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CONTRIBUTION TC THE THECRY OF THg
FLOW IN OPEN CHANVELS AND PIPES

‘_‘Sznogsis.

‘ The impulse principle is derived from the fundamental equa- -
tions of dynmmics. 4An equaticn for the slove of the waier surface

is derived and discussed for Several special cases, but it ig only
valid for flat slopes. However, it ean be oxtended to greater siopes
end can be applied in this naw form to the flow in pipes. Finelly,
several examples ere discussed. S :

The Impulse.Principleﬂ

Leonhord Fulew developed one of the most importent prin-
¢iples in the theory of the flow of wnter. He arpllied the besie
equetions of dynamics to ap 1nr1nit9§imal volume of a fluid whose .
position 1s defined by the vactor, r; or by the corresponding xyz-

cocrdinetes, and he obtained the egquatione known today in hydrodynmmipé-'

&s the Euler equations,

_ . Puler's theory, although only applicable to the flow of a
frictionless fluid, can easily be trarsferred to flow Pogssessing .

Trictionsl resistanca. A lew of dynenics, when expressed vectorially;._

showa“th&t,»-

: %;_;)  ::.l:EE;- j fF- ;;f-;"%f‘E.zif%.._A

in which G = the forcs of zravity vsctor.
' K= the pressure force vector,
F = the Trictional force veetor..
€ = the time. Ll B
m= the mass, L
¥ = the velocity vector,

Thig rélationfis-evidently valld foé an'infinitelf sﬁall elemnent
volume,d+«, erd then its Yorm is as follows: .. S :

T 8 et e e s
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A [y )“ e
£ — vdt|=s wdx dP+ g
G (Fvey)eracian oF

in which ' = fhe'specific waight of the fluid, -

9 = the acceleration-cf gravity,
Ir We.now integratq over any sultably chosen region; E;'Within'thé
fluid, we obtain the impulse Frineipls; thus T : o

."i”.f_?i (dm'\?)zja‘o&t + §¢5+_ Foofz) .\

The two inteirels on the right-hengd 8ide. of the equaticn can be
evalusted- directly a8 exteranl ust be considered in the .
1isht of physical deta already i lstance. ‘Tne
‘ef't-herd side of the ejustion ‘ _ roed. Thug.

2(va)
‘ f5t: £

i <

—
—

is rerformed, we may write'

8 . SRR ' B ) ‘ ‘

_ S I o 8 o T
%:(d'c V'),: é—s)'é v dt .+ J(c{?f&\/)‘?/ dt

.

dt _i_ "'3“"“'}@';:1." (v )°dr

Yy if the firet temm 1s differentiated before the integras
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-Sinde‘by-def;nition;'

. -Pu'.t |

Thé total‘imﬁulse, I; 1n:th§ region;B of’thé flueia ie;},"'

-z J vdt.
9 Yo

However, 1t 6ég'bé‘prov§d* that,

Cginy
',"J-(ﬂ”‘d. v_)g“z_c_{»c

Vcdo=dQ"

vhere 9 is the discharze par.séégnd,'the impulse prinéipié;assumes

the following form Co - TR

NI - X R

?Prdofuof the equation, 3

R » T . - W o
B B R
fmeneefonse

-

-G and b are any two vectors 9nd € 1s a4 unit vector. Cartesian

coordlnates are used throughout.‘

a = 2Z e, a 'b
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Cortinuity 4g written,

a b

Then from the tensop
excluding com

in whiek -
end obtain
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The first intecra‘l-ia canéd the impulse tran‘s'ﬁbrt.

:
K4
!
i
p

Equﬂtton {Sb) is the most éeneral fonu of ure i culée pf1h4
ciple for the sourceless motion of cn ineomprassible fluid. = Special
types of - :low can be easlly defined on the tasis of this eguation:.

e

-

it E%%'zo “the flow is ~+Pady; Flow over & welir or under é'sluibe‘
zate, and motion of water in raoervoira erested by dams, can usually
o con‘idered steadf. o e - :

On the othcr hand 1f éjOLlfzio , We have uniform rotion.

o o b e

AT

This ig the ca sefpresented ay_the.pulsaticns.of the mess of water in
‘& penstock (water hemmer problem)}. VWith steedy uniform flow as ina.
canal with constant cross section and slope the external forces
'must be in equilibrimn.

e

The appl catxon of the imwulse urinciple to B problem in
hydraulics of tbe moat general tyye procends as follows.

