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DESIGN DATA






INTRODUCTION

The Bureau of Reclamation, in common
with other engineering organizations, is
frequently required to design concrete frame
structures, such as powerhouse superstruc-
tures and valve houses, in which heavy-
duty overhead cranes pose difficult design
problems. Practically all such structures
are designed as rigid frames, and are stat-
ically indeterminate.

This monograph is confined to deriving
data necessary for designing reinforced-
concrete structures of this type, but the
method can be extended to apply to any
statically indeterminate structure, Data
contained herein were first published by

xiii

the Bureau as Technical Memorandum No.
629, and were later revised and issued as
Technical Memorandum No. 637, Issuance
of this material in the Engineering Mono-
graph series is prompted by the interest
shown in the preceding editions. No sub-
stantial changes have been made jn the text
for the present edition,

Chapter I discusses the determination
of beam constants for frequently occurring
variable sections, Chapter II discusses mo-
ment distribution, including sidesway, and
Chapter III contains a collection of design
diagrams for reinforced-concrete members.
Derivation of equations is shown in Appen-
dices A and B.






A-B

AB

NOMENCLATURE

a beam or member, A to B.

area of = Mx diagram, My
bemg the S1mp1e beam mo-
ment at any point x due to
an applied end moment,
mpg =1, at end A.

area of _1\415 diagram, My

%
being the simple beam mo-
ment at any point x due to
an applied end moment,
mpgpa = 1, at end B.

area of —X diagram, My
being the simple beam mo-
ment at any point x due to

-the applied loading.

fixed end moment at end A
of member A-B with both
ends fixed.

fixed end moment at end B

of beam A-B with both ends

fixed.

slope=-deflection coefficients.

moment at end A of beam
A-B with end A fixed and
end B hinged.

moment at end B of beam
A-B with end B fixed and
end A hinged.

Young’s modulus of elas-
ticity.

moment of inertia about the
center of gravity of bean:
of constant section.

moment of inertia about
center of gravity of shallow-
est section in a beam of
variable section.

moment of inertia about
center of gravity at any
point x ina beam.

stiffness factor at end A of
beam A-B.

Kpa

'eB

stiffness factor at end B of
beam A-B. .

length of beam.

moment at end A of beam
A-B.

moment at end B of beam
A-B.

the moment in a simple
beam at any point x due to
the applied loading.

unit moment applied at end
A of beam A-B.

unit moment applied at end
B of beam A-B.

concentrated load.
A

T*

carry-over factor at end A
of beam A-B.

carry-over factor at end B
of beam A-B.

distance from end A to
centroid of Ap.

distance from end A to
centroid of Ap.

distance from end A to
centroid of Ao-

relative linear deflection
between ends A and B in
a beam A-B, measured
normal to the initial posi-
tion of the beam.

change in slope of the
elastic curve, at end A,
from its initial position.

change in slope of the
elastic curve, at end B,
from its initial position.

Other notations are defined where first
used. Some of the nomenclature given above
is illustrated in Figure 1(a) to 1(h).

XV
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CHAPTER I
DETERMINATION OF BEAM CONSTANTS

Usuzally the quickest way of solving the
problems involved in statically indetermi-
nate structures is by the method of moment
distribution. However, before the method
can be applied, constants must be deter-
mined. These constants are influenced by
the loading and the properties of the struc-
ture. The methcd of moment area has been
found satisfactory by Bureau designers for
determining these constants and is used in
this discussion.

This monograph deals only with struc-
tures of constant modulus of elasticity E
throughout each member, Since E usually

divides out, the 1\# dia‘gram rather than

X

the %/Ii’.‘. diagram may be used.” Whenever
X

E has any effect on the final results, as in

the case for stiffness factors and moments

caused by linear movements of joints, it

has been included in the final equations.

In order to reduce the work of computing
beam constants, simplified formulas for
members of uniform section and general
formulas for members of any shape are
included. Diagrams of beam constants for
frequently occurring variable sections are
presented. No attempt is made to desig-
nate a sign system for initial end moments
and carry-over factors. All sign systems
are arbitrary, and the signs must be deter-
mined from the conditions of the problem,
based on the sign convention that the de-
signer has assumed,

1. General definitions »

The following beam constants must be
determined before analyzing a frame by the
method of moment distribution:

(a) Initial end moment
(b) Carry-over factor

(c) Stiffness factor or modulus of stiff-
ness

(a) Initial end moment, The moments at
the ends of a member due to external load-
ing, rotation of the ends, and relative deflec-
tion of the ends are expressed by the follow-
ing two equations:

El,
MaB = T~ |C184 *+ Cofp
Mpp = 7 [Cg8y + C3fp

- (Co + Cg) 'IAI] +Cgp

‘Here Cpp and Cpp are called fixed end

moments and are defined as the moments at
the ends of a member caused by the applied
loads when both ends are held fixed in their
original positions. However, in the method
of moment distribution, any combination
of the terms on the right side of the above
equations that is convenient or necessary

~ for starting the distribution of moments in

a given problem is called a fixed end mo-
ment. In this monograph the term ‘‘fixed
end moments’’ will be restricted to mean
the quantities Cp g and Cgp only.

The moments used in starting moment
distribution will be called ‘‘initial end mo-
ments’’ or ‘“initial moments’’ and are simply
the moments at the ends of a member as
defined by the two equations for My g and

Mpp. Thus, the distinction between initial
end moments and fixed end moments is that

' any term or terms of the equations for

MA B and MB A may be called initial end

moments, but Cpg or Cpp Will designate
fixed end moments only,



(b) Carry-over factor. The carry-over
factor in bending is illustrated in Figure 2.
When end A of beam AB is subjected to a
moment M, 5, 2 moment Mp, is induced at

end B. The carry-over factor is defined

M
as the ratio MBA + Mp, is caused by M,

only. This ratio, for any given beam, varies
with the degree of fixation of end B. For
the present purpose the carry-over factor

will be limited to mean the ratio _B2 when
, Map

end B is fixed. The case when end B is

hinged will be used, but for this condition the

carry-over factor is zero, since obviously

MB A= 0. The carry-over factor in torsion

is defined in example 18 of Chapter IL

/'\M“ Mpa a2
- M!A A . T B
fas* Mas Fixed -

FIGURE 2 - Illustration of Carry-over
PFactor. (For actual values see
Pigures 25(a) and 25(b).)

(c) Stiffness factor or modulus of stiff-
ness. In bending, the modulus of stiffness of
a member is the bending moment required
to turn the hinged end of a member through
a rotation of one radian. The other end may
or may not be completely fixed. For the
present purpose, the most useful cases are
illustrated in Figures 3(a) and (b). This
definition of stiffness is used without modi-
fication throughout this monograph. It re-

sults in a value of 4_EI. for the stiffness fac-

tor of a fixed beam of constant section in-
stead of the value of ETI or 'Il_._ as usually

given. The reason for using actual values
Of stiifness, as defined above, is to elim-
inate a source of error in computing moment
distribution factors when members of both
constant and variable moments of inertia are
present in the same frame and also when
members in torsion are present. All dia-
grams in this monograph for determining
stiffness factors give actual stiffnesses Kpp

and Kpp, and the equations for Kpp and
KBA on each diagram refer to a fixed beam,

In torsion, the modulus of stiffness of a
member will be defined as the torsional
moment required to twist the free end of
a member through a rotation of one radian

with the other end fixed. Whenever the un-
balanced moment at a joint is distributed in
bending only to other members of the same
material, the modulus of elasticity may be
omitted when computing the stiffness fac-
tors. However, when members in torsion
also frame into the joint, the modulus of
elasticity must be included, since it is dif-
ferent for bending and for torsion. This, of
course, is also true when members of dif-
ferent materials frame into the same joint.

FIGURE 3 - Illustration of Stiffness
Factors., (For actual values see
Figures 25(a) and 25(b).)

The values of case I in Figure 25(a) can
usually be used in the solution of rigid
frames. Where applicable, cases II and III
in Figure 25(a) lead to short cuts. ~

2, Beam ants for membe
constant moment of inertia

For beams ot constant moment of inertia,
the work of computing initial end moments
is greatly simplified by the use of special
equations which have been derived for vir-
tually all types of loading and end supports.
However, loadings are occasionally encoun-
tered for which special equations are not
obtainable, The general equations given in
Figures 25(a) and (b) will greatly facilitate
the calculation of beam constants when
special equations are not available, Ex-
amples 1 and 2 illustrate the use of these
equations, Special equations for initial end
moments for various types of loadings and
end supports are given in Figures 26(a)
through (e).

Influence lines are usually very useful
for obtaining initial end moments, and illus-
trations of their use are given in examples
3, 4, and 5.



Example 1 - Beam constants for uniform
: section - Uniform loading.

Given:

A beam of constant section 1.0 foot wide,
4,0 feet deep, 20,0-foot span, carrying a load
of 100 pounds per linear foot, as shown in
Figure 4.

.---W =100 Lb. per linear ft.

#IGURE X - Beam and Loading Diagram.

Required:

Stiffness factors K, carry-over factors
r, and initial end moments which, in this
case, are the same as fixed end moments

Cap and Cpga.

Solution:
pad _ 1x 43 4

From case I in Figure 25(a) the stiffness
factors are

_ _ 4EI _ 4x5.33
KAB"KBA‘ L 20 E
1.066 E

Where all members of the structure are of
the same material and subjected to bending
only, E can be cancelled, leaving

Further, from case I,

1

TAB = TBA T 73
(r is always equal to —% for
beams of constant section)

A Xo I
AB T 0(4'61 )1
and

X
Cpp = A (-2+6=2)

As shown in the nomenclature, A, is
the area of the TX diagram for the loading

under consideration, and X, is the distance
from end A to the centroid of A,. The mo-
ment diagram for a simple beam having a

span of 20 feet, loaded with 100 pounds per
linear foot, is a parabola having a maximum

ordinate at the center equal to % WL2

M %sz - %x100x202

5,000 ft. -1b.

FIGURE 5 - Simple Beam Moment Diagram.

Since the moment of inertia, I, is con-
stant and equal to 5.33 ft.4, the I\I/IX diagram

is also a parabola having a maximum ordi-
nate at the center equal to .

M
X - 5000 _ 937 1p, /£t.3
I 5.33

A
M- 9374513

M
FIGURE 6 - ..I_’E Diagram.

From Figure 51, the area of a parabola
equals
- 2
A = 3 ML
where M is the value of the middle ordinate
and L is the length, Therefore,

A, = —%—x 937 x 20 = 12,500 Ib. /5t.2



The center of gravity is at the center of
the span and is therefore 10 feet from end A.

L
X, = 2 = 1001t

Substituting these values gives

- 10 533
Cpp = 12,500(4 - 632) =22

= 3,330 ft.-1b.
C_ . = 12,500(- 2 + 6 £9)2:33

BA 20

3,330 ft.-lb.

0

These values could, of course, have been
found simply by applying the formula for
initial end moments for a uniformly loaded
beam, as given in Figure 26(b),

_ 1 2 _ 1
BA = 12WL = 12xlOO

x 20% = 3,330 ft.-1b.

Exammg 2-Beam constants for uniform sec-
iion - Concentrated loading.

Given:

A beam of constant section 1.75 feet
wide, 4.5 feet deep, 30.0-foot span, and
loaded with two concentrated loads, as shown
in Figure 7.

10,000%*

>}<eo>§

apoo*

R
§‘ ........... L=30.0"-

FIGURE 7 - Beam and Loading Diagram.

Re_quired:

Stiffness factors, K, carry-over factors
r, and initial end moments.

Solution:

I = %x 1.75 x 4.53 = 13.3 ft.4

Referring to case I in Figure 25(a),

_ _ 4EI _ 4x133
KAB‘KBA‘ L 30
= 1.77E
r = T =i
AB BA 2

In order to evaluate the end moments, first
calculate the simple beam moments and
then find the area and the center of gravity

of the corresponding I_X diagram as follows:

The reactions for a simple beam are

6 x 10,000 + 21 x 8,000

Ry = 2
= 7,600 lb.
R. - 28,000+ 24 x 10,000
B 30

10,400-1b.

1

The moment for a simple beam at the
8,000-pound load is

and at the 10,000-pound load
Mlo’ooo = 10,4OOX 6 = 62,400 ft.-1b.

10000#

N s L=30.0%----f----o-
<--9.0'- o< ----15,0'- - --->}<-6.0'>

\g\-:

7600%
| 268,400

Ra

FIGURE 8 - Simple Beam Moment Diagram.



Then since I = 13.3 ft.4, the 1\# value

9 feet from A is

M _
8,000 _ 68,400 "_ 3
’I = 15‘3 = 5,140 1b. /ft.

and 6 feet from B

Mio.000 62,400 _

3
2 T = 4,690 lo./it.

@

FIGURE 9 - -Iﬁ- Diagram.

| Divide the _I\%_X diagram into convenient

sections -1, 2, and 3. Table I shows the
calculations for areas and center of gravity
of these sections.

Substituting these values in equations of
case I in Figure 25(a) gives

_ _ @ l15.46,13.3
Cpp = 110,900(4 - 6 =322) %

= 44,900 ft.-1b.

_ . 15.46 | 13.3
Cpa = 110,900(- 2+ 6 5= ) =22

53,600 ft.-1b.

These values could have been found by the
formulas given in Figure 26(a) for similar
loading. :

- L 2 . L
| CAB""L2 yPab? = v (8,000
x 9 x 212 + 10,000 x 24 x 62)
= 44,900 ft.-1b.
-1 - L
Cpp = 75 sPap = ~— (8,000

x 9% x 21 + 10,000 x 242 x 6)
= 53,500 ft.-Ib.
If the above beam were hinged at end B,

the value of Dp g from case II in Figure
25(a) would be

Then, 1 , 1
A R 110,900 5 *DAB = CAB - ?CBA = 44,9004--—2
o - z‘ - _lb’/ ft. x 53,500 = 71,600 ft.-1b.
and |
i *In the equation for Dpg or Dpp the sign of
X, = HIGER = 15461 Cpp and Cpa must be taken into account,
TABLE I
M
Calculation for Areas and Centers of (h'avity,._I’-‘— Diagram
o ‘DISTANCE MOMENT
SEC- | DISTANCE FROM LEFT FROM
> AREA OF SECTION ABOUT
- ATO C.G. uph
TION [EDGE OF SECTION TO C.G6 OF SECTION END “A
| [ %x9 6.00| 6003 x9x5140= 23100| 138,600
. [5140+2X4690 15 5140 ¥ 4690 PP
p [2L0t2X3890,18-7 3918739-1639|( X 22L25%%i5-73,700) 1,210,000
3 |3x6 2.00[24+2:26.0 |3 x6.0x4690 = 14,100| 366,000
Total > A=1109001,714,600




or, by formula in Figure 26(a),

1 1
D _ = ZPab(b+ L) =
AB = 52 2 x 302

[8,000 x 9 x 21(21 + 30)
+ 10,000 x 24 x 6(6 + 30)]
71,600 ft.-1b.

Example 3 - Use of influence lines for initial

end moments.

Given:

The same beam and loading as in ex-
ample 2.

FIGURE 10 - Beam and Loading Diagram.

Required:
The initial end moments Cppg and Cpga.

Solution:

Influence lines are plotted on Figure 27
for a beam of unit length and constant mo-
ment of inertia carrying loads perpendicular
to the axis of the beam. In order to facili-
tate the use of these curves, the values of
both Cop and Crp have been plotted. For
a beam of constant section they are, of
course, similar curves but opposite hand
On the same page is also a curve for DaoR
which is the moment at A with the end A
fixed and the end B hinged.

For the 8,000-pound load,

a =0.3
30

and for the 10,000-pound load,

24
a-3o_08

Then from the curve for Capp in Figure 27
the coefficient £ for the 8,000-pound load
(a = 0.3), is 0.146 and for the 10 OOO-pouné
load, (a = 0.80), 0.032, Therefore,

Cap = (0.146 x 8,000 + 0.032
x 10,000) 30 = 44,640 ft.-1b.

Similarly, B for Cpp for the 8,000-pound
load is 0,062 and for the 10 OOO-pound load

.0.128, Therefore,

Cga ' = (0.062 x 8,000 + 0.128
x 10,000) 30 = 53,300 ft.-1b.

These values check the previously calquated
values reasonably well, -

E;amme 4 - Use of influence lines for initial
engl. moments - Moving Joads.

Given:

A beam of constant section on a 30-foot -

span, loaded with two moving loads 3 feet
apart. The larger load is 10,000 pounds
and the smaller load is 8,000 pounds.

A B
----- X=alL - >80~ (L-X-3)---
<o - eeemeee L 230,0" e m o e

FIGURE 11 - Beam and Loading Diagram.

Required:

‘The maximum fixed end moment Cppg

at A and the corresponding fixed end mo-
ment Cgp at B.

Solution:
The distance between the loads is §%

= 0.1 of the span length. Several irials
indicate that the largest value of the fixed
end moment at A (Cag) will occur when



the 10,000-pound load is at a = 0.30 and
the 8,000-pound load at a = 0.40. With the
loads in this position the coefficient B at
the point a = 0,30 is 0.146 and at the point
a = 0.40, 0,144, Therefore,

g = (0.148 x 10,000 + 0.144
x 8,000) 30 = 78,400 ft.-1b.

Ca

-Similarly, the corresponding fixed end
moment at B is ‘

Cga = (0.061 x 10,000 + 0.095 °
x 8,000) 30 = 41,100 ft.-1b.

Example 5 - Use of influence lines for injtial
end moments_-_Couple acting
at any point in a member.

Given:

A column 27 feet long loaded with a ver-
tical load of 30 kips 1.25 feet from the center
line of the column and applied 20 feet from
the base, as shown in Figure 12(a).

'y © A
X BRSNS ‘"T'W‘
o 30K 5 b .
~ o . 30K
{___:_bzs -: fULV K
i '2 C:) COUDIO
H N g =30x 1.25 -
o R 2375'K
o s
N [ -]
i o
{ . T
g‘\'m\i‘m\\ §--i-mm
) 8
(a)-Actual (b)-Equivelent
loading . loading

FIGURE 12 - Eccentrically loaded column.

Required:
Initial énd moments at A and B.
Solution:

This problem can be solved by the use
of the special equations in Figure 26(e) or
the general equations in Figure 25(a). How-
ever, the influence lines in Figure 28 give a
much quicker solution of this problem. The
diagrams can be read accurately enough for

most designs. Determination of the signs
of the end moments and the shape of the
moment diagram is difficult; since it varies
with the location of the point of application
of the couple. Figure 29 has been prepared
to facilitate the determination of the signs
of these moments. ’ .

The column as loaded in Figure 12(a)
may be replaced by a column with a centric
load of 30 kips and a couple of 37,5~-foot
kips, as shown in Figure 12(b). The con-
centrated load has no effect on the moments;
so the problem reduces to one of finding
the moments for a couple of 37.5-foot kips.

First find

- 1 _
a = 7_0.259.

Then from the influence line, Figui'e 28,
the coefficients B for Cpp, Cpa, and Ry

(the reaction at A) are 0.17, 0.31, and 1.186,
respectively.

Therefore,
Cap = 0.17 x 37.5 = 6.4 ft.-kips
Cga = 0.31x37.5 = 11.6 ft.-kips
_ 37.5 _ .
Ry = = x 1.16 = 1.61 kips

Bince no transverse loads are applied, the
reaction at B is also 1.61 kips. The re-
actions are always in such a direction as
to oppose the applied couple,

The top deflection diagram in Figure 29
shows how the beam is stressed when the
couple is applied between a =0 and a
= 0.33. Similarly, the second and third
diagrams show how the beam is stressed
for the couple applied between a = 0.33
and a =0.67; and a = 0,67 and a = 1.0,
respectively, Naturally, if the couple.is
reversed, all stresses reverse.

In the present example a =0,2569<<0,33.
Therefore, the shape of the deflection and
the moment diagram will be as shown by the
top diagram in Figure 29. This enables the
reaction diagram, Figure 13, and the moment
diagram, Figure 14, to be drawn. Since ten-
sion exists on the right side of the column at
the top and the bottom, the direction of end
moments will obviously be as shown in Fig-
ure 13. The reactions are always equal and
opposite and in such a direction as to oppose
the applied couple.

The moment on the right side at the
application of the couple will be 6.4 +.1.61



C,s= 6.4 ft. K

-X---t———-? 375 tt.K

----=---20.0

Ces 116 ft.K

)
v 4]

4 (1]
3
X -

&

B

FIGURE 13 - Reaction Diagram.

7.7 ft. -kips, and on the left side 11.6
20 = - 20.6 ft, -kips.

The sum of these two moments should
equal the applied couple of 37.5 ft,-kips,
20.6 + 17.7 = 38.3 ft. -kips. The discrepancy
is small and due to inaccuracy in reading
the curves.

3. Beam constants for members of
variable moment of inertia

General equations solving carry-over
factors, stiffness factors, and initial end
moments for members of any shape are
given in Figures 25(2) and (b). These equa-
tions express the above constants in terms

of properties of the % diagrams. To facil-
X

itate the work of computing these beam con-

stants, diagrams are included in this chapter

- d

< 7.7 ft. K=

B!
.|
Canz!1.6 ft K-

FIGURE 14 - Moment Diagram.

covering the most frequently occurring
shapes of members. Special attention has
been given to members composed of two
prismatic sections because this type occurs
as a crane column in practically all power-
house buildings. Although these curves and
equations are self-explanatory, their use
is illustrated in examples 6, 7, 8, and 9.

Example 10 illustrates a method of de-
termining the torsional stiffness of a mem-
ber made up of two rectangular sections,

of two_prismatic sectiong -
Uniform loading,

Given:

A member of two prismatic sections,
as shown in Figure 15, lcaded with a uni-
form load of 100 pounds per linear foot.
Both sections of the member are 1.25 feet
wide.



Required:

Initial end moments, C AR and CBA

Stiffness factors, Kpg and Kgp
Carry-over factors, r AB and TpA

Solution: -
m = 1%%— = 2
L _ %_ﬁ = 0.00878 ft.3
i 30 : '

The moment of inertia I, is based on

the smaller section. For the meaning of
a and m, see Figure 15. By the diagram

in Figure 33, for a = 1l and m- 2, the

value of B for Cpp is 0.0525 and for Cgp
0.115. Therefore,

- 2
CAB = 0.0525 x 100 x 30

= 4,730 ft.-1b.

_ 2
CBA = 0.115x 100 x 30

10,350 ft.-1b.

1]

From the diagrams in Figures 30 to 33
are obtained values of the three coefficients
C1, Cg,and Cg; Cq =5.5; Cg =6.15; and

C3 = 26. O.

Then, by the equations shown on the
same diagram,

IC
= C, —E = 55x0.00678 E

KaB 1L
= 0.0373 E
IC
Kgp = C37E = 20x0.00678E
= 0.176 E
r o =C2_ 815 _ g

| L230.0" ----meemeeee

FIGURE 15 - Beam and Loading Diagram.

If, in this example, end A were hinged,
the coefficients would be as follows:

By the equations given in case III in
Figure 25(a),

Co |
% = -= =
Dy, = Cop o Cpp = 10,850
+ 65.155 4,730 = 15,850 ft.-1b.
Toa = 0; B and KAB remain
the same.
2 | ‘
Cz EIc
Ky, - (03 . _Cl_)_L_ = (26.0
2
- _6512 ) 0.00678 E = 0.129 E

Example 7 - Ipitial end moments for membper

Given:

A member of the same dimensions as
the one in example 6, loaded with an eccen-
tric force of 1,000 pounds applied as shown
in Figure 16(a). End A is not fixed against

vertical movement.

Required:

The initial end moments due to this
loading. '

*In the equation for Dpp or Dp g the signs
of Cgp and Cppg must be taken into
account, ' ‘



5
e
P )
[4
¥ £
' (2]
| @
3 2[5
8 |emd=25 °18
3 sl
J °
~ J "
H 1 =
8 mL\
8
(a)-Actual (b)-Equivalent
loading loading

FIGURE 16 - Eccentrically loaded member.

Solution:

The loading of Figure 16(a) may be
represented by a centric load of 1,000
pounds and a moment of 630 ft.-1b. as shown

in Figure 16(b). The centric load will have

no effect on the end moment. Then by the
diagrams in Figures 36 and 37, the values
of Cpp and Cgp are obtained for an applied

moment of unity. Multiplying these values
by the applied moment of 630 ft.-1b. gives

the moments sought. Thus, for a = L and
m=2, 3

Cap = +0.19x 630 =

and

VCBA = + 0,275 x 630 = 173.3 ft.-1b,

Stiffness and carry-over factors remain
the same as in example 6.

Example 8 - Beam congtants for haunched
- members.’

Given:
A frame having a uniform width of 1.25

feet, with dimensions and loading as shown
in Figure 17,

Required:

(a) Initial end moments, carry-over
factors, and stiffness factors for the beam.

(b) Same for the columns.
Solution (a) - Beam:
The length of beam is considered to be
the distance from center line to center line

of columns as shown in Figure 18, Note that
the haunches are also extended to center

- - = —— -

)

<------h=8.0'

i ANNNANNANN

. ~800% |inear

119.7 ft.-1b, lines of columns, '
p = 1000¥

|-<-kL=5.0' >

Y !

\\

0.67 | [
---------------- 2200 ----cmmmmmmmeeaa- b
AN

FIGURE 17 - Haunched Frame and Loading.
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A \ i X . \ B
d=1.67" | b=1.25
X —
' md=4.0
A ! )
< o> :
. N.aL=233 . ;
LR EPPR o o S

FIGURE 18 - Beam of Frame in Figure 17.

