{\rho H^2}{h^3} M + \frac{2P}{(H-h)}}} = \sqrt{\frac{2g \gamma' I_0}{A}}. \quad (25)
\end{align*}
\]

On the other hand \(u_1 \) may be determined from (15), as

\[
\begin{align*}
u_1 &= \frac{q}{H[(1 + \zeta) \varphi (\eta) - \zeta]} = \frac{q}{H \sqrt{M}}. \quad (26)
\end{align*}
\]

Equating (25) and (26) we obtain

\[
\frac{q}{H \sqrt{M}} = \sqrt{\frac{2g \gamma' I_0 h}{\frac{\rho H^2}{h^3} M + \frac{2P}{H-h}}}.
\]

or

\[
q = h \sqrt{\frac{2g \gamma' I_0 h M}{\rho M + \frac{2h^3 P}{H(H-h)}}} = f(h), \quad (27)
\]

where \(M \) and \(P \) are functions of \(h \).

Assigning the depth of flow \(h \), we calculate \(f(h) \) and plot the corresponding graph. Plotting on this graph the value \(q \), we find the desired value of \(h \), as a function of \(q \) (Figure 4). Since with an increase in \(H \) the denominator of \(f(H) \) decreases 2, then with a constant value of \(q \) the depth of the bottom flow \(h \) should thus decrease. We obtained similar results (Reference 1). After obtaining \(h \), it is not difficult to calculate \(u_1 \).

\[2/\text{Translator's note: } H \text{ should apparently be } h \text{ as used in Equation (27).}]
5. Analysis of the equations of motion

Let us introduce a few changes into Equation (23), using relationship (15), which gives a tie between \(v \) and \(u_1 \). To do this let us evaluate the differentials \(\frac{dv^2}{ds} \) and \(\frac{dh}{ds} \).

\[
\frac{dv^2}{ds} = \frac{du_1^2}{ds} \left(\frac{H}{h} \right)^2 M + u_1^2 M \frac{2H}{h^2} \left(\frac{dH}{ds} - \frac{H}{h} \frac{dh}{ds} \right) = \\
M \left[\left(\frac{H}{h} \right)^2 \frac{du_1^2}{ds} + 2u_1^2 \frac{H}{h^2} \left(l_0 - \frac{H}{h} \frac{dh}{ds} \right) \right], \quad (28)
\]

\[
-\frac{dh}{ds} = \frac{q}{\nu^2} \frac{dv}{ds} = \frac{qh}{2Hu_1^3 \sqrt{M}} \frac{du_1^2}{ds}. \quad (29)
\]

Substituting (28) and (29) in Equation (23) by using several simplifications we find

\[
2g\gamma' \left(\int_0 + \frac{qh}{2Hu_1^3 \nu M} \frac{du_1^2}{ds} \right) = Au_1^2 + B \frac{du_1^2}{ds}, \quad (30)
\]

\[
\frac{du_1^2}{ds} = \frac{2g\gamma' l_0 - Au_1^2}{B - \frac{gq\gamma h}{Hu_1^3 \nu M}}. \quad (31)
\]

We have already found the minimum of this function.

Equating the denominator to 0, we determine the critical depth of the bottom flow from the condition:

\[
B - \frac{gq\gamma h}{Hu_1^3 \nu M} = 0. \quad (32)
\]

Now let us replace \(u_c \) with the average velocity \(v_c \): (for the condition of critical depth).

\[
u_c^3 = \frac{q \gamma^2}{M^{1/2}} \left(\frac{h_c}{H} \right)^3 = \frac{q^3}{M^{1/3} H^2},
\]
\[B = \frac{2N_iH}{h_c} \left(1 - \frac{h_c}{H - h_c} \right) = \frac{g \gamma' MH h_c}{q^2} \]

If \(h_c/H \) is small, then \(h_c \) will be equal to

\[h_c = \sqrt[3]{\frac{2q^2N}{g \gamma' MH}} = \frac{3}{2} \sqrt[3]{\frac{2q^2N}{g \gamma' MH}}. \quad (33) \]

A more exact expression for \(h_c \) is obtained from the ratio:

\[\frac{h_c^2 M}{\left(1 - \frac{h_c}{H - h_c} \right) N} = \frac{q^2}{g \gamma' H}. \quad (34) \]

Since \(N \) and \(M \) are functions of \(h/H \), then solution of the problem of determining the critical depth is found by a graphic analysis method - by plotting the function \(f(h_c) \)

\[f(h_c) = \frac{h_c^2 H}{\left(1 - \frac{h_c}{H - h_c} \right) M} \frac{N}{N} \quad (35) \]

and equating it to the value \(q^2/g \gamma' \).

The results of our plotting are given in Table I, where the coefficient \(k \) is computed as equal to \(3 \sqrt[3]{Nh_c/MH} \). The table shows that \(k \) is very close to unity and varies slightly with an increase in the value of \(h_c \).

