
 Local Control Using the PID Algorithm 
 Experimental Exercises Using the PIDSim Program – Updated 12/11/03 
 
The PIDSim program is an educational simulation that demonstrates the characteristics of the PID control 
algorithm.  The software is written for Windows 95/98/NT computers and can be downloaded from our web site 
at: http://www.usbr.gov/pmts/hydraulics_lab/software/ 
  
The program simulates a very simple flow situation consisting of a submerged turnout pipe and two pools 
separated by a gate.  A constant inflow enters the upstream pool (left hand side of the screen), and a fixed 
overflow weir controls the flowrate out of the downstream pool.  The turnout consists of a submerged orifice in 
the upstream pool.  The gate separating the two pools can be either an overflow gate or an undershot gate. 
 
The gate can be operated manually, or a PID algorithm can be used to control the gate.  Three control objectives 
are possible, upstream water level, downstream water level, or turnout discharge.  The P, I, and D coefficients can 
be varied to provide the user with a feel for how each coefficient affects the controller action.  In addition, gate 
and water level deadbands can be set, noise can be introduced to the water level and discharge measurements, and 
exponential filters can be applied to the sensor readings.  The size of the various pools, gates, weirs, etc. can be 
adjusted, although the simulation is not intended to be used to accurately reproduce a real-world control problem. 
 The simulation does not consider the effects of waves or canal dynamics, such as the travel time required for a 
change at one end of a pool to propagate to the other end of the pool.  In fact, pool sizes are specified only in 
terms of the surface area of the pool. 
 
To start the simulation, run PIDSim.EXE from Windows.  The simulation begins immediately.  The lower display 
panel shows an elevation schematic of the canal.  The two upper panels plot the water levels, gate positions, and 
turnout discharge as a function of time.  The controls on the screen can be used to select control modes, change 
tuning constants, and activate different control modes or other features. 
 
The initial settings of the program are as follows: 
 
TARGETS: 
 Upstream Water Level 0.8 
 Downstream Water Level 0.4 
 Turnout Q 0.13 
The NO AUTOMATIC CONTROL option should be selected 
 
Kp, Ki, and Kd = 0 
 
Noise is disabled 
Filtered sensors are disabled 
Deadbands are set to 0 
 
Simulation Time Step = 5 sec 
Control Interval     = 5 sec 
Graph Time Span      = 1000 sec 
Inflow          = 0.5 cfs 
Pool1Area       = 1000 ft2 
Pool2Area       = 1000 ft2 
 
Max Gate Movement Rate = 0.02 ft/sec 
Gate Width             = 2 ft 
Endsill Weir Height    = 0.1 ft 
Endsill Weir Length    = 1 ft 
 
Under Canal Layout, Overshot Gate should be selected 



 
These initial settings are somewhat unrealistic, because the control interval is only 5 seconds (a new position for 
the gate is being computed every 5 seconds using the PID equation).  However, these settings demonstrate the 
behavior of the PID algorithm very dramatically.  We’ll use these settings initially, then try a more realistic 
control interval of 60 seconds later on. 
 
1) Begin by just manually moving the gate up and down to see that the simulation of the gate hydraulics works 

as you expect it to. 
2) Turn on the PID control algorithm by clicking on the Upstream Water Level option in the Targets area of the 

screen. 
3) Set Kp=1 and leave Ki and Kd set at zero.  Try setting Kp to larger values.  Following each change, press the 

Reset Gate to Zero button to introduce a disturbance into the system.  Note that following each change the 
gate position will increase and stabilize at a higher setting, but the target water level will not be reached, 
(although as Kp is increased it comes pretty close!).  This is due to the fact that the entire gate setting is 
coming from the Kp*error term, and if the error ever reaches zero (i.e., we've reached the target water level), 
then the gate position would be zero.  Obviously, a gate position of zero will not produce the target water 
level, so it is impossible to reach the target using only the proportional term.   