The ratios, 2, k, and m are

_2.33 _
a =22 - 0117
= 2 -
k = > = 0.25
_ 40 _
m = 20 = 2.40
;. _bdd | 1.25%1.673 | ) 0c 4
e 7713 12 A8 T

From diagram in Figure 38 for a = 0,117
and m = 2.4,

C; = Cg = 6.5
and
Cy = 3.9
Then
Kyp = Cq I‘I‘JE - 6504008
= 0.158 E

Jue to symmetry, Kppa = 0.158E, and for
the same reason,

3.

———

©

w

Values for finding initial end moments are
obtained from curves in Figure 40(a). Thus,
for k=0.25, m =2.4,and a=0.1, 8 is"
found to be O. 036, and for the curve a = 0.2,

11

B = 0.034, Interpolating to the value a =0.117
of this problem,

B = 0.036 - 0.002 x 00017 = 0.0357
and
Cap = 0.0357 x 1,000 x 20

714 ft.-1b.

i
Similarly, by taking k from the other end
of the beam, it is found that for thls new

k=0.75, F=0.171, and
Cgp = 0.171 x 1,000 x 20
= 3,400 ft.-1b,

Solution (b) - Columns:
The height of column is taken to center

line of beam and the haunch is extended to
this line also, as shown in Figure 19.

md=3, 5‘

---.l
7

]
cemm———
]

8.0’

- h

¢ B
~-800% linear ft.

FIGRE 19 - Haunched Column with Tri-
angular Loading.



The moment of inertia I, is always

based on the shallowest section. In this
case, then,

= 0.0313 ft.4

[ - 1.25x0.673

c 13

m = 6%—3 - 5.22
and

a = -2%53. - 0.354

For these values of a and m the dia-
grams in Figures 41(a), (b), and (c) give

Cy = 15.3
Cg = 6.2
and
C3 = 5.5
Then
I.E 0.0313 E
Kyg = Cp 5 = 15352
= 0.0599 E
[.E 0.0313 E
Ky, = Cg——= 5.5 ===
= 0.0215E '
Co 8.2
TaB T T 163 - 040
Co 6.2
T e——— I cem— 2D . 2
rBA 3 z 1.127
Note that‘ rpa is greater than one,

Both columns of Figure 17 are identical
and therefore the stiffness factors and the
carry-over factors are identical. The right
column supports no direct load, It there-
fore has no initial end moments. The initial
end moments for the left column could be
found by using the influence lines in Figures
43(a), 2{3) (c), and (d), but, for the sake of

12

Dlustration, the general equations of case I
in Figure 25(a) will be used.

For convenience, the column is divided
into eight 1-foot long sections as_shown in

Figure 19. First, compute the T_’E ordi-
X

nates. This is done in Table II. The corres-

ponding diagram and its area A, = 445,630

1b./ft.3 and the distance to the centroid
Xo = 4.78 ft. are shown in Figure 20.

TABLE II

M
: p'd
Calculation of ——
L

for External Loadlng

Diagram

DISTANCE [SIMPLE BEAM|DEPTH OF| 1 "
POINT| FROM | MOMENTS [SECTION | s | 1%
ENDA" | My FT# | D FT ‘ x
a ¢} 0 3.5 (4466 ©
1 1.0 | 1050 2.5 [1.628] 645
2 20 | 2000 1.5 |0.352| 5682
3 | 30 | 2750 | 067 003!13|87,860]
4 | 40 | 3200 | 0.67 [003I302240
5 50 | 3250 | 067 {00313 }03830
6 6.0 | 2800 | 0.67 [00313(89460
7 | 70 | 1750 | 067 [00313|55910
8 8.0 0 0.67 [00313| ©
My _ A .
T - O oot 5~ —Point A
n = g45-----~-------------f--
v = 5682------"------a
n = 87,860----
v = 102,240--
= __JT.O:--_ Pl PR
v = 103830 l;‘ S
v = 89,460 oin oy 6
. Ty
v =55910-------- \é-" """""""" 4
T N o LR R AL L R E T E R R = )
B
FIGURE 20 - _Mlz— Diagram for External

Loading of Column of Figure 19.

Table III shows calculation of %’E dia-

X
gram for unit moments applied at ends of
column,



Calculation of

TABLE III

%
Ix

Diagram for myp = 1 and mgy = 1

POINT

Ix

My FOR
Mpg= |

My FOR
Mga= |

M
T; F_OR
Mag = |

M
T, FOR
Mga= |

>

4.466

1.000

0.0

0.224

0.0

1.628

0.875

0.125

0.538

0.077

0.352

0.750

0.250

2.13

0.71

0.0313

0.625

0.375

20.00

12.00

0.0313

0.500

0.500

16.00

16.00

0.0313

0.375

0.625

1200

2000

0.0313

0.250

0.750

8.00

2400

0.0313

0.125

0.875

4.00

28.00

Nl d W[N]~

0.0313

0.0

1.000

0.0

3200

The My diagrams for mpap =1 andfor mpp =1 are shown in Figures 21 and 22,
Ix respectively.

0.224-- A---- - fommm-mmmnmn e A
0538"I““"‘c;;‘f“"""""
_____ O _
T}
------ [ | e,
m
-0 2 16,0074 - - P8 -
1200--5 ----- - - - .
_ Y Sfe W=
=800---6--- Az 116.8=— 24.00
F----2400---7----/ " = 28.00
- 20.0--- gl " =32.00
B | | B
FIGRE 21 - - Disgram for myg= 1 FIGRE 22 'Ml',m"g"“m or m S

13



Now, by equations of case I in Figure 25(a).
AR - X))

c =
AA(XB -X

AB A)

445,630(5.69 - 4.78)
62.8(5.69 - 4.22)

= 4,390 ft.-1b.
A (X, - Xp)
ApXp - Xp)

445,630(4.78 - 4.22)
116.8(5.60 - 4.22)

= 1,450 ft.-lb.

BA

: AKX,

: _ Ba%A _ 62.8x4.22 _

- TAB < A_X, . 116.8x5.69 0.40
-0 BB |

- B(L-.XB)

BA AA(L-XA)

116.8(8.00 = 5.69) _ 1 14
'62.8(8.00 - 4.22)

XB E
HA(XB - XA)

__ 589E __ _
= TG0 - Loy C OO E
(L-X,)E

Ag(Xg - Xp)

BA

 (8.00-432)E __
= T68(.00 - 439 - 02 E

The values for carry-over and stiffness
factors differ by less than 6 percent from
those obtained previously by use of dia-
grams. (See pagel2.)

The values of the coefficients Cq, Co,
and Cg may be obtained also by the equa-
tions at too of Figure 25(a).

L Xp

S Ul S WA 9N
c TAYB A

8.00 5.69
0.0313 62.8(5.69 - 4.22)

15.75

14

1 (L-X
I, A,(p - Xp)

_ 8,00 _ (8.00 - 5.69)
0.0313 62.8(5.69 - 4.2)

6.40

B

L (L -Xp)

3 71, Ay - Xp)

8.00 _ (8.00 - 4.22)
0.0313 116.8(5.69 - 4.22)

= 5.63

C

Since accurate values for Cy, Cys and Cg

are now available, the initial end moments

for any loading could be found by the second

Iz%ft) of the equations of case I in Figure
a .

*C1» Co, and Cg as evaluated from curves.

are generally too inaccurate to be used
for finding initial end moments.

_ Xo Ig
Cap = 4 [Cl -1 (Cr+ Cz)] T
445,630 [15.75 - 4.78

8.00
+6. 40)] &2 .

]

(15.75

4,394 1t.-1b.

cBA

Xo |l
Ao[ 02+—-(cz+c3)]—

L
4.78
8.00

= 445,630 [ 6.40 + (6.40

= 1,378ft.-1b.

+5. 63)] 3 003

Example 9 - Beam constants for T-section. -
Given:

A member with two T-sections, as shown
in Figure 23, loaded with a concentrated

load of 1,000 pounds 6,0 feet from end B.
The member is hinged at A and fixed at B.



™ 1000# S
| , O --kL=6.0"--> .9
<b=4.0 > + A A B ' B < b=4.0> 4
-y .. == Y ;'>- N -1 7 . A
S B s
£ V] " [-Hinge Fixed-->N 10 / |
i o b I N £ [
> A b . LA_GOI > L> ! ! !
b'=15% aL=ot = g g
SEC A-A :< """"""""" L_= |50l """"" > "b' < |.5|
SEC.B-B
FIGURE 23 - Beam with Two T-sections.
Required: and of the larger section the inertia is

Initial end moment Dga
Stiffness factors KAB and KBA

Carry-over factor r 0

AR "BA T
Solution:

In order to find the ratio m necessary
for the use of the design diagrams for mem-
bers of variable sections, irregular sections
must be changed into equivalent rectangular
sections of the same moment of inertia.
Further, for the curves to apply, the equiva-
lent rectangular beam must be of the same
shape as the beam shown on the diagram to
be used. The width of the beam is chosen
arbitrarily, but it must be constant for the
same member, Therefore, the depths of
the equivalent sections are proportional to
the cube root of the inertias of the original
sections, and

3
AT
m = _L
IC

where Iy is the largest value and I, the

smallest value of the moments of inertia of
the beam.

By use of the diagram in Figure 50, the

moment of inertia of the smaller section of
the beam in this example is

"3 3
p'hd 1.5x 2
12 1.85 12

1.55 ft.4

I, = B

15

_ . b'hd 1.5x 33
I =85 = 151 ==2X2
= 5.10 ft.4

Now by the diagrams in Figures 30, 31, and
32 for a =—6-£ = 0.4, and

3
A 75.10 _
m = 1.49,

the slope deflection constants are
Cqi = 475

m =

Cog = 3.70
and
Cg = 118
Then, from case III in Figure‘25(a),
_ Elg 1.55
KAB = Cl—L- = 4.75———15 E
= 0.491 E
Co2 \EI
_ _ 72 C
Kpp = (03 'c_l)"L_ = (11.8
_8.702, 1.55
Z7E ) 15 E = 0.919 E
Co 370
I‘AB = —1= WL‘ 0.78



By the diagram in Figure 35(d), for

k=60

5 = 0.4, a=0.4, and m= 1;49, the

moment at end B is

It
1]

‘8 PL
' 3,360 ft.-1b.

-

BA 0.224x 1,000 x 15

Example 10 - Modulus of stiffness in tor-

. tengular sections.
Given:
A member composed of two rectangular

sections, as shown in Figure 24, Both sec-
tions are 1.25 feet wide.

<o oPart | o eeseeaeoooo Part 2 -
A x r = 8
[e] —
o T
X
pennanoeees 10.0 e 10.0" - -r-=ees >

FIGURE 24 ~ Beam with Two Rectangular
Sections.

Required:
Modulus of stiffness K in torsion.
Solution:

Referring to case VII in Figure 25(b),
the stiffness of this beam in torsion is

‘ | .
Kyp = ¥pa T T 1

K Ko

where Ki; and Kig are the stiffnesses of

parts 1 and 2, respectiveiy. For part 1,

h=2.0ft and b=1.25ft Then,

h 2.0

) 1.25 1.6

16

Now from the diagram in Figure 49, 8 =
0.204. Take Poisson’s ratio p for concrete
to be 0.25. Then,

s__b3hE
Lo(1 + 1)

1.253 x 2.0 E
0.204 7553 {d + 0.25)

0.0319 E

t1 =

For part 2, since h is always the larger
side, h=1.25ft. and b=1.0ft. Then,

1.

1.0

()]

1.25

s
b

From the diagram in Figure 49, 8 = 0,175,
and

K 13x1.2
= 01 5oy

0.00875 E

5E
t2 0.25)

1

The composite stiffness for the whole
beam from A to B is then '

1
Kap = 1 N 1
0.0319 E 0.00875 E
= 0.00687 E

Now if the modulus of elasticity E of

concrete be taken as 432 x 106 pounds per
square foot, and assuming that the beam
would not rupture, the actual moment re-
quired to twist the end of this beam through .
an angle of one radian would be

0.00687 x 432 x 106
2,968,000 ft.-1b.

KAB



General slope - deflection equations =

Mas = ELe [C.6, + €0, ~(Ci+ C) B]+Cae

]
[CzeA *C30 - (G Ca) %] +Cea

MBA:%C
. C - L XB C - L X L—X C ‘L XA’
A XX (X=X, 27 T.7 AaXe-X,) I AB(Xa X,
EQ"DETS*&%EOO{T VARIABLE MOMENT OF INERTIA CON%TFA';'JE",Q.?',V’AENT
AdXs-Xo) _Xo I X\ 1
Cas = 20220 = A C L (c1+cz)]L Cro = Aclt62) T
| Ao(Xo~Xa) [ ] oA (20X L
oy longing|C Ry AL T UG G | Can Au(2 6L)L
ArXy  Ce 2l
|| B Cas = ABXB C, Fas 47 €Y
=/ r AB L"'Xa) CZ
oo Looeeemt | PR T ALL-X)
XeE . g_c _ 4EI
CASE I KAB AA(X XA) Cl L KAB" L
(L ~Xa)E El 4ET
Kon " A Ko -Xa &L Ken=
LYY (e O I Y < A (2-2%e\ I
| Ah loadi‘n - ALKl - G - Do~ 403 IaL-)L
I S Y N (AN * Can =5 Con
A | | B AB ! BA AA (L XA) CS r _O. r _l_
----- L K s—EE— = (C - Cz) El re TN Teaty
AB AA(L"X 3 L-. KAB _3..E__.I '
CASETL | (L-XJE _ EL M
BA® Ag (Xg- X) 3 KBA"'—L"
D AoXo = C EZ_ DBA o 3A° —{" ‘XTI:
Any loading 8" AsXs ** C, Cre o -le
| ] ALK, Cz BA~ 7 LaB
A 5|lea=0, Mg =
X d ABXa C, ..-l_
E L v X E EI ea =0; Tas =73
I S s L Lic.
CASE I e AKX Kuo = 4EE
Ken= 5 = (C, - c‘) El 3E]
8% A X 3¢/ L Kea = =T

'l‘ C| s CZ Qnd
to be used f’%

as evaluated from curves are generally too inaccurate

r computing Cag and Cga
SHEET | OF 2

X-D-l42i

FIGURE 25(a) - General Equations for Initial End Moments,

Carry-over Factors, and Stiffness Factors. -
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General slope - deflection equations

}MAB = _El_-Ig [C'GA + Cgee"' (C]"'Cz)%]"' CAB

Maa = EIC [Cz Oa+ C365- Cz"cs) A] + Cea

C-tx _X—L—- C - L LXe . o L, LX
| ICA As(XeX,)’ 2- AAO(B“XA 3= _ABXB X
F_,'}"fgﬁ%ggg, VARIABLE MOMENT OF INERTIA CONSO?TJE“S'?&ENT
A L\A —X)a) Al;())((a;(JAE Ele (R Cs) Mea = - —6{:7_—113

Stiffness and carry-over factors as for Casel

EL (- C)

EA EIA 3EI A
Mao = PL =" R ILRY 5 (-0 [Mu=pLe- 35,
3
A-“ AA(L‘XA) ?FEL.Q_-E-) A:-%
|
) -3EIA
LMo - (Ee) [ MuneLs S
T’ : 3 p13
NEAW LR X St g
' K
CASEY[ D>

~Stiffness and carry-over factors intorsion. Rectangular sections only.

Note:"h"is the larger side.

If the beam has two or more rectan-
gular parts, the stiffness is "one"
divided by the sum.of the reciprocal
stiffness of each part.

3
Ko Kon=B200)

For values of 3 see
diagram on page
b4

Tag = Mea = I

X-D-1421

FIGURE 25(b) - General Equations for Initial Fnd Moments,

Carry-over Factors, and Stiffness Factors.
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Beam fixed at both ends

Left end fixed
Right end hinged

Left end hinged
Right end fixed

P b P o P b
@><-----b---- - -H<----b---- > < o< === ----
700 I I R e O
A BlA B|A & — B
/ P— o P A S ——
Pab? -

Cas™ ~2 Pa P
c - Pa’b DAB‘W(b”-) DBA=—2%?(Q+L)
BA L2 L
-----ag--b-?ba ----- a3 L—-’l byt< | =ooo- %"bmlba -
S G T 02 ] UL DT ERCE B R T i W B N |
%::J.F“?]Eb,“ E;:E O'IP'" vFﬁb' B 'a'\rﬂ )l;bl stE
A _V__'___'L__”’_Lf B|AT—"— — 3B|A f;--;-— B
. 2 , o
ne T,im)b D,s = 7z LPab(b+L) | Dy, = 717 LPabia+L)
Cga = 17 LPa%b - | -
P ’ P L P
S S S S S N SRR TN
’ 2 2 ! 2 Y
I M I I B A
AL ______ R B A/L ______ L____jB A’L _____ . N 'B
e o _ 3 .3
Cag~Cga= g PL Dug = 76 PL Dga =76 PL
P P P P P P
ax<--c--><a a --c--Taﬁ <at<--c-- a’g :
j-: —————— L~--—--- Ng fl< —————— L------ >l (S L---———-:—p
P 3P
Cag*Con~ T2 (a+c) | D, =3F2 (a+c) Dpa = St (a+c)

SHEET | OF 5

FIGURE 26(a) - Initial End Moments for Beams of Constant
Moment of Inertia.
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Beam fixed at both ends |

Left end fixed
Right end hinged

Leftend hinged

Right end fixed

P P P
L L L L
f‘?"‘?"‘?’i“z’E
A% Y Y Y B
- - - -~ L-------3 ’
- 15

(n-1)equal loads
111 |11
AlXLYY YYY

(n-1)equal loads

ll\l( | 1]

‘8 YYY °B| A YY YYY B
 Pu—— e —— i FR——E—
n equal divisions | n equal divisions n equal divisions
W = Total load W =Total load W =Total load
| n+ly |
[ can=ConsB) G WL | Dag=(2) 5 wi 0ga=(%) & WL
-C >i<--7 —————— -C -} —--}—d ---om :r<—c ->:<—--;-d -----
--o-{[ﬂmm(---b-- -0 - -b-- > -0 -- --b--

4—<(L-x) ->¢<---x---
d
Cas=; fb yx2 (LX) dx

d
| Cga =-lefb yX (L‘-X)de

rd
DAB:zlL?jb yx (1>-x2)dx

~==(L= X) - - X

CAs

f M' (L-3x) dx
cBA sz M' (3x-2L)dx
, M Slmplebeammomem‘

<--=(L-X) - =X
A ANy loading ﬁs

- == — === L-=----=

_ L

DAB M'xdx

M'=Simple beam moment

: L
DBA=%IO M’ (L-x) dx

M'=Simple beam moment

W Ib/ft W lb/ft W by ft
)4 4 |4
A N B|A N Np | a D N B
R L------ > b~ = -~ —- L------- > t ------- L------- >
- | 2 =L - 2
Cap=Cga=73 WL Dpp=7 WL Dga=§ Wt
SHEET 2 OF 6
, X-D-1422

FIGURE 26(b) - Initial End Moments for Beams of Constant
Moment of Inmertia.

20



| Beam fixed at bdth'ends

Left end fixed
Right end hinged

Left end hinged

Right end fixed

Fot wiby/it E 0> Wb/t <0 Wb/t E
O
A B|aA 2B | A NN B
Jrzmmmsme L--mmnnn N2 i P L - S I S L-mmm b
wa?, .2 2
== (6L~ +30 2
Oagiippz (OL-BaL+36T) |y @a® (5| oy Dga=-L8" (2(2-a2)
w03 812 812
Can= &%, (4L-30)
oL e L __ L. L __ e L 0L
/DR R ’E STTTTETTTL | TTETTYTS
~J wib/ft Wb/t | wib/
AAN , ‘5 | AN ig|ap B
y R Loommme 2 e D Lomiemns A | e R 7
I 2
CAB=.|—2 wl 9 ) _
; Dap=Tog WL Dga = 1oz WL2
CBA=|‘g§§ Wi BA® 128

= _ - _ ! (P | 1 '
~wib/ft °’E 3‘“ > wibyft <9 O Ot [0 ’E
J | !
N\EE N | |
A N B |A —4B [Aj B
------- SN 2 (o BUPRSUU f Jof SR—
cAB-cBA=%( -6a2L+4d) DAB-—(L3-602L+403) D :-8@-(L3-60 L+40%)
Ax--==Q) === <——--0.—-—->1 =50 - - =
0! w {1/t E a5 - wilb/ft <0~ W b/t E
NN N \_\} \ .
A AN ‘\\ B A NN ‘ : RB AL~ % B
/vy ol o Purm— f Su— —

CAB=CAB(FOF 0|)" CAB(FOF 02 )

CBA=GBA(For o,)-CBA( For 02)

Dgp=Dgp(For a))-Dg a(For a,)

BA®

SHEET 3 OF5

FIGURE 26(c) - Initial End Moments for Beams of Constant
Moment of Inertia.
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Beom fixed at both ends

Left end fixed
Right end hinged

Left end hinged
Right end fixed

CBA's—o (20, + 3Wp)

i, K

Caa* 6OL?(5L_30)

l20

!
Ca=Caa= 35 WL*

SHEET 4 OF 5

X-D-1422

FIGURE 26(d) - Initial End Moments for Beams of Constant
Moment of Inertia.
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Leftend fixed Leftend hinged

Beam fixed at both ends Right end hinged Right end fixed

Qg < -b - ==
W= Total load

=Q><- - - -b - - - >
'W=Total load !

W [ 2(o+4b)+3b (4a+b)]

AB3 3012

W 2
B Iy 30 1?[30 (o+4b)+2b2(4a+b)]

W =Total load

DBA—Z%'2 WL

~--Parabola

~-Parabola X|><<‘
N =
3

. -2
W=Total load = 5 Lw MA

3
- I ' 3

Cap= Caa= 1g WL Dag = 55 WL DBA = 75 WL
W W W W W W W W W W W oww W W
°2n n N N 2n }|°2n n n n @°2n ) 2n n n n 2n
A¢¢¢¢%A4¢*¢*BA{(¢¢¢JB
/ PRS2l u—— L SU— -
n equal divisions n equal divisions n equal divisions

W= Tofclload W-Tofol Ioad W=Tofallood
CAB CBA (1- )I WL DAB-(I‘—z) D >=(|"— )

2

j<—-a-->:<—-—b-——>E a<——o-—>:—<—--b - - > :—<——a-—>:<———b—-—>E
< +M +M | i <= +M
A ] | 8la -7 I L jl_ 1 B

Cag=-M; 5 (L -30)

2 M a
Dag= hg'(%?—l) DBA-’-+§!(‘3—L‘2 1)
Core-M; S (L~ 3b)
FOR TYPICAL CASES SEE SHEETS X-D-1424 AND 1425
SHEET 5 OF 5
X~-D-1422

FIGURE 26(e) - Initial End Moments for Beams of Constant
Moment of Inertia.
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FIGURE 27 - Influence Lines for Initial End Moments--
Beam with Constant Moment of Inertia.
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FIGURE 28 - Initial End Moments for an Applied Couple--
Beam with Constant Moment of Inertia.
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FIGURE 29 - Moment and Deflection Diagrams for an Applied
Couple-~-Bean with Constant Moment of Inertia.
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FIGURE 30 - Slope-deflection Coefficilent Cl--
Beam with Two Constant Sections.
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FIGURE 31 - Slope-deflection Coefficient 02--
Beam with Two Constant Sections.
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FIGURE 32 - Slope-deflection Coefficient C_--
Beam with Two Constant Sectlions. 3

29



30
25
m= &
=
[T
e o
20H 2D
e 0
S
| <
15 =
z ot
10
¥ m=1y
| »s 1117
T
@ H-HH
1] m=2y
o T {11
0s 2 -3, 5
03 m=4- =
e
f
%

0.5
VALUES OF

X-D-1429

FIGURE 33 - Initial End Moments, Uniformly Distributed Load--
Beam with Two Constant Sections.
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FIGURE 34(a) - Influence Lines for Initial End Moments--

Beam with Two Constant Sections.
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FIGURE 48 - Slope-deflection Coei’ficients--Beam with
Symmetrical Perabolic Haunches.
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CHAPTER II
MOMENT DISTRIBUTION

1. Discussion

Moment distribution, as developed by

Professor Hardy Cross, is essentially a
method of solving slope-deflection equa-
tions by successive approximations. These
approximations are accomplished by first
computing initial end moments, due to the
applied loading, considering all joints as
fixed in a given position, Then by releasing
each joint in turn, the unbalanced moments
are distributed throughout the frame until all
joints are in equilibrium. During this proc-
ess all joints are considered held against
lateral movement. In frames where lateral
movement (deflections) will occur, sidesway
corrections must be made in order to bal-
ance shears as well as moments. No dis-
tribution of moments takes place at joints
permanently fixed; hence they are not re-
leased., Short cuts are possible by treating
hinged joints as such to begin with. These
joints, after the beam constants have been
computed, may simply be disregarded. This
will be illustrated in the examples.

2. Sign convention

Up to this point it has not been necessary
to designate a sign system., Hereafter, for
the purpose of illustrating moment distribu-
tion, the following sign system will be used.
If the end moment in 2 member tends to
cause clockwise rotation of the adjacent
joint, that end moment will be called posi-
tive (+). When the tangent to the elastic
curve of & member has rotated in a counter-
clockwise direction from its initial position,
the change in slope will be called positive.
The deflection & with respect to a member
will be called positive if it rotates a line
joining the ends of the members in a coun-
terclockwise direction from its initial posi-
tion. Reversal of rotation in each definition
above causes reversal of signs. Positive
thrust causes compression in a member
and negative thrust causes tension in the
member. The directions of shears are best
visualized from free-body diagrams. For
the purpose of correcting for sidesway in
moment distribution, a shear, at the end of
a column, will be called positive (+) if it
tends to move the beam into which it frames
toward the left and negative (-) if it tends
to move the beam toward the right. For
cases where this definition is not adequate,
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'the designer must define a system of signs
that is consistent throughout the problem,

3. Assumptions

It is assumed tha;tﬁ ‘
(a) The ends of all members meeting at

a joint rotate through the same angle when
the joint turns.

