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ABSTRACT     

An unstructured hybrid mesh numerical method is developed to simulate open 

channel flows. The method is applicable to arbitrarily-shaped mesh cells and offers a 

framework to unify many mesh topologies into a single formulation. The finite-volume 

discretization is applied to the two-dimensional depth-averaged St. Venant equations, and 

the mass conservation is satisfied both locally and globally. An automatic wetting-drying 

procedure is incorporated in conjunction with the segregated solution procedure that 

chooses the water surface elevation as the main variable. The method is applicable to both 

steady and unsteady flows and covers the entire flow range: subcritical, transcritical and 

supercritical. The proposed numerical method is well suited to natural river flows with a 

combination of main channels, side channels, bars, floodplains and in-stream structures. 

Technical details of the method are presented, verification studies are performed using a 

number of simple flows, and a practical natural river is modeled to illustrate issues of 

calibration and validation. 
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1. INTRODUCTION 

 One-dimensional (1D) flow models have been routinely used in practical hydraulic 

applications. Example models include HEC-RAS (Brunner, 2006), MIKE11 (DHI, 2002), 

CCHE1D (Wu and Vieira, 2002), and SRH-1D (Huang and Greimann, 2007). These 1D 

models will remain useful, particularly for applications with a long river reach (e.g., more 

than 50 km) or over a long time period (e.g., over a year). Their limitations, however, are 

well known and there are situations where multi-dimensional modeling is needed. For most 

river flows, water depth is shallow relative to width and vertical acceleration is negligible 

in comparison with gravity. So the two-dimensional (2D) depth-averaged model provides 

the next level of modeling accuracy for many practical open channel flows. Indeed, time 

has been ripe that 2D models may be routinely used for river projects on a personal 

computer. 

 A range of 2D models have been developed and applied to a wide range of problems 

since the work of Chow and Ben-Zvi (1973). Examples include Harrington et al. (1978), 

McGuirk and Rodi (1978), Vreugdenhil and Wijbenga (1982), Jin and Steffler (1993), Ye 

and McCorquodale (1997), Ghamry and Steffler (2005), Zarrati et al. (2005), Begnudelli 

and Sanders (2006), among many others. Examples of commercial or public-domain 2D 

codes include MIKE 21 (DHI, 1996), RMA2 (USACE, 1996), CCHE2D (Jia and Wang, 

2001), TELEMAC (Hervouet and van Haren, 1996), etc.  

 The ability of a 2D model to solve open channel flows with complex geometries has 

always been a thrust for improvement as it is relevant to practical applications. One of the 

recent advances is the use of hierarchical mesh approaches using the adaptive meshing as 

reported by Kramer and Jozsa (2007). An alternative approach of adopting hybrid meshes is 

pursued in this study. At present, non-orthogonal structured meshes with a curvilinear 
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coordinate system have been widely used within the finite difference and finite volume 

framework, while unstructured meshes with fixed cell shapes, quadrilaterals or triangles, 

have been used with the finite element method. Meshing method based on a fixed cell 

shape may be appropriate for one application but problematic for another. In general, near-

orthogonal quadrilateral cells give good solutions with added benefit of allowing mesh 

stretching along the river main channel. Such cells, however, are very restrictive in 

representing a natural river which typically includes different features such as main 

channels, side channels, and floodplains. Triangular cells are easy to generate and the 

method alleviates the rigidity of the structured mesh in that it allows flexible mesh point 

clustering. Unfortunately, stretched triangles are inefficient and less accurate (e.g., Baker, 

1996; Lai et al., 2003). The best compromise, therefore, is to use a hybrid mesh in which a 

combination of quadrilaterals and triangles is used. The author’s experience (Lai, 2006) 

showed that a good meshing strategy, in terms of efficiency and accuracy, is to represent 

the main channel and important areas with quadrilaterals and the rest of areas with 

triangles. Specifically, quadrilateral cells may be used in the main channel and be stretched 

along the flow direction, while triangular cells may be used to fill the floodplains and bars 

with mesh density control. The advantage of a hybrid mesh was recognized by Bernard and 

Berger (1999) who proposed the coupling of two flow codes: one with a structured 

quadrilateral mesh and another with an unstructured triangular mesh. 

