ENGINEERING MONOGRAPH

No. 13

United States Department of the Interior
BUREAU OF RECLAMATION

ESTIMATING FOUNDATION
SETTLEMENT BY ONE-DIMENSIONAL
CONSOLIDATION TESTS

Denver, Colorado
March 1953
ESTIMATING FOUNDATION SETTLEMENT
BY ONE-DIMENSIONAL CONSOLIDATION TESTS

by Harold J. Gibbs
Engineering Laboratories Branch
Design and Construction Division

Technical Information Office
Denver Federal Center
Denver, Colorado
ENGINEERING MONOGRAPHS are published in limited editions for the technical staff of the Bureau of Reclamation and interested technical circles in government and private agencies. Their purpose is to record developments, innovations, and progress in the engineering and scientific techniques and practices that are employed in the planning, design, construction, and operation of Reclamation structures and equipment. Copies may be obtained from the Bureau of Reclamation, Denver Federal Center, Denver, Colorado, and Washington, D. C.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF EQUIPMENT, PROCEDURE, AND DATA</td>
<td>3</td>
</tr>
<tr>
<td>Equipment and Procedure</td>
<td>3</td>
</tr>
<tr>
<td>Information Obtained from the Test</td>
<td>3</td>
</tr>
<tr>
<td>THEORETICAL INTERPRETATION FOR THE APPLICATION OF TEST DATA</td>
<td>5</td>
</tr>
<tr>
<td>Load Consolidation</td>
<td>5</td>
</tr>
<tr>
<td>Time Consolidation</td>
<td>7</td>
</tr>
<tr>
<td>LIMITATIONS OF THE ONE-DIMENSIONAL CONSOLIDATION TEST</td>
<td>12</td>
</tr>
<tr>
<td>DETERMINATION OF THE PRESSURE DISTRIBUTION BELOW A LOADED AREA</td>
<td>13</td>
</tr>
<tr>
<td>EXAMPLE OF SETTLEMENT ANALYSIS</td>
<td>15</td>
</tr>
<tr>
<td>EXAMPLE OF TIME OF CONSOLIDATION ANALYSIS</td>
<td>16</td>
</tr>
<tr>
<td>CLOSING DISCUSSION</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>The one-dimensional consolidometer</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Load-consolidation test curve for a moist clay</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Time-consolidation test data for each increment of load application</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Method of determining the Compression Index, C_c</td>
<td>6</td>
</tr>
<tr>
<td>5.</td>
<td>Determination of the Compression Index for the typical example</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>Procedure for determining the Coefficient of Consolidation, C_V</td>
<td>8</td>
</tr>
<tr>
<td>7.</td>
<td>Determination of the Coefficient of Consolidation, C_V, for the typical example</td>
<td>9</td>
</tr>
<tr>
<td>8.</td>
<td>Time factor curves for Cases No. 1, 2, and 3</td>
<td>10</td>
</tr>
<tr>
<td>9.</td>
<td>Time factor curves for Cases No. 4 and 5</td>
<td>11</td>
</tr>
<tr>
<td>10.</td>
<td>Movements caused by loading</td>
<td>12</td>
</tr>
<tr>
<td>11.</td>
<td>Pressure distribution by Boussinesq’s Equation</td>
<td>19</td>
</tr>
<tr>
<td>12.</td>
<td>Pressure distribution by Newmark’s Chart</td>
<td>20</td>
</tr>
<tr>
<td>13.</td>
<td>Pressure distribution by Newmark’s Table</td>
<td>21</td>
</tr>
<tr>
<td>14.</td>
<td>Settlement determination by change in void ratio method</td>
<td>22</td>
</tr>
<tr>
<td>15.</td>
<td>Settlement determination by compression index method</td>
<td>23</td>
</tr>
<tr>
<td>16.</td>
<td>Time of consolidation determination</td>
<td>24</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of One-Dimensional Consolidation Test Results</td>
<td>5</td>
</tr>
</tbody>
</table>
INTRODUCTION

This monograph demonstrates the application of one-dimensional consolidation test data to a foundation settlement analysis. Soil samples are tested in the laboratory to determine the settlement characteristics of the soil under load. These characteristics are used to estimate the amount of settlement of a structure which would result from the consolidation of its earth foundation because of the structure load. The test is also used to determine the settlements that will occur within dams and earth embankments.

The consolidation characteristics of a soil mass are influenced by numerous factors. Some of these are size and shape of the soil particles, moisture content, permeability, initial density, and physical and chemical properties of the soil. Because these factors are so numerous it is usually not possible to describe the consolidation characteristics with a high degree of confidence by means of judgment and simple index values. For structures that are critical regarding settlement and those whose cost would justify such tests, it is advisable to analyze settlement from consolidation tests on the actual foundation material.

The one-dimensional consolidation testing equipment and procedures used in the Bureau of Reclamation laboratories are similar to those developed by Casagrande. The testing procedures now conform quite consistently with the procedures presented in popular soil mechanics publications.

As conducted by the Bureau the standard test provides four main items of information:

1. Magnitude of consolidation for various loads

2. Rate of consolidation

3. Influence of saturation on consolidation

4. Permeability of the material while under load.

In addition to giving information on these items, the testing equipment has been applied to such specialized problems as soil-expansion studies and the estimating of pore-pressure development. The main purpose of the test and the reason for its development, however, are to permit rational estimates of structure settlement through the determination of consolidation characteristics.

The discussions of consolidation and settlement in this monograph include the description of the standard data obtained by the Bureau's method of test, and general applications of the results to settlement problems. Much of the information has been obtained from a research study of many publications dealing with consolidation problems in the design of various structures; and throughout this paper footnote references are given for the purpose of further study in this subject by the reader when desired. These references are to publications issued prior to August 1951, when the manuscript for this publication was completed.

The reader should bear in mind that, while this monograph is principally concerned with one-dimensional test data, the possibility of shear failure must not be left unobserved. Thus in the design of any foundation it is equally important that (1) the bearing capacity or criterion of shear failure and (2) the settlement be studied.