(b) Axial loads or stresses will not change
the length of members,

(c) Deformation due to shear will be
disregarded. s

4, Principles of moment distribution

(a) An external moment applied to a joint
in a structure is resisted by all members
meeting at that joint in proportion to the
stiffness factor K of each member,

(b) When a joint is rotated, the moment
induced at the far end of a connecting mem-
ber is equal to the moment distributed to
the member at the joint times its carry-
over factor. This induced moment is called
carry-over moment,

5. Procedure of moment distribution

(a) Compute and record initial end mo-
ments, carry-over factors and stiffness
factors of each member in the structure,

(b) For convenience, compute distribution
factors S for each member at a joint. There
cannot be any distribution of moments from
one member to another through a hinged
joint, Therefore, any initial moment at the
hinged end of a member, resulting from
assuming the joint fixed initially, distributes
to that member only and its distribution
factor S = 1. At permanently fixed ends
no moment distribution takes place; hence
no distribution factor is required, or, S =0.
For other joints, the distribution factor S
for each member is proportional to the
stiffness factor K of that member and is
computed as follows:



KaAB

ZK of all members meeting
at the joint

SAB =

(c) Sum up algebraically all moments
at each joint. If this sum is not equal to
zero, the joint is said to be unbalanced by
the amount this sum differs from zero.
This difference is called the unbalanced
moment,

(d) Release each joint in turn and dis-
tribute the unbalanced moment to the mem-
bers by multiplying the unbalanced moment
by the distribution factor S of each mem-
ber. The sign of the distributed moment
is always opposite to that of the unbalanced
moment. After each distribution the joint
is again held fixed.

(e) Carry the distributed moments to
the other end of each member by multiply-
ing the distributed moment by the carry-over
factor., The sign of the carry-over moment
is the same as that of the distributed mo-
ment,

(f) Repeat steps (d) and (e) until the
carry-over moments are small enough to
be disregarded.

{inuous beam.

Given:

A continuous uniform beam, hinged at
A, simply supported at B, and fixed at C,
as shown in Figure 53. The beam is 1.0
foot wide, 4.0 feet deep, and supports a
load of 1,000 pounds per linear foot.

Required:

Moments, shears, and reactions due
to a load of 1,000 1b. per linear ft.

Solution:

In order to show the saving in time
made possible by treating free ends as
such, this problem will be solved twice;
first, treating end A as fixed initially,
and second, treating end A as free initially.

Solution treating end A as fixed

Referring to case I, Figure 25(a),

K, = Ko, = 2EI _ 4x933p
(g) Sum up algebraically, at the ends of AB BA 7 20
each member, the initial end moments, dis-
tributed, and carry-over moments. The = 1.086 E
results are the moments existing in the
structure due to the applied loads or de- 4F1 4%5.33p
flections. At a permanently fixed end, no KBC = KCB =T 30
distribution takes place; hence the summa-
tion of moments includes only initial end = 0.711 E
moments and carry-over moments. Free
ends, when treated as such initially, are
omitted from the moment distribution. 1
r = I = T =TI 2 —
(h) Shears and thrusts may now be found AB BA BC CB 2
by statics.
This procedure is illustrated by the
following examples.
|I000*/ linear ft.
A A A A A A A A A
Y LY Y VY Y Y Y Y Y VY VY Y YY Y r
9 2
3- z
A A 4
A B cy
7
' 4
e 20.0" ----->j<-mm o m e 30.0" -----em-- o>
*

I=5bd®=3x1x43= 533t

FIGURE 53 - Beam and Ioading Diagram.

58



By equations in Figure 26(b), the initial
end moments due to a uniform load of 1,000
Ib. per linear ft. are:

_ _ WLZ

Cap = “Cpa* = 5
)

- l@%&ﬁi = 33,300 ft.-1b.

and
p)

- - x = WLZ

e Cem 12

, ,
= L,000x 302 _ 75 600 £t -1p.

12

*The moments at the ends are equal but of
opposite sign.

Referrmg to step (b) on page 57, the
distribution factors are:

__%sc
Kpa * e

) 0.711 E
T.06E+ 0711 &

BC

= 0.40

The moment distribution is shown in
Table IV. The line of initial end moments is
marked LE,M. Lines of distributed mo-
ments, carry-over moments, and final mo-
ments are marked D,M.,, C.M., and F.M,,
respectively. Heavy lines are drawn under
the distributed moments to signify that the
joints are in balance at that point, Distri-
bution factors are shown in boxes at the end
of each member, with the carry-over factor
at the end of the small arrow.

Solution treating end A as a free end
initially.

Referring to case III, Figure 25(a).

_ 3EI _ 3x5.33, _
Spp = 1 Kpp = 5 = “35 E = 08E
_Kpa ro, = 0
S = BA
BA
I%A =t and from Figure 26(b),
_ 1.066 E _ 2 2
" ToGE+omiE - Dpa = WIS‘ = l,OOO8x o0
and = 50,000 ft.-1b.
TABLE IV
Moment Distribution of Beam in Figure 53, Initially Assuming Fnd A as Fixed C ,
/
“
A fio}>r=5 3=~f06 1B J04a >r=3 o1 b
LEM, + 33,300 - 33,300, + 75,000 - 75,000 2
DM. | - 33,300 25,000]| - 16,700 4
CM. [ -12,500 < ><— 16,650 o) > - 8,3502
DM. | + 12,500 + 10000| + 6650 4
CM. [+ 5000« >4+ 6250 0 >+ 3,325
.
D.M. 5,000 —__ - 3,750| - 2500—_ 7
CM. |- 1,875 < ~ - 2,500 0 > — 1,2502
D.M. |+ 1,875 — + 1,500|+ 1000 4
CM. [+ 7504« >+ 938 0 >+ 500 ;
DM. | - 750 - 563 - .375 4
CM. [- 282« - 375 0 > - |88 f
DM. | + 282 + 225|+ 150 %
F.M. 0 -63,2251+63,225 —so,geog

Note: No distribution made at joint ‘‘C’’ (a permanently fixed joint).
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TABLE V

Moment Distribution of Beam in Figure 53, Treating End A as Hinged

C

A 0:r<—{0531 B [0.47H>"3
I.LEM{O -50,000} +75,000 - 75000 F
D.M. __—-13250]-11750~_ 2
cm{o=— ~>~- 5875F
F.M| O -63,250 | +63,250 -80875F
Z

Initial end moments, stiffness and carry-
over factors for span B-C remain the same
as before.

In this case distribution is required
around joint B only. Distribution factors
are:

_ . EBa
Kpa + Xpc

_ 0.8 E _
= TEEsomIE - 0%

Kpe
Kpa  Xpe
_Q0.711 E

0.8E+ 0.7T1LE 0.47

1

The moment distribution is shown in Table V.

Once the moments have been found,
shears and reactions are obtained by statics
as follows: Draw free-body diagrams of
each span, as shown in Figures 54 and 55.
Positive moments, as they have been defined,
tend to rotate the beam in a counterclockwise
direction,

The shears at each end may now be
found simply by taking moments about the
opposite end. Thus,

20,000 x 10 - 63,250

VaB = 20
= 6,840 lb.

VBA _ 20,000 x %%+ 83,250
= 13,160 1b.

I000#%/f+.= 20,000% total

Y Y VY VY Y Y ¥ VY Y VY VY YYY
M,g=O <A , \B) Mg,=63,250'#
BN li ! ¥
R R 20.0' -------- el
Vpg = 6,840% Vga=13,160

 FIGURE 54 - Free-body Diagram of Beam AB in Figure 53.

1000¥/ft. = 30,000¥*total

TN NN aN ey .
Mgc=63,250* (B C) Mcp=80,875'%
UI. 'l\i'

Vgmrapio® 3007 T Vey: 15,590

FIGURE 55 - Free-body Diagram of Beam BC in Figure 53.
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30,000 x 15 - 80,875 + 63,250

Vse = 30
= 14,410 1b.
v - 30,000 x 15 + 80,875 - 63,250
CB 30
= 15,590 1b.
Rp = Vam
Re = Vep
Ry = Vg, + Vg, = 13,160

+ 14,410 = 27,570 1b.

The directions of the shears are best
visualized from the free-body diagrams.

Example 12 - Moment distribution - Rigid
frame without sidesway.
Given:

" A frame 1.0 foot wide with supports,
loads, and depths of members as shown in
Figure 56.

1000%
100%/41. <0 100" >b=50%
Agb bl b i ie ¢ C
e X i —
| d S ©
| NN
~ -20.0' -o-for oo feeE16.0" e
° { r—‘r_-l:l—soo#
b [}
Pzl @
: D ©
"mekm'y‘
FIGURE 56 - Frame and Loading
Diagram.

Required:

Moments, shears, and thrusts due to
the loading shown in Figure 56.

Solution:

-~ Note that the center lines of beams AB
and BC do not coincide. In this case the
working line for the frame was arbitrarily
chosen midway between them. It is neces-
sary to approximate the location of the work-
ing line in cases of this kind., However,
minor inaccuracies in the location of this
line will not appreciably affect the results,
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The moment of inertia of each member is

_1x33 _ 4
Lg = —55— = 2.251t,

_ 1x23 _ 4
Ioo = =55~ = 0.667it.
L. 1x38 _ g
BD 12 : g

Referring to cases Iand II in Figure
25(a),

B _4FT _ 4x2.25 o
Kap = Kpa =T = %5 E

- 0.45E |

_ 3EI _ 3x0.667
Kpo = 20 - 2200005 - 013

_ 4El _ 4x3.575

Xgp = ¥pg = T 5 F

- 0.953E

Since joints A and B are permanently
fixed and C hinged, moment distribution
is required around joint B only. Distribu-
tion factors around joint B are:

Kpa
Kpa + Kpc + Kpp

0.45 E
0.45E + 0.133E + 0.953E

= 0.293

BA

Kpc
Kpa * Xpc + Kgp
0.133E
0.45E + 0.133E + 0.953E
= 0.087
Kap
Kpa + Kgo * Kpp
0.953E
0.45% + 0.133E + 0.953E

= 0.620

BC

BD




TABLE VI - Moment Distribution in Frame of Figure 56.

, =1 -
A 4 r 'i‘—[0.293115 [oo87H>r =0 C
»
' y =
ILE.M.+3333 -3333 +996 s +2222 0
D.M. + 34 + 71 o+ 10
]
CM. + 17 8
F.M. +3350'# —3299'% +1067'# ' | +2232'% o}
a vl
' D - 871 I.E.M.
By the equations in Figures 26(a) and (b), +35 C.M.
9 9 -836# F.M.
c - -0 _ wL® _ 100x 20
AB = YBA = 12 12
= 3,333 ft.-Ib. c . Pa% _ 500x82x7
. BD 1.2 152
Pa
D = == (b+1)
BC ~ 912 = 996 ft.-Ib.
- L,000x10%5 5, 15) The distribution of moments is shown in
9 x 152 Table VI, For clarity this table is shown on
X a diagram of the frame. Arrows indicate
= 2,299 ft.-1Db. the members to which the moments apply.
’ This system will be used in all of the fol-
c _ Pab2 _ 500x 8% 72 lowing examples, :
DB L2 152 In order to find the shears, draw free-body
871 fh-Ib. diagrams as shown in Figures 57, 58, and 59,
100¥%/tt. = 2000% total
ALLILIILIS L bbbbidliilie
Mpg = 3350'# ( ) \ )M“: 3299'#
|:< ------------------ 20.0' ---emeemmmeeen >-:|
Vip =l000F Vga=l000#
FIGURE 57 - Free-body Diagram of Beam AB in Figure 56.
1000%*
A 10.0’ a-|<50 =
: Y .
- '# .=
) \ y
N ,
. H 1 '
R 15.0" - ===
VBC:480# VCB= 520#

FIGURE 58 - Free-body Diagram of Besm BC in Figure 56.
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vo.s2go%  Meo=1067¥
BD~ ~
©
[\
-<—'*—-500#
©
©
0] ¥
Vpp=220 % ~— .
o Moa=836#

FIGURE 59 - Free-body Diagram of
Column BD in Figure 56.
As explained in example 11, the shear
at one end of a member is found by taking
moments about the other end. Thus,

2,000 x 10 + 3,350 - 3,299

VaB = 20
- 1,000 Ib.
v, - 2000x10+ 5,200 - 5,350
= 1,000 Ib.
v, - LO0OX5+2392 ey,
v, - MOOX10-2.28 _ ooy,
v 500X 8+ 1,087 - 836
BD 5
- 280 1b.
v . BOOX7 - 1,067+ 836
DB 15
- 220 Ib.

The directions of the shears, hence the
direct stresses and reactions, are easily
visualized from the free-body diagrams.
The thrust in member AB, assuming the
hinge at C cannot support horizontsl loads,
is equal to the shear Vgp = 280 1b. The

vertical thrust in column BD is the sum of
the shears Vgp and Vge = 1,000 + 480

= 1,480 Ib.

Example 13_- Moment distribution - Sym-
metrical frame symmetri-
cally loaded.

Given:

A frame 1.0 foot wide with load and
depth of members as shown in Figure 60.

10,000 %/f¢.

A JIILLEILIEEEbiLLliLe o
X . 0
I %
<t-ot------15.0" - ----- >
©
o
0N
20 o | R i -~ | k20
Y. |
7 Y 2
C D
FIGURE 60 - Frame and Loading
Diagram.
Required:

Moments at all joints A, B, C, and D, |
Solution:
References to equations for beam con-

stants are the same as for previous prob-
lems. References, therefore, will no longer

. be'given. The equations only will be shown
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and computations performed,

- _ WL2
Cap = CBa = T3
- 10,00?2:: 152
= 187,500 ft.~1b.
_bdd _ 1x253 4
Ly =15 = = - 131t
. _1x23 4
Iac = Igp = =f5— = 0.667tt.
B _ 4EI _ 4x1.3
KAB - KBA L 15 E
= 0.347E
- _ 4F1 _ 4 x 0.887
Kac = Kgp = 7= =55 E
= 0.133E
S =8 = _KA_B__
AB BA " Kpp+K,o
_ 0.347E = 0.793

0.347E + 0.133E



s -8 - Kac
AC BD KAC'+ KAB
~ 0.133E Ry
" 0.347E + 0.133E 0.277
r =.% for all members.

The distribution of moments is shown in
Table VII. ' :

TABLE VII .
Moment Distribution in Frame of Figure 60.

1 1 B
A [07231>r=z r=3<—0723] B
v — Foed 3
TEM. = +187,500 -187,500 |I= [
D.M.-52,000 |N| ~135500 +135,500 |~] +62,000
C.M. o+ 67,800 - 67,800 [O
O.M.-18,800 [V - 49,000 + 49,000 [V +18,800
[ "'+ 23,500 - 24,500 [
D.M.- 6800 |¢c - 17,700 + 17,700 |- + 6800
C.M. + 8,850 - 8,850
DM.- 2450 - 6400 +_ 6,400 + 2450
CM + 3,200 -~ 3,200
DM.-_900} - 2300 +_23001 + 900
CM. - + 1,150 - 1,150 -
D.M.- 320} - 830 + 830 + 320
C.M. + 415 -~ 415
M- 1I15] - 300 + 300 + 115
FM.-81,380| + 81,380 - = 81,380 +81,380
— —
LEM, ‘" 6 [o] ’
CM =~ 26,000 +26,000
CM. = 9,400 ¥ 9,400
CM. = 3,300 + 34
T - 1,225 + 1,225
CM. = 450 + 450
TMT - 0 + 160
M. - 7 +
"211. 2 =40,650 mr%-

Since the final moments are the same but of
opposite signs, the shears at the ends of
the columns are equal and opposite, and
therefore no sidesway takes place.

8. Sidesway correction

In the discussion on page 57, it was
stated that moment distribution is, essen-
tially, a method of solving slope-deflection
equations by successive approximations.
These approximations commonly do not take
into account the effect of lateral movements
of the joints that usually occur due to the
applied loading, Since the effect of lateral
movement is not included, it implies that
an imaginary force is employed to hold the
frame in place, or, in other words, it is
simply assumed that the joints of the frame
do not move sideways while the moments,
due to loading, are being distributed. This
gives rise to unbalanced shears that must
be balanced by changing the moments. These
changes in the moments are commonly called
sidesway corrections. The amounts of these
corrections are dependent on the magnitude
of the deflections that the structure would
undergo due to the loading if it were allowed
to deflect freely. Since these deflections
are not known, a direct evaluation of the
sidesway corrections cannot be made. A
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convenient procedure for finding these cor-
rections is to subject the structure to known
arbitrary deflections and obtain the resulting
shear forces in terms of unknown ratios be-
tween the unknown deflections, due to load-
ing, and the arbitrarily assumed deflections.
These ratios are then found from the condi-
tion that shears due to the arbitrary deflec-
tions must be equal and opposite to the un-
balanced shears due to loading. Now, as
shears and moments are proportional to
deflections, the values of the sidesway cor-
rections can be obtained by multiplying the
moments obtained from the known deflec-
tions by these ratios. The following ex-
amples illustrate and explain this procedure
in detail. .

Given:

The same frame as for example 13,
Figure 60, but with only the left half of span
AB loaded with 10,000 1b, per ft,
Required:

- Moments at all joints A, B, C, and D,
including the effect of sidesway.

Solution:
N R S VY
Cpp = 185 WL° = 755 X 10,000
x 152 = 129,000 ft.-lb.
-5 12 - .5
CBA = 199 wLé = 192){10,000
x 152 = - 58,600 ft.-1b.

The other coefficients remain the same as
in example 13. Moment distribution is shown
in Table VIIL TABLE VIII

- Moment Distribution in Frame of :
 Figurs 60 with only Left Half Loaded

|
A [0723t>3"" 3 <—{o7731 B
1 — — Y
TEM. 0 || +128000 ~58,600 |~ 0
D.M.-35800 [N - 93200 +42:400 [N +16,200
CM. of+ 21,200 -46,600 [
D.M.- 5900 [} - 15300 +33700 "{ +12,900
CM. 7% ¥16,850 - 7,650 |%
DM.- 4650 |-v- 12200 + 5530 |Hns 2,120
C.M. + 2765 - 6,100
DM - 765 | - 2p00 + 41400 +_1,700
CM. T 2,200 - 1,000
DM - 6101 - 1590 + ‘723 + 217
CM. ¥ 362 =795
- 102 | - 260 + 575 + 220
"SLM.-u,aso ¥ 47,830 ~33,420 +33420
Ct— 1D
b A & ke
LEM. 0
C.M._-17.900 + 8,100
CM_= 2,950 + 6,450
CM._— 2.325 106
<M - 382 + 850
M - 305 + 139
CM_~ 51 £ 110
FM -23915 ¥16,710




The free-body diagrams of the columns
are shown in Figures 61(a) and 81(b).

My=47,830'% Mgo= 33,420'#%
Vac=-3590%  vgo=+2500%
B =
H A i B
s °
K Unbalonced shear O
[«] equals !
g -3590+2500=-1090%
‘ a) )
' S AN C. v.RL1]
Veas+3590 ¥ Vop=-2500
Mca=23,915'# Mog=16,710"#

FiGURE 61 - Free-body Diagram,
Columns--Simple Sidesway.

Taking moments about joint C, Figure
81(a) gives:

_ 47,830 + 23,915

= *
55 3,590 1b.

Vac

Taking moments about joint D, Figure
81(b) gives:

_ 33,420 + 16,710

Vpp = 55 = 2,500 1b.*

Since no external lateral force is acting on
the frame, equilibrinm requires that Vo

and VBD be equal in magnitude and opposite
in direction; that is, the sum of the horizon-

tal forces acting on member AB must equal
zero. This is not the case, and the frame

is out of balance in shear by -1,090 pounds.

Therefore, a reaction of +1,090 pounds
would be required to bring the frame into
equilibrium, This reaction, which is equal
and opposite to the unbalanced shear, will
be called balancing force,

Since this force actually is not present,
the frame will deflect horizontally, or side-
sway, until the shear caused by this deflec-
tion is equal to the balancing force. In other

*Note that the sign of the moments does not
determine the signs of the shears. The
direction of the shears is visualized from
the free~-body diagrams and then signs are
given in accordance with the definition given
previously.
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words, the frame will deflect exactly as
though it were acted upon by a force equal
in magnitude and direction to the unbalanced
shear. The change in each moment caused
by this load is commonly called sidesway
correction. To find this correction, first
give the frame a deflection a, holding all
joints rigid, as indicated in Figure 62,

-‘A:-
)

[}
1
"
[
'
1
1
[}
1
[}
t
]
i
¢
]
[}
1
[l
|,

FIGURE 62 - Sidesway Deflection
of Framse.

Then from case IV in Figure 25(b), the
end moments of column AC due to A are

Due to symmetry, the end moments of col-
umn BD are equal to MAC' If it were

known how much of a deflection a to give
the frame in order to balance the shear of
-1,090 pounds when joints A and B are
released, the problem of sidesway could
be solved simply by distributing the initial
end moments caused by A and adding the
final moments to the moments of Table
VIII. Since the correct value of 4 is not
known, the frame is given any arbitrary
deflection 4' corrected by a factor X.
That is 4 = 4'X. How to evaluate X, called
the correction factor, will be shown later.

Since A' may be given any arbitrary
value, it is obviously convenient to give it
such a value that it divides out all common
factors in the equation for end moments.
In this case let

2
Ly

A=44X = -1,000 i

*The sign of the deflection should not be
introduced before it is used in obtaining
the moments for a given member, since in
multistory structures, the same deflection
may be negative for one member and posi-
tive for another member,



Using this value in the equation for moments

gives
Myo = Moy = Mpp = Mpp

12
_BEI,_ L
3 (1,000 2£2) X

1,000 X

No unit need be specified for this moment
since it would merely change the value of X.
The moment distribution is now performed
in the usual manner, as shown in Table IX.
By inspection of this table, it is obvious
that the correction factor would not have to
be shown except in the final moments. - This
will be done in subsequent examples.

TABLE IX
Moment Distributiorn for Sidesway
a [0723 [0723] B
— [l (= m—
TEM+T000 X | 0 [ N[ +1000X
OM.- 277X o] -723X -723X o~ 277X
C.M. -362X -362X
D.M.+ 100X +262 X +262X + 100X
C.M. +131X +131X
DM - 36X - 95X ~ 95X - 36X .
CM. - 48X ~ 48X
DM.+ 13X + 35X + 35X + 13X
C.M. . + 18X + 18X
OM- 5% - 13X -_13x - X
F.M.+795X -795X -795X f 795X
Ct—m —40
A \ T
LE.M. +1,000X +1,000X
C.M - 139X = 139X
C.M. + 50X + 50X
C.M - 18X —_18X
c.M + 6X + &6X
C.M. - 3X fd 3X
F.M. + 896X + 896X

The free-body diagrams of the columns are.

shown in Figures 63(a) and 83(b).

M= 795X Mgp= 795X
A Vacz+84.5X g Vep=+84.5X
P - 5% F—;—
©
(@) S (b)
N
c : D
\—b-i"y' \%4
Veq =-84.5X Vpg =-84.5X
Mca=896 X Mpp =896 X

FIGURE 63 - Free-body Diagram of
Columns Showing Unbalanced Shear.

The shear at top of column AC is
v 795X + 896X

AC = T w0 = + 84.5X

Due to symmetry VAC = VBD =+ 84.5X

Now, for equilibrium these shears added
to the unbalanced shear of -1,090 pounds,
due to external loading, must equal zero,
Therefore, 84.5X + 84.5X - 1,090 = 0, and

- _ 1,000 _
—W—G.‘l&

‘If the frame had been given an arbitrary

deflection A’ in the opposite direction, the

 moments of Table IX would have had opposite
signs, but X would then have been negative.

4' may therefore be given any positive or
negative value, The corrections in moments
due to sidesway are now found by carrying
out the multiplications with X in Table IX.

-Thus,

+ 5,130 ft.~Ib.

= - 5,130 ft.-1b.
M = Mpp = + 896 x 6.45

CA

+ 5,780 ft.-Ib,

Adding these moments to those of Table VIII
gives the correct moments, including side-
sway. Thus,
MAC = -47,830 + 5,130
= = 42,700 ft.-1b.
Myp = +47,830 - 5,130
= + 42,700 ft.-1b.
Moy = - 23,915 + 5,780
| = - 18,135 ft.-Ib.
Mpp = + 33,420 + 5,130
= + 38,550 ft.-1b.
Mg, = - 33,420 - 5,130
. = - 38,550 ft.-1b.
Mpgp = +16,710 + 5,780
= + 22,490 ft.-1b.

The free-body diagrams of the columns are
shown in Figures 64(a) and (b).



Mac= 42,700% Msp = 38,550%

A B
(a) | , (b)
C | D
Ve 130428 s = L \Vpg=-3050%
Mca= 18,135% Mpg = 22,490 ¥

FIGURE 64 - Free-body Diagrams of Columns Showing Effect of
Sidesway on Momentse.

