Memorandum to Chief Designing Engineer

Progress Report on Parker Dam Gate Tests
Vibration Studies

By
V. L. Streeter, Assistant Engineer

Denver, Colorado
September 13, 1928
Subject: Progress report on Parker Dam gate tests - Vibration studies.

Purpose of studies - A model of one of the five stoney gates in Parker Dam was constructed and tested in the Denver hydraulic laboratory during January and February 1937. These tests were made primarily to insure there would be no harmful vibrations of the gate. Coefficients of gate discharge were also obtained as well as pressure and water surface profiles on the crest for various gate openings.

Description of the model - Parker Dam is an arch dam with five stoney gates, 50 by 50 feet, mounted in the spillway section. Plan, elevation, and section of the spillway structure are shown in figure 1. The model consists of a part of the dam including one of the gates, extending downward 45 feet below the crest and 27.5 feet each side of the gate. Model construction was of galvanized iron and steel with the exception of the crest which was made of plaster of paris and cement. A groove in the crest filled with load provided a coal for the lower edge of the gate. Rubber tubing fastened against the upstream face of the gate provided scale for the sides. The prototype gate will consist of horizontal plate girders with a 9/16-inch skin plate on the upstream face. The gate assembly is shown in figure 2. The model gate was designed with a radius of gyration of the lower horizontal members such that the free period of the model gate would be $1/\sqrt{30}$ of the prototype. The model gate was made from a solid steel plate 5/8-inch thick, machined down to 1/4-inch thick, with ribs 3/8-inch high and 1/5-inch thick spaced on the downstream side of the plate similar to the
the spacing of plate girders in the prototype. The formula \(t_n = \frac{2}{\pi n} \sqrt{\frac{l^2}{k}} \left(\frac{\rho}{\rho g} \right)^{\frac{3}{2}} \) (Applied Elasticity, Prescott, p. 211) was used to determine the free period of oscillation of the gate. (\(t_n \) = period of oscillation, \(n \) = mode, \(l \) = length of span, \(k \) = radius of gyration, \(\rho \) = weight per unit volume, \(\epsilon \) = Young's modulus, \(g \) = gravity.) Dimensions of one of the lower plate girders were used in the computations. The girder was assumed constant in section with a cross-sectional area of 107.25 square inches. The average moment of inertia was taken as \((70,000 \text{ in.}^4)\) which resulted in a radius of gyration \(\sqrt{\frac{I}{A}} = 2.133 \) feet. The free period of oscillation of the prototype gate is 0.048 seconds. As hydraulic time scales vary with the square root of the scale ratio, a period of \(0.048/\sqrt{30} \approx 0.019 \) for the model horizontal beam should be obtained. With this period any hydraulic tendencies to set the gate in vibration should be similar in both model and prototype. Details of the model gate are shown in figure 5.

Discharge through the model was measured with a "V" notch weir. Discharge varied from 0.200 to 9.76 second-feet or prototype for five gates from 7,100 to 240,380 second-feet. Maximum design discharge is 260,000 second-feet. Piezometer openings were made in the crest along the centerline of the gate openings. The positions of these holes may be seen on the graphs in the appendix which show pressures on the crest. Profiles of the water surface on the crest below the gate were obtained by means of a point gage fastened to a bar across the model.

Procedure - In the tests a discharge was maintained for a given gate opening such that the upstream water surface remained 20 inches above the crest or at elevation \(\frac{100}{130} \) in the prototype. Tests to determine whether there
were vibrations in the gate were made by placing the hand on the surface of the gate. It was reasoned that vibrations in the model which could not be detected with the hand could do no damage to the prototype. For each of the twelve gate openings water surface profiles were taken along the centerline of the crest downstream from the gate. Pressures along the crest were also taken for each gate opening.

Results and conclusions - In all cases no vibrations caused by water flowing under the gate could be discerned with the hand. Hence it may be concluded that vibrations so small they cannot be noticed in the model will have no harmful effects on the prototype. Points showing measurements of pressure and water surface along the centerline of the crest are plotted on graphs in the appendix. For the small gate openings 0.025 and 0.0089 (9 inches and 18 inches prototype) the pressures on the crest appear greater than the depth of water. This is undoubtedly due to capillarity in the piezometer tubes. Pressures along the crest upstream from the gate were always positive. For gate openings up to 12 feet the pressures were greater than 25 feet and are not shown on the graphs. The crest profile is correctly designed as the pressure along the length of the crest remains everywhere above atmospheric.

Gate coefficients are plotted against gate openings in graph (10) in the appendix. With the model it was impossible to obtain the maximum discharge for which the gate was designed. Extrapolating the curve to give the lowest expected coefficient for maximum gate opening a coefficient \(C = \frac{Q}{\sqrt{2gh}} \approx 0.56 \) is obtained. Using this, prototype \(Q \) for full-gate opening with normal headwater at 50 feet above the crest is 300,000 second-feet. Maximum design \(Q \) is 260,000 for the five gates.
Subject: Progress report on Parker Dam gate tests - Vibration Studies.