2 Casagrande, A., and Fadum, R. E., Notes on Soil Testing for Engineering Purposes, Graduate School of Engineering, Harvard University, 1940, pp. 37-49

FIGURE 1 - The one-dimensional consolidometer.
DESCRIPTION OF EQUIPMENT, PROCEDURE, AND DATA

Equipment and Procedure

A photograph and an elevation drawing of the standard consolidation test equipment (one-dimensional consolidometer) are shown in Figure 1. The soil specimen is confined laterally by a rigid ring 4-1/4 inches inside diameter by 1-1/4 inches in depth, and is loaded and drained in the vertical direction. Porous plates at the top and bottom allow moisture and air movements into or out of the specimen. The top porous plate is free to move downward when a load is applied, and the amount of settlement of the specimen is read on a dial gage graduated to 1/10,000 of an inch.

The load is applied in a series of four or more increments, usually 12.5, 25, 50, and 100 percent of the maximum load. Increments of 1.5, 3, 6, 12.5, 25, 50, 100, and 200 percent are recommended when a greater number of increments are desired. The intensities of load to be used depend on the weight of the structure and the overburden pressures that occur in the material, and should be of such values as to include the maximum anticipated pressure on the foundation. Loading the test specimen is performed expeditiously and as accurately as possible to secure readings at such early time intervals as 4, 10, and 20 seconds. The rate of consolidation is obtained by observing the amount of movement at frequent time intervals until consolidation is complete. The specimen is allowed to consolidate fully under each increment of load so that a final magnitude of consolidation may be observed. (This generally requires from 5 to 24 hours.)

A permeameter tube, attached to the base of the container and leading directly into the bottom porous plate, is provided to saturate the specimen and measure its permeability. The head of water in the tube provides the pressure that causes flow through the soil, and the amount of water flowing through the specimen in any given time interval is measured by the drop in head in the tube. From these data the coefficient of permeability of the soil may be computed for the density or void ratio condition at the time of the test.

Information Obtained From the Test

The general method of plotting test results is shown in Figures 2 and 3. The curves in these figures are plotted on the basis of consolidation in percent of initial volume. They show accurately the consolidation of the test specimen, and give a general indication of the magnitude and rate of settlement which may be expected in the foundation material represented by the specimen.

FIGURE 2 - Load-consolidation test curve for a moist clay. Addition of water after application of final load does not affect consolidation.
These curves may show several other characteristics of soil volume change. A sudden downward bend may indicate a breakdown of soil structure at a particular loading, whereas normally the shape of the consolidation curve is concave upward. Figure 2 (load-consolidation curve for a moist clay) shows that the addition of water after application of the final load does not affect consolidation. Yet some soils, such as those tested when they are initially quite dry, may show effects due to saturation that will be indicated by a change in settlement at the time water is added. This feature is frequently important in arid regions where ordinarily dry soils will eventually become wetted through the operation of hydraulic structures. Another characteristic may be obtained from the load release data. The position of the load release point indicates the amount of the elastic rebound. For an ordinary soil, it will, in general, be only a portion of the total settlement. On the other hand an expansive characteristic is seen in a specimen which rebounds to almost its initial volume or beyond it. Many more
soil characteristics may be derived from this curve as the analyzer becomes familiar with its various shapes.

Figure 3 shows the standard method of presenting the time-consolidation data. These curves are obtained from specimen consolidation readings taken at frequent intervals, and are shown for each increment of load. A general indication of the rate of consolidation may be obtained by visual examination of these curves. The curves of a rapid-consolidating soil will show that practically all of the settlement occurs in a very short time, sometimes in less than four seconds. The delay in settlement of a slow-consolidating soil is indicated by a sloping curve at later time intervals. Figure 3 is an example of the curves for a moderately slow-consolidating clay; the sloping part of the curves indicates that a major part of the consolidation for the test specimen occurred between 10 and 800 seconds. If this soil were rapid-consolidating the curves would be quite flat or gently sloping within this time interval; the major portion of the consolidation for each increment of load would have occurred near the beginning of the curve or before the 4-second reading.

Information describing the initial and final conditions and the permeability of the test specimens is shown in tabular form as Table 1.

TABLE 1
SUMMARY OF ONE-DIMENSIONAL CONSOLIDATION TEST RESULTS

<table>
<thead>
<tr>
<th>Sample identification</th>
<th>Specimen data--initial</th>
<th>Specimen data--maximum load and saturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>Field</td>
<td>Sample No.</td>
</tr>
<tr>
<td>TP-3</td>
<td>3a</td>
<td>38</td>
</tr>
</tbody>
</table>

THEORETICAL INTERPRETATION FOR THE APPLICATION OF TEST DATA

The consolidation-load and consolidation-time data may be studied in greater detail by further analysis of the test curves. A convenient way to study consolidation-load data is to plot void ratio against pressure. This curve may be plotted by arithmetic scales or with the pressure values to a logarithmic scale, depending on the type of material. The usual method is to use a semilogarithmic plot sheet, as in Figures 4 and 5. When using such a plot for clayey soils the recognized theories related to this plotting method are very often helpful.

Load Consolidation

The shape of the consolidation curve for a natural clay soil, initially deposited in a very loose condition and gradually loaded with increasing overburden and structural pressures (referred to as normally-loaded soil), has been found to be an approximately straight line on a semilogarithmic plot. It may be represented by the empirical equation,

\[e = e_0 - C_C \log_{10} \frac{P_0 + \Delta P}{P_0} \quad \ldots \quad (1) \]

where

- \(C_C \) = compression index
- \(e_0 \) = initial void ratio
- \(P_0 \) = initial load pressure
- \(\Delta P \) = structural pressure
- \(e \) = final void ratio

\[6 \text{ Terzaghi, K., and Peck, R. B., } \text{Soil Mechanics in Engineering Practice}, \text{ John Wiley & Sons, New York, 1948, pp. 61-65.} \]

\[7 \text{ Taylor, op. cit., pp. 217-219.} \]
The value of C_c indicates the slope of the curve. This straight line is called the field compression or the virgin compression curve.