Shears as well as moments are now in eqm- - A to D and a temperature rise of 20° F on
librium. For a complete check on the re- = = beams EF and GH.

sults, see the discussion ‘‘Check on moment

d1str1bution in appendix A. * Solution:

: ‘ s In this case, since the center lines of
mmim—'%memugmmjﬂ members do not coincide, an assumption
ame. © must be made as to the location of working

lines of the frame., The lengths of members
will be assumed equal to distances between
working lines as located in Figure 65, Mo~
ments of inertia of members will be taken
about the centroidal axis of the gross sec-
tion, ignoring the effect of the reinforcement.

Given:

A reinforced-concrete frame of the -
dimensions shown in Figure 65. All mem-
bers in this frame are 2.0 feet wide, ’

Required: o The stiffness factors of all of these
Initial end moments throughout the frame beams or columns are found by case I in
due to a temperature rise of 409 F on beams Figure 25(a).
- B o <
- 8 ---40.0" --ooroee=es $5030.00 - »<m--20.0 - >
Y . Ly %
A= : S — — 0.
X 7 I
: A | | L2858 = 1
(o] . f y . (@]
w > | <30 > 1 =-3.0 >1|125 o 0
- L , ) T
U ! E .6 ¥ !
-2 6 |E=——1}-4H
~
K i f ;
: |.. -
N R Y -~ | |<-4.5' 275 2754k N
[} ' . [
1 J b=20' K ||| L M v
ST ‘ 777077 7

FIGURE 65 - Frame with 3 Points of Sidesway.
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w 208 E .42 E w O0.90E w
(o) w o (0)]

|~ o © ©
- N e o
E Fl- G H

572¢E 0.90E

w w

< < w g,"

o o o ©

0] o ©

o o

J K L M

D7 777, R i

FIGURE 66 - Frame Showing Values of K. ’

K = 4El
L.

Since all members have rectangular sec-
tions and the moment of inertia is taken
about the centroidal axis,

I = ba3
12
and
4Ebd3
K = T

Values of K for all members are shown in
Figure 66,

A B

The boxed-in numbers in Figure 67 are
distribution factors. For example, S for
member AB is

KaB
Kap+Kag

2.08E
5,085 + 1,908 -~ 9

SAB

In solving this problem it is convenient
first to consider members A to J and G
to L held in their original positions, let-
ting the expansion due to temperature rise
take place in one direction with all joints
held rigid, as shown in Figure 68,

C D

063 0.44]0.30 [047[030]  [056
~ ©0 o 53
n N N <,
k=] = =] S|
sl g B =
o]0.58] 058|c olo40]  [040lo
2E Fla |G HIB
= =] t=] =l

J K L M
77 W 707 Ve

FIGURE 67 - Frame Showing Values of Distribution Factors S.



____40°F.Temp. rise his b7 i o
FoTa B[] iC D| )
° ' / bs->|
2 ! / |
X’“ 20°F Temp. rise - #04 | 20°F. Temp. |
+|E F G rise H|!

° .'
S 40.0' ------- e ----30.0' ---->1<---20.0"-~

v 1Y K L

N 7 7077

FIGURE 68 - Deflection of Frame Due to Temperature Rise.

Taking the coefficient of expansion of
fgr%'cixéi’;ee t§8”be 0.000,006,5 and referring
3, = 0.000,008,5 x 40° x 40
0.0104 ft.
0.000,008,5 x 40° x 70"
0.0182 ft.
0.000,008,5 x 40° x 90'
0.0234 ft. -
0.000,008,5 x 20° x 40"
0.0052 ft,
0.000,008,5 x 20° x 20

0.0026 ft.

The initial end moments in the columns
for these deflections are given by case IV
in Figure 25(b) to be .

- BEI,
L2

1.54
M -ele
T K

Values of K are obtained from Figure 66,
Assuming E for concrete to be 432 x 106

pounds per square foot and giving proper
signs to the deflections, the moments are
Moo* = Mpg = 22 (0.0104
BF -~ 7FB - 15\
- 0.0052) x 432-x 106
x 1.20 = 270 ft.-kips
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- 195 0.0182 x 432

Mg = Mg 15
x 108 x 0.69 = 543 ft, -kips
e 1 _ L5
MDH* = MI_D = -1—5 (O. 0234
- 0.00286) x 432 x 106
x 0.69 = 620 ft.-kips
- - 150 0052 x 432
Mpg = Mgp = 35
x 108 x 3.04 = 511 ft.-kips
1.5

x 108 x 0.69 = 58 ft.-kips

The moment distribution for these initial
momerts is shown in Table X. The shears
in the columns are now found as shown
previously. For example, the shear at the
top of column AE is

21 + 32
15

The directions of the shears are best visual-
ized by drawing free-body diagrams of each
column. The shears at the ends of the col-
umns and their direction of action on the
corresponding beams are shown in Figure 69.

*Note that A to be used for MBF ahd MDH

is the difference between the top and the
bottom deflections.



A , =) C D
+3.53< +22.13 < +52.80~] +46.20<
_ Ep>-3.53 __Fl>-2213 ' G —>-52.80 ﬁ>-46.20
+5.35<- +32.40 < ' —>-9.25 —>=-5.15
1J : ' K Ll - M

FIGURE 69 - Unbalanced Shears Due to Temperature Losding.

(A1l shears are in kips.)

By inspection of Figure 69 it is seen
that the forces on the beams, resulting from

- - the shears in the columns, do not sum to

zero. The totals of the unbalanced shears
are shown in Figure 70. It is seen that the
beams AD, EF, and GH may move inde-
pendently of each other in a horizontal di-
rection. It may be said, therefore, that this
frame has three points of freedom. ' Since
no balancing forces are present, the frame
will deflect at each point until the shears
‘caused by these deflections are equal and
opposite to the unbalanced shears Pq, Py,

and Pg; that is, the frame will deflect as

if acted upon by forces equal in magnitude
and direction to Py, Py, and Pg of Fig-

ure 70, The correction due to sidesway in

coincidences, this factor will be different
for each point. Since an unbalanced shear at
any point of freedom affects the unbalanced
shear at all other points of freedom, it is
necessary to treat each point separately,
obtaining an equation for each point, Thus
an equation is obtained for each unknown
correction factor, making it possible to
solve for these factors. This will be made
clear by the following procedure of the
present example,

Give the top story a deflection A holding.
all joints rigid, as shown in Figure 71.
. From case IV in Figure 25(b), the equation
for initial end moments is

this case is found in a manner similar to M= - BEI a
that employed in example 14. The exact L2
deflections are not known. Therefore, as
before, each point of freedom is given any . 4RI
convenient arbitrary deflection multiplied or, since K = =X
by an unknown correction factor. Barring
A B C D
<P =+124.66
E F | P=+1209 G H
3 -113.40
J K L M
7707. V077, 70777, Vi

FIGURE 70 - Totals of Unbalanced Shears from Figure 69.

(A1l shears are in kips.)
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TABLE X

Moment Distribution for Temperature Rise
(A1l moments are in foot kips)

A B [¢] D
0.63 0.44 0.30 0.47 0.30 0.56
5 PR TV TV T 85 ERF:
v o o v v o S|y
0 0 0 +270.0 [} 0 +543.0 0 0 | +620.0
Q 0 ~1188] —~ 702 [~ 81.0| —255.2 | —124.9] —162.9 —347.2| —272.8
0 —-59.4 0 ~ 469 |-1276|— 405| - 81.6| —1736 — 815 -101.7
4220 | +37.4 + 768+ 4544+ 524 +1389 |4 68.0] + 88.7 +102.6] + 80.6
+136 | +38.4 + 187+ 21|+ 695 |+ 2624 29.7|+ 51.3 + 44.4| + 36.8
-19.2 | —328 ~- 397]- 236 |- 271 |- 504)- 247} — 32.1 ~ 4551~ 357
- 1.3 | ~19.9 - 164 - 53|- 252~ 136 |- 125} - 228 — 161 |- 120
+ 78 | +134 + 206+ 122 ]+ 144 |4+ 23.0 |+ t1.2)+ 147 + 1571+ 124
+ 21 +103 + 67+ LI+ 115+ 70|+ 42|+ 78 + 73]+ 5.2
- 46 | ~ 7.8 - 85}— 650[—- 58|~ 89 - 44| 57 - 70)—- 55
- 05 | — 43 - 39|~ 09— 44|- 29|~ 1.8)—- 35 - 28]~ 17
+ 1.8 | + 3.0 + 40)l+ 24[4+ 28|+ 3914+ 19|+ 24 + 25{+ 20
+ 04 |+ 20 + L5+ 03[+ 19|+ 14|+ 07|+ 12 + 1.2{+ 08
- 09 ]~ 15 - 16— 10f{~ 12|~ 16]|]—- 07]- 10 - Lil—- 09
+21 =21 ~ 61 + 181 - 120 —-173 +408 -236 —328 |[+328
E F G H
Q.12 058 0.58 0.12 0.30{ 0.40 0.40 0,30[
=] I | o [ ! |
\rj gj’ ' Y \l S l_¢l f S Y ! Y Vr@ _;Y
0 0 0 0 +511.0} +270.0 +543.0 0 0 0 |+ 58.0]4+620.0
0 0 0 ~453.0 |1 —234.3| — 93.7 —-162.9| -1629|-217.2 [ -271.2 |—-203.4]|-2034
Q 0 —226,5 0 0 - 35.1 - 625 0 |—1356|—1086 0 |-136.4
+272 | +68.0 |+ 131,34 204 |+ 105]|+ 4.2 4+ 594 |+ 594 |+ 793+ 980 |+ 735{+ 735
+11.0 0 + 102+ 657 0 + 227 + 340 | 0 [+ 49.0)+ 39.7 0 |+ 403
-~ 25 ) —64 |— 123/~ 51.3]— 265}~ 106 - 249 |~ 249 |~ 332| - 32.0|—- 24.0]- 240
-~ 9.6 0 - 257 - 6.2 0 j— 1.8 - 124 0 |- 16.0| - 166 0 |- 179
+ 42 | +106 |+ 205 |+ 1041+ 54|+ 22 + 85|+ 85|+ Ii.4]+ 137+ 104]+ 104
+ 39 0 + 52|+ 102 0 + 6 + 56 0 [+ 68|+ 57 0 |+ 6.2
= Ll | —27 ]|~ 53[- 95{- 49]- 19 - 37]- 37|(- 50|- 48|- 36]- 35
- 23 0 - 47 (- 26 0 - 25 - 22 0 |- 24/- 25 0 (- 27
+ 08 |+ 21 [+ 41|+ 30|+ 1.5]+ 06 + 141+ 14)+ 1.8|+ 21|+ 15[+ 16
+ 09 0 + 15[+ 20 0 + 1.2 + 09 0 [+ 10|+ 09 0 |+ LO
- 03] -07 |~ 14]— 19]- 1O}~ 03 - 06|~ 06|- 07(- 07|— 06}—- 06
+32 + 7 —103 | -413 |+262 |+151 +384 —123 | -26l -276 |—-88 |+365
J K L M
Yy v o T\ Yy wm
0 +511.0 0 + 58.0
+34.0 ~117.2 —81.5 —-101.7
- 32 + 53 +28.7 + 368
+ 53 — 133 —125 - 12.0
- 1.3 — 2.4 - 1.8 )
+ 1.0 + 07 + 0.7 +_ 0.7
- 03 — 05 - 03 - 03
+36 +386 —~62 - 15
[} » . .
> =4 > A = A =
t A B . i :D
! T = ! T T |
Yy v oy v Y | ]y ' Y
+789X | -789X -645X [+¥949X 268X y '[-260X -369X[+369X
| : -304X  +528X :
E F  Zasmmmm— G H N
+433X ! +429 X
— | —
+925X |-228X -697X -733X-265X | +998X% - -315X  -292X _
168X 137X
\ 777 Y| Yda Y v 77
-98X -118X -78X -61X

FIGURE 71 - Moments Due to Sidesway of Top Story.
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A B C D
+114.27X +129.80X *+67.40X<"1+53.20X
H
E f—==-114.27X F f>-129.80X G }—=-67.40X -563.20X
- 16.30X - 19.15X —>=12.35X [~>-9.90
J K L M
2 4 Ve 7
FIGURE 72 - Shears Dus to Sidesway of Top Story.
_ _ L5 Next, beam EF is given a deflection 4 hold-
M = -L—K A ]

In this case let

At _ 15,000
=8 X=-T9X

Using this value of 4, and K from Figure
66, the moments are

Myp = Mg, = -2 1.20E
[—L?%OEQXJ = 1,200X
Mpp = Mpp = '11_512OE
[—1—%-‘5)%9}(] - 1,200X
My = Mgo = -%O.SQE
E-l—ff%x} - 690X
Moo= M = -11—‘5-069E
[—lg’-j-g%—ox] - 690X

The moment distribution for this case is.

shown in Table XI. The final moments,
copied from Table X1, are shown in Figure
71. The corresponding shears at the ends
of the columns and their direction of action
on the beams are shown in Figure 72.
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.ing all joints rigid, as shown in Figure 73.

It is convenient but not necessary to use
the same numerical value of &' as was
used for beam AD, The end moments in
columns AE and BF will then be the same
as before except for signs and the correc-
tion factor. Thus, using Y as correction
factor and in accordance with Figure 73,
the moments in columns AE, BF, EJ, and
FK are

1.5

Mgy = Myp = -5 L20E
15,000
[——ffE—Y] = - 1,200¢

_ .15
MFB = MBF = 15 1.20E

[15,000
15,000 i _ - 1 2007
| L.5E Y] 1,200
1.5
~ 15,000
[——llﬁ-Y] - 2,280Y
- L5
MFK = M'K_E‘ = 5 3.04E
. 15,000 '
- LYVVU =
[ 2,00 Y] 2,280

Moment distribution is shown in Table XII.

The corresponding final moments and shears

are shown in Figures 73 and 74, respectively.



TABLE XI

Moment Distribution for Sidesway of Top Story

A B 6] D
0.63 0.44 0.30 0.47 0.30 0.56
UK FER T aaER
vy 1° s} v1e 3N
+ 1200 0 0 |+1200 0 0| +690 0 B 0| +690
~ 444 | —-756 -528 |~ 312 | -360 | —324 | —159 | -207 ~386 | —304
- 72| —264 ~-378 |~ 72| -162 | —180 | —103 | —193 -103 | -103
+ 124 ] +212 +269 |+ 159 +184 | 4224 | + 109 + 143 + 415 |1 + 91
+ 34| +134 +106 |+ 30] +112 + 92 + 32 + 58 + 72 | + 44
- 62] ~106 —109 |- 65| — 74 - 85 - 42 - 55 - 65 - 51
- 12| - 55 o - 53 |- 15| = 42 - 37 - 17 - 33 =21 |- 14
+ 25|+ 42 + 48 {+ 29| + 33 + 41 + 20 | + 26 + 23 | + 18
£ 6]+ 24 + 21 |+ 5+ 20 [+ 16 | + 5|+ 1l + 13|+ 7
- i1 ]=- 9 — 20 |- 2|~ 14 [- 15 |- 7 ]-10 — 1 ]l- 9
- 3|-10 - 9 |- 2~ 7T {—- 7 |- 3|~ 5 - 51— 2
+ 5|+ 8 + 81+ 5| + 5 i+ 7T 14 314+ 5 + 414+ 3
+ 1|+ 4 + 4 |+ I+ 4 |+ 3§+ 1 + 2 + 314+ |
- 2| - 3 -4 | - 21— 3 ! 3 |- |- 2 - 21 - 2
+ 789 | —789 -645 |4+ 949 | ~304 | —268 | +528 | -260 -369 | 4369
E F G o H
012 | 0.58 0.58 0.12 0.30 0.40 0.40 0.30
3 vy 8l 3 v 2l 3
\ oly yle Y Y S|y o Y
+ 1200 0 0 0 -0 | +1200 +690 0 0 0 0 | +690
~ 144] -360 | —696 | —696 | —360 | — 144 —-207 | —207 | -276 | —276 | —207 | —207
- 222 0 | -348 | —348 0 |- 156 - 80 0 | -138 | -138 0 | ~152
+ 681 +171 +331 +292 + 151 1+ 61 + 65 | + 66 + 87 |+116 |+ 87 | + 87
+ 62 0O | +146 | + 165 0]+ 80 + 55 0 + 58 |+ 44 0 | + 486
- 251 - 62 | —121 - 142 - T4 |~ 29 - 34 | - 34 — 45 [ - 36 | - 27 | - 27
- 31 0 |- 7t |- 60 0|~ 32 - 21 0 |- 18 |- 22 0 |- 25
+ 121+ 31 + 59 | + 53 + 28 1+ 11 + || 4+ 12 |+ 16 |+ 19 |+ 14 14 |4
+ 12 0 |+ 26 |+ 29 0|+ 14 + 10 0|+ 9 |+ 8 0Ol+ 9
- 6] — Il {— 21 {— 25 | - 13 |- 5 — 6}~ 6 |- 7|~ 7}—- 5}~ 56
- 5 0 |- 12— 10 o]- s - 3 0 |- 3 |- 3 0]|- a4
+ 2]+ 5|+ 10 [+ 9 |+ 5|+ 2 + 21+ 2 [+ 2 ]+ 3|+ 21+ 2
+ 3 0|+ 5|+ 5 0|+ 3 + 2 0 |+ 2 |+ i 0|+ 2
- 1]- 2|~ 6 | —-_5 - 2 |- | - 1 - 1 - 2 |- [ | - |
4+ 925 | —228 | —697 | -733 | —265 |+ 998 +483 | —168 | —315 | -292 | —~137 | +429
J—‘ '——K L—‘ M
77 Y ‘ Y 777 W/%?/ Y '; /7
___ 0o : N __ 0 0
— 180 — 180 — 104 - 104
+ 86 + 76 ' + 33 4+ 44
- 3i - 37 - 7 - 14
+ 16 + 14 + 6 + 7
- 5 - 6 -3 - 2
+ 2 + 2 + | + |
— - 1 _90 _0
113 -112 -~ 84 - 68
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TABLE XII

Moment Distribution for Sidesway of Beam EF

A B C
063 0.44 0.30 0.47 0.30
5l clel [ v v gl
vie Y Y |s v ol ¥ v
- 1200 -0 0] -1200 0 0 0 0 0
+ 444 |1 +756 +528 1+ 312 | +360 0 0 0 0
- 65 | +264 +378] -~ 65 0 | +180 0 0 0
- 741125 -138]- 81 | - 94 [—- 85 -4l -54 0
+ 6]- 69 - 62|+ 10| - 42 | — 47 0 0 0
+ 231+ 40 + 4l J4 25| + 28 | 4+ 22 + 1 +14 + 12
+ 5]+ 20 + 20|+ 41 4+ 11 |+ 14 + 3 + 7 0
- 9]~ 16 —- 13- b= 1 j— 11 -6 -1 -3
0]- 6 - 8 0| - 5|~ 5 0 -2 - |
+ 2]+ 4 + 61+ 3|+ 4 |+ 3 + 2 + 2 + 2
O]+ 3 + 2 0l + t {4+ 2 + I + | 0
- 1 ]- 2 - ]~ - ]~ 2 ! - | = (*]
- 869 | +869 +763 | -1004 | +251 [+ 71 - 31 -40 + 10
E F G H
[or2 [os8] [o.58] 042 | [030 [0.40 0.40 o.alg |
r.l [ | | =) lj r_J Q | !
» L] » Y Y 2
\ S Y Y Y Y o Y Y L Y Y S Y
- 1200 § +2280 0 0 | +2280}-1200 0 0 0 0 0
- 130} 324 | -626 | 626 |- 324]_— 130 0 Q0 0 0 o]
+ 222 0] -313 | =313 O+ 156 0 0 0 0 0
+ b+ 27| 4+ 53 | + 91 [+ 47|+ |9 0 0 0 0 0
- 37 0| + 45 | + 26 0|~ 40 -22 0 0 0 0
- 1]- 2]- 5|+ 21+ 4|+ 8 + T +7 + 0 0 0
+ H o+ ! 2 0]+ 12 + 5 0 4 0 +6
- 1 {- 4| - 7 |~ 6 |= 3] - | -1 -2 -2 4 -3 -3
- 4 Ol - 3 |~ 3 0] - 5 -3 0 -2 0 -1
+ | |+ 2l + 41+ 5 t+ 2]+ | + 2 + | +2 + | 0
+ 1 O+ 2|+ 2 o+ | + 1 0 0 + |
0]~ 1| - 2]~ - | 0 1] 4] -1 0 -1
- 1127 | - 1978 | —851 - 826 |+2005]|~1179 - 11 +6 +5 -2 +2
JI—  — K LI— ]
V2 Y Y m/ 777, Y Y 070
+2280 +2280 0 0
- 162 ~ 162 0 0
+ 13 + 23 0 0
- ! + 2 +4 '
_ 2 - i -1 -2
+ [ + | 0 0
0 0 0 0
+2129 +2143 +3 —2
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TABLE XIII

Moment Distribution for Sidesway of Beam GH

B (¢ D
0.44 0.30 0.47 0.30 0.56
5 rlg vl r!n ) | e
y IS S|y y e =]
0 0 0 0 -690 0 | -690
0 0 0 0 | +324 | +159 | +207 +386 | +304
0 0 0 + 162 0| + 26 | +193 +104 | +
0 -7 -42 - 49 | =103 | - 50 | - 66 - 73 ] -
0 0 -5 | -25 | - 17|~ 36 - 33 |~
+13 +23 +13 + 15 | + 37 + 181+ 23 + 34 | 4+
0 11 + 2 + I8 |+ 8 +« 10 ]+ 17 + ]+
-4 -4} -8 |- 9|_—t6]- 8f_n - 10 | -
0 - 4 0 - 8| - 4| - 2|~ 5 - 5 |~
+ 3 + 5 + 3 + 4+ 5 + 3]+ 3 + 5 |+
0 + 2 0 + 2+ 2|+ 1|+ 2 + ]|+
-1 - 2 - 1 - 1 - 2 - | - 2 - 1 |-
| -50 -33 + 83 | +226 -55] +325 +419 | -41
F ' G H
058 0.12 | Q.30 | 0.40] 0.40 030
= | o 1o | =) L:I
" y 0 U 2] Y Y ”
°ly vigp v Yol Ve
0 0 0 0 ~690 | +517 0 0 +517 | -690
0 0 0 0 + 52| + 52 | +69 +69 + 52 | + 52
0 0 0 0 + 80 0| +35 +35 0 | +152
0 0 0 0 - 35| - 34 | -46 -75 - 56 | - -
0 0 0 =21 - 25 0! -37 -23 0]~
0 +12 +6 + 3 + 19 ] + 181 25 +21 + 151+
0 0 0 + 7 + 9 0 +10 +12 . 0 {4+
-4 — 4 ~-2 ~ - 5|~ 6| -8 —-10 - 8 |-
0 -4 0 - 4 - 4 0] -5 - 4 0| -
+ 1 +5 +2 + 1 + 3|+ 2 + 4 + 3 + 2|+
0 + | 0 + 1 + | 0 + | + 2 0] +
-1 -1 -1 0 [ | - | - 2 - 1] -
-4 +9 +5 ~-14 -595 | +548 +47 +28 +521 —-549
— |_K L__l | — M
A | Y T 77 Y Y 7%
0 0 +517 +517
0 0 + 26 + 26
0 0 - 17 - 28
0 +3 + 9 + 17
-2 =1 . - 3 - 4
0 + 1 + | + |
0 0 0 0
-2 +3 +533 +519
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FIGURE 73 - Moments Due to Sidesway of Beam EF.
The sidesway procedure for beam GH is 1.5
the same as for beam EF, this time using M = M = - -2-0— x 0.89E
Z as correction factor. Deflecting beam HM MH
GH in the direction shown in Figure 75 and
using the same numerical value for a' as [_ 15,000 Z] - 5177
before gives 1.5E

Moment distribution is shown in Table XIII,

Mo = Mgg = - 11—55 x 0.69E and the resulting moments and shears are
- ' . shown in Figures 75 and 76, respectively.
15,000 7| =-6907 As stated previously, for the frame to
1.5E be in equilibrium the shears due to side-
sway must be equal and opposite to the un-
; - - -L5,0p0m balanced shears caused by external loading.
MHD MDH 1 ’ The total unbalz.iced shear for each point of
freedom is shown in Figure 70.
15,000 - 6907
1.5E _Now, the summation of shears around
any row of continuous beams in Figures 72,
74, and 76, plus the corresponding unbal-
1.5 0.69E anced shear, must equal zero. Therefore,
MGL = MLG = - 55 x0 for the beams A to D,
364.67X - 280,60Y - 143.06Z
15,000 ~
E L.5E Z] = 517z - - 124.66
A c_ D
-133.07Y '§>80Y +0’§7
+33.07Y <~ E G Hi—>-o8Y
+205.25Y =< —>-0.25Y
J

o

_ FIGIRE 74 - Shears Due to Sidesway of Beam EF.