1. Establish the boundary of the fixed reeion B, called the
*control area. '




S 2. Calculate the external forées'actihg on the fluid within
the region, E, in other words, corpute the force of grevity, G
the pressure fOrce,§Sd.P_; and the frictional Tforece, F .-

3. Calculate the impulse 83 & Tunction of the time and form ‘ljé

o S LB e
4 Determine the impulse transportlgg ol T .

bresupposes that either tha Pre relocity vector 1s”known.;“
as a Turetion of the resition, 4as & rule, the pressure is calculated
,knowing'the'velocity4distribution. t can bE‘determined_by-means‘of,&
the equation of ‘continuity div V= 0as long ea no reagsorable e
assumption 1s possible but this often introduqag considerzble mathe-~

matlcal difricultigs,
Application of the Impulss Principle
' .10 En Open Channel Co

Given the curve or the bottom, the dimensions of the cross
sgetion, and the discharge, Q; to fird the proefile of the‘water.surf
Tace. In order to solve thig problem, we place two verticel gections
rerpendiculer to the axis of the caral znd Ax epart, Theirfareas~~g;}
are Ly and An+1.3respectively. N S b

| 1. The volume of weter contained between thess two piahésTISr  vk
- the region ofjintegretipn,-s.; o ‘ R

: *'2.'uExternel fofeeé;

becé of'grQVityg—-The force of gravity ié gifenfét"once:by o
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The fcrde or‘thé prégsure on the bot om is .
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Frlctlonal force.--In order to find an expression for the
.frictional force, we assumawyuac«vbe resistance lew for un1-~“
forn steedy flow eon he trensferred directly to nonuniform
nnnst::&g 1;0#. hcno 1ng to the ezuation alreauf found above

f ‘.j"_§; VE;; .CLV\ (p

in which

i il

LR

= ” /\«wn'fk‘ ‘Y\+l ) Zk\x
. L can be conputed accord1n6 tb ﬁﬂe'

1
formulas bubllshed by ¢ hm4per_or uuthors, Thus dnyf.andi
Fromm give L ;j ‘ Co S

Lo

and tan ¢ « the lepe

_, lo ( BM : '";l“{.




(R =, the bydraulic radius ccnnuted as the “atlo of area of" flow
to the wetted nartreteﬂ Qr ‘

2( ]o 314 \/7'

AR

(= !
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Thus ¥ is computed’

iy
._3_/9__
wS

T pulge transport.‘ T e iupulse »ransport is un‘quelv
depandent on the areas Ap' and An+1 If wa egsure’ tret the velocity
uistributlon at a cro*s cection is kncwn, then at section An we_Luve
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Since it is not conve: iient to integrate we 1ntroduce th .e avera:e -
velocity : . ‘ .

Ol,\ is a correction factor which ta es ir.to accourt the nonurifomity
of the: velocity distnbution mrer ...he '-'hole cross sectmn. - I% ia

found from .
A

v,m o A'
A'h \Z

%i-.

Therefore we use I! in the i‘_ollovdhg fom‘j

) ""j'b/-._‘ 2(
O"‘n'_". ; CX
: | _'j‘i.Yi_"Q, " V

The tn'p‘ulse' equation becomes
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Bui Trom rigure 1 o . _
zﬁl'T" :; zﬂ> :Z_ A kj .ék‘ﬁ't.cl.VT (#>_

Introducing these e-.,vnlities end car.cslllng vig have
Sdeﬁ-Qmﬂ w “‘QVCX
—A"Z(Aw\"r/\hﬂ) 2 (A +Aw\-ﬂ>cRiS\'~*AX a

Divide thrcu»h by AXxand let AX-2 oend then negl.,ct all teima con- .
teining infinitesunuls of tha second order or higher.v Then '

2Q Cav: e
3 (QV )'*gaﬁ‘w*". ’“3 '“°*",

Since A is a funcfion of (z-y), we ha?e_thg_fdlicwing"relationg Ciw

Qs(a__z_ “ a“-‘)
T AR TNaX . ax/

S
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@, QF él:’. D
a_t+Azo<_ ax+

=7 %i" (4 37 A

The equation of continuity'ig"

2@ _ <3z O ay

ax T T Y 5%

Differentiate {10b) azain with respect to x and equation (11} wifh
respect t0 ¢ and x, Then irtroduce (21) into (10b). sfter a
single transfonnatioh,_the Tfollowing expression is obtained;

%z DLV, ¢ 2z _¢ ¥z 22V £ 9z g -
) _Z +1,'-|(5_€)+{2§.£ ”{3<§§i+{“(d>‘)+%ax +f

'where, -Fhl:.{-"(Q,Z;Lj)

This is the general differential equotion for romunifom ronsteady

flow, especielly for wave xzotien, in & canel vwhose cross section
varieg in any way, Iowaver, & general solution ig not possible.