The method of calculating C_c from a one-dimensional consolidation test curve is described and illustrated in Figure 4. The consolidation curve for a test specimen will always be a recompression curve with the first part having a flatter slope and which curves into the virgin compression curve at a value of pressure approximately equal to a previous maximum loading. (In a normally loaded soil, as described above, this previous maximum loading will be very nearly equal to the present overburden. When soil has been highly preconsolidated by desiccation or by past ice or depositional loads which have since been removed, the previous maximum loading will be larger than the present overburden. Such a soil is spoken of as being “highly preconsolidated” in contrast to a “normally loaded” soil.) The application of such a plot to the typical example is shown in Figure 5. The virgin compression curve has been drawn and the compression index is given at the bottom of the figure.

The settlement of a soil stratum may be calculated in terms of the change in void ratio with the equation

$$S = \frac{e_0 - e}{1 + e_0} H \ldots \ldots \ldots \ldots \ldots \ldots (2)$$

where

S = settlement

e_0 = initial void ratio

e = final void ratio

H = depth of the stratum

By combining this equation with the equation of the virgin compression curve (Equation 1), the settlement of a normally loaded soil may be calculated in terms of the initial void ratio, the compression index, and the change in soil pressure from the present overburden to the overburden plus the structural loading. The combined equation is

$$S = \frac{H}{1 + e_0} C_c \log_{10} \frac{p_0 + \Delta p}{p_0} \ldots (3)$$

where

p_0 = overburden pressure

Δp = structural pressure

Equation 2 is applicable to any soil structure in which the initial and final void ratios can be estimated from one-dimensional consolidation test results. Equation 3 is applicable only to a soil stratum that has a consolidation characteristic showing the structural pressures to be in a range described by the virgin compression curve (normally loaded soils). That is, the maximum previous pressure is equal to the present overburden. Soils preconsolidated by greater pressure than the present overburden cannot be analyzed with the compression index and may best be analyzed in terms of estimated initial and final void ratios. Frequently these soils are so firm and dense that the settlement problem is not of sufficient importance to warrant a detailed analysis.
Time Consolidation

The time-consolidation data may be studied in greater detail by means of the Terzaghi theory,8 which was advanced about 25 years ago and is still quite widely accepted. This theory is based on the time required for the escape of pore water. The most important assumptions for its true application are:

1. The soil is completely saturated.
2. The water and solid constituents of the soil are incompressible.
3. Darcy’s law is valid and the coefficient of permeability is constant during a particular loading.
4. The time lag of consolidation is due entirely to the low permeability of the soil.

In many of our studies these assumptions will generally be acceptable. Actual applications will most commonly deviate from these in assumptions 1 and 4. That is, natural soils may not be 100 percent saturated and consolidation may be somewhat delayed for reasons other than permeability, such as plastic lag.9 The phenomenon of plastic lag is noticeable in the gradual slope of the latter part of the time-consolidation curve (Figure 3). This is referred to as secondary consolidation. The portion of the consolidation which complies with the Terzaghi theory is that represented by the steeper slope and the reverse curvature in Figure 3 and is called the primary consolidation. A large part of the consolidation delay may in most cases be explained by the Terzaghi theory, which permits at least rough estimates of the speed at which settlement will take place. Although the secondary consolidation may appear to be large in the laboratory test on a small specimen, it may not be of serious consequence in the foundation of the structure. The greater time required for primary consolidation in a deep soil stratum of the structure foundation will

9Taylor, op. cit., pp. 243-247.

\textbf{FIGURE 5 - Determination of the Compression Index for the typical example.}

Note: The value of \(C_0\) is conveniently obtained by taking the difference in the values of void ratio for one complete logarithmic cycle on the virgin or field compression curve. By doing this, the denominator in the equation in Figure 4 becomes equal to one.
cause the primary consolidation to greatly overshadow the secondary consolidation.

The application of the Terzaghi theory involves the fitting of a theoretical consolidation curve\(^\text{10}\) to the laboratory test curve. Based on the fitting of these curves, a coefficient of consolidation, \(C_v\), is obtained which identifies the characteristics of the rate of consolidation for the laboratory test specimen. The theoretical consolidation curve and procedure for fitting it to the laboratory test curve are described in Figure 6. The equation,

\[
C_v = \frac{TH^2}{t} \quad \text{(4)}
\]

where

\[
T = \text{time factor (for rectangular-shaped pressure distribution and drainage at the top and bottom)}
\]
\[
H = \text{greatest distance for pore water to flow for drainage (one-half the specimen height)}
\]
\[
t = \text{time for consolidation to take place,}
\]

\(^{10}\) The theoretical consolidation curve is a plot of degree of consolidation against a pure number called the time factor, \(T\). The value of \(T\) is dependent only on the conditions of loading (shape of the vertical-pressure distribution curve) and the conditions of drainage. Its shape and position on the plot therefore depend on whether the pressure distribution is rectangular, triangular, or trapezoidal, and whether free drainage takes place at both sides of the soil layer or at just one side. The value of \(T\) has been developed for these various conditions and is included in the form of curves for convenient use in the time-of-consolidation equations.
has been developed from the consolidation theory and is used for calculating the value of \(C_v \) from the laboratory test results. The application of this equation to the typical example of time-consolidation test curves is shown in Figure 7. Calculations of \(C_v \) for the different loading increments are made directly on the standard laboratory plot sheet.

This equation may be applied to the time of settlement in the field in the form:

\[
t = \frac{TH^2}{C_v} \quad \text{(5)}
\]

In this case:

- \(H \) = greatest distance for pore water to flow for drainage
- \(C_v \) = coefficient of consolidation as obtained from the consolidation test
- \(T \) = time factor (dependent on the drainage conditions and the shape of the pressure distribution curve caused by the structure)
- \(t \) = time required for settlement.

The reader should note that the time factor or the theoretical curve used for the test specimen is for the special case of uniform pressure (or rectangular distribution of pressure throughout the specimen), complete lateral restraint, and free drainage at the top and the bottom of the specimen. This curve is called Case No. 1, and it applies to several types of pressure distribution for the condition of free drainage at both the top and bottom. When drainage is only on one side, the rectangular pressure distribution is the only one which applies to Case No. 1. The theoretical time-factor curve for Case No. 1 and the various types of pressure distribution that apply to it are shown in Figure 8.