76



A B 7 C D

— ) v o¥v1 v l 71 v |
+1Z2 |-nz -50Z -33Z| +832 -551Z\+3252 +419Z\ -4192

+2262 A

\ Y |G H
+52 E T T F :Xz, -595Z [ ! -5492
Y Y _ Y
-jz -1Z 492 +§- +5Xe +47Z +28Z [45212

K

-2 22

and for beam EF,
- 279.52X + 691,207 ~ 2.18%
- 12.09

and for beam GH,
- 142.85X + 2.15Y + 247.63Z
= + 113.40

These three equations furnish the neces-
sary conditions for evaluating X, Y, and Z.
However, solving the equations as written
above would give a set of values of X, Y,
and Z valid only for the unbalanced shears
used in solving the equations. Since most
structures are subject to various kinds of
loading, it would be convenient to solve the
above equations in such a way that the ef-
fect of each unbalanced shear would be ob-
tained separately. This may be done with-
out much additional work, as shown in Table
XIV. In column 8 the equations are set equal

77777

L M |
\rr .
+5482 - +5172

FIGURE 75 - Moments Due to Sidesway of Beam GH.

to the condition of an unbalanced shear of
-1,000 kips on beams A to D and zero un-
balanced shear elsewhere; that is, Py =

-1,000 kips and Pg =Pg =0, (P; is shown
with a plus sign in the table, since there it

is to the right of the equal sign.) Hence,
the values of X = +5.894, Y = +2.373, and

Z =+3.379 in column 8, lines 16, 15, and 12

of Table X1V, give the effect of an unbalanced
shear of -1,000 kips on the beams A to D,
Columns 9 and 10, lines 16, 14, and 12, give
the effect of an unbalanced shear of -1,000
kips on beams EF and GH, respectively,
The corrections in moments due to Py =

-1,000 kips is now found from Figures 71,
73, and 75 by carrying out the multiplication,

using the values of X, Y, and Z of column 8
of Table XIV. Similarly, the correction in
moments due to Py and Pg being succes-

sively equal to -1,000 kips is obtained by
multiplying by the values of X, Y, and Z
of columns 9 and 10, respectively., These
computations are tabulated in Tables XV,

A B C D
+1.02 <— —>-3.13 2 >-76.42 |—>-64.532
E —-1.0Z 3132« +76.402+|G +64.532<—
—>=-0.32 +0.35Z=<— -5480Z<«] +51.902=<
J K L |M
? 77

FIGURE 76 - Shears Due to Sidesway of Beam GH.

77



TABLE XIV

Solution of Simultaneous Equations

RECIPRO-1  x Y z CHECK
I 2 3 4 5 6 7 8 9 10
| 10.002742|+364.67 |-280.67 [-143.06| ~89.06 P=+1000| R=0 P:0
2 |0.003578|-279.52 [+691.20] +2.18]+413.86 R=0 [R=+1000] PR:=0
3 [0.007000[-142.85| +2.15|+247.63 [+106.93 R=0 B:=0 [R=+1000
4 +1 ~0.7695 (-0.3923 [-0.1618 [-0.1618 [+2.7422 0 0
5 -1 +2.4728 [+0.0078 [+1.4806 {+1.4806 0 +3.5776 0
6 -1 +0.0151 [+1.7335 [+0.7485 [+0.7485 0 0 +7.0004
7 [0.587036 0 +1.7033 [-0.3845 [+1.3188 [+1.3188 [+2.7422|+3.5776 0
8 |1.325557 0 -0.7544 |+1.3412 [40.5868 [+0.5868 [+2.7422 0 +7.0004
9 +| -0.2257 {+0.7743 [+0.7743 |+1.6099 [+2.1004 0o
10 -1 [+1.7778[+0.7778[+0.7778 [+3.6349 0 49.2794
1 0 +1.5521 | +1.5521 +5.2448 [+2.1004 [+9.2794
12 2z +3.379 |+1.353 [+5.979
13 +0.2257% +0.7626 |+0.3054 [+1. 3495
14 Y +2.373 (+2.406 |+1.350
15 0.7695Y | 0.39232 +3.1516 |+2.3822 |+3.3844
16 X +5.894 [+2.382 [+3.384

XVI, and XVII. By means of these tables
the correction in moments due to any un-
balanced shear may now be obtained. As
shown in Figure 70 of this example,

P1 = + 124.66 kips

P2 = + 12.09 kips
and

P3 = - 113.40 kips

These values are then used in Tables XV,
. XVI, and XVII, respectively, to obtain the
values of Table XVIII. The final moments
in the frame of Figure 65, due to a *empera-
ture rise of 400 F.on the top beams and
20° F on the lower beams, are now the alge-
braic summation of the final moments of
Tables XVIII and X. These moments are
shown in Table XTX, It is seen that the final
moments sum to zero around each joint.
Verifying that the shears sum to zero on
any row of continuous beams merely checks
the numerical work of correcting for side-
sway, since this condition was used as the
basis for finding the correction factors.
Continuity at joint B between members BA
and BC and at joint C between members
CV and CD can be verified by the criterion
derived on pagel25in appendix A. Due to
the limitation of the criterion, it cannot be
used at any other joint in this case.

The beams at joints A, B, C, and D had
no initial end moments, and, therefore, the
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changes in moments are equal to the final
moments, Using the final moments of Table
XIX in the criterion on page125 ofappendix A
gives for members BA and BC of joint B,

1 o _ 1
MBA"Q'MAB ) 42 —2-12'7
1 C _ag.l (.
_ -2L.5 _
N 13.5 1.59

The ratio of the corresponding stiffnesses is

KBA 0.44
K

_ Spa _
~ 0.30

BC SmC

The error is only 8 percent. This is con-
sidered to be very good since the criterion
is extremely sensitive to changes in the
moments. Similarly, for joint C the error
is 9 percent.

1.47

ion for frames havi
f inerti

istrib
riable mome

me
er

The method of moment distribution
applied to frames having members of vari-
able moment of inertia is exactly the same
as for those having members of constant
section. The carry-over factors, the stiff-
ness factors, and initial end moments are, of
course, different and must be determined
in the manner shown in Chapter 1.



TABLE XV

Sidesway Correction of Mamente in Foot Kips Due to Py = -1,000 ‘Kips

A B ] c : D
_ [os3 [0.44 0.30] [0.47] 0.30 [0.56
P =-1000-> =T g T T g 3
Kips v |9 .V Y S| y Y o \j o v
+4650 | — 4650 —~3802 | +5593 | — 1791 | —1580 | +3112 ] - 1532 -2175 ] +2178
- 2062 | 42062 +1787 |-2382 [+ 695 |+ 168 |~ 73|~ 95 Z 244 24
+ 37]- 37 —~ 169 | 112 [+ 281 [+ 764 [ -1862 | +1098 +1416 | — 1416
+2625 | 2625 —2184 [+3099 [ - 915 |~ 648 [ +1177 | ~ 629 - 783 | 4 783
0.12 0.58 0.58 0.2 [030 - [o.40] [040 __Jo30]
2 v v gl — .l T 7 ¥ gl
Yos e Y A sl Y
+5452 | ~ 1344 | —4108 | -4320 | — 1562 | +5882 +2847 | — 990 | — 1857 | ~1721 |-~ 807 | 42528 -
2674 | +4693 | —2019 | —1960 [ +4757 [~ 2797 - 26|+ 4+ 12 0] - 5[+« 5 :
+ 17— e [- 3T+ 30 [+ 07]- a7 20101 +1852 [+ 159 [ 4 95 [+ 760 - 1865~
+2795 | +3335 | —6130 | -6250 | +3212 | 43038 + BJO | + 876 | — 1686 | .- 1626 | + 948 | + 678
J— —K L ——M
v - 0 \a
- 578 — 695 ) .~ 360
+5047 +5082 _+ 5 -7
- 7 + 7T -+ 1852 +1747
+4462 +4394 +1397 -+ 1380
TABLE XVI
Sidesway Correction of Moments in Foot Kips Due to Pa = -1,000 Kips
A B c D
0,63 0.44 [030] [o.a7 0.30) 0.56
5 5 P VR [ 5 BE
Yy |© S Y y | Y [~ v
+1879] — 1879 —1536 | +2260 | — 724 | — 639 | 41268 - 619 — 879 ] + 878
~2091 | 42081 +1811 |~2415+ 604+ 171~ 76| 96 -~ 2414 24
+ 1561 - 15 - 68 [~ 45|+ 113 |+ 306] - 746 4 440 + 567 | — 567
- 197 + 197 4+ 207 [- 200({ - 7 |- 1624 437 | - 275 —~ 336 [ + 336
E F G ' H
-'?SOO-FW [o58] [058] 0.2 ] [030] 0.40] [040 _ 0.30)
Kips | ﬂ\ v v g Yl E K v 3 ]—\',
Sy vi© °ly Y2
+2203 | ~ 543 | —1660 | 1746 | — 631 |+2377 +1151 | — 400 | — 751 | — 696 [ - 326 | +1022
2711 | +4758 | —2047 | - 1987 | +4824 | — 2837 - 2]+ 14]4+ 12 0]- 5]+« 5
o 7]- 5} 2]+ 12]+. 7]_ 19 — 805]+ 742 ]+ 63 | 4+ 38| 4 705] - 743
~ 501 [ +4210 | —3709 | -3721 | +4200 [~ 479 + 320+ 356 | - 676 | — 658 | + 374 | + 284
J— —1K L M
7 Y \] WA %i: \ Y 727,
— 233 - 28l — 186 — 145
+5117 +5153 + 8 - 1
- 3 + 3 + 742 - + 670
+4881 +4875 “+ 561 + 518
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TABLE XVII

Sidesway Correction of Moments in Foot Kips Due to Py = -1,000 Kips
A B c D
0.63 [044 030 |047 0.30] 0.56
5 ol - gl 5 =N
+2670 -2670 -2183 | +3211 | -1028 | — 907 | +1787 | — 880 —1249 | +1249
—1173] 41173 +£1016 [ 1355 (4 339 [+ 96— 42] - 54 - 131+ 13
+ 66) - 66 — 299 [~ 197 | + 496 | +1351 | —3294 | 41943 +2505 | —2505
+1563 | —1563 —1466 [+1659 | — 193 | + 540 [ —1549] +1009 + 1243 | —1243
E ) F G H
0.12 [0.58] [o058] 0.2 ] R, = -1000,, [0.30 0.40 0.40 : 0.30
CHTITEY TR
Sly ove Sly , ove ,
+3130) - 772 | —2358 | —2480 | — 897 | +3377 41634 | — 568 | —1066 | — 988 | ~ 464 | +1452
~1521 | +2669 | ~1148 | —1115 | +2706 | — 1591 - 51+ Bi+ 7 0l— 3|+ 3
+ 30| - 2|~ 6]+ 54+ 30[_ 84 —3557 | +3276 | + 281 | + 167 | +3115 | —3282
+1639] +1873 | —3512 | ~3541 [ 41839 | + 1702 —1938 | +2716 | — 778 [ — 821 | +2648 | — 1827 -
JI— —K L— M
7 N Y 777 k2 Y 777
- 332 — 399 — 264 - 206
+2871 +2891 + 3 = 4
- 12 + 12 13276 +3091
+2527 +2504 +3015 +2881
TABLE XVIII
Sidesway Correction of Moments in Foot Kips Due to
P, =+124,66 Kips, P, =+12.09 Kips, and P3 = -113.40 Kips
A B D
0.63 0.44 0.30] o047 0.30 0.56 Pe124.66
A1 =
. L} =P ¥ v of 5 - Kips
- 327 |+ 327 4+ 272 §— 386 |+ 114 |+ 8l [~ 147 ]|+ 66 + 98] - 98
+ 2]- 2 - 3 1+ 3 0l+ 2| - 51+ 3 + 41— 4
+ 177 |- 177 — 166 |+ 188 |— 22 [+ 61 |— 175 | + 114 L 14l | — 141
— 148 | + 148 4+ 103 |- 195 |+ 92 |+ 144 |- 327 | + 183 + 243 | - 243
E F 6 H
0.12 0.]58 0.?8 012 | p=41209 Ry -11340,030 0.?0 0.40 0.30
v E‘_‘ v Y 3 Kips Kips .~ [ Y 3l 3
S|y ye °ly yle
— 348|- 416 |+ 764 |+ 779 | — 400 [~ 379 — 101 |- 109 |+ 210 |+ 203 |- 118]. .85
+ 6]~ St |+ 45[4+ 45 | 51 i+ & - 41- 4|+ 8|+ B8} - 5}~ 3
+ 186 |+ 212 | — 398 |- 402 [+ 209+ 193 — 220 |+ 308 88 |- 93 |4 300} 207
— 156 | — 255 | + 411 | + 422 |~ 242 [— 180 — 325 [+ 195 [+ 130 | + 118 | + 177 [ — 295
J— K L e 1.
77 Y Y 777 b8 Y 2
— 556 — 548 — 174 — 172
— 59 - 59 = 7 - 6
+ 287 + 284 + 342 + 327
- 328 - 323 + 161 + 149
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TABLE XIX

Final Moments in Fgot Kips Due to 40° F Temperature Rise on Beams A to D
and 20 F Temperature Rise on Beams EF and GH

A 8 . ¢ 0
0.63] 044 [0.30] [o0a7 0.30] 0.56
R HEERREEE 7
vy [e °ly A Y ’ Y
+ 21 |- 2 -6l | +181 | —120 [ -173 | +408 | —236 -328 | +328
~-148 | +148 4103 | ~195 [+ 92 [ +144 [ —327 | + 183 4243 | 243
127 | +127 v 42 |12 | -2 | -20 | + 8 |- 53 - 85| + 85
E F G H
0.12 058 [058 0.12 [030 0.40] [040 0.30]
— 2 T T =) — |9 | y Q
voOg YL g VI b L 8 3
, \B , Y \ Y
+32 |+ 710 [ 103 | -413 | —262 | +i51 +384 | —123 | —261 | —276 | — 88 | +365
—156 | —255 | 4411 [ 4422 | —242 | —180 325 | 4195 | +130 | +118 | 4177 | 295
—124 | —184 | +308 | + 9 | + 20 | — 29 + 59 | + 72 | =131 | —158 | + 89 | + 70
J —K L— —M
WJ%—A Y Y 7777 w77 Y X 77
+ 36 +386 - 62 —- 15
—328 323 4161 4149
=292 + 63 + 99 +134
The following examples illustrate both Required:

moment distribution and the method of mak-

ing the sidesway correction for frames
having members of variable section.

Example 16_- Horizontal loading - Frame
hayving variable moment-
of -inertia_members,

Given:

A frame with variable T-sections and
loading as shown in Figure 77. The total
flange width of column AC and beam AB is
3.75 feet and of column BD, 5.50 feet. The
width of the stem is 1.0 foot for all mem-
bers. '

beonoemenmmmnn 25.5% --------- -
Y Y B
N T L
- L i
& ° sﬁj duis’
o Ny ‘:
;
md=3.0"--+ o
LAY
r<——1 10000%
HE
[
Iy
067 -+-f =3
| 5
I
o]

FIGURE 77 - Frame with Variable
T-sections.
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Moments at all joints A, B, C, and D,
including correction due to sidesway.

Solution:

By use of the diagram on page 54, the
moment of inertia of the smaller section of
column AC is

= 1,751_X1-_§.3_

= 4
5 = 0.492 ft.

I
e

and of the larger section the inertia is

1x33

= 4
5 = 3.87 ft.

L

= 172

Now in accordance with the explanatidns
given in example 9 of Chapter I,

3
/I 3
_ L _ 4/3.8’7 _
m = _Ic = 0.402 1.98

Then by means of the diagrams in Figures
30, 31, and 32, for this value of m and a =

45 _ 0.30, the slope-deflection coefficients

15
are



Cl = 5.6
Cy = 5.9
Cy = 26.4

 The stiffness and the carry-over factors are -

EI
o Bl 0.492
Kpo = €5 = 5.6---,.15,, E
= 0.184E ‘
: Co 59 .
I‘AC =-C—:; = -5—6 = 1.05
. Similarly, for column BD |
_ 19glx158 _ + 4
I, = .98 o - 0.557 t.4
_ 1x3% _ 4
I = L962EE - 441t
_ 45
a = 555 = 0.20
3/ ,
o oA/ A4l
m o= \/sssr = 20
Cl ‘= 6.49
Cy = 5.3
Cg = 27.0 N
~ 0.557 o moupix
Kgp = 649550 E = 0.161F
_ 53 _
"Bp = §a4g - 817

For the load of 10,000 pounds applied to -
column BD 10 feet from end D, the value

of k is =0 = 0.445 (see Figure 77). By

22.5
~ the diagram on page 31 for this value of X,
and a and m equal to 0.2 and 2.0, respec-
tively, the initial end moments are ‘

Cgp = 0.044 x 10,000 x 22.5
= 9,900 ft. -1b,
Cpg = 0.17 x 10,000 x 22.5

38,250 ft. -1b,

For beam AB by the diagram in Figure 50
the moment of inertia is _

T

1.72

1x23

_ 4
o = 1.146 ft,

Then, by case I in Figure 25(a),

Kap

Tap T

k. _ AE 1146
BA 25.5

‘The distribution' factors are

Sap =

= 0.180E + 0,184E

AC

~ 0.180E + 0. 184E

BA

= 0.180E + 0.161E

BD

= 0.180E + 0.161E

Kap
Kap +Kpo
0.180F

Kac
Kap +Kac

0.184E _ 0.51

Kpa
Kpa +Kpp

0. 180E - 0.53

KBD

Kpa +Kpp

0.161E - 0.47

TABLE XX

= 0.180F

= 0.49°

Distribution of Moments in Frame Having
Variable T-section Loaded

as shown in Figure 77

- p [Casr=rh 4:r<—o53)8
= i
TEW ) 0 +9900
oM. o0 & ) -5250 -4650
) g -zggg g
D.M. #1340 S| +4 :
oW 8& o T840 |5
oM = 0 340 |0 -300
M =70 g
DM _+85 +85
C.M, ) +40
O.M. . 0 20 -20
‘C.M -10 [¢]
M. ¢+ + 5
F.M. +1430® |- 1430'F Ta930F | +49307
C
TEM. 0
C.M. +1410
TtM + 90 TEM 36,250
M. -+ O C.M. ~-3800
%,M, 1500 cMm. - 245
. EM - 15




The free-body diagrams of the columns are
shown in Figures- 78(a) and (b).

Mac=1430'# ‘Mgp=4930'*
V) »~B_
S Vac v-x,--]_""—. Vo -
° E
] (o) ! .
; 0 < lo,ooo
s gl e [
X.. ' °
C \‘_/4 Vea ! o
M.,= 1500'# ; v
R 2 L W
‘“\_/ Vo.,‘
Mpg 42,310
FIGURE 78 - Free-body Diagrams of

" Columns of Frame in Figwre T7..
The shear at top of column AC is

AC 15

and at top of column BD the shear is

4,930 + (10,000 x 10) - 42,310
22.5

“Vap

+2, 783 1b.

The unbalanced shear for this case is
“then

195 + 2,783 = + 2,978 1b.

To correct for sidesway, give the frame a
deflection as shown in Figure 7 9.

’Af >4 e
ALl 4
T 13 A '
P By
Y : :
\ o ' H
] v '
vt 0 '
T 8 5
' " "
_Y. N i
.
L
1
)
Y...

FIGURE 79 - Sidesway Deflection of ’
_Frame in Figure T7.
The initial end moments for this frame are .

obtained by equations of case IV in Figure .
25(b). By inspection of these equations it .

is seen that the only common factor for both
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.columns is E. However, A'may be chosen
stch that it divides out all the factors for
at least one end moment of one of the col-
umns. In this case, then, let

T it 152 x 1,000
A = --d‘ :
- X E0492(56+59)w

2
15 x leOO
= ‘11.5E 0. 492_

X

X

Using this value of A in the equations of
case IV in Figure 25(b) gives

© oy . E 0.492
'MAC;. ~—-—-——15 (5.6 + 5.9)

152 £ 1,000 & _ _ 1 00
mx = - 1,000X
_E 0,492 :(5;9 +26.4)

152

152 x 1,000

‘ .3.11.’5E’ 0,402

X = - 2,810X

-E0.557 (549 4 53)
22,57
152 x'i 000
T1.5E 0.492

X = - 516X

- 20597 5.5 4 27.0)
22.5

152 x 1,000
1L.5E 0.492

M

X = -1,413X

-The ‘momnient distribution is shown in Table

XXI, and the corresponding free-body dia-

_gram is shown in Fig'ures 80(a) and (b).

Mgp = 379X
A pg=- 75X

“Mpe= 630X

.
- Vager190X =t g

-y
}

“ () (b)

--15,04 -

eeiee22.8-m0n

cl.x
V” HIOX —<Z_

Mcaz2316X Yoo

N——""Vop=+75X
Mop=1301X

FIGURE 80 - Fres-body Disgrams of
"Colume of Frame in Figure T7.



TABLE XXI

Distribution of Sidesway Moments of Frame in Figure 77
1

‘ 2
0.49 [>T *3

A |-C 2 < |O.531 B
— Y ¥ Y y
[E.M. -1000X |- ) 0 NT-B516X
DM, +510X |2 +4a90x +273x |3 +243X
C.M. O +137xX +245X T
DM. - 70X Tl - 67X - 130X T - 115X
CM. Y= 65X = 34x  |L
DM. + 33x Ml + 32X + 18X ~ o+ 16X
C.M. ol + 9x + 16X @
DM. - 5x =| - 4ax - 8X ©o - 8x
C.M. - ax - 2X
OM._+ 2X +  2X + X + X
FM. -530X + 530X +379X - 379X
o D .
i __ TTTn Y
EM. -2810X LEM. Sale
C.M. +199
oM Tax TR
M+ 35X CM.__  + 13X
CM. - 5X Cm - 7X
M.+ 2X C.M. + X
F M. -2316X F.M. =130 1X

The shear at top of column AC is

Now, using this value of X in Table
XX1 and adding the resulting moments to the
moments of Table XX gives the correct
moments due to the loading shown in Figure

_ 53042318 _ _jg0x

Vac 15

and at top of column BD the shear is

= 379+1,301 _

5.5 - 78X

VBD

The total shear due to A is
- 75X - 190X = - 265X

For equilibrium, this shear plus the un-
‘?alanced shear must sum to zero. There-
ore,,

- 265X + 2,978 = 0

or

X = 35%75—8= 11,24

84

77, Thus,

Mpc

]

]

]

+ 1,430 - (530 x 11.24)

- 4,527 ft.-1b.

+1,500 - (2,316 x 11.24)
- 24,532 ft. -1b.

- 1,430 + (530 x 11.24)
+4,527 ft.-1b.

- 4,930 + (379 x 11.24)

- 670 ft.-lb. |
+4,930 - (379 x 11.24)
+ 670 £t. -1b.

- 42,310 - (1,301 x 11.24)
- 56,933 ft.-1b.



Example 17 - Fccentric loading ~ Frame
-haying variable moment-
of-inertia_members,

Given:

A frame 2.0 feet wide with load and
depth of members as shown in Figure 81.

-+ Pin connected
(both columns)

-
!

NI LS
i R TR T IR

ceeeel230.0 --a-

FIGURE 81 - Steppbd Columms
Eccentrically Loaded.

Required:
Moments and shears in the columns.
Solution:

As explained previously, an eccentric
load P may be represented by a centric
load P and a moment Pe. In this case the
moment is 100 x 0.5 = 50 ft.-kips. The

roportionality constants for column AC are
see Figure 81):

10 _ 1
a=3 "3
2.0 _
m=—l-.—5—2.0

Now, from the diagrams in Figures 30,
31, and 32, the slope-deflection coefficients
are o ,

Cq = 5.5
Cy = 6.15
Cq = 26.0

Assuming the column fixed at both ends,l the
stiffness factors are found from case I in
Figure 26(a).

1T — _c - 1
Kae =G TE =5%%g%x30 "
— 0.0306E

The carry-over factor is

85

o L - === = 1.12
Al - C; 55 !
The samg constants for column BD are
a = §_-5--= 0.4
2.0. _
.m = TL—O = 2.0
Cl = b.42
"Cy = 6.5
03 = 24.5
1 -
KBD"" 5'42'6—:2_3T)E = 0.030E
6.5 _
I'BD = -5—:2:—2. = 1.20

From the curves in Figures 36 and 37,

Cpc* = 0.19 ( ',50’000)
= - 9,500 ft.-1b.
Cap* = 0.275 (- 50.000)
= - 13,750 ft.-1b.
TABLE XXII
Distribution of Moments in Columns
: in Figure T7
Assuming Columns Fixed at Both Ends
f—lAs — —
LEM -9500 |~ 0 [o) =
DM + ) o) Q YO
™. 0 i’; [] .0 ‘:5 ]
N o
i
c
i o
LEM. -13750 FM. O
C.M. +10640
“FM.-3110®

The moment distribution is shown in Table
XXIl. The distribution factor S, ~ = Sgp =1,
since joints A and B are hinged and no
part of the unbalanced moment distributes
to member AB. See discussion on page 57.
The free-body diagram of column AC is
shown in Figure 82. The shear at the top
of column AC is .

50,000 + 3,110
30

VAC = = 1,770 1b.

*In the curves in Figures 36 and 37, note:
carefully that for an applied moment M
(counterclockwise) at the change in sec-
tion, the plus sign (+) of the coefficient
for C AB O CBA means that the moment

Cap or Cgp tends to turn joint A or joint
B, into which the beam frames, in a clock-
wise direction. If the applied moment
reverses, the end moments reverse, which
is the case in the present example,



TR e\ == 1770¥

M=50000%
B J
<
o
bt
, ;

Vea®"Vac ";\’/

Mcac 3,110 ff.lbs.

FIGURE 82 - l‘ree-body D:lagram, Left
Colum of Figure 81.

‘»»-'Since no external force is applied at the

" top, this is the unbalanced shear that must. -
_be taken care of by sidesway correction.

This correction is found in the same way as

... it-was found in problem 14. - Give the frame
. a deflection & as shown in F1gure 83. In.

" this case let

A' X = 10,000
El,

>4

———— e e

<een- 25,05 ----->]

<---------30.0

FIGURE 83 - Sidesway Deflection of
Frame in Figure 81.