<table>
<thead>
<tr>
<th>(h_c)</th>
<th>(\zeta)</th>
<th>(\frac{q}{u_1})</th>
<th>(k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.022</td>
<td>0.82</td>
<td>1.01</td>
</tr>
<tr>
<td>0.1</td>
<td>0.047</td>
<td>0.815</td>
<td>1.02</td>
</tr>
<tr>
<td>0.15</td>
<td>0.075</td>
<td>0.81</td>
<td>1.03</td>
</tr>
<tr>
<td>0.2</td>
<td>0.11</td>
<td>0.8</td>
<td>1.04</td>
</tr>
<tr>
<td>0.25</td>
<td>0.15</td>
<td>0.79</td>
<td>1.05</td>
</tr>
<tr>
<td>0.3</td>
<td>0.2</td>
<td>0.77</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Table I
The shape of the curve of the interface of the bottom flow is determined on one hand by the ratio between its calculated depth h and the critical depth h_c, and on the other hand by the ratio between h and the depth corresponding to the minimum function u_1^2, which is called h_o. When the depth H grows along the reservoir, h_o will decrease: if H remains practically constant, silting occurs in the lower zone of the reservoir; when the bottom is established close to horizontal, then h_o also maintains a practically constant value.

We analyzed the form of the curve of the interface recalled earlier and found that in a number of cases these curves can change their curvature (Reference 1). Similar results are obtained also from analysis of Equation 31.

We also find the line of zero velocity, η_o. From Equation (2) we find that when $u = 0$ the following relation occurs from which we can determine the value η_o:

$$e^{-k\eta_o^2} = \zeta (1 - e^{-k\eta_1^2}) = (1 - e^{-k\eta_1^2}) \frac{\varphi (1) - \varphi (\eta_1)}{1 - \eta_1 - \varphi (1) + \varphi (\eta_1)}.$$ \hfill (36)

Here the value η_1 is determined by computation of the depth of the bottom flow (the value of ζ is determined from this).

By assigning the value η_1 it is possible to calculate the desired values of η_o; the results of this calculation are shown in Table 2.
It is easy to see that η is more than twice the value of η_0. Thus the transition zone occupies a significant space.

The height up to which the smallest sediments will be raised will be several times higher than the line η_0. This problem is subject to additional investigation.

For a horizontal reservoir bottom the interface of the bottom flow will have the shape of a falling curve, consequently the line of zero velocities will be slowly dropping. Also the boundary of the region of turbid flow will be lowered.

In connection with the above let us examine the computation of the nonuniform bottom flow in the case of a horizontal bottom.

Equation 31 will take the form

$$\frac{du_i^2}{ds} = -\frac{Au_i^2}{B - \frac{gq_i'his}{H\nu_i^3 \sqrt{M}}} = -\frac{Au_i^2}{B - \frac{D}{u_i^3}}. \quad (37)$$

Separating the variables and integrating the equation we obtain

$$\left(B - \frac{D}{u_i^3}\right) \frac{du_i^2}{u_i^2} = -Ads,$$

where

$$D = \frac{gq_i'his}{HV M}$$

$$\varphi(u_i^2) = B \ln u_i^2 + \frac{2D}{3u_i^3} = C - As. \quad (38)$$
The following would be more accurate:

\[\varphi(u_1^2) = C - \int Ads; \]

(38')

This equation can be integrated by parts. The constants of integration will be found from the conditions: \(s = 0; \ u_1 = u_0 \).

\[B \ln u_0^2 + \frac{2}{3} \frac{D}{u_0^3} = C; \]

\[f \left(\frac{u_1}{u_0} \right) = B \ln \left(\frac{u_1}{u_0} \right)^2 + \frac{2}{3} D \left(\frac{u_0^3 - u_1^3}{u_0^3 u_1^3} \right) = - \int Ads. \]

(39)

If \(B < D/u_0^3 \) the interface will correspond to a falling curve, if however \(B > D/u_0^3 \) then the interface will correspond to a backwater curve (curve type c2).

Introducing the velocity \(v_c' \) into the calculation we present Equation (39) in a form more suitable for analysis.

\[f(u_1) = B \ln \left(\frac{u_1}{u_0} \right)^2 + \frac{2}{3} D \left[\frac{v_c'^3 (u_0^3 - u_1^3)}{u_0^3 u_1^3} \right] = - \frac{A}{B} s, \]

(40)

where \(v_c' = \sqrt[3]{\frac{g' q h}{H V M}} \).

This paper does not examine the problem of nonuniform bottom flow with an adverse slope of the bottom, however this case is seldom met in practice.