1. Purpose of studies - A model of one of the five stonewy gates in Parker Dam was constructed and tested in the Denver hydraulic laboratory during January and February 1937. These tests were made primarily to insure that they would be no harmful vibrations of the gate. Coefficients of gate discharge were also obtained as well as pressure and water surface profiles on the crest for various gate openings.

2. Description of the model - Parker Dam is an arch dam with five stonewy gates, 50 by 50 feet, rated in the spillway section. Plan, elevation and section of the spillway structure are shown in Figure 1. The model consists of a part of the dam including one of the gates, extending downward 45 feet below the crest and 27.5 feet each side of the gate.

Model construction was of galvanized iron and steel with the exception of the crest which was made of plaster of paris and cement. A groove in the crest filled with lead provided a seal for the lower edge of the gate. Rubber tubing fastened against the upstream face of the gate provided seals for the sides. The prototype gate will consist of horizontal plate girders with a 9/16-inch skin plate on the upstream face.

The gate assembly is shown in Figure 2. The model gate was designed with a radius of gyration of the lower horizontal members such that the free period of the model gate would be 1/50th that of the prototype. The model gate was made from a solid steel plate 5/8-inch thick, machined down to 1/8-inch thick, with ribs 3/8-inch high and 1/8-inch thick spaced on the downstream side of the plate similar to the spacing of plate girders in the prototype. The formula \(t_n = \frac{1}{\sqrt{\pi R}} \left(\frac{w}{E} \right)^{1/2} \) (Applied Elasticity, Prescott, p. 211) was used to determine the free period of oscillation of the gate. \((t_n = \text{period of oscillation}, \ n = \text{mode}, \ l = \text{length of span}, \ R = \text{radius of gyration}, \ w = \text{weight per unit volume}, \ E = \text{Young's Modulus}, \ g = \text{gravity}) \). Dimensions of one of the lower plate girders were used in the computations. The girder was assumed constant in section with a cross-sectional area of 107.85 square inches. The average moment of inertia was taken as 70,000 in. which resulted in a radius of gyration \(\sqrt{I/A} = 9.155 \text{ feet} \). The free period of oscillation of the
prototype gate is 0.043 seconds. As hydraulic time scales vary with the square root of the scale ratio, a period of 0.043/\sqrt{10} = 0.0093 for the model horizontal beam should be obtained. With this period the hydraulic conditions to set the gate in vibration should be similar in both model and prototype. Details of the model gate are shown in figure 9.

Discharge through the model was measured with a 7" notch weir. Discharges varied from 0.200 to 0.75 second-foot or prototype for five gates from 7100 to 209,000 second-foot. Maximum design discharge is 550,000 second-foot.

Photoset openings were made in the crest along the centerline of the gate openings. The positions of these holes may be seen on the graph in the appendix which shows pressure on the crest. Profiles of the water surface on the crest below the gate were obtained by means of a point gage fastened to a bar across the model.

2. Procedure - In the tests a discharge was maintained for a given gate opening such that the upstream water surface remained 20 inches above the crest or at elevation 60 in the prototype. Tests to determine whether there were vibrations in the gate were made by placing the hand on the surface of the gate. It was found that vibrations in the model which could not be detected with the hand could be detected by the prototype. For each of the twelve gate openings water surface profiles were taken along the centerline of the crest downstream from the gate. Pressure along the crest were also taken for each gate opening.

4. Results and conclusions - In all cases no vibrations caused by water flowing under the gate could be discerned with the hand. Since it may be concluded that vibrations as small they cannot be noticed in the model will have no harmful effects on the prototype. Points showing measurements of pressure and water surface along the centerline of the crest are plotted on graphs in the appendix. For the small gate openings 0.020 and 0.025 (9 inches and 12 inches prototype) the pressures on the crest appear greater than the depth of water. This is undoubtedly due to capillarity in the photoset tube. Pressures along the crest upstream from the gate were always positive. For gate openings up to 10 feet the pressures were greater than 25 feet and are not shown on the graphs. The crest profile is correctly designed as the pressure along the length of the crest remains everywhere above atmospheric.
Gate coefficients are plotted against gate openings in graph (66) in the appendix. With the model it was impossible to obtain the maximum discharge for which the gate was designed. Extrapolating the curve to give the lowest expected coefficient for maximum gate opening a coefficient \(q = \frac{q}{A/\sqrt{2g}} = 0.56 \) is obtained. Using this prototype \(q \) for full gate opening with normal headwater at 50 feet above the crest in 280,000 second-foot. Maximum design \(q \) is 335,000 for the five gates.