Now, by the equations of case IV in Figure
25(b5, the initial end moments are

EI
_ __c ) =10,000
MAC = -———302 (5.5 + 6.15) —?-———EI X
= -+ 120X .-
Bl -10,000

+ 357X

]

El ' -10,000
MBD = '-2—52'(5.42 + 6.5) ——ﬁg— X

= + 190X
El, -10,000
- = — _._.L.__
Mpp = — (6.5 + 24.5) B,
= + 496X

The moment distribution is shown in Table
XXIII.

TABLE XXIII

Distribution of Moments in Columns
of Figure 81 Due to Sidesway

A - —~ B
¥ ¥ ¥ 3
LEM. +129 [© 0 [¢) =] +191
,BM. mri-- . -191
Moo 0 0 ¥y O
: ’ [\ n
n N
N -
=l D

m
T.E.M.*49-§
C |— CM.229
4 M.+ 4
—_— Y
TEM. +357

C.M. -144
FM +213X

The free-body diagrams of the columns
are shown in Figures 84(a) and (b).

MAC= (o] MBD=0
V gt -
AC . .f. A VBD - 5 ____5_
. ©
[« [T
S o
" a) (b) i
§ D_J. .y
.. L C
: N—7 MBA=267X
'MCA’ 213X )

FIRRE 84 - Free-body Diagrams of
Both Colums of Figure 8l.

The shear at top of column AC is

, _ 213X _
VAC = = +7.1X



» -and at top of column BD the shear is

268X

5 = + 10.7X

VED
The total shear due to & is

+7.1X + 10.7X = +17.8X

For equilibriurm, this plus. the unbalanced
shear must sum to zero. Therefore,

17.8X - 1,770 = 0.
or ;
1,770 _
X = 372 = 994

Multiplying the final moments of Table

- XXIII by this value of X and adding them
to the final moments of Table XXII gives
the correct moments caused by the loading
shown in Figure 81. Thus,

M - 3,110 + 213 x 99.4

CA

+ 18,060 ft.-1b.

Mpp 0+ 268 x 99.4

= + 26,640 ft.-1b,

The free-body diagrams for these conditions
are shown in Figures 85(a) and (b).

The shear at top of column AC, caused
by the loading shown in Figure 81, is

~ _ 50,000 - 18,060

Vac 30

= 1,065 1b.

 and at top of column BD the shear is

_ 26,640 -

VBD 25

+ 1,085 1b,

Comments on example 17

Since the top of each column is hinged,
it would not have been necessary to resort
to moment distribution to solve this problem.

87

Mpe =0 Mgp=0
S ==\, c=-1065% VBD=+loes*Q_T_
: Bl
! M =50,000# °
3 Y N
m (a) (b) !
: D | %

i c ~—
--- \_/4 Mpg = 26640'#
Mc,=18,060'%

FIGURE 85 - Free-body Diagrams of
Both Columns of Figure 81.

With the top of the columns hinged and
held against sidesway, the moment at the
bottom of column AC is, by case III in

Figure 25(a),
Ca
_6.15,_
—-—5.5( 9,500)
= - 3,110 ft.-1b.

The unbalanced shear of - 1,770 1b. could
have been applied as a cantilever load at the
top of the columns. The proportion of this
load taken by each column may be found by
case VI* in Figure 25(b). The deflection A
is the same for both columns. Therefore,
for ends C and D fixed,

A Pac Lac

*Note that cases V and VI are different for
variable sections. To agree with the dia-
grams from which Cq, Cg, and Cg3 were
obtained, case VI has to be used when end

A is deflected and case V has to be used
when B is deflected.



or

022
Lgp2\ 5 - C3
Pac _ 1 AC

P

BD : Co2
Ly (‘62‘ - 03)
1 BD
2
253 (6—-11- 26.0>
65 ) = 0.662.
3(6.52 )
30 (5 > -245

'The subscripts AC and BD refer to the
-respective columns.

Now, from the two equations

or »
1.510PAC = PBD
and
' 1,770
= -—)-—— =
PBD W 1,064 1b.
and
_ 1,770 _
PAC 5ET0 = 705 1b,

The cantilever moments at the base of each.

column are

M = 705 x 30

Pac Lac
+ 21,150 ft. -1b.

CA ~

and

Pep

+ 26,600 ft.-1b.

DB = Lpp = 1,065 x 25

It

These are the moments due to sidesway, and
added to the respective moments of - 3,110
ft.-1b. at bottom of column AC and O at

‘bottom of column BD, they givevthe ﬁnal

moments.

8. Moment distribution with torsion

The following discussion treats the dis-
tribution of moments in frames having mem-
bers in both bending and torsion. Torsional
stresses are developed in a member if it is
subjected to a moment normal to its axis. In

" building frames, torsional stresses usually
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occur in marginal beams and in girders that
support cantilevers. By inspection of Figure
86 it is seen that member AD will be in
torsion and members BF and CE will be
in flexure because of the applied loading.
Slight torsional moments will occur in mem-
bers BF and CE due to the curvature of
members AD, but, as shown later, torsion
in members BF and CE may be neglected.
The moment distribution when torsion and
bending are involved takes place in two di-
rections perpendicular to one another. Mo-
ments in other directions might be present,
but that case will not be discussed here.
The principle of distribution is the same as
when bending only is considered. For the
sake of clarity, the moments in each direc-
tion will be distributed separately and the
results combined. Positive and negative
moments are defined as before; that is, an
end moment in a member, whether torsional
or flexural, that tends to rotate the joint
clockwise is called positive, and it if tends
to rotate the joint counterclockwise, it is
called negative. A torsional moment induced
at the end of a member is transferred di-
rectly through the member without any re-
duction in magnitude, Thus the moment at
the other end is equal, but, since it is a re-
actionary moment, its direction is reversed.
For this reason the carry-over factor is
always equal to ~1. From this it.follows
that all joints and members have to be viewed
in the same direction while distributing the
moments, This will be made clearer by the
following example,

Examp

torsion.
Given:

A frame, as shown in Figure 86, support-
ing a uniform load of 500 pounds per linear
foot on members BF and CE, and two con-
centrated loads of 50,000 pounds at joints B
and C.

Required:

Torsional and flexural moments at all
joints in the frame,



FIGURE 86 - Frame in Torsion.

Solution:

The two directions of bending in this
case are parallel to the axis of beams BF
and AD,

Case I - Bending in direction BF

For this case, BF and CE are in com-
mon bending and AD in torsion. From
case I in Figure 25(a)

_ _4EI _4Ex1x23
Kpp = Kpp =T "~ 5x12

= 0.1064E

_ _ 4EI _ 4Ex 23
Ker = %gc =T " 20x18

= 0.133E

The torsional stiffness of members AB,
BC, and CD are found as follows: For all

members A to D, = = 3-1 5, and from the

89

diagram in Figure 49, 8 = 0.196. Then b
case VII in Figure 25(b), assuming & = 0,25,

_ B b3 h E
Kap = Xpa = P13
- 0.196 —20%3 = 0.188E
T0x 2(1 + 0.25)
_ _ 23 x3
Kpo = Kop = 0198 55797 535)
= 0.1256E
i A 23 x 3
Kep = Epe = 0188 55505035
= 0.376E

Tha distribution factors S for case I, around
joints B and C are now

_ 0.1256E
= {0.1256 + 0.1064 + 0. 188)E

0.30

SBC




s - 0.1064E
BF = T0.1256 + 0.1064 + 0.188)E
= 0.25
s - 0.188E
BA ~ (0.1256 + 0.1064 + 0.188)E
= 0.45
s 0.376E
CD ~ (0.376 + 0.133 + 0. 1250)E
= 0.59
S 0.133E
CE ~ 70.376 + 0.133 + 0.1250)E
= 0.21
s - 0.1256E
CB = 70.376 + 0.133 + 0.1250)E
= 0.20

Case II - Bending in direction AD

For this case, members A to D are in
common bending and members BF and CE
are in torsion. From case I in Figure 25(a),

_ _ 4EI _ 4E2x 33
Kag = KBa =T " T0x12

= 1.80E

_ _ 4EI _ 4E2x33
Kpc = KeB =T " Txi

= 1.20E

_ _ 4FEI _ 4E2x 33
Kep = ¥pc =T = 5xi2

= 3.60E

The torsional stiffness of members BF and
CE are found as follows: For both mem-

bers, % =71- 2, and from the diagram in
Figure 49 g = 0.228. Then by case VII in
Figure 25(b), assuming & = 0,25,
K__ - p_P3hE
BF L2(1 + ®)

90

13 x 2E
25 x 2(1 + 0.25)

0.0073E

0.228

]

13 x 2B
20 x 2(1 + 0.25) -

0.0091E

K 0.228

CE

The distribution factors for case II around
joints B and C are now

- 1.20E -
SBC ~ T2 70.0073+ LBOE - o0
S = 0.0073E -0
BF ~ {1.20 + 0.0073 + 1.80)E
1.80E -
°BA = (1207 0.0073 + L. 80)E 0.60
_ 3.60E _ o
Scp = (3.:60+0.0091 + L.2OE 075
S o 0.0091E -0
CE = (3.60 + 0.0091 + 1.20)E
s - 1.20E _ 0.95
CB  (3.60 + 0.0091 + 1.20)E

Viewing the frame in the direction from
D to A, the initial end moments in members
BF and CE due to the load of 500 pounds
per linear foot are

L _ 500 x 252
v = "Cmr T T 13

= 26,000 ft. -1b.

o _ 500 x 202
Cec = "Ccr T T 1z

16,670 ft.-1b.

Moment distribution is now done as before,
with the exception that the carry-over fac-
tor r for members in torsion is equal to -1,
For this distribution, shown in Table XXIV,
members AB, BC, and CD are in torsion
Members BF and CE are in bending.

The shears at the end of members BF
and CE, close to joints B and C, are as
shown in Figure 87. The plus (+) sign sig-



TABLE XXIV

Moment Distribution Due to Loading Shown in Figure 86
No Deflection at Joints B and C

B C
A -<—0.45[030}>-! -1<—0.20]0.59 |-
I N = A L
5‘-26,000 - 6,670[5
11,700 [©|+6500 +7800 +3340 +3510|2] +9850
-11,700 N -3340 -7800 _ -9850
+ 1500 ] + 840 +1000 +1560 +1640 +4600
- 1500 =1560 -1000 -4600
+ 700] + 390+ 470 + 200+ 210 + 560
- 700 ' - 200 - 470 - 590
+ 90| + 50+ 60 + 90 +100 |+ 280
=90 - 90 - 60 . - 280
+ 40] + 20+ 30 + 10 + 10 t+ 40
- 40 - 10 - 30 - 40
+ 10 0 0 0 + 10 + 20
- 10 - 20
-14,040 +14,040] -18,200 +4,160 —4,160 -1,220 | +15380 -15,380
NOTE : +26,000 +16,670
Moments are to the zzzz + 3250 + 1,750 72
nearest {0 ft-Ib. F + 420 + 820 E
+ 190 + 100
+ 30 + 50
+ 0 + 0
+29,900 +19,390

nifies that the shear tends to move the joint
downwards. A torsional moment has no
tendency to move the joint in any direction,
and therefore no shear is shown at ends of
torsional members. By inspection of Fig-
ures 86 and 87 it is seen that joint B is
acted upon by a downward force of 50,000
+ 5,780 = + 55,780 pounds and joint C by a
force of 50,000 + 4,590 = 54,590 pounds.
These forces are analogous to the unbal-
anced shear of previous problems. Since
no reaction is provided under joints B and
C, the joints will deflect downward until the
shears in adjacent beams at each joint, due
to deflection only, balance the above forces.
The corrections in moments caused by this

deflection may be found in the- same way as
the corrections due to sidesway. Joints B
and C in turn are given an arbitrary deflec-
tion multiplied by a correction factor. The
moments, caused by these deflections, are
computed and distributed as before. But,
since torsion is present, moment distribu-
tion in two directions must be made. The
unknown correction factors are found from
the conditions that shears caused by allow-
ing joints B and C to deflect must be equal
and opposite to the unbalanced shears or un-
balanced downward forces due to loading.

_Holding 2ll joints rigid against rotation
in any direction, let joint B deflect a dis-

7 B C
A 2 v v gD
+5780% +4590%
777 77777
F E

FIGURE 87 - Shears Due to a Load of 500 lb. per Linear Foot

on Beams ¥B and CE.
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tance o. Then, by case IV in Figure 25(b),
the moments at the ends of adJacent beams
are

_BEDb A3 d3

M - - BEI,
L2x12

= L2
Ffor this case it is convenient to let the value
o ‘

A= a'x = 12
A= 2'X s 1,000X

By the definition of deflections, a downward
deflection of joint B is negative for beams
AB and BF and positive for beam BC.
The initial moments are then

The moment distribution for moments in
the direction AD is shown in Table XXV.
Since the torsional distribution factor for
beams BF and CE is zero, no moment is
.carried into these beams. The moment dis-
tribution for moments in direction FB is
shown in Table XXV

The shears at joints B and C,due to the
moments of Tables XXV and XXVI, are
shown in Figure 88. Torsional moments do
not affect these shears.

Holding all joints rigid and letting joint
C deflect an amount

o 12
9'x 33 A= AY = 6E1000Y
M = M =
AB BA 102 ’
the initial end moments are, paying due
= + 540X attention to signs, payime
2 x 33 _ _ 2x3
= - 240X = + 240Y
o 1x28 _ _ _2x38
MFB = MBF = 252 1,000X MCD = MDC = 52 1,000Y
- +13% , = - 2,160Y
TABLE XXV
Distribution of Moments im Direction AD. dJoint B Deflected
B .'_ . C ' |
A A z<—{oeo ) 3=<—0.25[0.75}>32 %
IR v 7 1 %0
+540 +540 o] 8 -240 -240 ol’o— 0 -'0
-180 -120 + 60 0 +180
) @ + 30 - 60 J', + 90
- 18 |Tv 0O -12 + 15 0O 1|+ 45
- 9 + 7 - 6 + 23
- 4 oO- 3 + 2 0 + 4 ’
- 2 + | - 2 + 2
+439X +337X 0 -337X -23I1X 0 +2 31X +115X
Y Y
7 O 0 T
F E




B C
. 2:=-116.31X 2=+107.17X V
A4 _ ;
2 V ’ — 7 v, D
-77.60X |-0.84X -3787X +37.87X +0.10X| +69.20X
7 7777
FIGURE 88 - Shears for Joint B Deflected.
Mog = Mg - LE2 10007 e T ere dh rection A0 s et
CE EC 202
tion FB are distributed in Table XXVIIL
20Y The corresponding shears are shown in
Figure 89. ,
B c
. 2=+107.28Y 3:-474.30Y
A% — 2
4 \ll Y ¢' Y 7
+44.40Y [+0.08Y +62.80Y -62.80Y -1.70Y | -409.80Y
F 77z 707 E
FIGURE 89 - Shears for Joint C Deflected.
TABLE XXVI
Distribution of Moments in Direction ¥B. dJoint B Deflected
B | C
4 -1=—{0.45]0.30}>-1 -1<—0.20]/0.59 -1 7
A~ PR ——— 7 T — 0
2 v vy Y ¥ ] v b
0 0 :\:‘HES o o off o 0
-6 O‘- 3 -4 0 0 ‘ICI) )
+6 +4
‘ -Ym -i = - -2
+ | +2
‘ =1
+|
+7X -7X +10X -3X +3X =X -2X +2X
T Yl Yl YL
F o3 o E
-2 =1
+11X '



TABLE XXVII

Distribution of Moments in Direction AD. Joint C- Deflected

B C ,
|
4 A 5=<J0e0[040 >3 3<fo25j075>3 D ¥
3 v Y1y v R I 1 7
0 0 lo|] O +240  +240 O |o|-2160 -2160
-144 0 - 96 +480 0 “{+1440 |
-72 I’ +240 - 48 v + 720
-144 | 0 - 96 + 12 0 1|+ 36
=72 + 6 - 48 + 18
_ - 4 0o - 2 + 12 0 |+ 36
- 2 6 - + I8
- 4 0o - 2 0.0 |+ 1 :
-2 0 - 1 + 1
0 0 0 0O 0 |+ 1 |
-148Y -296Y| O +296Y +646Y O |- 646Y —1403Y
F —] M E
7 Y 777777
0 0
TABLE XXVIII
Distribution of Moments in Direction FB. dJoint C Deflected
B C
4 -1<—0.45[0.30}> -1 -1=—0.20[0.59}>-1 Yo
71 I v g ¥ Vv
0 0O |gf0 O 0 +20l_£ 0 o
0O |oj 0 0 -4 - 49| -12
0 | +4 0 v t2
Y
-2 Pl - 0 0-in] O
+2 +1 | 0
- |
+
+2Y -2Y [ -1y +3Y =3y +ieY | -13Y  +13Y
Fl ] e
7% Y +20 7%
- 1 -2
-1y +18Y

- 94



Now for equilibrium, the summation of
shears from Figures 87, 88, and 89 plus
the concentrated loads of Figure 86 must
equal zero at each joint. Therefore,

- 116.31X + 107.28Y
+ 107.17X - 474.30Y

- 55,780
- 54,590

As for the previous problem, it is con-
venient to solve these equations in such a
way that the effect of any unbalanced shear
or force, at each joint, may be obtained sep-
arately. This is done in Table XXIX for
unbalanced downward forces of 1,000 pounds
at each joint. Note that the equations have
been multiplied through by -1.

TABLE XXIX

Solution for Correction Factors

In the following tables, flexural and
torsional moments do not occur together
in the same table. Thus Table XXX gives
the correction in bending moments only,
due to an unbalanced shear or load of 1,000
pounds at joint B and no load at joint C.
The same correction for torsional moments
is given in Table XXXI. These bending and
torsional moments are found by performing
the multiplications of Tables XXV, XXVI,
XXVII, and XXVIII, using the values of
X =10.861 and Y = 2.454 in column 3
of Table XXIX. The same correction for
a downward load of 1,000 pounds at joint
C and no load at joint B is given in Tables
XXXII and XXXIII and is found by perform-
ing the multiplications of Tables XXV, XXVI,
XXVII, and XXVIII, using the values of
X =2.456 and Y = 2.663 in column 4 of
Table XXIX.

As found previously the unbalanced loads
(shears) at joints B and C are + 55,780

J 2 3 | 4 pounds and + 54,590 pounds, respectively.
X Y 1000 LB.AT | 1000 LB. AT The correction in moments due to these
JOINT B JOINT © loads is now found simply by multiplying
11631 | -107.28 1000 o the final moments of Tables XXX and XXXI
-107.17 +474.30 0 1000 by the ratio 55,780/1,000 = 55.78 and the
, ~0.9223 8.598 P final moments of Tables XXXII and XXXIII
‘ - by the ratio 54,590/1,000 = 54.59. These
L +4.4257 0 9.331 computations are shown in lines 2 and 3 of
o +3.5034 8.598 9.331 Tables XXXIV and XXXV. In line 1 of these
Y 2.454 2.663 tables are the final moments of distribution
092237 8.550 o in Table XXIV. The summation of lines 1,
: : 2, and 3 yields the final moments caused by
10.861 2.456 the loading shown in Figure 86.
TABLE XXX
Correction in Bending Moments Due to +1,000 1b.
at Joint B and No Loed at Joint C
A B ¢ Vo
v [ v v 1 v v ¥
+4770 +3660 | +108 -3660 -2510 -1l [+2510 +1250
- 364 - 726 |- 2 + 726 +1585 +39 [-1585 -3440
+4406 +2934 | +106 -2934 - 925 +28 [+ 925 -2190
F _j F E
7777 Y/
t120 =11
- 2 +44
+118 +33
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TABLE XXXI

Correction in Torsionel Moments Due to +1,000 1b.

at Joint B and No Load at Joint

c
, B C
A ‘ - %
2 v 1 v ¥ 17
+76 -76 o) =33 +33 0] -22 +22
+ 5 - 5 [0) + 7 -7 0 -32 +32
t81 - -8l o -26 +26 O | -54  t54
FI— | —1E
7§ o T
9 o
o . (0]
. TABLE XXXII
Correction in Bending Moments Due to +1,000 1b.
. o at Joint C and No Load at Joint B
A B , c - F
sl T A e D L
+1080 +828 |+25 -828 -568 - 2 | +568 +282
- 394 -788 |- 3 +788 +1720 +43 |-1720 -3730
+ 686 + 40 |+22 - 40 +1152 +41: -1152 -3448
FI [ lE
T Y 7777
+27 - 2
-3 +48
t24 +46
TABLE XXXIII
Correction in Torsional Moments Due to +1,000 1lb.
at Joint C and No Load at Joint B
’ B C v
" D
v Y ' ! v v
+17 -17 0] -% +7 g— -YS + 5
+ 5 -5 0 +8 -8 0 -35 +35
+22 =22 0] + | =1 0 -40 +40
F Vl E
.’777/72 0 0 Y
1) O
0 0
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TABLE XXXIV

Final Corrected Flexural Moments Due to Loading
Shown in Figure 86

2 v v o3 i v T 0
0 -18,200 -11,220

+245,000 +164,000(+ 5:910-164,000 -51,600 +1)560[+51,600 -122,000
+ 37500 + 2.180|* 1,200~ 2.180 62,800 +2.240|-62800  -188.000
+282,500 +166,180 |-11,090 -166,180 +11,200 -7,420]-11,200 _ -310,000

; ,
T 429900  +19,420 777
+6'580 + 1840
+ 11310 + 21510
37,790 ¥23,770
TABLE XXXV

Final Corrected Torsional Momeuts Due to Loading
Shown in Figure 86

A4 ° : Vo
1 v v K] v ooy v v Y
-14,040 +14,040 0 +4160 -4/60 O +15380 . -15,380
+4,520 -4,520 0 - 1,450 +1450 O -3010 +3,010-
+1,200 -1,200 0 + §5 - 5855 0 - 2,180 +2,180
-8,320 +8,320 0 12,765 -2,765 O +10,190 -10,190
707, 8 8 T
2 9
0 0
Note the large reduction in torsional mo- line 4 of Table XXXV) caused by the deflec-
ments (the difference between line 1 and tion at joints B and C.
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CHAPTER III

DESIGN DIAGRAMS
In order to expédite the design of rein- All diagrams are self-explanatory.
forced-concrete members, a collection of
design diagrams is given in this chapter. Figure 92 on pagel04 may be used for

any number of rows of steel.
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Values of k

IN GENERAL THE EQUATION FOR k IS
*k‘bn,k"n,kon,l o]

TO FIND k
when N:Tensile force

(g3

Nex-6np % D+A

ny=+6np % (D-E) -B

Draw line from n, to ns,at
intersect. of ny,read value of k.

TO FIND k
when N=Comp.foM
-*»

nee3 (§-3)
na=+6np £ D+A

ng*-6np %(D-E)- B

Draw line from n, to ny, at

B

5

o

intersect. of ny,read value of k.
-t

TO FIND STRESSES FOR EITHER A TENSILE
OR COMPRESSIVE FORCE

bys -9

and

by= -6B

Draw line from b, to bs, at intersection of k,
read va@lue of b, (dotted curves)

or bys S4isk-k®;  then ey
%

and fo= C-gd,;l; fs“fgﬁ. etc. as in fig. above +=Tension;-=Comp,

TO FIND k FOR BENDING ONLY
ng =~6npD

n=-3

Draw line from n, o ny,at intersection of n, read value of

ny=+6np. (D-E)

k. Repeat, reversing the signs of n,, n, and ny. Use
average of the two values thus obtained.
The stresses are found exactly as above.

tn

N
S

Given:

Ag=015%

=
a
h=12

¥

(B L

e\
+—4—¢

EXAMPLE

F++5F=F Amember,width b=10"and depth h=I5" with
i reinforcement on tension side A= 1.5in?

5, and a second row of reinforcement

S A= 0.15in? subject fo a moment M = 300,000

in.Ibs.and a direct load N=10,000 {b.

compression. n=10.

300,000

e

10,000

10x 1.5,
y " TBxio

=30in.;

30

N Zx2; qs

R

13,

;a2
 jee0ls apc (2e0.8

oiy eSB05; D-1005515

E=0.x1+0.840.5:0.5; F=0.°x1+0.8%x0.6:0.33
A:6x0.1(§x1.5-0.5)=+0.15; B:6x0.{§x15-15x0.5+033)=+0198

0= 3(2-5) 24855 = 6x0.Ix2xL6+0.15=+ 195
ny=-6x0.1x2 (1.5 -0.5) -0.198 = ~1.398

b= -9 (always);
Draw a straight line from n,=+4.5 to ny=-1.398 and
at the intersection of this line with the curve
0,2 +1.95, (marked ®) read the value of k=0.37 at
top or bottom of sheet, Then draw a straight line

from b,=-8 to by= -1.19 and where this line infer-
sects k=031 read. the value of by=0.95 on dotted
curves for b, (marked @)

ond

then

fo = 7.50x

by=-6x0.198=-1.19

6
¢*Ges-o15 - "0
290,090 + 1000 Ibs /in'

f5,= 0% 1000 (L:B%.l)- +14,300 1bs./in®

15,2 10x 1000 (1_'0_80“ 4600 1bs./in!

% For bending only k* Is divided by

£. since ﬁ-»w,-%--o.