 In this paper, an unstructured hybrid mesh numerical method is developed to simulate 

open channel flows, following the three-dimensional work of Lai (2003). The proposed 

methodology is applicable to arbitrarily shaped mesh cells, and not limited to quadrilaterals 

or triangles. The advantage of the arbitrarily shaped cell method is that the same numerical 

solver is used with most mesh topologies in use. For example, the method may be used 
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with: the orthogonal or non-orthogonal structured quadrilateral mesh, the unstructured 

triangular mesh, the hybrid mesh with mixed cell shapes, and the Cartesian mesh with stair 

cases. 

 In the following, the numerical formulation applicable to arbitrarily shaped cells is 

presented first for the 2D depth averaged equations. The method is implemented into a 

numerical model that is applied to a number of open channel flows for the purpose of 

testing and verification. Further validation and demonstration of the model are achieved by 

applying the model to a practical natural river flow. An extensive list of applications have 

been carried out with the proposed numerical model; they may be found in Lai (2006) and 

the associated website. The model is also downloadable from the website. 

 

2. NUMERICAL METHOD 

2.1 Governing Equations 

 Most open channel flows are relatively shallow and the effect of vertical motions is 

negligible. As a result, the three-dimensional Navier-Stokes equations may be vertically 

averaged to obtain a set of depth-averaged 2D equations, leading to the following standard 

St. Venant equations: 
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 In the above, x and y are horizontal Cartesian coordinates, t is time, h is still water 

depth, U and V are depth-averaged velocity components in x and y directions, respectively, 

g is gravitational acceleration, , , and  are depth-averaged stresses due to 

turbulence as well as dispersion, 

xxT

z

xyT

hb

yyT

z +=  is water surface elevation,  is bed elevation, bz

ρ  is water density, and bybx ττ ,  are bed shear stresses. The bed stresses are obtained using 

the Manning’s resistance equation as: 

  ),(),(),( 22

22

2
* VUVUC

VU
VUU fbybx +=
+

= ρρττ     (4) 

where 3/1

2

h
gnC f = ,  is Manning’s roughness coefficient, and  is bed frictional velocity. 

Effective stresses are calculated with the Boussinesq’s formulation as: 

n *U

 k
x
UT txx 3

2)(2 −
∂
∂

+= υυ ; ))((
x
V

y
UT txy ∂

∂
+

∂
∂

+= υυ

 
k

y
VT tyy 3

2)(2 −
∂
∂

+= υυ
       (5) 

where υ  is kinematic viscosity of water, tυ  is eddy viscosity, and k is turbulent kinetic 

energy. 

 The eddy viscosity is calculated with a turbulence model. Two models are used in this 

study (Rodi, 1993): the depth-averaged parabolic model and the two-equation k-ε model. 

For the parabolic model, the eddy viscosity is calculated as hUCtt *=υ  and the frictional 

velocity is defined in (4). The model constant  may range from 0.3 to 1.0; a default 

value of =0.7 is used in this study. For the two-equation k-ε model, the eddy viscosity is 

calculated as  with the two additional equations as follows: 
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The expressions of some terms, along with the model coefficients, follow the 

recommendation of Rodi (1993); they are listed below: 
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The terms  and  are added to account for the generation of turbulence energy and 

dissipation due to bed friction in case of uniform flows. 

kbP bPε

2.2 Boundary Conditions 

 Boundary conditions consist of four types: inlet, exit, solid wall, and symmetry. An 

inlet is defined as a boundary segment on the solution domain where flow is to move into 

the domain. At an inlet, a total flow discharge, in the form of a constant or a time series 

hydrograph, is specified. Velocity distribution along the inlet is calculated in a way that the 

total discharge is satisfied. If a flow is subcritical at an inlet, the water surface elevation is 

not needed and is calculated assuming that the water surface slope normal to the inlet is 

constant. If a flow is supercritical at an inlet, the water surface elevation at the inlet is 

needed as another boundary condition. If the k-ε  turbulence model is used, k andε  values 

are also needed which, for most applications, have negligible impact on the flow pattern 

(Rodi, 1993). 
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 An exit is defined as a boundary segment on the solution domain where flow is to 

move out of the domain. At a subcritical exit, only the water surface elevation is needed as 

the boundary condition. No boundary condition is needed if a flow at an exit is 

supercritical. Variables at an exit are extrapolated from the adjacent cells by assuming that 

the derivatives of variables normal to the boundary are constant. 