The analysis given above makes it possible to broaden our ideas concerning the steady nonuniform motion of fluids of different densities in reservoirs. The most important result of this investigation is the possibility of obtaining the curves of the
velocity distribution and to establish the line of zero velocity. In the future we will try to investigate the problem of the upper boundary of the turbid flow and the distribution of turbidity with depth. The problem of the analysis of the movement of the less dense fluid in the reservoir is also very important, for example, warm water discharged from a thermal powerplant into a cooling pond or into a stream with colder water. This problem however is different from the two dimensional problem in which it is possible to represent the movement of the bottom flow in a reservoir; it is neccessary to examine this problem in plan, since the decrease in velocity will lead to expansion of the flow in plan. However we can assume the method of analysis to be similar.

Bibliography

Table 2

<table>
<thead>
<tr>
<th>η_1</th>
<th>η_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.135</td>
</tr>
<tr>
<td>0.1</td>
<td>0.25</td>
</tr>
<tr>
<td>0.15</td>
<td>0.36</td>
</tr>
<tr>
<td>0.2</td>
<td>0.47</td>
</tr>
<tr>
<td>0.25</td>
<td>0.54</td>
</tr>
<tr>
<td>0.3</td>
<td>0.6</td>
</tr>
</tbody>
</table>
НОВЫЕ ВОПРОСЫ ТЕОРИИ ДОННЫХ ТЕЧЕНИЙ
В ВОДОХРАНИЛИЩАХ

В статье рассматривается вопрос о распределении скоростей в водохранилище в условиях образования донных течений. Приводится система дифференциальных уравнений, определяющих движение донного потока.
Устанавливаются величины нормальной критической глубины донного потока поверхностной скорости обратного течения и линии нулевых скоростей.
Приводится решение системы уравнений для части встречающегося в практике случая горизонтального дна.

§ 1. Общие указания

В работе "Теория донных течений в водохранилищах" [Л. 1] автором была рассмотрена задача о неравномерном движении в водохранилище донного речного потока, обладающего удельным весом γ, превышающим удельный вес воды; были проанализированы формы таких течений и указаны приемы интегрирования основного уравнения движения. При выводе этого уравнения был введен ряд допущений; в частности принималось, что количеством движения в зоне обратного течения чистой воды можно пренебречь по сравнению с количеством движения донного потока, а сопротивление на его верхней границе можно представить, как обычно принято в гидравлике, в виде функции, пропорциональной квадрату его средней скорости.

Рис. 1.

хранилище донного речного потока, обладающего удельным весом γ, превышающим удельный вес воды; были проанализированы формы таких течений и указаны приемы интегрирования основного уравнения движения. При выводе этого уравнения был введен ряд допущений; в частности принималось, что количеством движения в зоне обратного течения чистой воды можно пренебречь по сравнению с количеством движения донного потока, а сопротивление на его верхней границе можно представить, как обычно принято в гидравлике, в виде функции, пропорциональной квадрату его средней скорости.
Такой путь решения поставленной задачи легко приводит к сравнительно несложному уравнению, имеющему следующий вид для условий одномерной задачи (рис. 1):

\[
\frac{dh}{ds} = \frac{\gamma' I_0 - \left(\frac{\gamma_1 H}{H - h} \right) Q^2 B}{2 g \omega^3},
\]

где \(h \) — глубина донного потока;
\[\gamma' = \frac{\gamma_1 - \gamma}{\gamma_1}, \]
\(\gamma_1 \) — удельный вес движущейся жидкости, определенный количеством транспортируемых наносов;
\(H \) — глубина воды в водохранилище, в общем случае представляющая собой некоторую функцию от координаты \(s \); в случае прямого уклона дна \(I_0 \):

\[H = H_1 + I_0 s; \]

\(H_1 \) — глубина водохранилища ниже конуса выноса, образующегося в его верхней части;
\(Q \) — расход жидкости;
\(I_0 \) и \(I_1 \) — коэффициенты сопротивления на нижней и верхней границе потока (рис. 1).

Экспериментальные исследования позволили определить с помощью уравнения (1) величину суммарного коэффициента сопротивления

\[\lambda_c = \lambda_0 + \lambda_1 \frac{H}{H - h}, \]

в функции от числа Рейнольдса донного потока

\[\text{Re} = \frac{v h}{v} \]

и довести решение до конкретных результатов. Однако, целый ряд вопросов остался нерешенным; к ним относится в частности вопрос о величине обратной скорости в верхней зоне течения и о толщине переходной зоны между донным течением и чистой водой.