Smell Disturbanceg®

y We select}a‘particularly'simple'case of equation (12).-
Given a ecengl of;canstant‘crosé—sectional~area,‘A.:and a flat
Bottom. Let Z, be the initial depth of flow. If this c¢ondition
iz disturbed at any pluce X, the disturbence rropagates itself as:
& wave. Ve assune further that the moximun variation ip depth -
1s very small in comparison to the depth of flow, Then . '

(12)

T e
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and the effect of the frictional reaiatunce can be neglacted.
we obtain ‘

2
z
9 w2
The solution of this difi'erential equetion is
-' z -.{-’(x-wt)-!- £ (x+wt)

wkich satisfiea (13) when

. A
wh= 59

The initial conditions are the positicn Xl. the thne tl, and the
depth, : : .

'F (x uut) + -Fz(x—t-wt)

fn eaual depth %11l occur at X, at some later tﬁne, tz‘ Therefore

Rl Wt'!-; Xp ™ Wtf&

'The disturbsnce propauates 1tself with a velocity, W, If befofe the

éisturberce ceecurs thers im e velocity; Vb, in the channal the
veloctty of travel of the mave 15 :

v+f-—»




or, if the chennel has a‘rectangular_cioss section

P Wi § S i T g T SRR A e e g R A R

Steadv Flow
'With steady flow '
DQ
Ej*;

o iR bk N A TN s, N T TR R

end also according to (ll)

b@
&%
'ﬁivising {10%) bf Ay wé‘hgve
Loz, Sos Jasdy s 7, O |
AXN\ cﬂ/—\f’ - cﬂﬁ@ cl % % ’L\Eﬂ' Azﬁc Q.l.‘s.q. ‘(15_)_

This egquatlion can be used to- ccmpute beckwnter cur'es4 when X
‘13 assumed constant., Also place- R

2}71 e
L aX o
end obtain the folid'e:j.ﬁg relation
—.AZ (O'Z- - ujA —t

&Stcw'\ "l— .
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wkich is & form Sidll&r to that found by Bag en5 'The'numefical come
putation procecds in the 1ollominb steps._ 5 '

1. Choose & sultable AT
2. Celculste A, R, &nd S for Zy and then detennine me..
S Find Z] = 50 - 532; end repeat the process.

A yelue of X is found for each corrcsponding velue or 4 and when
- plotted give the veckwater curve {(figure 2). Although the value of

X - Is ebout 1,06, it is usuelly teken asg unity. If the everage
veloelty, /4, 1s small, the rollow1ub rel&tion mey bé introduced:

Qsoc\___

5A7 =%

~The result is fhe approximate rormula mnch used in hydraulidé fbr com-.

putlnb backwatar curves, or

R
| f\dz
A X

Since Z‘m_y -
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Laterul inflow or outflow .can- bs eesily included in thé-

cuse of steady flow. Then the. discharge in the canal veries with

X and d§. If V' is the projection .of the lateral inflow velocity
of the inrlow discharge d@, on the valocity in the canal then

'

ax TV ax v Qouﬁr fcl::'--g'.'

_og__\.} occ:tv ( -V' dQ da '1 ;
+ é] (18)

This equatlon was first derived bj Henri Favre 1n his"Contribution
a 1'Etude des Courants Liquids» {Contributions to the Study of - tha
- Flow of quuids") Zurich, -

Shooting snd Stresming’ Flow’

Nerlactlng the frict;on LUSS (15] becomes

—

azl rob OO<S d
. O% A® g _A"',«a. X

— aé‘(qu

uOme general conclusiona can be draun frea this equation.

1. Ir the slope of the water surfece ig zero the bottom

_alope must also be Zero or § must be ‘zero, that is the wvater: 15* 

at rest.;

R ‘.* . .‘":: R L L
2. If the 510P6~0f the bottom 1is zaro, L = O,

. the lepe of the water surface must be zero or

(9/\ — Q ocS)

l'_Q)OtS




At peis %

(19)

.This formula, when X =1 , agress with the velocity oi‘ proyagation
of small disturbances in .still \mter. |

Ir

gA® - Q*xs)yo0

A disturtsnce moves downstream with a velocity

V9§ v

“@

end upstream with z veloeity




then"lr_

(9~ -Pas)<o

. L
R P

"

¥

and a disturbance moves with a negativé_veldcity

Therefore it ddes not move upstresm. The surface slope,fthsrerbfa, -~
. has the seme sign as the bottam slope. S T

R s,

As'proﬁosed to Rehboék whén o i
9¥ - Gros) o
‘the flow is said to be St”r‘eaming' 'a.n_fi"whe'n -
o (9,2\3 ”_Q?.O‘.S).< o

1t ig said to be shooting.