 At a solid wall, no-slip condition is applied and the wall functions are employed. The 

flow shear stress vector at a solid wall is calculated by 
)ln(
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for the depth-averaged parabolic model. In the above,  is turbulent kinetic energy at a 

mesh cell that contains the wall boundary, 

υ/* PP yUy =+
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41.0=κ  is the von Kármán constant, is 

normal distance from the center of a cell to a wall, and E is a constant. 

Py

 Symmetry is a boundary where all dependent variables are extrapolated assuming the 

gradient of a variable in a direction normal to the boundary is zero except for the normal 

velocity component (normal to the boundary). The normal velocity component is set to zero 

at a symmetry boundary. 

2.3 Discretization 

 The 2D depth-averaged equations (1) to (3) may be written in tensor form as: 
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where V  is the velocity vector, T
rr

 is the 2nd-order stress tensor, with its component defined 

in (5), and bτ  is the bed shear stress vector. The governing equations are discretized using 

the segregated finite-volume approach of Lai et al. (2003). The solution domain is covered 

with an unstructured mesh and cells may assume the shapes of arbitrary polygons. All 

dependent variables are stored at the geometric centers of the polygonal cells. The 

governing equations are integrated over polygonal cells using the Gauss integral. As an 

illustration, consider a generic convection-diffusion equation that is representative of all 

governing equations: 
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Here  denotes a dependent variable, a scalar or a component of a vector,  is diffusivity 

coefficient, and  is the source/sink term. Integration over an arbitrarily shaped polygon 

P shown in Fig. 1 leads to
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In the above,  is time step, A is cell area, tΔ nVV CC •=  is velocity component normal to 

the polygonal side (e.g., P1P2 in Fig.1) and is evaluated at the side center C,  is unit 

normal vector of a polygon side,  is the polygon side distance vector (e.g., from P1 to P2 in 

Fig.1), and . Subscript C indicates a value evaluated at the center of a polygon 

side and superscript, n or n+1, denotes the time level. In the remaining discussion, 

superscript n+1 will be dropped for ease of notation. Note that the Euler implicit time 

discretization is adopted. The remaining task is to obtain appropriate expressions for the 

convective and diffusive fluxes at each polygon side. 
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 Discretization of the diffusion term, the first on the right hand side of (14), is carried 

out first and the final expression is derived as: 
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In the above,  is the distance vector from P to C and 1r
r

2r
r  is from C to N. The “normal” and 

“cross” diffusion coefficients,  and , at each polygon side involve only geometric 

variables; they are calculated only once in the beginning of the computation. 

nD cD

 Computation of a variable, say Y, at the center C of a polygon side is discussed next. 

This is an interpolation operation used frequently. A second-order accurate expression is 

derived next. As shown in Figure 1, the point I is defined as the intercept point between line 

PN and line P1P2.  A second-order interpolation for point I  may be expressed as 
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in which nr •= 11δ  and nr •= 22δ .  may be used to approximate the value at the side 

center C. This treatment, however, does not guarantee second-order accuracy unless 

IY

1r  and 

2r  are parallel. A truly second-order expression is derived as: 
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The extra term in the above is similar in form to the cross diffusion term in (16). 

 ΦC in the convective term of (14) needs further discussion. If the second-order central 

scheme is used directly, spurious oscillations may occur for flows with a high cell Peclet 
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number (Patankar, 1980). Therefore, a damping term is added to the central difference 

scheme similar to the concept of artificial viscosity. The damped scheme is as follows: 

        (20) )( CN
C

UP
C

CN
CC d Φ−Φ+Φ=Φ

 ))((
2
1)(

2
1

NPCNP
UP
C Vsign Φ−Φ+Φ+Φ=Φ      (21) 

where  stands for the second-order scheme expressed in (18). In the above, d defines 

the amount of damping and d = 0.2 ~ 0.3 is usually used. Note that d is not a calibration 

parameter and it affects only the accuracy slightly. A fixed value of 0.3 is used for all cases 

presented. 