In many cases the conditions of the structure itself will compare to the conditions of the test specimen. The values of \(C_v \) and the time factor, \(T \), will be the same for the structure as for the laboratory test, and Equation 4 indicates that the following relation exists:

\[
\frac{H_f^2}{t_f} = \frac{H_s^2}{t_s} \quad \text{(6)}
\]

where

\[
t = \frac{TH^2}{C_v}
\]

Figure 7 - Determination of the Coefficient of Consolidation, \(C_v \), for the typical example.
Figure 8 - Time factor curves for Cases No. 1, 2, and 3.

- **Case No. 1**: Free draining top boundary and impervious bottom boundary.
- **Case No. 2**: Free draining boundary and impervious boundary.
- **Case No. 3**: Free draining boundary and impervious boundary.

Equation 7:

\[
\frac{4H_f^2}{t_f} = \frac{H_s^2}{t_s} \quad (7)
\]

- **H_f**: Thickness (height) of the stratum in the field.
- **t_f**: Time of settlement in the field.
- **H_s**: Thickness (height) of laboratory specimen.
- **t_s**: Time of settlement of laboratory specimen.

If the pressure distribution in the field is rectangular but drainage occurs in one direction only, the relation becomes:

- **Case No. 4**: Trapezoidal pressure distribution with the smallest pressure at the side of the stratum having free drainage and the largest pressure at the side having no drainage. Such a condition combines Cases No. 1 and 2.
- **Case No. 5**: Trapezoidal pressure distribution with the smallest pressure at the side of the stratum having free drainage and the largest pressure at the side having no drainage. Such a condition combines Cases No. 1 and 2.
For Case No. 4

For Case No. 5

VALUES OF U
(Ratio of pressure at drained surface to pressure at nondrained surface)

Free draining boundary

Impervious boundary
CASE No. 4

Free draining boundary

Impervious boundary
CASE No. 5

FIGURE 9 - Time factor curves for Cases No. 4 and 5.

pressure distribution with the smallest pressure near the side of the stratum having no drainage and the largest pressure near the side having the free drainage. Such a condition combines Cases No. 1 and 3.

The portion of the consolidation theory involving time of consolidation contains the most cumbersome mathematical derivations of the entire theory. These derivations are fully carried out in many soil mechanics texts and articles on consolidation. 11,12,13

It is intended here to show only the theoretical consolidation data in curve form for the purpose of making practical applications to settlement studies.

LIMITATIONS OF THE ONE-DIMENSIONAL CONSOLIDATION TEST

As seen in the descriptions of the apparatus and the testing procedure, the one-dimensional consolidation test represents the settlement of a soil structure that has total lateral restraint, and in which there is drainage only in the vertical direction. It is quite apparent that these conditions are not truly comparable to the conditions found in most foundations. The degree of reliance to be placed on settlement studies based on this type of test depends on how nearly the foundation conditions will approach those of the test specimen. In any event, sound reasoning is necessary to make the best application of the data. In general, it is felt that the actual structural loading most comparable to the laboratory test loading is that exerted on a compressible stratum at relatively great depth and of fine material of finite thickness, and which is bounded above and below by dense free-draining materials. In order for the consolidating load to be uniform over a reasonably large portion of the stratum, the structural loading would have to cover a rather large surface area.

The laboratory testing equipment, primarily intended for use in the study of the consolidation of clays, limits the grain size to minus No. 4 (4.76 mm diameter). Actually, the maximum grain size should be considerably smaller than No. 4 for best results in estimating settlement.

It has been found by experiment that gravelly material reduces consolidation. Not only do the gravel particles replace compressible soil, but there is a definite indication that particle interference of the gravel reduces the consolidation of the fine material. This reduction in consolidation becomes more pronounced as the rock content becomes greater. Although this effect does occur with small rock contents, in general it is believed that the effect is only slight for rock contents less than 25 percent.

In the case of a settlement study for a stratum near the surface and for a small loaded area, lateral bulging may be of considerable importance. Under these conditions the soil would not have complete lateral confinement and much settlement may be attributed to the shifting of material and not to consolidation. Figure 10 is a diagrammatic sketch that illustrates the action of the settlement of a loaded area. The solid lines below the footing represent an idealized pressure bulb or zone within which appreciable stresses are caused by the structural loading on the footing. The displaced positions of these lines are shown by the dashed lines with the magnitude of change considerably exaggerated. If the settlement is caused principally by the squeezing out of the soil from under the loaded area, the zone and the element shown in the center of the zone are distorted with little change in

15 Taylor, op. cit., p. 570.

FIGURE 10 - Movements caused by loading.

14 Gibbs, Harold J., "The Effect of Rock Content and Placement Density on Loading Intensity, q
volume. But if the settlement is due mainly to the consolidation of the soil, the changes in position of horizontal lines would be those of settling, while the shifting of the vertical lines would be considerably less.

The shearing resistance of the material largely governs the lateral bulging property of a foundation. Factors that may contribute to lateral shifting of material include footings at shallow depths, footings resting on material of low shearing resistance, and footings of small area. The design criteria for such conditions are generally governed by shear values and may be analyzed with "bearing capacity" equations. On the other hand, structures having deep footings, or structures having extensive loaded areas, or both, are less likely to fail in shear and are more likely to have consolidation as the governing factor. To such structures the consolidation test data are applicable. The data are also applicable when the compressible stratum is at greater depth, but still within the effect of pressure from the loading.

Determinations of the Pressure Distribution Below a Loaded Area

As a first step toward applying the one-dimensional consolidation test data to a settlement analysis, it is necessary to estimate the pressures in the foundation caused by the proposed structural loading and the present overburden. Several theories have been developed for obtaining pressure distribution due to structural loading. A theory that has shown fairly reliable results and has been given perhaps the greatest recognition in soil mechanics literature is that of Boussinesq. The original Boussinesq equations describe the stress condition below the horizontal surface of a semi-infinite elastic solid under a point load at the surface. The development of these equations, although long and involved, is based on the fundamental theories of elasticity. To apply them to a foundation study it is necessary to assume that the condition of a soil foundation material is that of a semi-infinite elastic solid. This assumption is difficult to conceive for a material such as soil, but a number of experiments by such investigators as Kogler, Scheidig, Enger, and Faber, indicate that the elastic theory can at least be used for estimating soil pressures.