Было установлено также, что далеко не всегда можно пренебречь количеством движения в зоне обратного течения по сравнению с количеством движения донного потока. Образование донных течений чаще всего имеет место в достаточно глубоких глубоких водовладениях (\(H > 30 \) — 40 м) при нанесении мелких наносов, превышающих 3 — 4 кг/м³. В паводковый период удельные расходы и глубина воды в таких водохранилищах достигают весьма большой величины; в подобных условиях дослушение о возможности пренебрежения количеством движения в верхней зоне водохранилища нельзя считать строго обоснованным. Нередко также случаи, когда в водозаборные и водосбросные сооружения наряду с мутной водой поступает чистая вода; таким образом течение становится более сложным: происходит аккумуляция части стока мутной воды, заполняющей нижнюю зону водохранилища, в то время как чистая вода движется поступательно по направлению к гидроузлу (рис. 2). Настоящая работа посвящена более детальному рассмотрению задачи о неравномерном плавно изменяющемся движении жидкости в водохранилище в условиях донных течений.
§ 2. Система уравнений движения

Будем рассматривать одномерную задачу о движении жидкости в водохранилище в условиях образования донного течения и в предположении, что весь расход донного потока проходит через сооружение, а чистая вода остается в водохранилище; движение носит установившийся плавно изменяющийся характер (рис. 1). Неизвестными величинами являются: скорость течения \(u \), в частности максимальная скорость \(u_1 \), поверхностная скорость обратного течения чис. той воды \(u_2 \), глубина донного потока \(h \), уклон свободной поверхности воды в водохранилище \(i \).

Заданными являются: удельный расход донного потока \(q \) и его удельный вес \(\tau_1 \), уклон дна \(i_0 \), коэффициент сопротивления \(i_1 \), отнесенный к средней скорости донного потока \(v \), глубина воды в водохранилище \(H \).

Для решения задачи мы располагаем 4 уравнениями: двумя уравнениями движения — для донного потока и всего потока в водохранилище и двумя уравнениями постоянства расхода, для тех же условий.

Для нахождения величины количества движения и средней скорости течения \(v \) необходимо знать эпюру распределения скоростей. С этой целью можно воспользоваться экспериментальными данными, которых к настоящему времени накопилось уже достаточно много: эксперименты в русской лаборатории Ленинградского политехнического института, в Национальной лаборатории Франции в Шату, в Пекинском институте водного хозяйства, наблюдения на ряде эксплуатируемых водохранилищ в разных странах. Изучение этих данных позволяет принять следующую закономерность для распределения скоростей по сечению потока:

\[
u = u_1 \left[(1 + \xi) e^{-k \eta^2} - 1 \right],
\]

где \(u_1 \) — максимальная скорость донного потока, за такую мы примем скорость близ дна, принимая вид эпюры согласно рис. 3;

\(\xi \) — отношение поверхностной скорости \(u_2 \) к \(u_1 \): \(\xi = \frac{u_2}{u_1} \);

\(\eta = \frac{y}{H} \);

\(k \) — некоторый параметр, определяемый из экспериментов; выполненная нами обработка опытных данных позволяет принять \(k = 0,7 \frac{H}{h} \).

Напишем указанную систему уравнений для условий неравномерного движения, при этом для первого приближения примем, что мутность потока сохраняет постоянное значение до глубины \(h \), а в верхней зоне она равна нулю. Следовательно, мы заменяем действительную эпюру мутности ступенчатым графиком, как показано на рис. 3.
Уравнение количества движения для донного потока имеет вид

\[\gamma' \left(I_0 - \frac{dh}{ds} \right) h = \frac{\rho v^2}{2g} + \frac{\gamma}{\gamma_1} i h + \frac{d}{ds} \int_0^h \frac{u^2}{g} dy + \frac{\gamma_{tp}}{\gamma_1 h}. \]

(3)

Уравнение количества движения для всего потока в целом

\[\gamma' \left(I_0 - \frac{dh}{ds} \right) h = \frac{\rho v^2}{2g} + \frac{\gamma}{\gamma_1} i H + \]

\[+ \frac{d}{ds} \int_0^h \frac{u^2}{g} dy + \frac{d}{ds} \int_h^H \gamma \frac{u^2}{g} dy. \]

(4)

Уравнение постоянства расхода для донного потока

\[q = \int_0^h u dy. \]

(5)

Уравнение постоянства расхода для всего потока в целом

\[q = \int_0^h u dy + \int_{\gamma_1}^{H} \gamma dy, \]

(6)

скорость \(u \) определяется по формуле (2).

Приравнивая (5) и (6), найдем связь между скоростями \(u_2 \) и \(u_1 \), вычислим с этой целью интеграл \(\int u dy \)

\[\int u dy = H \int (u_1 + u_2) e^{-\kappa \eta} d\eta - Hu_2 \eta = Hu_1 \left[(1 + \zeta) \varphi(\eta) - \eta \right]. \]

(7)

Далее величиной \(\gamma_1 \) будем обозначать отношение \(\frac{h}{H} \). Приравнивая (5) и (6), получим

\[\frac{\gamma}{\gamma_1} \int_{\gamma_1}^H u dy = Hu_1 \left[(1 + \zeta) \left[\varphi(1) - \varphi(\eta_1) \right] \right] - \zeta (1 - \eta_1) = 0 \]

или

\[\frac{1 + \zeta}{\zeta} = \frac{1 - \eta_1}{\varphi(1) - \varphi(\eta_1)}. \]

(9)

где \(\varphi(\eta) = \int_0^\eta e^{-\kappa \varphi} d\eta \) — известный из теории вероятности интеграл.