2
3
£
4
T
i
1
Ty
kT

In order to'aimplify this concept we shall consider in )
the follewing a cenal of rsctangular cross seetion.” The transition
from shooting to streasing is when o o : o T

V=vgb o

it is computed from

The depth at this transltionalIVeld¢ity-is'célléd'the ériﬁicql depth;

QO

: landﬁthe'typd of flow cen be celled -
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Sﬁreaming Tlow if "D>l.1gk-
. Shooting I‘low ir Dader
| If s hunn is placed on the previous level floor of the

cenel and the cross section is rectangul&r three ty:es of overflow
jats are possible. : ‘ :

Casa I. Ir [é.&a-\zcxsl i elways positive, that is, if d > der,
streeming flow persists throuzhout and the slope of the water surfece.
and the bottom slope have opposite signa.

gase IT, If {zh -‘3048) is elweys negetlve that is, if d<der,
shooting flow exists throuzhout apd the slopes of the water surface
end the bottom have the same sign {a rare conditmn).

Casa ILI. I [_,A -Q'?'OL 8) chenzes sign, at the crest: 01‘ the nump,
where dy/dx = 0, A

(bA —4.2“0) = 0 and D = der

Trhus the flecw changea_rrom a streaming to & shooting corndition.

Since the conecept of g weir with a rounded crest is funda=~
mentally not far removed from thet of & hump in the floor, the flow
pattern beinz ag in III, an sttermpt cen be made to develop a weir
forznula using the assumption thet the ceritical depth takes place
at the crest ¢f the weir (Eundachu) Of course such a theory is only
roughly approximete, since the curvature of the streem lines, which .
iz important with this type of weir, is npglectsd though this i3 not’
pernigaible, eg experimental results show.

Howsver, the curvature of the stresm lines can be neglected

with some Justificatlon for very low sills, and fron case III we ob-

tain V . e L R
@ _:: S"de S (20w)

I‘a roducing the. heizht “hy of the energy e,raaient above tha crest of

'c‘be weir, e have

L T

T

LR T Sy e e
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With this ©..v o e SRR
S N /o o 3 |
Q=sases Jogh®

The sitveticn when a réctangular canal cr variable w1dth S, end &
level floor {y = o) is used, 1is entlrely analogous. e
Formule {10a) then resds

dz Q dA

—_— CK

A X qA“

‘A:z'-s_'

dA _ _d=z

d)f. . cLX %Z'

As before, three pousible pattérnsréf flow exist which are 
anown in‘figure 4, _ T S

These patterns show a”complete correspondancn to those in

"inure 3. However it is to be noticed that with type I, the depth

decreases as the wildth decreses; with tyre II the denth Increeses
vith decreasing width. TFor type 1I1, either discharge formuls {20a)
or {20b) is applicable, since the critical depth ccecurs at the narrow- -
et Section, ‘ B
- In most emses, houever,.when the cross section ig narrowed,'
do/dx and often the. friction term 1/CR+34 must be taken into con-
eld ération, For the reeent, particularly ir da/dx enters, thege

- fectors cap only he considerea froi an experimentel standpoint. Thus e

tre abOVe analjsis is only of thcoretlcal value.

h?teLsion to Steep Bottcm Slopesg

Although all of the foregoing fornulas are not general sin¢§}L3f7“'




they wnre derlved for channela af very flat sloPe, they possess,' :

nowever, abt least same rraectical sigpificance for open- charnels, . For

steep slopee, the force of friction must be resolved- irto horizontal

erd vertical corponenis. This means thct the tressure on the bottam,
“represented by the pressure hsed. h {8 ), is no loxger equal to the.

depth of flow as biven by the equation of the profile of the eross
- section p (E ).  Since the friction acts perellel to the direction B
4f flow, h {§) is best deternlnpd in the following me aner? L

i vt N

b A S o

gy

i

i ey fuRi e N i pad

S AT e et R A %

AS can ba easily showu, the preesura distributlon aloJ ra vertical  "”“
is trlﬁnﬁul&r. however, the graseure at-the bottem mnct ve set equal Lo

PO

Considering this, we cen eaéily'obtgiﬁrﬁéing eqﬁétion'(ioa);aa‘é'baéié.'"