4) At a Kp value of about 110, the gate begins to oscillate continuously.  This value of Kp is called the ultimate 
gain.  The ultimate gain and the period of oscillation at this condition can be used in the Zeigler-Nichols 
tuning method to obtain a first estimate of good control parameters for a given system.  The period of 
oscillation is approximately 20 seconds (you can determine this by pausing the simulation and counting the 
number of peaks on the 1000-second graph of the gate position). 

5) Now set Kp=0 and Ki = 0.01.  This is the purely integral control mode, which will reach the target value, but 
also overshoots it.  Note that it takes about 2500 seconds (42 minutes) for the gate motion to stabilize when 
starting from a gate position of zero.  This seems like a pretty sluggish response for this small system. 

6) Now try increasing Ki to get a faster response.  Reset the gate position to zero each time.  Note that this an 
unrealistic operation, but it makes the effect of changing Ki more apparent.  You will see that increasing Ki 
causes the system to initially reach the target faster, but the overshoot and oscillation are more severe.  This is 
clearly not a desirable operating condition. 

7) Now try setting Kp=1 and Ki=0.2.  Try adjusting Ki and Kp to get a rapid response without undesirable 
oscillation.  This is a PI controller, which is essentially the same thing as the P+PR controller or the EL-FLO 
plus reset controller (except that EL-FLO also includes a filter element on the water level sensor).  What 
happens if you make Ki or Kp too large? 

 
Now let’s try some more realistic settings.  Change the control interval to 60 seconds. 
   
8) Set all of the control constants to zero, then gradually increase Kp.  Find the ultimate gain and the period of 

oscillation. 
 
You can experiment further by changing the pool and gate characteristics, enabling noise, using the exponential 
filters to damp out noise in the sensor readings, setting gate and water level deadbands, or trying different control 
modes, such as the derivative mode (Kd) 
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Zeigler-Nichols Tuning Method 

 

The Zeigler-Nichols method for tuning PID controllers is presented in most 
control-engineering textbooks.  The basic steps required to implement the Zeigler-
Nichols method are as follows: 

1. Set the integral and derivative coefficients to zero. 

2. Gradually increase the proportional coefficient from zero until the system just begins to oscillate 
continuously.  The proportional coefficient at this point is called the “ultimate gain”, PU.  The period 
of oscillation at this point is called the “ultimate period”, TU.  The ultimate period should be 
expressed in the same units used internally in the PID algorithm for calculations involving the time 
step, ∆t.  (The PIDSim program uses seconds). 

3. The Zeigler-Nichols suggested controller settings are as follows: 

Control Action Desired 
Performance 

KP KI KD 

P ¼ decay 0.5 PU   
PI ¼ decay 0.45 PU 0.54 (PU/TU)  

PID ¼ decay 0.6 PU 1.2 (PU/TU) 0.075 (PU*TU) 
PID Some overshoot 0.33 PU 0.66 (PU/TU) 0.11 (PU*TU) 
PID No overshoot 0.2 PU 0.606 (PU/TU) 0.10 (PU*TU) 

 

For our first example (5 second control interval) using the PIDSim program, the ultimate gain was 
PU=110, and the ultimate period was TU = 20.  Using these values we can fill in the table. 

Control Action Desired 
Performance 

KP KI KD 

P ¼ decay 55   
PI ¼ decay 49.5 2.97  

PID ¼ decay 66 6.6 165 
PID Some overshoot 39.6 3.63 242 
PID No overshoot 24 3.33 220 

 

For our second example (60 second control interval) using the PIDSim program, the ultimate gain was 
PU = 9, and the ultimate period was TU = 120.  Using these values we can fill in the table. 

Control Action Desired 
Performance 

KP KI KD 

P ¼ decay 4.5   
PI ¼ decay 4.05 0.0405  

PID ¼ decay 5.4 0.09 81 
PID Some overshoot 3 0.0495 108 
PID No overshoot 1.8 0.04545 118.8 

 

Plug these numbers in and see how they work! 