Из (9) находим связь между \(\zeta \) и \(\eta_1 \).

\[\zeta = \frac{\varphi(1) - \varphi(\eta_1)}{1 - \eta_1 - \varphi(1) - \varphi(\eta_1)}. \]

(10)

Таким образом, зная \(h = \eta_1 H \), мы определям поверхностную скорость обратного течения.
Итак, используя два уравнения постоянства расхода и зависимости для распределения скоростей, мы нашли формулу, позволяющую вычислить ζ в функции относительной глубины потока $\frac{h}{H}$:

$$\zeta = f\left(\frac{h}{H}\right).$$

Исключим теперь из уравнений (3) и (4) уклон свободной поверхности i, для чего поступим так же, как и в упомянутой ранее нашей работе [Л. 1]; вычтем с этой целью из уравнения (4) уравнение (3), получим

$$\frac{\gamma}{\gamma_1} \frac{i(H - h)}{h} + \frac{\gamma}{\gamma_1} \frac{d}{ds} \int_{0}^{h} \frac{u^2}{g} dy - \frac{\tau_{tr}}{\gamma_1 h} = 0,$$

откуда находим

$$\frac{\gamma}{\gamma_1} i = \frac{\tau_{tr}}{\gamma_1 h} \left(\frac{H - h}{H - h} \right),$$

Вводя (12) в уравнение (3), получим уравнение, в которое войдут только неизвестная глубина h и выражения для количеств движения, касательного напряжения и сил сопротивления

$$\gamma'\left(I_0 - \frac{dh}{ds} \right) = \frac{\lambda \sigma^2}{2gh} + \frac{\tau_{tr}}{\gamma_1} \left(\frac{1}{h} + \frac{1}{H - h} \right) +$$

$$+ \frac{1}{h} \frac{d}{ds} \int_{0}^{h} \frac{u^2}{g} dy - \frac{\gamma}{\gamma_1} \frac{d}{ds} \left(\frac{H - h}{H - h} \right) \frac{u^2}{g} dy.$$ (13)

Нам остается выбрать зависимость для касательного напряжения на верхней границе донного потока; движение донного потока можно рассматривать, как движение турбулентной струи в затопленном пространстве; это дает нам право принять для τ_{tr} зависимость Л. Прандтля

$$\tau_{tr} = \gamma_1 \frac{l^2}{g} \left(\frac{du}{dy} \right)^2 \bigg|_{y = h},$$

где $l = cH$; значения c должны определяться опытом.

§ 3. Вычисление интегралов и функций, входящих в уравнения

В уравнение (13) входят три величины, которые необходимо вычислить, используя зависимость (2) для распределения скоростей, а именно: 1) σ^2, 2) $\int u^2 dy$ и 3) $\frac{du}{dy}$.

Найдем прежде всего величину средней скорости донного потока v, выразив ее через u_1 с помощью зависимости (7)

$$v = \frac{g}{h} = H u_1 \left[\left(1 + \zeta \right) \varphi(\eta_1) - \zeta \eta_1 \right],$$

где $\eta_1 = \frac{h}{H}$.
Следовательно,

\[\frac{\lambda v^2}{2gh} = \frac{\lambda H^2 u_1^2}{2gh^3} M(\eta_1), \quad (16) \]

gде

\[M(\eta_1) = [(1 + \zeta) \varphi(\eta_1) - \xi^2 \eta_1]^2. \quad (17) \]

Далее вычислим с некоторым приближением интеграл количества движения \(k \):

\[\frac{gk}{\eta_1} = \int_0^h u^2 dy + \frac{r}{\eta_1} u_1^2 \left(1 - \frac{h}{H} \right) H = \frac{r}{\eta_1} u_1^2 (1 - \eta) H + \]

\[+ (1 + \zeta)^2 u_1^2 \int_0^h e^{-k_1^2} dy - 2u_1^2 (1 + \zeta) \int_0^h e^{-k_1^2} dy + \xi^2 \eta H u_1^2 = \]

\[\approx u_1^2 H \left[\xi^2 + (1 + \zeta)^2 \varphi_1(\eta) - 2\zeta(1 + \zeta) \varphi(\eta) \right] = u_1^2 H N_1(\eta), \quad (18) \]

где \(\varphi_1(\eta) = \int_0^\gamma e^{-2k_1^2} d\eta. \)

В первом приближении для малых \(\eta (< 0,2) \) можно принять:

\[\frac{gk}{\eta_1} = u_1^2 H \left[(1 + \zeta)^2 \varphi_1(\eta) \right] = u_1^2 H N_1(\eta), \quad (18') \]

где \(N_1(\eta) = (1 + \zeta)^2 \varphi_1(\eta) \)

В уравнение (13) входит производная от этого интеграла по \(s \), причем как \(u_1 \), так и \(\eta \) являются функциями от \(s \) (\(\zeta \) выразены нами в функции от \(\eta \) и также является функцией от \(s \)).