The elastic theories given by the Boussinesq equations are most applicable to clay materials. For more sandy materials, soil pressures become more concentrated, causing larger pressures at greater depth. An attempt has been made to adjust the Boussinesq equations empirically to fit the cases of varying types of material. This approach has been discussed by Cummings, and references to the work of Frohlich and others are given in his paper. The theory involves an adjustment in the Boussinesq formula by changing the value of a constant called the "concentration factor." An example of how this factor is applied is as follows:

The Boussinesq equation for the vertical pressures caused by a concentrated load at the surface of a semi-infinite elastic solid is

$$\sigma_z = \frac{NP}{2\pi} \frac{Z^N}{R^{N+2}}$$

where

- σ_z = vertical pressure at the point in question
- P = concentrated load at the surface
- Z = depth of the point in question

Vicksburg, Mississippi, April 1947.

R = distance of the point in question from the location of the concentrated load

N = concentration factor

When the value of N is taken as 3, the formula becomes the original Boussinesq equation and is applicable to a clayey type of material. A value of 6 is recommended when the material is a sand. The idea of a concentration factor is not frequently used, probably due to the complexity of handling, but recent literature has indicated that use of such a factor may increase in the future.

The Boussinesq equations have been developed for both horizontal and vertical stresses. The vertical-stress equations are the only ones used, since the horizontal-stress equations include the elastic constant of Poisson's ratio and are not recommended for soils. These equations have been developed by Newmark into tables and charts for convenient use. These charts are based on a concentration factor of 3. The Waterways Experiment Station has prepared charts for other concentration factors similar to those shown by Newmark for a factor of 3.

Equation above is the Boussinesq equation as it is applied to soil foundations. For a concentration factor of \(N = 3 \), which is considered applicable to clays but less applicable to sands, this equation becomes

\[
\sigma_z = \frac{3PZ^2}{2\pi R^5} = \frac{3P}{2\pi Z^2} \left[\frac{1}{1 + \left(\frac{r}{Z} \right)^2} \right]^{5/2} \ldots (9)
\]

The coordinate system for illustrating this equation is shown below:

Since nearly all loads in practical problems are not point loads but are spread over an area, this equation must be converted to a system of analysis applicable to loaded areas. This may be done by dividing a loaded area into small rectangles (usually of a size such that the ratio of the depth considered to the width of the loaded area is greater than 2) and summarizing the results of all areas by treating them as individual concentrated loads.

A more convenient method of determining pressure distribution under loaded areas is with charts and tables prepared for application to uniform loads. These charts and tables are the basis for estimating pressures in the examples shown in this monograph. Charts are generally more convenient for irregularly shaped areas, tables more convenient for simple and regularly shaped areas.

Because of space limitations, such other stress distribution theories as those developed by Westergaard, Pickett, and Burmister cannot be discussed in detail.

22 Terzaghi and Peck, *op. cit.*, pp. 201-207.

24 Newmark, *op. cit.*

25 Terzaghi, *op. cit.*, Appendix, pp. 484-487.

27 Taylor, *op. cit.*, pp. 250-266.

Almost all are based on the theory of elasticity or some related theory. The Boussinesq equations are reviewed in greater detail because convenient charts and tables based on these equations are readily available in literature well known to foundation engineers.

The following analyses demonstrate the use of the Boussinesq equations in calculating stresses below a loaded area for a simple example of an area 40 feet square under a uniform load of 50 pounds per square inch (7,200 pounds per square foot):

- Pressure distribution using the Boussinesq equation—Figure 11 (page 19).
- Pressure distribution using Newmark's chart—Figure 12 (page 20).
- Pressure distribution using Newmark's tables—Figure 13 (page 21).

EXAMPLE OF SETTLEMENT ANALYSIS

A prediction of the amount of settlement can be obtained after the soil characteristics have been determined and the pressure distribution below the loaded area resulting from the structural loading has been estimated.

For a simple example of a foundation condition, let it be assumed that the foundation and loaded area are as shown in the sketch at the bottom of the page.

In this example it is assumed that the upper dense, firm, sandy clay and the lower dense sand are sufficiently incompressible to be unimportant in contributing to the settlement. For this reason the examples of settlement analyses which follow are confined to the compressible clay stratum.

There are two general methods of settlement calculations:

1. Equation 2 (shown previously)

\[S = \frac{e_0 - e}{1 + e_0} \]

2. Equation 3 (shown previously)

\[S = \frac{H}{1 + e_0} \left(C_0 \log_{10} \frac{P_0 + \Delta P}{P_0} \right) \]

The first method is shown in Figure 14 (page 22) and the second method is shown in Figure 15 (page 23).

For the purpose of a demonstration problem the area is considered to have a loading of 58.7 psi. It will be noted in the sketch below that this loaded area is placed at a depth of 10 feet. Thus, when the excavation was made, a loading of 10 feet of overburden was removed. For a wet density of 125 pcf this excavated load amounts to 125 x 10/144 = 8.7 psi.

When excavations are made the removal of overburden must be taken into account. If the removed overburden load is relatively small in comparison with the structural load it may be accounted for by subtraction from the structural load to be placed back on the foundation. In many cases it may be very large in relation to the structural load.

Note: The loading of 58.7 psi was used for this example so that the resulting load will be 50 psi (same as in pressure examples) after accounting for the required excavation.
The removal of overburden has often been used as a means of reducing the potential settlement by excavating large basements so that the overburden load removed is equal to or greater than the structural load put back on the soil. This is called "floating" the structure. If an analysis of settlement is made for such a case the study will be confined to the recompression portion of the test curve and the situation becomes similar to that of placing a structure on a preconsolidated soil. As the excavation occurs the soil will have a slight rebound or expansion and subsequently will have a slight recompression when the structural load is replaced. In many instances where this condition is encountered a detailed analysis may not be warranted for the same reason that preconsolidated soils frequently do not warrant such an analysis.

In the illustrated example the removal of overburden is considered to be relatively small in comparison with the structural loading, and is merely subtracted from the structural loading. This leaves an effective structural loading of 50 psi, which is the load used in the previously discussed pressure distribution demonstrations.