3—{ DX “(Q\‘[ )+ R\au} __L dp ‘ i—)z-(ACJCO‘: (t) (25) :~; ‘

\\ B
\

‘The eiuatlon 1“c:nr ateady flow can be found rrmn'

s

Qs Gucs d—j doi@ 3 v
T@) qﬂddx+dXAqn¢aRﬁ4EF¢ RU
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Equation (16) for computlng the backwater and droP-down curvea has

' the following new rozm._'

Sii:xilar_ t;o :-:.equa.tio_n {1¢) ,"'we‘_r jh&’vé',

4 ,',‘;ff' o \J["'ﬂf_—'jl L
cos 4> e CaC’CS =
Applicatibh to Pipe-Lines 3

: The equations derived atove are also applicable to plpo  "
linesz, The follow1ng simplifications ere now apparent' :

fl;‘ A dependa uniquely on X erd is independent of. 2.

2. 4 ia uniguely a functlon of the time,- ’ and is not depen- .

t-dent on X. hlth thia,

9*—"* F(‘t)

t

'Eqﬁation {23) can'ﬁow’be ﬁritten e
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The éros g~sectional erse, a, nermnal to snd the valocitv v, uarallel
to the axis of the pipe are introduced in plece of 4 ard V. Also.dx. -

18 replaced by an element of the certer line of the pipe, dl (figure

5}« Then

= Co3 i = dl = ‘
“ A _ (t?‘_ v e P T 5% qb
Since now V, f% and X end, thererore the entire left-hand side of
equation (23&;, are 1ndepandent of 2, we irteprate with restect to
X, or rather 1_, and obtain. -

AQ 29{_@_ 4+ tcx;\_’.z' * V2 doc dl

dtuc‘g_ '2?“‘.",. 29 dl

Vd?q
ZgCQ(y

The third end fourth terms ere COmbihed and‘the‘sum integrated by
perts.. ThuB ‘ o : L :

vdmd_z 'vdad'-‘:.ld&d -
23:11 q otl l_zg,d'l 2-"

2(3 cit

;2—'— [v Cx] jon..vj—z/dl
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This expression represents the loss
distribvution. .. . _-~,' ;_ _ e I

S e

Since 2z rep resants thée sum of the elevation and presaure‘f
rnads, it may be replaced by B S L ‘

e AN

= h9+h

'were'h‘ = alevation bead1meaabred froL an“ conveniently cncsen
datum piene and hp = the preeaure heed (figure 5).

L e S b e LR

The _f‘inral equation is’

O(ZV2 _ Oﬂnvl

-This’expreguion can be recuced to uhe oroinary Bernoulli equation
puttinb K = l thuB

iccording to the so-called'%ppower lawlo; the value
100 R ' ' L
8

Examples

The epplicetion of the computation of bacwzate; curves
bes been given ghove. It will now be shown thet the weir formula.
*un 1o be derived from the general ejuetions. It is evident that -
cuch a formula will not contain an eccurate veluve of the weir coeffi—
zlent, Lquatlon (ZOb), givan above, for the case of a :actanﬁular
welp ig - ¢

.

Q= 5 2gh




A triangulgr wair can be treateéd in
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‘The ordinery form of tho equation is :_'7,‘-"_7 BN TR
. O S —z
= tahn = WU\ > et e

B T S DM A R

The volue of  must be detérmined'dxpefiméntallyL

| For e gharp-creste -
od welr with (> = 459, it 4s 0,59, oL

Two_further'examplesftakeﬁ'frqm pipe-line problems are now

- ccpsidered, the first being a sudden expension in a ripe (figure 7)o
The loss of heed, h _, , can be caleulated from eguetion (27}, thus

}ﬁ}wQ = {:‘0’2' ot ‘ — V2w Si:{‘ RE
CEWT ;3;3”- Ao ) DL

e T LR I N Y A s, 7 S B4 ey 3 R,

S e S

o

,‘ ! ,—_ "‘ V Ilr.v ‘,
Q=

.

i
i
4
2

At thé transition frem the smaller pipe to tke lerszer pipe, ths flow -
is similer to en expending jet in whieh the veloeity, w, would be
pregent. Within this trapsition ® >\ end 1s eagily camputed from

P

LAI'(;Z _ W
vQ ooV

In order to integrate, we reslace the sudden transition bﬁ‘é‘Very_ﬁ"'l

&4

e T

e

stort transitional done,‘l ‘ R .