Третье выражение, входящее в уравнение (13) \(\tau_{y_1} \), определяется производной \(\frac{du}{dy}, \) которая равна

\[\frac{du}{dy} \bigg|_{y = \eta} = \frac{1}{H} \frac{du}{d\eta} = \frac{-2u_1^2 k_1^2}{H} (1 + \zeta) \eta e^{-k_1^2}; \]

тогда

\[\frac{\tau_{y_1}}{\eta_1} = \frac{4u_1^2 k_1^4}{gH^2} \eta^2 (1 + \zeta)^2 e^{-2k_1^2} = \]

\[= \frac{4k_1^2 u_1^2}{g} \eta^2 (1 + \zeta)^2 e^{-2k_1^2} = \frac{u_1^2}{g} P(\eta), \quad (19) \]

где

\[P(\eta_1) = 4k_1^2 c^2 \eta_1^2 (1 + \zeta)^2 e^{-2k_1^2}. \quad (20) \]

Подставив найденные значения трех указанных величин в уравнение (13), в результате чего получим следующее уравнение:

\[2g \left(\int_0^h \gamma' \frac{dh}{ds} \right) \gamma' = \frac{\lambda H^2}{h^3} u_1^2 M + \frac{2u_1^2 H}{H(h - \eta_1)} P + \]

\[+ \frac{2H}{h} \frac{d}{ds} \left[u_1^2 N(\eta_1) \right] - \frac{2\gamma_1}{\eta_1} \frac{H}{(H - \eta_1)} \frac{d}{ds} \left[u_1^2 \left(N(1) - N(\eta_1) \right) \right]. \quad (21) \]

* Здесь \(y = \gamma H, \) т. е. \(\eta \) — переменная величина.
Заметим, что при большой величине \(\frac{H}{h} \) последним слагаемым последнего члена уравнения (21) можно пренебречь и тогда уравнение приобретает более простой вид

\[
2g' \left(I_0 - \frac{dh}{ds} \right) = \frac{\gamma H^2}{h^3} u_1^2 M + \frac{2u_1^2 H}{h (H - h)} P + \frac{2H}{h} \frac{d}{ds} \left[u_1^2 N(\eta) \right] - \frac{2\gamma H}{\eta (H - h)} \frac{d}{ds} \left[u_1^2 N(1) \right],
\]

где в первом приближении мы пренебрегли по малости изменением \(H \) по длине потока.

Объединив члены, содержащие \(u_1^2 \) и \(\frac{du_1^2}{ds} \), и пренебрегая в первом приближении \(\frac{dN}{ds} \), можно привести уравнение к следующему виду, более удовлетворительному для интегрирования

\[
2g' \left(I_0 - \frac{dh}{ds} \right) = A u_1^2 + B \frac{du_1^2}{ds},
\]

где

\[
A = \frac{\gamma H^2}{h^3} M + \frac{2PH}{h (H - h)}; \quad B = \frac{2H}{h} N(\eta) - \frac{2\gamma H}{\eta (H - h)} N(1).
\]

В этом уравнении коэффициенты \(A \) и \(B \) являются сложными функциями от \(\eta \), которая также является функцией от \(s \). Поэтому для получения приемлемого с точки зрения точности выражений решения интегрирование следует вести приближенным способом, для чего необходимо разбить весь исследуемый участок водохранилища на ряд отдельных участков, в пределах которых можно считать \(A \) и \(B \) постоянными величинами, определяя их по средним значениям. Искомой величиной будет \(u_1^2 \) как функцию от \(s \).

Определив \(u_1 \), можно вычислить по формуле (2) распределение скоростей; найти \(u_2 \) и изменение глубины потока вдоль течения; одновременно будут определены отметки, на которых скорость потока будет равняться нулю.

§ 4. Частные случаи решения уравнения (23)

Найдем минимум или максимум функции \(u_1^2 \). Примем с этой целью производную \(\frac{du_1^2}{ds} \) равной нулю. Тогда мы получим возможность определить соответствующие значения \(h \) и \(u_1^2 \). Из уравнения (23) находим

\[
u_1^2 \left[\frac{\gamma H^2}{h^3} M + \frac{H}{h (H - h)} P \right] = 2g' I_0;\]

\[
u_1 = \sqrt{\frac{2g' I_0 h \nu}{\frac{\gamma H^2}{h^3} M + \frac{2PH}{H - h}}} = \sqrt{\frac{2g' I_0}{A}}.
\]
С другой стороны u_1 можно определить из (15), как

$$u_1 = \frac{q}{H[(1+\zeta)\varphi(\xi)-\zeta]} = \frac{q}{HM}. \quad (26)$$

Приравнивая (25) и (26), получим

$$\frac{q}{HM} = \sqrt{\frac{2g\gamma' I_0 h}{h^2 M + \frac{2H}{H - h} P}}$$
или

$$q = h \sqrt{\frac{2g\gamma' I_0 h M}{\lambda M + \frac{2h P}{H(H-h)}}} = f(h), \quad (27)$$
где M и P являются функциями от h.