Another important consideration in the interpretation of overburden pressures is the buoyant effect on material below the water table. A good discussion of this is given by Terzaghi and Peck. It is referred to as hydrostatic uplift and submerged unit weight. The relationship for submerged unit weight is

\[\gamma' = \gamma - \gamma_w \]

where

\[\gamma' = \text{submerged unit weight} \]
\[\gamma = \text{wet density of the material} \]
\[\gamma_w = \text{unit weight of water (62.4 pcf)} \]

In calculating the overburden pressure distribution, the pressure increases with depth according to the relation \(\tau_z \) (where \(z \) equals change in depth). When the water table is reached, the relation becomes \(\tau = (\gamma - \gamma_w)z \). As different strata are reached and densities change, the value of \(\gamma \) changes accordingly. The calculated overburden pressures are shown at right center in Figure 14 for the assumed conditions of the example.

By plotting the structural pressure (the average structural pressure in the example) as an added pressure to the overburden, as shown at right center in Figure 14, the working pressures for a settlement analysis are obtained. When the pressure distribution is curved, the general practice is to divide the compressible stratum into sufficient increments to permit fairly accurate settlement estimates for each increment, and then to make a summation of these for the total settlement.

Figures 14 and 15 are settlement calculations by different methods but for the same conditions of loading and soil characteristics as determined from the laboratory tests. Figure 14 demonstrates the use of Equation 2 and Figure 15 the use of Equation 3. For simplicity in demonstrating the calculations, the results of only one laboratory test are used in each example. In an actual problem it is advisable to have several tests at varying depths; the additional tests improve the accuracy of the final estimate. Only when the material is normally loaded can the results of a single test give a reliable settlement estimate.

In the example in Figure 14, estimates of the initial and final void ratios for each increment of depth are obtained directly from the laboratory test curve; in Figure 15 the data are obtained from the virgin compression curve. While appearing to be representative of a normally loaded soil, the laboratory test curve is slightly lower than the virgin compression curve in the range of structural loading. As a result the estimate of settlement in Figure 14 is slightly lower in value than the estimate in Figure 15.

EXAMPLE OF TIME-OF-CONSOLIDATION ANALYSIS

Figure 16 (page 24) demonstrates the time-of-consolidation calculation for the illustrated example. In the upper left corner of the figure the laboratory test data from Figure 7 are shown, and in the upper right corner the overburden and structural pres-
sure distribution from Figure 14 are shown. Although the pressure distribution is slightly curved, it can be considered trapezoidal in shape with an average pressure of 42 psi. At this pressure the laboratory test data give a coefficient of consolidation, \(C_v \), of 0.00075 in\(^2\)/sec.

Since the stratum above the compressible stratum is a sandy clay and the stratum below is a dense sand, it is first assumed that drainage takes place on each side of the compressible clay stratum. This is the situation of Case No. 1. It is also assumed that the load is applied rapidly in relation to the time required to reach total consolidation. The solution then becomes that of Equation 5.

\[
t (\text{hr}) = \frac{T_1 H^2}{C_v}
\]

where

\[
T_1 = \text{time factor for Case No. 1 (various values obtained from Figure 8)}
\]

\[
H = \text{one-half depth of stratum in inches (or the maximum distance for drainage)}
\]

\[
C_v = \text{coefficient of consolidation in in}^2/\text{hr}.
\]

A demonstration of Equation 6 is of interest, since drainage on both sides of the stratum is the condition of Case No. 1 and compares to the action of the laboratory test specimen. In Figure 7 the nearest laboratory test curve that compares to the structural loading is that for the 37.5 psi increment. In this increment the laboratory test curve reached 50 percent consolidation in 78 seconds and the depth of the laboratory specimen is 1.1603 inches. Then, by Equation 6,

\[
(34)^2 = \frac{(1.1603/12)^2}{78/3600}
\]

\[
t_f = \text{time of settlement in the field} = 2865 \text{ hours}
\]

This compares to 3082 hours shown in the table in Figure 16 for Case No. 1. The difference is due to the fact that the average pressure used in Figure 16 was 42 psi whereas the nearest laboratory test curve was for 37.5 psi pressure.

As a second demonstration in Figure 16, assume that the upper stratum is of a different material than that previously shown and does not permit drainage at the top of the compressible stratum. Drainage is therefore permitted only into the dense sand below and the situation becomes that of Case No. 4, a combination of Cases No. 1 and 2. The time factor, \(T_4 \), is solved with the curves in Figures 8 and 9, and the equation,

\[
T_4 = T_1 + J(T_2 - T_1)
\]

where

\[
T_4 = \text{time factor for Case No. 4}
\]

\[
T_2 = \text{time factor for Case No. 2}
\]

\[
T_1 = \text{time factor for Case No. 1}
\]

\[
J = \text{factor obtained from Figure 9.}
\]

The time of consolidation is obtained from Equation 5,

\[
t = \frac{T_4 H^2}{C_v}
\]

where

\[
H = \text{the total depth since drainage is only in one direction.}
\]

The solution is shown at the bottom in Figure 16.

A comparison of the time of settlement for the structure with the time of settlement as determined in the laboratory test cannot be made in this case with Equation 6 or 7, because the structural load distribution is trapezoidal and the time factors are not the same in the two cases.

CLOSING DISCUSSION

The examples presented in this monograph are considerably simplified and are intended only to demonstrate the tools which are available for making settlement estimates. More frequently than not, actual structures will be more complicated and the application of these tools will be more complex.
A structure will frequently have odd-shaped foundations and loads that are not evenly distributed. In such cases it may be desirable to analyze pressure and settlement at various points under the structure instead of for an over-all average. The strata contributing to settlement may vary in thickness, a further reason for making analyses at various points. Such conditions contribute to differences in settlement throughout the structure (called differential settlement) which may be far more serious than the total average settlement. Differential settlement is the cause of cracking and unexpected stresses in structures and changes in alignment of moving machinery; but uniform settlement, even though substantial, may not seriously harm a structure.