\[
C = 0.56 \quad A = 50(50)(5) = 125,000
\]

\[
Q = CAV^{2/3} = 0.56(125,000)(8.02)^{1/3} = 308,000 \text{ c.f.s.}
\]

If \(q = 0.60 \) then

\[
Q = 0.60(125,000)(8.02)^{1/3} = 330,000 \text{ c.f.s.}
\]

If \(q = 0.61 \) then

\[
Q = 335,000 \text{ c.f.s.}
\]
No Flow Looking Downstream

Small Discharge
PARKER DAM GATE TESTS

GATE OPENING ~ 0.030 ft ~ 150 lb
DISCHARGE ~ 0.561 ~ 13827
U.S. WATER FL ~ 450.04 ~ 420

• = pressure on crest
= water surface
PARKER DAM GATE TESTS
GATE OPENING ~ 0.100 ft
DISCHARGE ~ 5872 c.f.s
U.S. WATER FL ~ 420

C = 0.640

D = Pressure on top + Water Surface

[Graph and data points]
PARKER DAM GATE TESTS

GATE OPENING ~ 0.200 = 60 PF

DISCHARGE ~ 2.17 = 63768

U.S. WATER EL ~ 430.17 = 420

C = 0.675

MODEL SCALE = 1:30

PRESSURE ON CREST
4 = WATER SURFACE
PARKER DAM GATE TESTS
GATE OPENING ~ 0.300 ~ 40 ft
DISCHARGE ~ 31191 ~ 70650 gal
U.S. WATER FL ~ 750.0 420

C = 0.645

Pressure on crest
+ = water surface

VLS-O.G.H

10 inches 12 14 16 18 20 395 396
PARKER DAM GATE TESTS

GATE OPENING ~ 0.400 ~ 120 HR

DISCHARGE ~ 4,188 ~ 1,032.24

U.S. WATER FL ~ 450 ~ 420

C = 0.645

1:30

= pressure on crest

= water surface
PARKER DAM GATE TESTS

GATE OPENING ~ 0.603 = 18.09 ft
DISCHARGE ~ 6.063 = 147.93 ft³/s
U.S. WATER FL. ~ 450 420

C = 0.643 1° 30

• = pressure on crest
+ = water surface
PARKER DAM GATE TESTS

GATE OPENING ~ 0.800 ~ 24.0
DISCHARGE ~ 7.438 ~ 183323
U.S. WATER.FL ~ 450.17

C = 0.616

1:30

= pressure on crest
+= water surface
Parthenon Dam \(H_0 = 50 \)

Honald \(Q_m = 2.70 \)

Kearsick \(Q_m = 3.50 \)

Dane (Rahim) \(Q_m = 3.59 \)

\[\text{Ave} \cdot = 3.60 \]

\[Q \cdot = 3.60 \frac{1}{n} \cdot \]

\[= 3.60 \left(\frac{250}{255} \right) \frac{50}{255} \]

\[= 320,000 \text{ cfs} \]

\(\sqrt{n} \cdot \) 3.70

\[Q = 329,000 \text{ cfs} \]

\(\sqrt{n} \cdot \) 3.50

\[Q = 311,000 \text{ cfs} \]

At 55' head \(C = 3.60 \)

\[Q = 3.60 \left(\frac{250}{255} \right) \left(\frac{55}{255} \right)^{2/3} \]

\[= 370,000 \text{ cfs} \]

\(\sqrt{n} \cdot \) 3.70

\[Q = 380,000 \text{ cfs} \]

\(\sqrt{n} \cdot \) 3.50

\[Q = 360,000 \text{ cfs} \]
From Project Data Book

H.T.W.S. (gpm) per ft. operating = 369.5
Channel width at pumped D.S. p.s.f. = 400' +

For 320,000 cfs
\[q = \frac{320,000}{250} = 1280 \text{ cfs} \]

Critical Depth
\[Y_c = \sqrt[3]{\frac{q^2}{2g}} = \sqrt[3]{\frac{1280^2}{64.4}} = \sqrt[3]{25450} = 29.4 \]

\[w = 5(Y_c) = 250 \]

Area = 7350 ft²

\[W = 400 \]

Depth = 11.75

Min T.W. = 364.5 + 11.75 = 376.25

Max T.W. = 364.5 + 2(11.75) = 388.00

This is below zero crest all 11.39' 2.5

T.W. should not interfere with flow over crest and coef. will not be reduced due to tail water.

Coef. may be increased somewhat due to the rather abrupt upstream curvature in crest shape, but coef. is not expected to be greater than 3.70 even though

3.50

at N.W. SE = 450

Free flow Q will range from 310,000 cfs to 330,000 cfs

at R.W. SE = 455 if possible, Q will range from 360,000 to 380,000 cfs