Задавая глубиной потока h, вычислим $f(h)$ и построим соответствующий график. Откладывая на этом графике величину q, находим искомое значение h, как функцию q (рис. 4). Так как с увеличением H знаменатель $f(H)$ убывает, то при постоянном значении q глубина донного потока h должна при этом убывать. Аналогичный результат был получен нами ранее [Л. 1]. Определив h, нетрудно вычислить u_1.

§ 5. Анализ уравнения движения

Введем в уравнение (23) некоторые замены, используя зависимость (15), дающую связь между v и u_1. Для этого вычислим производные $\frac{dv^2}{ds}$ и $\frac{dh}{ds}$

$$\frac{dv^2}{ds} = \frac{du_1^2}{ds} \left(\frac{H}{h}\right)^2 M + u_1^2 M \frac{2H}{h^2} \left(\frac{dH}{ds} - \frac{H}{h} \frac{dh}{ds}\right) =$$
$$= M \left[\left(\frac{H}{h}\right)^2 \frac{du_1^2}{ds} + 2u_1^2 \frac{H}{h^2} \left(I_0 - \frac{H}{h} \frac{dh}{ds}\right)\right], \quad (28)$$

$$\frac{dh}{ds} = \frac{q}{v^2} \frac{dv}{ds} = \frac{qh}{2Hu_1^2 \sqrt{M}} \frac{du_1^2}{ds}. \quad (29)$$

Подставляя (28) и (29) в уравнение [23], находим с учетом некоторых упрощений

$$2g\gamma' \left(I_0 + \frac{qh}{2Hu_1^2 \sqrt{M}} \frac{du_1^2}{ds}\right) = Au_1 + B \frac{du_1^2}{ds}, \quad (30)$$

$$\frac{du_1^2}{ds} = \frac{2g\gamma'I_0 - Au_1^2}{B - H u_1^2 \sqrt{M}} = \frac{gq\gamma'h}{BH}. \quad (31)$$

Минимум этой функции мы уже нашли.
Приравнивая знаменатель к нулю, мы определим критическую глубину донального потока из условия

\[B - \frac{gq'r'h_k}{Hu_k^3 V M} = 0. \] (32)

Заменим теперь \(u_k \) через среднюю скорость \(v_k \): (для условий критической глубины)

\[u_k^3 = \frac{v_k^3}{Mv_k} \left(\frac{h_k}{H} \right)^3 = \frac{q^3}{Mv_k H^3}, \]

тогда

\[B = \frac{2N_v H}{h_k} \left(1 - \frac{h_k}{H - h_k} \right) = \frac{g'r'MH^2 h_k}{q^3}. \]

Если \(\frac{h_k}{H} \) мало, то \(h_k \) будет равно

\[h_k = \sqrt{\frac{2q^3 N}{g'r'MH}} = \frac{3}{2} \sqrt{\frac{2q^3 N h_k}{g'r'MH}}. \] (33)

Более точное выражение для \(h_k \) находит из соотношения

\[\frac{h_k^2 M}{\left(1 - \frac{h_k}{H - h_k} \right) N} = \frac{q^3}{g'r'H}. \] (34)

Так как \(M \) и \(N \) представляют собой функции от \(\frac{h}{H} \), то решение вопроса об определении критической глубины находится графо-аналитическим путем — построением функции \(f(h_k) \)

\[f(h_k) = \frac{h_k^2 H}{\left(1 - \frac{h_k}{H - h_k} \right) N} \]

и приравниванием ее величине \(\frac{q^3}{g'r'} \).

Такого рода построение было выполнено нами; результаты расчета приведены в табл. 1, где вычислен коэффициент \(k \) равный \(\sqrt[3]{\frac{Nh_k}{MH}} \). Из рассмотрения таблицы видно, что \(k \) мало отличается от единицы и имеет тенденцию к некоторому росту с увеличением \(h_k \).

<table>
<thead>
<tr>
<th>(h_k)</th>
<th>(\zeta)</th>
<th>(\frac{v}{u})</th>
<th>(h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>0,022</td>
<td>0,82</td>
<td>1,01</td>
</tr>
<tr>
<td>0,1</td>
<td>0,047</td>
<td>0,815</td>
<td>1,02</td>
</tr>
<tr>
<td>0,15</td>
<td>0,075</td>
<td>0,81</td>
<td>1,03</td>
</tr>
<tr>
<td>0,2</td>
<td>0,11</td>
<td>0,8</td>
<td>1,04</td>
</tr>
<tr>
<td>0,25</td>
<td>0,15</td>
<td>0,79</td>
<td>1,05</td>
</tr>
<tr>
<td>0,3</td>
<td>0,2</td>
<td>0,77</td>
<td>1,03</td>
</tr>
</tbody>
</table>

\[h_k = k \frac{q^3}{g'r'} \]