A foundation is frequently made up of a series of footings so closely spaced that the pressure effect of one footing overlaps those of adjoining footings, and the pressures of all footings should be considered. This is easily handled by dealing with scale drawings of all footings and using the pressure chart as in Figure 12. Close footings under a structure of large area may have a pressure effect on a deep stratum similar to that of the entire building acting as a single spread footing. In this case it is advisable to analyze the structure as a whole instead of each footing separately.

In an analysis of laboratory data it is always important to consider the laboratory test as a recompression of the undisturbed material. When the laboratory specimen was removed from the ground the overburden pressures were removed from it. Thus the percentage of consolidation occurring in the laboratory specimen is not the same as that occurring in the foundation itself. The theoretical interpretation of consolidation presented in this monograph is a tool by which a laboratory test may be used in making an estimate of the amount of settlement in the foundation. The method of analyzing the effect of present and past overburden pressures is common practice among most soil mechanics authorities.

Accuracy in estimating the amount of settlement is improved if a large number of samples are tested. Samples at various depths are particularly important, as less dependence will need to be placed on theoretical effects of preconsolidation and existing overburden pressures. Numerous samples at the same elevation but at different locations are not nearly so valuable, although they serve to indicate the consistency of characteristics in a particular stratum.

The time-of-consolidation theories are long and involved and generally consume a major amount of space in most articles on consolidation. Since time analyses are not so frequently required as analyses on the amount of settlement, the space devoted to time studies has been kept to a minimum. In the examples it is assumed that the structure is constructed so rapidly that settlement during construction is small in comparison with that occurring after construction. Very often the construction period may be sufficiently long to allow a considerable amount of settlement to occur as the structure is built. For more precise estimates on the time of settlement, the construction period should be correlated with time of consolidation by considering the load to be built up in periodic stages until construction is complete.
LOADING CONDITION

BOUSSINESQ’S EQUATION

\[\sigma_z = k \frac{P}{z^2} \]

\[k = \frac{3}{2\pi} \left[1 + \left(\frac{r}{z} \right)^2 \right]^{-\frac{3}{2}} \]

TABLE OF COMPUTATION
FOR PRESSURES BELOW THE CENTER OF THE AREA

<table>
<thead>
<tr>
<th>DEPTH FT.</th>
<th>AREA 1/Area 2</th>
<th>AREA 3/Area 4</th>
<th>AREA 5/Area 6</th>
<th>AREA 7/Area 8</th>
<th>AREA 9/Area 10</th>
<th>AREA 11/Area 12</th>
<th>AREA 13/Area 14</th>
<th>AREA 15/Area 16</th>
<th>AREA 17/Area 18</th>
<th>AREA 19/Area 20</th>
<th>TOL. (\sigma_z) FOR AREA</th>
<th>TOT. (\sigma_z) PSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.06</td>
<td>0.79</td>
<td>0.79</td>
<td>0.35</td>
<td>1800</td>
<td>126</td>
<td>252</td>
<td>252</td>
<td>648</td>
<td>1278</td>
<td>50</td>
<td>5112</td>
</tr>
<tr>
<td>20</td>
<td>0.07</td>
<td>0.14</td>
<td>0.14</td>
<td>0.36</td>
<td>450</td>
<td>112</td>
<td>149</td>
<td>148</td>
<td>198</td>
<td>606</td>
<td>2424</td>
<td>1296</td>
</tr>
<tr>
<td>40</td>
<td>0.53</td>
<td>0.40</td>
<td>0.40</td>
<td>0.18</td>
<td>200</td>
<td>72</td>
<td>80</td>
<td>80</td>
<td>92</td>
<td>324</td>
<td>516</td>
<td>9.0</td>
</tr>
<tr>
<td>60</td>
<td>0.35</td>
<td>0.26</td>
<td>0.26</td>
<td>0.12</td>
<td>40</td>
<td>31</td>
<td>32</td>
<td>32</td>
<td>34</td>
<td>129</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0.21</td>
<td>0.16</td>
<td>0.16</td>
<td>0.07</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Similar computations can be made at other locations below the area.
This table gives the pressure below the corner of a rectangular area having a loading of one unit per unit area. The value \(m \) is the ratio of one side of the area to the depth considered, and \(n \) is the ratio of the other side to the depth considered.

The pressure below any point in the area may be obtained by dividing the area into rectangles, each having a corner at the point and summing up the pressures due to the rectangles.

TABLE OF COMPUTATION

<table>
<thead>
<tr>
<th>(z_1)-FT. DEPTH</th>
<th>m</th>
<th>n</th>
<th>(\sigma_y / \rho)</th>
<th>(\sigma_x / \rho)</th>
<th>(4\sigma_y / \rho)</th>
<th>(2\sigma_x / \rho)</th>
<th>(\sigma_2)</th>
<th>(\sigma_2)</th>
<th>(\sigma_2)</th>
<th>(\sigma_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>12.5</td>
<td>50.0</td>
<td>25.0</td>
<td>12.5</td>
<td>25.0</td>
<td>50.0</td>
<td>25.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>12.5</td>
<td>50.0</td>
<td>25.0</td>
<td>12.5</td>
<td>25.0</td>
<td>50.0</td>
<td>25.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>40</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>60</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>12.5</td>
<td>50.0</td>
<td>25.0</td>
<td>12.5</td>
<td>25.0</td>
<td>50.0</td>
<td>25.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>40</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>60</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.25</td>
<td>12.5</td>
<td>50.0</td>
<td>25.0</td>
<td>12.5</td>
<td>25.0</td>
<td>50.0</td>
<td>25.0</td>
</tr>
<tr>
<td>20</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>40</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
<tr>
<td>60</td>
<td>0.5</td>
<td>0.5</td>
<td>0.09427</td>
<td>4.20</td>
<td>16.8</td>
<td>8.9</td>
<td>4.20</td>
<td>8.9</td>
<td>16.8</td>
<td>8.9</td>
</tr>
</tbody>
</table>

Uniform Load of \(p = 50 \) PSI. AREA=40' x 40'

SECTION X-X

PRESSEUR CONTOURS BELOW AREA

FIGURE 13 - Pressure distribution by Newmark's Table.
Dense, firm desiccated sandy clay (Wet dens. 125 p.c.f.)