CN
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 The final discretized equation at mesh cell P may be organized as a linear equation: 
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2.4 Side Normal Velocity and Elevation Correction Equation 

 For a non-staggered mesh, a special procedure is used to obtain the polygon side 

normal velocity that is used to enforce the mass conservation. Otherwise the well-known 
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checkerboard instability may appear (Rhie and Chow, 1983). Here the procedure proposed 

by Rhie and Chow (1983) and Peric et al. (1988) is adopted. That is, the normal velocity is 

obtained by averaging the momentum equation from cell centers to cell sides. A detailed 

derivation is omitted, and interested readers are referred to the previous work (e.g., Rhie 

and Chow, 1983; Peric et al., 1988; and Lai et al. 1995). It is sufficient to present only the 

final form of the equation as follows: 
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where “< >” stands for the interpolation operation from mesh cell center to side as 

expressed in (18). When a vector appears in the interpolation operation, the interpolation is 

applied to each Cartesian component of the vector. 

 The velocity-elevation coupling is achieved using a method similar to the SIMPLEC 

algorithm (Patankar, 1980). In essence, if elevation  is known from a previous time step 

or iteration, an intermediate velocity is obtained first by solving the linearized momentum 

equation: 
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Or, the following correction equation is obtained: 
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With the SIMPLEC algorithm, the above may be approximated as: 
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Substitution of the above into the mass conservation equation leads to the following 

elevation correction equation: 
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The above elevation correction equation is solved for , and (28) is then used to obtain the 

velocity correction. A number of iterations are usually needed within each time step if the 

flow is unsteady; but only one iteration is used for a steady state simulation. 

'z

 Governing equations are solved in a segregated manner. In a typical iterative solution 

process, momentum equations are solved first assuming known water surface elevation and 

eddy viscosity at a previous time step. The newly obtained velocity is used to calculate the 

normal velocity at cell sides using (24). This side velocity will usually not satisfy the 

continuity equation. Therefore, the elevation correction equation (29) is solved to obtain a 

new elevation, and subsequently a new velocity with (28). Other scalar equations, such as 

turbulence, are solved after the elevation correction equation. This completes one iteration 

of the solution cycle. The above iterative process may be repeated within one time step 

until a preset residual criterion for each equation is met. The solution would then advance 

to the next time step. In this study, the residual of a governing equation is defined as the 

sum of absolute residuals at all mesh cells. The implicit solver requires the solution of non-

symmetric sparse matrix linear equations (25) and (29). In this study, the standard 

conjugate gradient solver with ILU preconditioning is used (Lai, 2000). 
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2.5 Wetting-Drying Treatment 

 Most natural rivers consist of main and side channels, bars, islands, and floodplains 

and bed may be wet or dry depending on flow stage. The wetting-drying property is not 

known and is part of the solution. A robust wetting-drying algorithm, therefore, is needed. 

Such an algorithm offers the benefit that the same solution domain and mesh may be used 

for all flow discharges, eliminating the need to generate multiple meshes.  

 The wetting-drying algorithm of this study consists of a number of operations. The 

“cell-coloring” operation identifies mesh cells as either wet or dry. A cell is wet if water 

depth is above 1.0 mm. Solutions are computed only in wet cells. After new solutions, the 

“edge-searching” operation is carried out to identify all mesh sides which have one of the 

neighboring cells wet and the other dry. Finally, the “re-wetting” operation is performed to 

check whether an edge is to be re-wetted. If water surface elevation of the wet cell is higher 

than bed elevation of the dry cell, the edge and the associated dry cell are set up as wet for 

the next time step. The above wetting-drying algorithm is repeated for each time step and it 

works well with the present numerical method. Both mass and momentum are conserved by 

the procedure as there is no artificial water redistribution. 

 

3. MODEL TESTING AND VERIFICATION 

 The hybrid numerical method is implemented into a code named SRH-2D, and a 

number of simple open channel flows are simulated next for testing and verification. 

3.1. Subcritical Flow in a 1D Channel 

 MacDonald (1996) presented a number of non-trivial analytical test cases for 1D 

steady St. Venant equations. Test Case 1 is selected here which has a horizontal extent of 

1000m by 10m, and a variable bed slope. The flow discharge is 15 m3/s, the water depth at 
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the exit is 0.7484m, the Manning’s roughness coefficient is 0.03, and the Froude number of 

the flow ranges from 0.40 to 0.77. A quadrilateral mesh with 80-by-3 cells is used. 

Simulated water surface elevation ise compared with the analytical solutions of MacDonald 

(1996) in Figure 2. It is seen that the simulated results match well with those of the 

analytical solution. 