FIGURE 92 - Bending and Direct Stress in Reinforced

Concrete Members.
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fs=

VALUES OF k AND j
FOR GIVEN VALUES OF pn ano p'n IN
RECTANGULAR BEAMS REI'NFORCED FOR COMPRESSION

FOR RATIOS OF % FROM 0.05 TO 0.30

- -3
™ n n-t
n
8 0.875
Ho—- 41— 10 0.900
2 0.917
15 0.933

Al ) A, n-1 [ Taking into account the reduction of
Bq (Approximate) P'= b X R~ { compression areq of concrete due
%,- to the presence of reinforcing steel
M . k- fik M K
Asjd fS‘“fC( K > =i T X ol

In the following diagrams
k=\/2n(p+ p' %) + rtp+p')? - n(p+p)
K-8+ 2pn(k-4)(1- §)

j:

ki + 20 (k-9)

: Sheet | of 9 X-D-148I
FIGURE 93(a) - Rectangular Beams Reilnforced for Compression--

Values of k and J for Given Values of pn and p'n. Ratios

of 4'/a from 0.5 to 0.30.
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VALUES FOR j AND K
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VALUES OF
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VALUES OF pn

Sheet 20f 9 X-D-148|

FIGURE 93(b) - Rectangular Beams Reinforced for Compression--
Values of k and J. d'/d =0.05.
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Q.30

RECTANGULAR BEAMS

REINFORCED FOR
COMPRESSION

VALUES FOR j AND Kk

T

025

—
pe |

(=]
g T Y T

p'n

VALUES OF

[«]
U
+ -
e e T —

i=9 |,

0.20 025 . X 040 o .45
VALUES OF pn g-=.20°4

Sheet 5 of 9 X-D-148|

FIGURE 93(e) - Rectangula.r Beams Reinforced for Compression--
Values of k and J. d'/d =.20.
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PR

VALUES OF

0.15
VALUES oF pn

Sheet 6 of 9

FIGURE 93 (f) - Recta.ngular Beams Reinforced for Compression--
Values of k and J. d'/d= .225.
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Values of k and J.
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AREAS AND PERIMETERS PER FOOT OF WIDTH

FOR VARIOUS SPACING OF WIRE

FIGURE 96 - Sectional Areas and Perimeters of American
Welded Wire Fabric.
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S‘;g‘&‘g%‘};“féﬁ CENTER TO CENTER SPACING
GAUGENO |8 2| As| 30 | As| 30| As| 3o | As| 39| As| 3o | As As| 20
0000 |394|731(7.423)487|4.949|:365(3.711|.244|2.474] 183|1.856|.122(1237].....|.....
000 [363[...|....|...|... 310(3416|206(2278..... ... {... ||
00 |33i|...|....|.. . .....|258[3.120].172[2.080].....|.... e
0 |307|443(5777|.295(3.852|.221|2.889].148(1.926].1 1 1 |1.444]074| .963| 055|722
| |283|377]5.334]|252|3.556|.189|2.667| 126|1.778|.094|1.334|.063| .889047| 667
2 |263|325/4948|.216[3.299|162|2.474|.108|1.649|.0811.237[054| .825/041|619
3 |244|280(4594(.187(3.062(.140(2.297.093(1.531|070/1.148(047| .766|035|.574
4 |225|239[4.247|.1592831|121|2.123].080|1.416/.060|1.062|040| .708[030|.531
5 |207|202|3.902|.135]2.601{.101]1.951].067(1.301{050| .975034| .650|{025|.488
6 |192]|174[3619].116]2.413{0871.810|.058[1.206/.043| .905[029 .603[022|452
7 |177]148(3336/.098(2.224|074|1.668/.049|1.112{.037| .834{025| .556/.018]|417
8 |.162|124[3.054|082(2.036{.062|1.527/041(1.018/031| 763[021| .509/015|382
9 [148].104[2.795069]1.864|052|1.398{035| .932|026| .699[017| 466|013 |.349
10 [135[086[2.545(0571696(043(1.272029| .848(021| 636|014 | 424[011 318
11 |121]068[2.271|.046]1.514|.034]1.136|.023| 757|017 568|011 | 379|009 |.284
12 |.106]052|1.989|035|1.326/026 | .994|017| 663[013] .497[009 007249
13 .092]0391.725/.026{1.150|.020| .862|.013| .575/.010| 431]007| .287/005|.216
14 |080]030(1.508(020|1.005/.015| .754|.012| .503.008| .377].005 004/.188
SECTIONAL AREAS AND PERIMETERS OF
AMERICAN WELDED WIRE FABRIC
X-D-1454




® ® AREAS AND PERIMETERS OF ROUND BARS PER FOOT @ @

NSl E
g W § g " 3" 4" 7 8" 9" 10"
LW =2 |A]S AT, Yo Ag| Zo|As | X, Io|As| X0
3/ 11104]1.18 66| 7.08 .44 472 33[354 A9(2.02( .17{1.77} .15[157] .13 [1.42
15 11963]1.57| .6681.18 9.42| .79} 628] 59|41 34]2.69| .29|2.36 .26]2.09] 24 |1.88
54 [3068]1.96 1.84{11.76[1.23] 784] 92/5.88 53(3.36] .46]2.94] 41]261{37]235
3 [4418]236 26514.16]1.77] 944{1.33/7.08 76{4.05] .66/354] .59[3.15{.53[283
[ % 16013]275 361[1650{2.41{11.00 1.80[8.25 1.03[4.71] .90[4.12| .80[367| 72 330
| [7854]3.14 4.71(1884]3.14]1256(2.36]9.42 1.355.38[ 1.18[4 71]1.05|4.19] 94 [3.77
o0 AREAS AND PERIMETERS OF ROUND BARS (N )
[=4
<l £ % - - - NUMBER OF BA_IIRS _ > =
o|lx|E|E
L83 [As] S| As] Zo| Al =0 5.l As| Zo To|Ag| Zo
34 [1104]118] 376] 2212.36] 33[354] .44] a2 77| 826| .88 944{ .99(1062(1.10{11.80
1 1963157 39]3.14] 59]471] .79] 628 1.37]1099] 1.5 7[12.56] 1.77]14.13] 1.96][15.70)
54 [3068[1.96 392] 92|s88[1.23] 184 2.15]13.32]2.45]15.68] 2.76{17.64]3.07(19.60
34 luwig|236 .88/4.72{1.33|7.08|1.77] 944221 3.09|1652{3.53|18:88]3.98|21.24|4.42[2360
T |6013[215 120[5.50{ 1.80(8.25]2.41{11.00(3.01 421)1925/4.8t 1220005.41]2475]6.01 (2750
| 7854314 1.57/6.28]2.36(9.423.14(12.56 1884{5.50[21.98]6.28[25.12| 7.07/2826|7.85 31.40
N AREAS AND PERIMETERS OF SQUARE BARS PER FOOT )
w | g _5 E
Niglglgl 2z [ 3 [ & T [ 8 [ o [ 1o
N <&z |As]|%e Ta|As|Zo To|As |5, Z.[As| 3,
Yo | 250 2.0 1.50[12.0[1.00| 80| .75| 60 43|343| 37{3.00 .33[267] .30[2.40
1 [1.000 4.0 6.00[24.0(4.0016.0{3.00{12.0 1.7116.86]1.50[6.00]1.33[5.33{1.20[4.80
1 /g |1.266| 4.5 760(27.0(5.06(18.0/3.80(13.5 2.17|771{1.906.75[1.69{600[1.52[5.40
1Y4(1562} 5.0 9.38/30.0/6.25(20.0]4.6915.0 268(857|2.34/7.50/2.08|6.67|1.87(6.00
AREAS AND PERIMETERS OF SQUARE BARS an
w ﬁ %‘ = NUMBER OF BARS
Nig|lz|8] 2 3 4 7 8 9 10
| | 8| S [R5, As [ 5o | As | 5o %o Be | Za| As] 2. | Al 50
Vo | 250 2.0] 8500 .50] 4.0] 75| 6.0[1.00] 8.0 175140 | 200(16.0] 2.25/18.0 | 2.5020.0
! |1ooqf 40 2.00 80(3.00[12.04.00]16.0 100280 | 800/32.0] 900[36.0 [10.0040.0
1 Y4 11.266) 4.5 253| 90|3.80]13.5[5.06]18.0 886[31.0 [10.13[36.0{11.39]40.0 {1266 450
1V411562] 5.0 3.12/10.0/4.69[15.0]6.25/20.0 1094350 [12.50(40.0]14.06{450 15.63(50.0
X-D-1455

FIGURE 97 - Sectional Areas, Perimeters and Weights of Steel Bars.







APPENDIX A
DERIVATION OF EQUATIONS

General Equations for Initial End Moments

In order to derive special equations for
the beam constants for different conditiors
of loading and methods of end supports, it is
convenient to derive general expressions for
the moments at the ends of a member. Then
from these general equations any special
equation may be derived for any of the beam
constants merely by introducing into the
general equations the restricted conditions

. of the special case.

The general expressions for the end
moments of 2 member will be derived from
the principal propositions of the moment-
area method. These propositions may be
stated as follows:

1. When a member is subjected to flex-
ure, the algebraic difference in the slope*
of the elastic curve between any two points
A and B, is equal to the algebraic sum of

My

the area of the o0 diagram** for the por-

tion of the member between A and B.

*For obtaining the difference in the slope
between any two points, the same sign
system as defined in Chapter II may be
used. Restated in different terms, this
sign system reads: If the tangent to any
given point on the elastic curve has ro-
tated in a clockwise direction from its
original position, the angle through which
it has rotated is called negative (-). Con-
versely, if the tangent has rotated in a
counterclockwise direction, the angle is
positive (+4).

**For totaling the moment areas and mo-
ments of moment areas, the sign system
as defined in Chapter II cannot be used.
The sign of 2 moment for this purpose
must be defined with respect to the stress
it causes in the member. Moments caus-
ing tension on opposite sides of a member
have opposite signs. Either moment may
be called positive or negative, since only
the numerical result is used.
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2. When a member is subjected to flex-
ure, the distance to any point A on the
elastic curve, from a tangent drawn to the
elastic curve at any other point B, is equal
to the algebraic sum** of the static moment

M
about A of the area of the —=

Ely
between A and B. Measurements must
be made normal to the original position of
the member.

diagram

Referring to Figure 1, and propositions
numbered 1 and 2 above, gives:

Oy~ 6g = (ApMyp - AgMp,

- A% (1)

4 -L1Og = (ApX Mpp - AgXpMp,

- AX) = (2)

Equations (1) and (2) are general, except
for the signs concerning the external load-
ing. For most conditions of loading, how-
ever, the signs of the end moments, as
expressed by equations (5) and (6), may
easily be determined by inspection. Thus,
if the loading shown in Figure 1 of Chapter I
had been upward, the signs of equations (5)
and (6) would have been reversed.

Since Aa, Ag, and Ay are defined to be

My X
the areas of —= diagrams rather than —
I EL,

diagrams, equations (1) and (2) must be
multiplied by the reciprocal of E as shown.

Solving equation (1) faor MB A gives:

- E6p + E6g + ApMpp - Ay
= AB

Mpa

Substituting this value of Mpp in equa-
tion (2) and solving for Mpp gives:



M E[ *B )
AB AA(XB-XA) A

L - Xp o
+—_—.
Ap(Xg - X,) B

L A:l
A\Xg-%, L

Ao(Xpg - Xo)

Fa@n - %, ®)

Similarly, solving equation (1) for Mpp
and using that value in equation (2) gives

M E XA 0
= E|lo—m—x 4
BA Ap(Xp - Xp)

L-X, o
+ —————=— OB

o L . ]
AB(XB - XA) L
(X, - Xp)

T (4)
Ap(Xg - X A)

The last term of equations (3) and (4)
is seen to contain quantities depending on
the external loading and the shape of beam
only. Therefore, if no deflection and ro-
tation of the ends of the member takes place

A (XB—X )
M =L "o _c 5
AB AA(XB'XA) AB (5)
and

Ao(Xo - Xp)
Mpy = “BEp®g-%Xa) - CBa  ©

It is recognized that equations (5) and (6)
are the general expressions for the moments
at the ends of a member of any shape, due to
any loading, when both ends are held fixed
in their original positions. These moments,
called fixed end moments, are generally
denoted by Cpp and Cga.

It can be proved that the coefficient of 6g

in equation (3) is equal to the coefficient of
8 A in equation (4). The proof is as follows:

L - Xp
Ap(Xp - Xa)

X
Ap(Xp - Xa)

ViA

(a)

Canceling the term (Xp - Xj), supposition
(a) may be written

(L - Xg) AB§ A X, (b)

Referring to part (g) of Figure 1, the
general expression for Ap is

L1 -x
A, = dx (7)
5

and the general expression for X, is

L1, -
'6 LLIXX
Xy = 9—% (8)

L..
{)L LIXdX

X dx

Similarly, from part (h) of Figure 1,

L x
A = —— dx (9)
B - { TI |
and
L .2
fin ™ |
Xg = (10)
X
S == dx
o Lk

Substituting these values of A IR and
Xp in supposition (b) gives

X ix

}J—X dx

L
<L_(£LIX )/de<
/ 0
0 LIy
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Dividing out equal terms and rewriting,
gives

L L L9
L/ X &x =/ X x=
0 I, 0 L, —
L L
L-X X
xdx = L/ = d&x
'6 LIy OLIX
L .2
- X2
0 Liy

Therefore, supposition (a) is proven and

L - Xp X,

This relation may be used as a check on
the correctness of the computations.

By observation of equations (3) and (4)
it is seen that the sum of the coefficients
of © A and GB in each equation is equal to

the respective coefficients of % . To make

this true is the reason for not dividing out
L in the terms containing A.

Taking advantage of the above prdof and
observations and multiplyin% and dividing

the terms in parenthesis by -IQ: , equations

(8) and (4) may be written in the following
convenient forms:

EI, |
Map = T [C18a + Cop

- (Cy + Cy) ﬂ #C,p (11)
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EIc
- (Cz + 03) fA]+ Cga (12)
where
X
L B
Cq = — 18
1 71 BalXp - Xp) (13)
c. =L (L - Xp)
2 T T, A (Xp - Xp)
X
-L 4 (14)
(L -X,)
Cy = -I£ — A (15)
c B(XB - XA)

'IThe reason for multiplying and dividing by
c

T will be shown later.

Specific Equations for Beam Constants
for Given Methods of End Supports

By use of equations (11) and (12), it is
a simple matter to derive equations for any
given method of end restraint. For the
sake of illustration, the equations of case L
on page 17 of Chapter I will now be derived.
It is seen that in case I the beam is held
fixed in its original position. Therefore,

9p =g =4 =0. Then by equations (11),
(12), (5), and (6),

A (Xnp-X)
= - 9B "o
A (X, - Xa)
_ _ o\*o A
MBA - CBA il A"B- (_XB' -'X' -A' 5‘ (17)

For shapes of beams for which the co-
efficients Cq, Cg, and Cg are available, it

is convenient to have Cppg and Cgp ex-
pressed in terms of these coefficients. Re-
writing equations (16) and (17), it is easily
recognized by equations (13), (14), and (15)
that v



. ,
=%TTLﬂ
Ap(Xp - Xy

XO

X 1
0 C

%

Cpp = Al
BA O[AB(XB - Xa)
XA

" BAp(Xp - XAj]

= Ay [- Co + —L—?- (Co + C3)]—I-:
(19)

By definition, the stiffness factor at end
A for case I in Figure 25(a) is the moment
required at end A to rotate this end through
an angle of one radian when end B is held

fixed. Thatis, 65 =1, 6 = 4 =0, and,
since the rotation is due to the end moment
only, Cag = Cga = 0. Therefore, by equa-

tion (11)

Mpp =

EXB

EEYC TN (20)

Similarly, for obtaining the stiffness at

= 0, and by equation (12)

Mga
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B(L - XA_)
= % (21)

By definition, the carry-over factor for

Mpa
moments from A to B is
Map

caused by Map only. The conditions are

- Mp, 1s

that ©6g = 4 =0 and 64 has any value,
Then by equations (11) and (12)
El,
tap - Mpy _ T (Cofa)
Map  EL
T (C19)
C ApX ‘
- T - aags (22)
1 BB

The conditions for carrying over mo-
ments from B to A are that 65 =4 =0

and Op has any value. Then by equations
(11) and (12)

BL .,
. Map LT~ (Cy8)
BA = WM. - El
BA T (Cgp)
Cy  Ap(L - Xp)

Cs ~ EA(L - Xa) (23)

For beams of constant section the areas
Ap and Ap are triangles with the length

L of the beam as their base and Ii as their
height. Therefore,

L

A T

A = Ap =

The respective distances from their
centroids to end A are

3£ and L

XA— XB=

I



Using these values of Ap, AR, Xa, and
Xp in equations (13), (14), and (15) gives

C; =4; Cp =2 and Cg = 4

Now, from é uations

(21), (22, and (23 (18), (19), (20),

Cip = A(4-620) L
AB 0 L’TL
E(o I *
CBA = Ao(‘2+6—ﬂ-)—L—
4F1
Kap = Kpa = 4
roo=r,, =2 -+
AB BA -4 =72

Derivation of the beam constants for
other-cases in Figures 25(a) and (b) is made
in a similar manner and will not be shown.

Equations for Plotting Curves of the Slope-
Deflection Coefficients Cq, Cg, and Cq

Inserting the general expressions for
Ap, Ap, Xp, and Xp of equations (7), (8),

(9), and (10) into equation (13) gives

[
0 ~'x
L x
¢y = L. 6iﬁ}dx
! L .2 L
(4 X' L - x
=dx . / x dx
}‘I.- x Ly 7 L
LI
0 “x X 4x L-Xgy
: L 0 Lix
(24)

It is necessary to eliminate I, and L

from this equation in order to make the ex-
pression for Cq1 applicable to any beam of

any length. This may lbe done by letting

IX=§Z§Ic x = zL, and dx

Ldz

*Since I is constant, it would not be neces-
sary to multiply by I if it were omitted
when computing A, X, is not-affected by
I when constant. Therefore, X, is also
the distance to the centroid of the simple
beam moment diagram.
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‘ 1,
3 and [/c')

When making these substitutions in
equation (24), it must be remembered that
the limits of integration are now from 0 to
1, since 1 is the value of z when x = L.
Further, when making the above substitu-
tions, it will be apparent why equations (3)

and (4) were multiplied and divided by ELS

as shown in equations (11) and (12). If this
had not been done, it would not have been
Fos)sible to eliminate L and I, in equation
24).

Making the above suggested substitutions
in the equation for C; and reducing gives

}szz

C 07
z1 = . 2
= 1 22 1 1 _[ 1 Z ]
6 dzéadz j(')@dz

(25)

If, to the denominator of equation (25)

the two quantities

L
%dz,

2
dz]

are added and subtracted, the equation for
Cq changes to .

b

2

: 1
2 {) sz

RSt

c ./01%2 dz
1= ) P
e fugile ) s
' (26)
Let
L2 d A (27')
hg -
Y
fo1 %ELdz - B (28)
1 z(l -2 ;
6 J_@_Z dz = D (29)



Then

A
Cqy = —E (30)
1 = 4g-p2

and it may be shown that

D
Co = e (31)
2 7 AB - D2
and
B
Cq = ———e (32)
37 AB-D2

In this form the work of computing numerical
values for given beams is sometimes s1mp11-
fied a great deal.

Specific values of Cq, Cg, and Cg will
now be derived for a member of two constant
sections, as shown in Figure 98.

< e

A - 8
et -y
3. v
13
X

MG - ennm al---------- Sl """'("O)L""""'"

SRR [P

FIGURE 98 - Beam with Two Constant
Sections.

For this beam IL.= 12 ; for the heavier part
bd8 m3 _ 3

12 ¢

substitution on page 121 the moment of inertia
at any point x is Iy = ¢I Therefore, for

of the beam I = By the

the portion al, # = 1, and for the portion
(1-2a)L,d= mé.

Then, by equation (27),

a a
_ 2 1 2
A = ,6z dz + 3,/12. dz

m
_admd-1)+1

3m3

by equation (28)

B

a 1
/(l-z)zdz+—!‘—- [ (1-2)2dz
0 md a

3(a-a2+%§)(m3 -1 +1

3m3

and by equation (29)

o
(]

a . 1
J z(l-2)dz+—— [ 2(l-2a)dz
0 m3 a

_ a2(3 - 2a) (m3-1) +1
6m3

A family of curves may now be plotted
for Cq, Co, and Cq with a and m as vari-

ables. These curves are shown in Figures
30, 31, and 32.

Equations for Plotting Curves
for Initial End Moments

The general expressions for A, and
Xo are v

M

e

dx (33)

L
AO=_/(')

| ]
o

X, = (34)

oSH|loSE
% lxg "‘Hlxg

Using these expressions in the equation for
Cap 2s shown for case I on page 17, Fig-

ure 25(a) gives
{32 xex I
Cap = "dxc x (c,+cC
AB 61 oV 1+ CotE
™

(35)

Now, by reducing and resorting to the
same substitutions for Iy, x, and dx as
were used when deriving the coefficients
Cq, Cg, and Cg as shownon page 121 gives
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M
Cpn = C X dz
AB 161 7

1M,
-(Cl+CZ) ./(;TZdz (38)

This is a general expression for Cpp due

to any loading and shape of beam. In order
to proceed further, a definite loading and
shape of beam must be assumed. For the
purpose of illustration, assume a uniformly
distributed load of w pounds per linear foot
applied to the beam shown in Figure 98. The
reaction of this load on a simply supported

beam is % and thé moment at any point
X is
_ wL _ _ wx2 - wL2
My = %3 5 °
2 2
- wL” 2 _ wLZ 2
= 52 5 (z - z9)

For values of z from 0 to a, $ =1, and

for values of z from a to 1, ¢ =—1§. Using
m
these values of My and @ in equation (36)

gives

9 a
Cap = -Wzi-l:cl fo (z-z2)dz
C 1
+ =1 [ (z - 22) dz
ms a

a
- (C1+Cg) .(/; (z - z2)z dz

m3 a

_ wL C (?}E-a_s)
S 2 1\ 2 3

Cy+Co 1
_Zltrae (z—zz)zdz]

3 4
a a
-(Cr+ Cz)(? -'4“)
Cl + C2

__(i+e_3e‘£]
EIAVE R

Using the values of Cq and Cg as found on
page 122 for this beam, a set of curves
may be plotted for Cpp in terms of wL2.

These curves are shown in Figure 33. Deri-
vation for other initial end moments is simi-
lar and will not be shown.

Equations for Plotting Curves for
Torsional Stress and Stiffness

Plotting of the curves for torsional
stress and stiffness is based on Saint Ve-
nant’s theory. According to this theory
the relation between the torsional moment
M; and the rotation © per unit length of

a rectangular beam is

.3, 1,192 sh
M, = b3hmr L [1 1925 (tan n 32
+o.oo45):| (37)
where

b is the short side and h is the long
side in a rectangular beam

B

T =)

u is Poisson’s ratio
E is Young’s modulus of elasticity

By definition, the torsional stiffness K is the
moment required to twist the free end of a
beam through an angle of one radian, that is
«L = 1. Therefore,

3
K = ]_33&_1 n(‘rL)% [1 -@(tanh-’l}-l-

5 2b
+0.0045)| = B b—312—E—(38)
: L 21+0)

Values of # are plotted in Figure 49,
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Saint Venant’s theory further states
that the maximum unit shear stress v; at

the middle of the long side is approximately

vy = nbx[l-% sech—;%] (39)

n

Substituting for = from equation (87)

gives ,.
8 nh
. M, [ -Esechzb]-
t T 9 1, _192b nh
v%h < [1 12 ann gy 0.0045)]
M, ,
= B—= 40)
b2h (

The maximum unit stress vt' at the
middle of the short side is

© - b8 (tanniBo L 1h
vvt‘ = mb ,,2 (tanhzb 3 tanh32b
+...) (41)

Substituting for the value of * from
equation (37) gives

-%(tanhﬂ-ltanna 2,

oo M s % 32 % M
2 b%h
v%n 1f, _292Db sh
5[1 5h (tan h_Zb + 0.0045)]
(42)

Values of 8 in equation (40) and B' in
equation (42) are plotted in Figure 94.

Check on Moment Distribution

That moments and shears be in static
equilibrium is a necessary condition, but it is
not sufficient as a check on the correctness
of the computations, If deformations due to
shears and direct stresses are disregarded,
as previously assumed, the accuracy of the
moment distribution is finally checked if it
can also be shown that the deformations-sat-
isfy the conditions of continuity. Continuity
requires that the angular deformation at the
ends of all members meeting at a joint be
equal and that the linear deformations do
not imply any change in lengths of members.
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In cases where no linear movement or
definite, known movements 4 have taken
place, a simple criterion of continuity be-
tween any two members meeting at a joint
may be derived as follows: Rearranging
equations (11) and (12) gives

EI, |
Myp - [CAB - (C1 +Cy) —IA:]

EICce ce.) =M 43)
= 1 (C18, +Cpfp) = My

and
EI
C A
Mpa - [CBA -1 (Cy+Cy) ‘f]

I , ,

It should be noted carefully that My, and
My, as defined by equations (43) and (44),

respectively, are the algebraic differences
between the final moments after distribution
and the initial end moments. The initial end
moments include the effect of any external
loading plus the effect of any settlement of
supports or known deflections 4 and are
subtracted algebraically from the final
moments.