79
где \(D = \frac{g v^2}{H M} \)

\[
\phi (u) = B \ln \frac{n}{u^2} + \frac{2D}{C - A}\]

(38)

Отдельные перемены и интегрирования уравнению получим

\[
\int_{(B - D)} \frac{dn}{n^2} = - Ad

(37)

и, следовательно, получим

\[
\frac{nu^2}{C - A} = \frac{B - D}{n^2}

(36)

Таблицы 1 и 2, приведенные выше, позволяют посчитать значения \(\phi (u) \) и \(\frac{nu^2}{C - A} \) для заданной глубины \(H \) и скорости \(u \). За исходные данные приняты значения \(\phi (u) \) и \(\frac{nu^2}{C - A} \), соответствующие глубине \(H \) и скорости \(u \). При этом глубина \(H \) и скорость \(u \) могут быть изменены в узком интервале значений. Более того, при некоторых значениях \(H \) и \(u \) формулы (2) и (3) не применяются, так как они не определяют истинное значение \(\phi (u) \).
интегрирование можно вести по участкам. Постоянная интегрирования
находится из условия: \(s = 0; u_1 = u_6 \)

\[
B \ln u_0^3 + \frac{2}{3} \frac{D}{u_0^3} = C;
\]

\[
f \left(\frac{u_1}{u_0} \right) = B \ln \left(\frac{u_1}{u_0} \right)^2 + \frac{2}{3} D \left(\frac{u_0^3 - u_1^3}{u_0^3 u_1^3} \right) = - \int \Gamma \, ds.
\] (39)

Если \(B < \frac{D}{u_0^3} \), граничная поверхность будет соответствовать услови-
ям кривой спада, если же \(B > \frac{D}{u_0^3} \), то граничная поверхность будет со-
ответствовать условиям подпора (кривая типа \(\epsilon_1 \)).

Вводя в расчет скорость \(v_u' \), представим зависимость (39) в та-
ком виде, более удобном для анализа

\[
f (u_1) = \ln \left(\frac{u_1}{u_0} \right)^2 + \frac{2}{3} \frac{v_u'^3 (u_0^3 - u_1^3)}{u_0^3 u_1^3} = - \frac{A}{B} s,
\] (40)

где \(v_u' = \sqrt{\frac{g \rho q h}{H M}} \).

Не представляет труда рассмотреть вопрос о неравномерном дви-
жении донного потока при обратном уклоне dna, однако этот случай
встречается в практике весьма редко.

**

Вышеизложенный анализ позволил расширить наши представле-
ния о движении жидкостей разной плотности при неравномерном ус-
тановившемся режиме в водохранилищах; наиболее существенным ре-
зультатом исследования является возможность получить кривые рас-
пределения скоростей и установить границу нулевых скоростей. В
далнейшем мы попытаемся исследовать вопрос о верхней границе
мутного потока и распределения мутности по высоте. Существенное
значение имеет также анализ вопроса о движении более легкого по-
tока в водохранилище, например, теплой воды, сбрасываемой из теп-
ловой электрической станции в пруд-охладитель или в речной поток
с более холодной водой. Эта задача однако отличается от условий
плоской задачи, к которой можно привести движение донного потока
в водохранилище; ее следует рассматривать, как плоскую задачу,
так как падение скоростей будет приводить к расширению потока в
плане. Однако метод анализа можно принять аналогичным.

**

ЛИТЕРАТУРА

1. И. И. Леви. Теория донных течений в водохранилищах, „Известия ВНИИГ“,

Поступила 13 января 1965 года.
NEW PROBLEMS OF BOTTOM CURRENTS IN RESERVOIRS

By Levi I. I., D. Sc. (Eng.), Prof.

The paper considers velocity distribution in a water storage with bottom currents. A system is given of differential equations determining bottom current movement.

Values are established for the normal and critical depths of bottom current, surface velocity of back current and a line of zero velocities.

A solution of the system of equations is given for a case of horizontal bottom which often occurs in practice.

NOUVEAUX PROBLÈMES DE LA THÉORIE DES COURANTS DE FOND DANS LES RÉSERVOIRS

Par I. I. Lévy, professeur, docteur ès sciences techniques

Dans cet article on examine la répartition des vitesses dans un réservoir en cas de formation des courants de fond. On donne un système d'équations différentielles qui détermine le mouvement du courant de fond.

On définit les valeurs des profondeurs normale et critique du courant, de la vitesse du contre-courant et la ligne de vitesses nulles.

On donne la solution du système d'équations pour le cas d'un fond horizontal qui se rencontre fréquemment en pratique.
ИЗВЕСТИЯ
Всесоюзного Научно-Исследовательского Института Гидротехники имени Б. Е. Веденеева

Том 78

ИЗДАТЕЛЬСТВО "ЭНЕРГИЯ"
МОСКВА 1965 ЛЕНИНГРАД