3.2 Transcritical Flow in a 1D Channel 

 Test Case 6 of MacDonald (1996) is selected next. The case has a transition from 

subcritical to supercritical flow and a hydraulic jump is formed. The horizontal extent of 

the simulation is 150m by 10m with a variable bed slope. The flow discharge is 20 m3/s, the 

water depth at the exit is 1.7m, and the Manning’s roughness coefficient is 0.031752. A 

quadrilateral mesh with 120-by-3 cells is used. Simulated profile of water surface elevation 

is compared with the analytical solution in Figure 3. It is seen that a hydraulic jump is 

formed while the upstream subcritical flow transitions quickly to supercritical. Comparison 

is good along with the capturing of the hydraulic jump. 

3.3. 2D Diversion Flow 

 Bifurcation often occurs in open channel flows, and flow features are complex in the 

diversion area. A particular diversion flow case, measured and studied by Shetta and 

Murthy (1996), is simulated. The solution domain consists of a main channel, 6.0m in 

length (X direction) and 0.3m in width (Y direction), and a side channel normal to the main 

channel at X=3.0m. The side channel has a length of 3.0m and width of 0.3m. The layout of 

the solution domain, along with the simulated flow pattern, is shown in Figure 4. A 

structured quadrilateral mesh is generated. The mesh for the main channel has 120-by-30 

cells, while the side channel has 40-by-30 cells. The flow discharge in the main channel is 

0.00567 m3/s; the water elevation at the exit of the main channel (X=6.0m) is 0.0555m; the 
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water elevation at the exit of the side channel (Y=3.3m) is 0.0465m; and the Manning’s 

roughness coefficient is 0.012. Both the parabolic turbulence model and the ε−k  model 

are used. 

 Model results are compared with the measured data of Shettar and Murthy (1996). 

Figure 5 is the water surface elevation along both walls of the main and side channels and 

Figures 6 and 7 are the depth averaged velocity profiles in both channels. The simulated 

flow pattern is shown in Figure 4. It is seen that the water elevation in the main channel is 

predicted well by both turbulence models but discrepancy is noticeable in the side channel 

for the parabolic model. The velocity profiles and the related flow recirculation are also 

reasonably predicted. The predicted flow separations at the entrance of the side channel and 

near the bottom of the main channels agree well with the experimental visualization of 

Shettar and Murthy (1996) for the ε−k  model. Larger discrepancies, however, are 

observed for the parabolic model. For example, the velocity near the bottom wall (Y=0) of 

the main channel is over-predicted. Model runs in this study show that the parabolic model 

give reasonable results for most portion of the flow but not for the area with flow 

separation. It is mainly due to the inaccurate near-wall turbulence represented by the 

parabolic model. 

3.4. Meandering Channel with 90o Bends 

 Meander is a common feature of natural rivers and is therefore an important 

configuration for simulation. The meandering channel measured and computed by Zarrati et 

al. (2005) is simulated. The channel consists of 10 sections with a rectangular cross section 

of 0.3m in width. Each section has a 90o circular bend with the centerline radius of 0.6m, 

followed by a 0.3m straight channel. The channel slope is 1/1,000. At a flow discharge of 

0.002 m3/s, the average flow depth is about 0.03m, the Froude number is 0.42, and the 
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estimated Manning’s coefficient is 0.013. This case has the width-to-depth ratio of 10 and 

the radius-to-width ratio of 2.0. Typical width-to-depth ratio of a natural meander is 

between 7 and 10 or 20 and 50 (Schumm, 1960) and the radius-to-width ratio around 2.3 

(Leopold and Wolman, 1960). 

 The solution domain includes two bend sections as shown in Figure 8. Results from 

three meshes are presented: a structured mesh with 160-by-20 quadrilateral cells (Fig.8), an 

unstructured triangular mesh with 3,326 cells (Fig.9a), and a hybrid mesh with 3,190 mixed 

cells (Fig.9b). Mesh sensitivity study with the structured mesh was carried out and it 

showed that 160-by-20 cells were sufficient to achieve a mesh independent solution. The 

ε−k  model was used for comparison. 