‘.

EHX S

within the limits of this cbné,‘fhe integral_

¢ easily computed, thug
2 L 2@   o 2a d S
W, dv cu:jw_ou

Vv dr
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On account of the shortness of the tran31tion, it is nermigsible to
placa : .

Then

Ay -
qvﬁdl dg jdv \/( \/ A—Via’)
T : ‘

\/2.(4. = Vz.

Downstream from cross section Z,

| | ci\/ L
\l CO\’\bt — =0

-’dl

‘and when this is so, ﬁhe in*e;ral is also equul to zero. ;'h

h. is eashly computed now from _
hw [ - 4 (\/ ‘\/_Q_y—v,)y‘aj |

(v v2

Equaticn (aﬁ) is evldewtly aopliceble for csteblisnina
the influence of the ¢closing time of velves or gotes on water hamner,
es vell as for Investigeting other nonsteady typﬂs of flow in
Pipe lines. Let the problem be to £ind 3 &s & fusction of the
time when the dischzrge gete et the end of & pipe lire is suddenly

-opened. The trivial solution is obtelned that < rspidly approaches

taa value

s et i gy

Q { \/2«3H




'Since this problem has 11ttle practical value 1t will be Lonsicered
only briafl} haree  : , _ .

: . If we assume that Oc ia not subject tc any variatiou through-
out the whole length of the pipe 11no, Ve have according to sguation
(28)

Cdo (. LRRVRE e
at q+Q Sz Ca‘am,-*;w(m-—mf

' Position l is at the lsvel or tbe reservoir reeding the pipe lina= :
‘end position 2 i5 &t the gate at the end of the pipa line. *The in-
ta&rals S

can be evalusted for any pipe line to-be investigated. A nomhcmo-
Geneous differential equaticn of the second degree 1s obtzined whoss
solution 1s best obtained by methods .of approzimution (Runge Kutﬁa,_
“Iterationeverfanren. mnathod of Iteration.")

'This method of sclution is tO“ba recomended for aecurate
icvestigetions because the ccefficient of the term, 3%, is'a function
of the time - if the cross-sectionel area, aa. ‘changes .as o conge-

. quence of the action of the gate mechanism. In many cases. this da- -

- rendence cannot be represented anslytically in a simple way., The
nest unfavora*le case is frequently that in which this eross section

denrenues from a maxlimum value of zero. in a definite time, Tg.. Then’

#hen the gete is closed, Q = 0, Ta is called the opening or closing .
time.  The dlffererce oetvaen the totsl pressure nnd that pressur& e
obtained with steady flow is called the. dynamic pressure. It amountsg
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follows thet

| For an epproximation, we generally essure thet Q decreases
lineerly from itsg mexinum velue to zero.in the time, Tg, 02 -+

*,;if: '“T?S_f. 

——

Rﬁﬂn{

The‘relative‘préssure hend_is.

If a is constent dﬁd'Luié the;fdtai;;eﬁgth of the pipe'lihe,!itllu

Taglhgrhe) & Toglng-hg )

ﬁ.');::'f  C3¥n%xt;  ':”f‘ : \&ngiL_'fi‘

. In conclusion, it should be menticnéd‘thqt=the;b;sié'{ e
equation of Allievi vroceeds immediately Troae equetion (23), thus .
AV. - dh

BT

providing Allievi's assumptions are included; remely, constant erosg-
c‘ - N . . n

sectional area of the pipe, and frictionless flow,

Swﬁnatz'
Starting with the fund&nentél‘équations of dynemics, a fqré

mula'for-the dmpulise principle was obtained for the slope of thq' ,
¥ater surfece in an open chanael 'as a function of the crosg-gectional

-~

ares of the channel, the bottem slopa,’ the discharze, and, in certain

circumstances, the velocity distribution at a cross section, A pro-

-cedure for conputing backwater curves was derived in terms of these

Tectors, . :

ot s et e

o e A T ey i, s e ——— e,

AR A e it . ey 3y T b

A —

R e TR,




T
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_ The two types of flow, shooting end st
cussed in terms of this equation
penerel conclusiong relative to t
in the bottom of a canal and thro RN,
discussed. Next the equation p slops,
‘The differentiel equation obleirned thereby can be integroted .fop:
. closed pipe lines, giving the sc-called general Bernoulll:squation,

At the conclusion several examples were nnalyzed,
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