Test sample,

Compressible clay (Wet dens. 118 p.c.f.)

Dense sand

--- Average pressure below footing.

Note: 50 p.s.i. is the pressure resulting after accounting for 10 ft. of excavation.

AVERRAGE VERTICAL PRESSURE DISTRIBUTION
(FROM FIGURE 12)

LABORATORY TEST CURVE

<table>
<thead>
<tr>
<th>Depth</th>
<th>p_0</th>
<th>e_0</th>
<th>p</th>
<th>e</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>36'-47'</td>
<td>28.6</td>
<td>.686</td>
<td>49.6</td>
<td>.651</td>
<td>247 ft.</td>
</tr>
<tr>
<td>47'-58'</td>
<td>32.8</td>
<td>.686</td>
<td>48.0</td>
<td>.652</td>
<td>183 ft.</td>
</tr>
<tr>
<td>58'-70'</td>
<td>41.7</td>
<td>.666</td>
<td>49.3</td>
<td>.651</td>
<td>129 ft.</td>
</tr>
</tbody>
</table>

Total settlement = 559 ft.

SETTLEMENT COMPUTATIONS BY INCREMENTS OF DEPTH

FIGURE 14 - Settlement determination by change in void ratio method.

FIGURE 14 - Settlement determination by change in void ratio method.
LABORATORY TEST CURVE
(FROM FIGURE 5)

Overburden and structural pressure distribution

Formula for computation

\[S = \frac{H}{i + e_0} \times \log \frac{P_o + \Delta p}{P_o} \]

1. \[S = 11 \times \frac{0.217}{1 + 0.689} \times \log \frac{30.7 + 17.8}{30.7} = 0.281 \text{ ft.} \]
2. \[S = 11 \times \frac{0.217}{1 + 0.679} \times \log \frac{34.9 + 12.8}{34.9} = 0.193 \text{ ft.} \]
3. \[S = 12 \times \frac{0.217}{1 + 0.670} \times \log \frac{39.4 + 9.0}{39.4} = 0.139 \text{ ft.} \]

Total settlement = 0.613 ft.

SETTLEMENT COMPUTATIONS
BY INCREMENTS OF DEPTH

FIGURE 15 - Settlement determination by compression index method.
CASE No.1 - Drainage at top and bottom of stratum.

\[t \text{(hrs.)} = T_1 \frac{H^2}{C_v} = T_1 \frac{(34/2)^2(144)}{.00075(3600)} = 15410 \ T_1 \]

<table>
<thead>
<tr>
<th>% OF COMPLETION</th>
<th>(T_1) (FIG. 6)</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOURS</td>
<td>YEARS</td>
</tr>
<tr>
<td>10</td>
<td>.0076</td>
<td>117.1</td>
</tr>
<tr>
<td>20</td>
<td>.032</td>
<td>493.1</td>
</tr>
<tr>
<td>30</td>
<td>.069</td>
<td>1063.3</td>
</tr>
<tr>
<td>40</td>
<td>.125</td>
<td>1926.3</td>
</tr>
<tr>
<td>50</td>
<td>.200</td>
<td>3082.0</td>
</tr>
<tr>
<td>60</td>
<td>.290</td>
<td>4468.9</td>
</tr>
<tr>
<td>70</td>
<td>.405</td>
<td>6241.0</td>
</tr>
<tr>
<td>80</td>
<td>.570</td>
<td>8783.7</td>
</tr>
<tr>
<td>90</td>
<td>.850</td>
<td>13098.5</td>
</tr>
</tbody>
</table>

CASE No.4 - Assuming that the upper stratum is of a different material and does not permit drainage. Therefore, drainage is only at the bottom.

\[u = \frac{\partial^2 u}{\partial z^2} = .33, \text{ then } J \text{ (Fig.9)} = .53 \]

\[T_4 = T_1 + J (T_2 - T_1) \]

\[t \text{(hrs.)} = T_4 \frac{(H)^2}{C_v} = T_4 \frac{(34)^2(144)}{.00075(3600)} = 61650 \ T_4 \]

<table>
<thead>
<tr>
<th>% OF COMPLETION</th>
<th>(T_1)</th>
<th>(T_2)</th>
<th>(T_2 - T_1)</th>
<th>(J(T_2 - T_1))</th>
<th>(T_4)</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOURS</td>
<td>HOURS</td>
<td>HOURS</td>
<td>HOURS</td>
<td>HOURS</td>
<td>HOURS</td>
</tr>
<tr>
<td>10</td>
<td>.0076</td>
<td>.049</td>
<td>.0144</td>
<td>.022</td>
<td>.030</td>
<td>1849.5</td>
</tr>
<tr>
<td>20</td>
<td>.032</td>
<td>.099</td>
<td>.067</td>
<td>.036</td>
<td>.068</td>
<td>4192.2</td>
</tr>
<tr>
<td>30</td>
<td>.069</td>
<td>.159</td>
<td>.090</td>
<td>.048</td>
<td>.117</td>
<td>7213.0</td>
</tr>
<tr>
<td>40</td>
<td>.125</td>
<td>.222</td>
<td>.097</td>
<td>.051</td>
<td>.176</td>
<td>10050.4</td>
</tr>
<tr>
<td>50</td>
<td>.200</td>
<td>.296</td>
<td>.096</td>
<td>.051</td>
<td>.251</td>
<td>15474.2</td>
</tr>
<tr>
<td>60</td>
<td>.290</td>
<td>.385</td>
<td>.095</td>
<td>.050</td>
<td>.340</td>
<td>20961.0</td>
</tr>
<tr>
<td>70</td>
<td>.405</td>
<td>.500</td>
<td>.095</td>
<td>.050</td>
<td>.455</td>
<td>28050.7</td>
</tr>
<tr>
<td>80</td>
<td>.570</td>
<td>.660</td>
<td>.090</td>
<td>.048</td>
<td>.618</td>
<td>36099.7</td>
</tr>
<tr>
<td>90</td>
<td>.850</td>
<td>.960</td>
<td>.110</td>
<td>.058</td>
<td>.908</td>
<td>55978.2</td>
</tr>
</tbody>
</table>

FIGURE 16 - Time of consolidation determination.