 Model results are compared with the measured data of Zarrati et al. (2005) in Fig.8 at 

three lateral cross sections: E, F and G. The predicted water depth distribution is shown in 

Fig.10 and the predicted depth-averaged velocity is in Fig.11. It is found that the water 

surface elevations predicted by three meshes are almost the same, indicating that elevation 

prediction is less sensitive to the mesh choice. Mesh sensitivity study results also lead to the 

same conclusion; water elevation is well predicted even with a very coarse mesh.  

However, the velocity prediction is more sensitive to the mesh size and type. Results in 

Fig.11 show that the discrepancy in velocity prediction is mainly near the bank. The 

structured and hybrid meshes produce very similar results. However, the unstructured 

triangular mesh is less accurate if similar number of cells is used. It is known that the 

triangular cells are less accurate and more triangular cells are needed to achieve the same 

level of accuracy as the quadrilateral cells (Lai et al. 2003). To find out if it is true for the 

present case, the number of triangular cells is doubled and simulation is carried out again 
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with the new mesh. It is found that more accurate results are obtained when the number of 

triangular cells is doubled and the new results are similar to those of the structured mesh. 

 

4. SANDY RIVER DELTA SIMULATION 

 Sandy River Delta (SRD) dam is located near the confluence of the Sandy and 

Columbia Rivers, east of Portland, Oregon (Fig.12). As a result of its closure in 1938, flow 

has been redirected from the east (upstream) distributary to the west (downstream) 

distributary. Although it was once the main distributary channel, the east distributary is 

currently only activated under high flow conditions. Recent efforts to improve aquatic 

habitat conditions have considered the removal of the dam. The 2D model presented in this 

paper was used to evaluate possible effects on the delta area if the dam is removed. Both 

hydraulic and sediment studies were carried out; but only the calibration and validation 

study with the hydraulic flow is presented. More results, as well as the details of the study, 

may be found in the report by Lai et al. (2006). 

4.1 Bathymetry, Solution Domain, and Mesh 

 Topographical information for the study area was obtained from the cross-sectional 

survey and the Lidar data in October 2005 (Lai et al., 2006). The bed elevation contours of 

the study area are displayed in Fig.12. The solution domain consists of 15.3 km of the 

Columbia River and 4.2 km of the Sandy River with an area of about 33.2 km2. The 

solution domain was covered with a hybrid mesh with a total of 37,637 cells, in which the 

main channels are quadrilaterals stretched in the flow direction while the remaining areas 

were covered with a combination of triangular and quadrilateral cells. For viewing clarity, 

only a portion of the mesh around the delta area is shown in Fig.13. The mesh is fine 
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enough to represent the model area as a mesh with 50% more cells did not change the water 

elevation and velocities by more than 3%. 

4.2 Model Parameters 

 Flow resistance is a model input represented by the Manning’s coefficient (n); it is 

usually the only calibration parameter. A single n-value approach is inappropriate for the 

case as the solution domain consists of widely different bed types - main channels with 

different bed gradations, point bars, and vegetated floodplains. Therefore, the solution 

domain was divided into a number of roughness zones (Fig.14) based on the underlying bed 

properties, delineated using the available aerial photo and the bed gradation data. In Fig.14, 

zones 1, 2 and 3 represent the main channel of the Sandy River; zones 4 and 5 represent the 

main channel of the Columbia River; zone 6 consists mostly of sand bars and less vegetated 

areas; and zone 7 represents islands and floodplains with heavy vegetation. Each zone was 

assigned a Manning’s n value which was determined through a calibration study. 

Calibration was carried out by comparing the model predicted water surface elevation in 

the main channels with that measured during the field trip in October 2005. The calibrated  

Manning’s coefficients are listed in Table 1. 

Table 1. Manning’s coefficients for different zones shown in Fig.14 
Zone Number 1 2 3 4 5 6 7 
Manning’s n 0.035 0.06 0.15 0.035 0.035 0.035 0.06 

 

 A flow discharge of 10.67 m3/s was recorded at the USGS Gage number 14142500 

during data collection and was used as the upstream boundary condition for the Sandy 

River. The flow discharge of the Columbia River was 3,483 m3/s, which represented the 

average flow release from the Bonneville Dam. It was found during the field trip that the 

flow was quite unsteady for the Columbia River, due mainly to the tidal influence and the 
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flow release from the Bonneville Dam. Releases from Bonneville Dam that day had a 

reported range of 3,341 to 3,737 m3/s. Discharges calculated at several Columbia River 

cross sections from the measured ADCP bottom tracking velocity data ranged from 2,784 

to 3,560 m3/s. The stage at the exit of the Columbia River reach was based on the field 

measured data. The measured stage, however, was quite unsteady and two distinct stages 

were identified from the data set: 1.448 m and 1.676 m.  Both were used for the model runs.  