Solving for 8p in equation (44) gives

LMp; Gy

Op = a2 - =26y (45)
B ~ C4EI, Cg3

Substituting this value of 6g in equation (43)
and reducing, gives

Cy EIC( Co? )
M, -=2M,_ = C, —2{1-=2_]6
ab 03 ba 11 chs A
(46)
Solving for 6, in equation (43) gives
Mgp L  Cg ‘
A TGEL TG 4

Substituting this value of 6, in equation (44)
and reducing, gives

2
Co EIC( Co )
Mpa 'Fl'Mab = C3T 1 C1Cs g

(48)



Using the stiffness factors and carry-
over factors of case I in Figure 25(a), equa-
tions (48) and (48) may be written as follows:

M,y - TpaMy, = Kpp(l-Tpprpales
| (49)
My, - TapMay = Kpall - TapTRa)op

(50)

Now let equations (49) and (50) refer to
the right span AR and the leift span LA,
respectively, in the following manner:

L

-

“o.doint

A - R
|
Join’f-'-“a‘ Joint--~"1

Then by the conditions of continuity, 8 A=
op, and therefore
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(1 - TARTRA
l-rprTrA

Mag - TraMRrA _¥ar
Mpp, - rpaMpa Kap

) ,
(51)

For members of constant section, equa-
tion (51) reduces to

1 ‘
Mpar - 5Mga Xpr
Map, - 5Mpa  Kap,

The criterion of continuity as expressed
by equations (51) and (52) may, of course, be
applied to any two members meeting at a
joint.

In cases where A is not a predetermined
quantity, its effect cannot be included in the
initial end moments and a simple criterion
of continuity cannot be derived. The check
for continuity must be made by solving for a
as well as 85 and 6. Having only two

equations available (equations 11 and 12),
it is necessary to start from points, such
as fixed ends, where either 6, or 6p is
known.



APPENDIX B

DERIVATION OF EQUATIONS FOR
PLOTTING BENDING AND DIRECT-
STRESS DIAGRAMS FOR
REINFORCED-CONCRETE MEMBERS

Assumptions

This study is based on the conventional
assumptions in reinforced-concrete design.
Reduction of compressive concrete area due

to compressive reinforcement is disregarded.,

Nomenclature

The derivations herein are taken from
notes prepared previously for other work.
To avoid errors, the nomenclature as used
in the notes is unchanged and applies to
these derivations only.

A = a section constant.
B = a section constant.

bq,bg,bg = constants of the cubical
equation for C.

b = width of section in com-
pression,
2
fcb h
M

e = eccentricity.

fc = maximum unit concrete

stress.

E, = Young’s modulus of elas-
ticity of concrete in
compression.

Eg = Young’s modulus of elas-

ticity of steel.
h = total depth of section.

k = fraction of h in com-
pression.

M = bending moment about a
point half way between
faces of section.

Mp = bending moment about
center of gravity of
section.
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N = direct tensile or com-
pressive force.

ES
n-—

Ee

ni,ng,ng = constants of the cubical
equation for k.

p = steel ratio for fir'it TOW

: 21
of tensile steel = o

x = value of cubic equation for
approximate value of k.

A = ——2__ - correction to
2n1k + ng
be added or subtracted
from k when value of
cubic equation is x.

Other notations are defined
where they first appear.

Case I - Steel in One Face of
Section Direct Tension and Bending

With notations shown in Figure 90 and
the conditions

Z moments = 0O
Z forces = 0

the following equations are obtained. Mo-
ments are taken about a point d/2 from the

steel.
_ np l-k k.1_kid
N 'fcbd{z( AR AU b
(53)
and
N = fobd [np Aok _1;-] (54)



Equating equations (53) and (54) and solving

for d/e gives

1-ky_ k
a_, 23 (55
© wdh.xd -k

k 2 3

Taking moments again about a point d/2

from the steel :

M' = Ne =-21- fcbdz[np(l;ck)
rk(F - 5] (56)

It should be observed that the moment
My is about center of gravity of section.

This moment must be transferred to the:

point d/2 from the steel, such that

: M
e = (TF + distance from center of

M!

——

G

gravity to —g—- ) =

Solving equation (56) for f, gives

'
£ 2 M

S D N TR
np( " )+k(—2- 3)bd
Ml
=0 = (58)
bd2
and hence
4 _ 1-k _k (59)
s = [np( . z]cv |

Equation (59) is plotted in Figure 90.

By use of this diagram and equations (58) and

(60), steel and concrete stresses may be
evaluated. :

- (80)

1-k
fg = mo EF)

Case II - Symmetrical Steel in Two
Opposite Faces of Section -
Direct Tension and Bending

In'this case the cover distance of the.
steel d' has to be introduced. Four dia-
grams have been plotted vith differen:c values

of d' expressed as a ratio a = d? For -

other values of a interpolate between two
diagrams, since practically a straight-line
variation exists. )

 From notations shown in Figures 91(a)

~to 91(d), inclusive, and the conditions
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? moments = O
z forces = O

the following equations are obtained:

M
I, = C— (61)
¢ bh?
fo = nf, A=2-1) (62)
S ¢k
f = nf, (1-%) (63)
.13 = GnPQ'ZK)'Skz (64)
e 12np(1-32)+_3_k2-k3
Pl 2
h
e
C =" -c———— (65)
k 21
§+np(2 k)

Note the difference between equations (61)
and (58). Equations (64) and (65) are the
basis of Figures 91(a) through 91(d), in-
clusive. ‘

Case III - General Case

The general diagram in Figure 92 covers
bending with or without direct compression
or tension. It is not as simple of application
as the special diagrams, but it is useful for
problems where special diagrams are not
available.

From the conditions of equilibrium

I M
N

0
0



and by inspection of Figure 99(b), two equa-
tions for N, the direct stress, are obtained.
For bending and direct tension
N = fcbhh p I:(l -ajtg - k)(-]; - alt)rlt
elk 2
+(1-a -k)(l-a r
2t 2 T2t 2t

. |
+(k - a1,)(5 - 2y.)rq,

+ (k- aZc) (% - a2c)r2c:|

k1_k
+Ed 3% (66)
and
nj
N = f_bh {'129 [(1 -ag, - By,

+(1 - agy - K)rg; - (k - a;,)rq,
- (k - age)r ]-5 (67)
2c/t2e| T 9
for bending and direct compression
N = £.bh 2{ER (1 - ajy - K)E - agyr
T ek 1t 5 "ttt
' 1

+ (1 -2 - (G - aggry

+ (k - alc)(% - alc)r1c )

+ (k- aZC)(% - a2c)r20]

kA _k
i) (@8)

and

k n
N = fcbh{—z- -5 [(1 - agq - k)rqy
+ (1 - aoy - k)rzt - (k - alc)rlc

- (k - azc)rgc]} (69)
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Equating the two expressions for N in
each case and solving for k gives cubic
equations that for both direct tension and
compression may be written

k3 + nlkz +ngk+ng = 0 (70)

The constants nq, ng, and ng, as shown

later, are easily computed for a given case,
and then k is obtained from Figure 92. For
a given beam section it is convenient first
to compute two constants, A and B, that
properly may be called section constants.
The expressions for A and B, obtained when
solving for k from equations (68) and (70)
are given below in equations (71) and (72),
and later simplified.

A = 6np [(% - ajryy + (%— - ag)rat
1 1
- (G -2y )Ty - (5 - 2ge) rZC](71)
B = 6mp|(1-aj)@ - ajpr
p 16 - a1 T

+(1- aZt)(% - agy)rat

1
- rlc('g - ajclaje

- rZC(% h aZC)aZC] (72)

r, with a subscript referring to a row of
steel, is the ratio of steel in that row, to the
steel in the first row of tensile steel. There-
fore Tt is equal to 1. By using notations

‘shown in Figure 92, the depth, as a fraction

of h, to the compressive steel a4, and ag,
may be written (1 - a4) and (1 - ag), respec-

tively. Substituting this in equations (71) and
(72) and letting

D = rq +rg+... etc. (summation of
r ratios for each row of steel)

E = ayry; +agrg +... etc. (summation

of ar values for each row of
steel)

F = a12r] + aglrg + ... etc. (summa-

tion of a2r values for each row
of steel)



the equations are simplified to

A = 6np (%D - E) - (73)
B = 6mp (%D - 1.5E + F) (74)

These are extremely simple equations
obtained by adding up r ratios, products of

ar and alr for each row of steel and then
multiplying by 6np.

Using the substitutions for a1cs A9, ete.,

resorted to above, the constants of equation
(70) are: .

For bending and direct tension:

_-gdye ”
o= 3(2+}2 (75)
ng = -6np§D+A (76)
ng = +6np§(D-E)-B (77)

For bending and direct compression:

n; = +3(§-% (78)
ng = +6np%D+A (79)
ng = -6np%(D—E)—B (80)

The arithmetical work of deriving the
above constants is not shown but is a direct
result of equating the two expressions for
N in equations (66) to (69).

As pure bending is approached, e/h in-.
creases without limit. It is seen that as e/h
becomes very large, the effect of the additive
quantities, not factors of e/h in equations
(75), (76), and (77) is insignificant, and may
be dropped. The constants then may be
written

n, = - 3§1 (81)
e

ng = -6npy D (82)

ng = +6np £ (D - E) (83)
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Since the constants increase without
limit, as e/h increases without limit, it
would seem that Figure 92 could not be used
for pure bending. However, with some in-
accuracy, the scales for n; and ng, as they
appear in Figure 92, may be considered to
run from O to + 100, + 1,000, or any higher
number. (The scale of ny must be changed
correspondingly.) e/h in equations (81), (82),
and (83) is, therefore, merely a scale fac-
tor and may be set equal to 1. The con-
stants for pure:bending then are

ng = - 3 (84)
ng = -6npD (85)
ng = +6np (D - E) (86)

~ The end number of the scale for n; and
ng, used in constructing Figure 92, is 10, If

a higher number had been chosen, the dia-
gram would have been more nearly symmet-
rical, but more difficult to read. The higher
the end number of the scale, the closer the
diagram would be to symmetry. The con-
stants for pure bending are therefore based
on a symmetrical diagram. Had equations
(78), (79), and (80) been used in deriving
the constants for pure bending, they would
have appeared with opposite signs. This
may be taken advantage of by first obtaining
k, using the signs as shown in equations (84),
(85), and (86), then repeating, using opposite
signs. The average of the two k values thus
obtained is correct, subject, of course, to the
accuracy of the diagram. The effect of this
procedure is to counteract the effect of non-
symmetry of the diagram. As e/h increases,
conditions of pure bending are approached
rapidly. For values of e/h larger than 10,
k changes very little. In most design prob-
lems, the value of the constants n; and ng

will lie between O and 10. Whenever any of
the values exceed 10, extend the scales or
consider the side scale to run from O to
100, and change the scale of ng by the same

ratio. The inaccuracy in k will be small.

At first glance, Figure 92 may appear
complicated, but on closer examination, it is
sSeen to be extremely simple. Starting from
the tensile side of a section, the constants

are chiefly summations of r, ar, and a2r,
one term for each row of steel, without re-
gard to the location.of the neutral axis. This
is true no matter how many rows of steel
there are. Consequently, this method gives a



. direct solution for k, hence the stresses.
" In tabular form, the computations are further
simplified as will be shown in the examples.

Having found k from Figure 92, the con-

crete stresses may be found quickly by
using the same diagram, as shown by the
following derivation:

Rewriting equation (66)

M = Ne = tcbhz{-?kﬂ [(1-alt -k)(% -ay )Ty
+(1-am-k)(%-82t)r2t
1 1
06 ay) (57810 o+ (k- a0 (F -7y
k
-¥)

The bracketed {} quantity in equation
(87) is equal to the reciprocal of C as de-
fined in the nomenclature.

+5( (87

ol
b=

" Therefore:

1 n 1
=% [(1 -2y - K5 -ag eyt
. etc.] (88)
Simplifying equation (88) gives:
k3 - 1.5K2 4 (%+ Ak-B =0 (89)

. In general, equation (89) may be written
as follows:
3 2
k® + blk + bzk +b

=0 (90)

3

Since k already has been found, the
only unknown quantity in equation (90) is
bg, and by may be obtained from Figure 92.

For greater accuracy in reading the dia-
gram, the constants of equation (90) have
been multiplied by 6 so that

b -1.5%x6

1
bg

- 9 (always) (91)

-Bx6 - 6B

(92)

Multiplying by by 6 is accomplished by
changing the scale in the diagram so that by

is read from the dotted curves, or by may
be computed from: - ‘

. B 12
by = 2+ 15k -k (93)
. 8 '
Having found b,, C = - (94)
2 by - A o

The concrete and steel stresses are then

- obtained from equations shown in Figure 92.
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The accuracy obtained from Figure 92 is :

usually very good. If greater accuracy is
wanted, apply a correction to k derived as
follows: .

For a given case, compute ny, ng, ng, -
then read k from the diagram and insert
in equation (70). Since k, as read from
the diagram is necessarily approximate,
equation (70) will not equal zero, but to
some value x.

Therefore:

k3 + nlkz +ngk+1ng = x (95)

Now correct this value of k by an amount
A such that

(A+k)3+n1(A+k)2+n2(A+k)

+ng =0 (96)

Expand equation (96), subtract equation
(9)‘%;)j from it. Disregarding squares and
higher powers, and solving for A gives

X .
= m (apprOleately) (97)

It is easily seen from the signs of fhe
constants, in each case, whether A ‘must
be added to or subtracted from k.

Effect of Loocation of Steel

If more than one row of steel is used

in either face it is not correct, theoretically, . . .
to consider the steel concentrated at the - = - .~

center of gravity of the steel. In the majority
of cases the error involved is small and may
be disregarded. The present discussion is
included to show what errors may be ex-
pected. -
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FIGURE 99 - Effect of Location of Steel in Beams.
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For pure bending, the center of gravity
may be used to find k, but it cannot be used
to find the resisting moment. As an illustra-
tion, consider the beam section shown in
Figure 99(a). For bending, k depends on
the properties of the section only and may
be found by using the transformed section.
Thus, '

nh (7 + Cp) + nA(y - Cy) %_kbhz

or

ay(Aq + Ag) + nA1Cy - nAgCy

= L ypn2
= 5 kbh

Since Cq and Cg are the distances from
the center of gravity of A; and Ag, respec-
tively, C1Aq1 = CgAg. Equation (98) is
therefore:

(98)

ny(Aq + Ag) = % kbh2 (99)

showing that to find k, the steel may be
considered concentrated at the center of
gravity. The resisting moment, however,
would be in error. Let the steel stress at
the center of gravity be fg., and consider

the steel concentrated at this point. Then,
by taking moments about the neutral axis,
the resisting moment of the steel is

M, o g = fo(Ag + A2)y (100)
y+Cq
The stress in Ay is fg , and
-C .
the stress in Ag is fge Y 2 Taking

moments again about the neutral axis, using
actual distances to the steel area, the actual
resisting moment is

v+Cq

M Sc

= f

s Ay +Cq)

y
+ oo =2 Ag(y - Cg) (10)

This equation may be reduced to

; 1 2
Mg = Mcofg+fsc§(cl Aq

+ Co2hy) (102)
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(C12A1 + Cy2A,) is the moment of inertia
of the two steel areas about its center of
gravity. This quantity is neglected if the
resisting moment is obtained by consider-
ing the steel concentrated at the centroid.
The error is small whenever (Ci + Cg) is

small compared to the depth of the beam.

For bending combined with direct stress,
the above illustration for the resisting mo-
ment holds. The expression for k however,
is not valid since k no longer depends on the
section properties alone but also on the
direct stress.

EXamples

Given:
M = 50,000 ft.-1b.
N = 20,000 1b. tension
b = 12in
h = 20 in,
n = 10

Reinforced with 2.4 sq. in. of steel in
top and bottom.

Cover to center of steel, d', is 2 inches.
Required: ‘
Concrete and steel stresses.
Solution:
This problem will be solved twice:
First, by use cf Figure 91; second, by use
of Figure 92.

Solution by Figure 91:

e=x = 30 inches

b | 067

e

. 2.4

np = 10){12}(20 = 0.1
L

ih' =a = 0.1



Enter Figure 91 with h/e = 0.67. Read C
and k at intersection with the curve np =
0.1; C = 5.3, k = 0.23. Then from equations
on the diagram:

f, = 5.3%@%1-2- - 660 Ib. per
12 x 20 sq. in.
S 1-0.1_
fs = 660 x 10 ( 093 1)
= 19,200 1b. per sq. in.
: _ 0.1
fs = 660x 10 (1 ——0.23

3,700 1b, per sq. in.

Solution by Figure 92:

.15
h
3.1 = 0.1
a2=0.9
np=>0.1
2.4
I‘l = I'2 = —2.—4 = 1
D=1+1-=2
E =01x1+409x1 = 1.0
=012x1+0.92x1 = 0.82
A = o.6(%x2-1.0) =0
B = 0.6(1-1.5+0.82) = 0.192
- -3d+15 = -8
nl— ('§+ . =
ng = -0.6x1.5%x2+0 = - 1.8
ng = 0.6x1.5(2 - 1.0) - 0.192
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= +0.708
by = -9
bg = -6x0.192 = - 1.15

Hold a straightedge from n; =-6 to ng

=+0.708. Read k =0.23 at intersection of
ng = - 1.8. Then move the straightedge to

b1 =-9 and b3 =-1.15. Read b2 =1.14.

Then,
c = Tslz - 5.27
f, = 5.272%000% 128 _ g5y per
12 x 202 sq. in.
fo= 1y = 660x10(1o'.203'1- 1)
= 19,200 lb, per sq. in
f4 = fgp = 660x10(L202 1)

- 3,700 1b. per sq. in,
(- indicating comp.)

Correct values are:

k = 0.228

fc = 660 Ib. per sq. in.
fg = 19,500 1b. per sq. in.
fs' = 8,700 Ib. per sq. in.

only.

Given:

Same beam as used in Example 1 but
without direct stress.



Required:

Concrete and steel stresses.
Solution:

This problem also will be solved twice:
First, by use of Figure 91; second, by use of
Figure 92.

Solution by Figure 91:

Enter the diagram with h/e =0. Read

| k=0.29 and C = 5.9 at intersection with
the curve np = 0.1.

" Then:
£, = 5.990000X 12 _ 740 1b, per
12 x 20 sq. in
_ 1-0.1 _
fg = 740 x 10 ¢ 595 1)
= 15,500 1b. per sq. in
- .01
fa = 740x10 (1 0.29)

4,850 1b. per sq. in.

Solution by Figure 92:

Since this is a case of pure bending, -

thée constants are obtained from equations

(84), (85), and (86).

nl = -3
ng = ~-06x2 = -1.2
: ng = +0.6(2-1) = +0.6

The section constants A and B remain the
same, since the section is not changed.
Therefore, bg = - 1.15 as before. b; =-9

always. Hold straightedge from nqy =- 3.0
to ng=+0.6. Read k=0.30 at intersection

of ng==-1.2 Now repeat,using nj =+ 3.0, -

‘ng=-0.6,and ng=+1.2. Read k =0.28.

The average value is the correct k = 0.29. -

~ Move straightedge to by = -9, bg=- 115,
and read bg = 1.0 at intersection of k =0.29.

Then:
__8 _
C=1-5=6
f, = 6x22000X12 _ 750 15, per
12 x 202 sq. in.
1-0.1
fs = fg1 = 750 x 10 (S555™ -1)
= 15,800 1b, per sq. in.
' 1-0.9
f3 = fgp = 750x10 (S55= - 1)

- 4,900 1b. per sq. in.

Correct values are:
k = 0.29
f. = 740 Ib. per sq. in.

15,500 1lb. per sq. in.

fs1 fs

fgo = fg = 4,850 1b. per sq. in.

Given:
A T-beam as shown in Figure 99(c).
M = 80,000 ft.-1b.

or

Mp = 84,200 ft.-Ib.

N = 20,000 lb. tension

n 10

Required:

. Concrete and steel stresses.

- Solution:

This problem will be solved twice, by

- ‘use of Figure 92: First, on the assumptior

134



that the steel in each face is concentrated

at its center of gravity, and then by using bl =-9
the actual location of the steel.
First solution - Steel concentrated at its by = -6x0.061 = -0.366
centrqia. Disj:ance to centroid of tensile :
steel is 7.88 inches from face of beam. From Figure 92’ k = 021, b2 = 0.55.
. 7.88 _ Then:
a; = 50 = 0.263
e 8 __ _
ap = 2L - 0.9 C = 55500865 - 04
9 = = 0,
30
80,000 x 12
f, = 10.4 —————== = 370 1lb. per.
e = 80,000 12 _ 45 i50hes ¢ 30 x 302 sq. in.
20,000 ,
1-0.1
e _ 48 _ o fsl=370x10( == - 1)
T =30 - 1.6 0.21
= 12,200 1b. per sq. in,
np = 820.785%10 _ 0,07 |- 0.9
fso = 370 x 10 ( '21' -1)
r = § =1 .
1=38° = - 1,940 Ib, per sq. in.
ro = 8 _ 0.75 Second solution - Steel in its actual loca-
- 8 tion.
D =1+0.75 = 175 » np = 3%0.785 x 10 XS%ZSgOX 10 _ 0.026
‘E = 0.263x1+0.9x0.75 = 0.938
F = 0.263%2x1+0.92x0.75 = 0.676 Tebulation of Computations for
Constants, Symmetrical Beam
A = 8x%0.07 (—é—x 1.75 - 0.938) Steel
: TOW a r ar alr
= - 0.0265 1 0.1 1.0 0.1 0.01
B = 0.42 (£ x 175 - 1.5%0.938 2 0.2 1.0 | 0.2 0.04
o 3 0.8 0.67( 0.4 0.24°
+ 0.678) = + 0,081 4 0.9 2.0 | 1.8 1.62
' Summation |D =4.67|E = 2.5|F = 1.91
n; = -3(0.5+1.6) = -63
Bty etquations (73) and (74) the section con-
ny = -0.42x 1.6 % 1.75 Sanis are
- 0.0265 = - 1.20 A = 6x0.026(2.33 - 2.5) = -0.0268
ng = +0.42% 1.6 x (L.75 v B = 0.156 (2.33 - 1.5 x 2.5 + 1.91)

0.077

]

- 0.938) - 0.061 = 0.49
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By equations (75), (78), and (77) the con-
stants for k are

-3(0.5+1.8) = -6.3,as

N before.

ng = - 6x0.026x 1.6 x 4.67
-0.026 = - 1.19 B

ng = +6x0.026 x 1.6 (4.67 - 2.5)

- 0.077 = +0.473
By equations (91) and (92),
by = -9 - 6 x 0.077
- 0.462

and b3

Then from Figuré 92,k =0.2 and bg =
0.64.

- brgd' -
x===- e
() ¥—te-e-eoof——arosars

N 1

@ —l—---e-——---—e-—--i—Z-l" o Bars
™ i

@ +—fo——of oo

® H+—Fo— —e-F21"0Bars

——3-1" 0 Bars
XYoo -~ X
FIGURE 100 - Unsymmetrical Beam with

Several Rows of Steel--Bending and
Direct Compression.

@
e'-"-

6 -
C = 0.64 + 0.026 ~ 9
f. = Qx-E-a-Q!-Q-QO—-’-{-l—2 = 320 lb. per
30 x 302 sq. in.
_ 1-0.1 _
fsl = 320 x 10 (___0.20 1)
= 11,200 1b. per sq. in
1-0.9
fS4 = 320x 10 (_CT._Z-— - 1)

- 1,800 1b. per sq. in.

pression.

Given:

A beam section as shown in Figure 100
and subjected to 2 moment, M = 600,00(5
ft.~1b. and a direct force, N = 60,000 1b.
comp. n=10,

_ 600,000

e = 80,000 = 10 ft.

e _ 10 _

h ™ 5 - 2

np = 8X10X4 _ 4167

60 x 24

6’np§ = 0.167x2 = 0.334
TABLE XXXVII

Tebulation of Computations for
Constants, Unsymmetricel Beam

Steel 2
row a r ar a‘r

1 |01 1.0 | 01 0.01

2 |03 0.5 | 0.15 0.045
3 |05 0.5 | 0.25 | o0.125
4 0.7 0.5 | 0.35 0.245

5 0.9 0.75| 0.875 | 0.608
D =3.25(E = 1.525|F = 1,033

Summation

Now by equations (73), (74), (78), (79),
and (60] (73), (74), (78), (79)

A

0.167 (% X 3.25 - 1.525) = 0.0167

w
]

0.167 (% x3.25 - 1.5 x 1.525

+ 1.033) = 0.0817
ng = +3(2.0-0.5) = +4.5

ng = + 0.334 x 3.25 + 0.0167
= + 1.10

ng = - 0.334 (3.25 - 1.525)
- 0.0617 = - 0.637



and by equations (91) and (92)

| | fyy = 9,300 (3501 - 1)
by = -9 and by = -6x0.0817 S ‘
= =0.37 = 1,025 1b. per sq. in,
. . ' _ 1-0.9 -
Now by Figure 92, = fog = 9,340 (555~ 027 -1)
k = 0.27 and b2 = 0.55 L
= = 5,880 1b. per sq. in.
and by computations usmg equations given
on Figure 92 - Exact values are:
- — 6 _ f, = 910 1b. per sq. in.
C = oE-oomwr - 1® c P
' | =2 b. i
£, = 1125800000212 _ g34 1, per fs1 = 21,400 Ib. per sq. in.
24 x 602 sq. in
' : f., = 14,700 lb. per sq. in.
i 1-0.1 _ s2 ’ -
fs1 = 9340( 557 1)
= + 21,700 1b. per sq. in. fs3 = 7,850 Ib. per sq. in.
£ —9340(1‘03 1) £ 1,020 Ib i
s2 —0.27 s4a = L . per sq. in
= 14,850 1b. sq. in.
ber s¢. in f = - 5,700 Ib. per sq. in.
e 1-0.5 _ :
ts3 = 9 340 ( T0.27 -1 Verification of the accuracy of the values
may be done by checking to see that 2M =0

7,940 Ib. per sq. in, and 2ZN = 0.
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