Post-simulation analysis indicated that the difference in the stage at the exit only influenced 

results near the confluence area of the Sandy River and Columbia River. 

 The unsteady simulation started from an initial condition that assumed both rivers 

were dry. With a time step of 5 seconds, the steady state solution was obtained after 60,000 

time steps (83 hours). The computing time was about 4.2 hours with a desktop PC equipped 

with a 3.2 GHz CPU. 

4.3 Results and Discussion 

 Two runs, Run 1 and Run 2, are reported here for the calibration and validation study. 

The parameters of the two runs are identical except for the stage at the exit of the solution 

domain. Run 1 used the low measured stage (1.448 m) while Run 2 used the high stage 

(1.676 m). Two model runs provide information about the model sensitivity to the exit 

boundary condition which has a high uncertainty due to tidal influence. 

 The simulated water surface elevation on the Sandy River is compared with the field 

data in Fig.15a. It is seen that the model predicts the water elevation along the Sandy River 

well despite uncertainty in the measured data and the unsteady nature of the flow. The 

thalweg profile is also plotted in the figure to show the degree of agreement despite large 

fluctuations in the bed elevation. The difference between the measured and predicted 

elevation is less than 0.1 m except near the confluence of the west distributary and the 
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Columbia River. This area is influenced by the tidal fluctuation. Major elevation changes at 

the riffle and pool areas are captured by the model. It indicates that the bed topography 

represented the riffle and pool areas well and that the model represented the flow roughness 

correctly. Comparison of the water elevation on the Columbia River is shown in Fig.15b. 

When different stages were used at the exit, the model predicted the water surface elevation 

within the range of the measured data. Comparison of the simulated and field measured 

water elevations shows a satisfactory agreement along the Columbia River reach. 

 Validation of the model was carried out by comparing the predicted velocity with the 

field data. ADCP measured velocity data were collected during the project along both the 

Sandy and Columbia Rivers (Lai et al., 2006). The depth-averaged velocity data were 

processed from the ADCP velocity profiles. In both rivers, a measured data point represents 

an instantaneous, depth-averaged velocity for a single location.  As a result, the data can be 

noisy.   Measured and predicted velocity magnitude comparisons at all measurement points 

are made for both the Sandy River (Fig.16a) and the Columbia River (Fig.16b). The 

agreement between the model and measured data are reasonable despite the noisy measured 

data. Large fluctuations in the measured velocities may be partly attributed to flow 

unsteadiness created by local geometry features, such as boulders and large turbulent 

eddies, and partly due to a few erroneous field data points. More detailed velocity vector 

comparisons for seven segments of the two rivers were also made. They are not reported 

here due to space limitation, but are available in the report of Lai et al. (2006). Comparison 

of the predicted and measured velocity showed a reasonable agreement.  

 

5. CONCLUDING REMARKS 
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 An unstructured hybrid mesh numerical method is developed to solve the 2D depth-

averaged flow equations. The method is applicable to arbitrarily-shaped mesh cells and 

offers a framework to unify many mesh topologies into a single formulation. The proposed 

numerical method is well suited to natural river flows with a combination of main channels, 

side channels, bars, floodplains and in-stream structures. The technical details of the 

method are presented, along with verification studies using a number of simple flow cases. 

The model is also applied to a natural river for practical validation study.  Specific findings 

include the following: 

 (1) Different meshes have been used and demonstrated with the model, including the 

structured quadrilateral mesh, the unstructured triangular mesh, and the hybrid mesh. The 

results with different meshes compare favorably with the analytical solutions or 

experimental data. Triangular cell near a steep bank is less accurate than the quadrilateral 

cell if the total number of cells is the same. More triangular cells are needed to achieve a 

similar accuracy. 

 (2) Water surface elevation is less sensitive to the choice of meshes or even the size. 

However, the velocity distribution is more sensitive to the mesh. Particularly near a steep 

bank, more mesh cells may be needed near the bank. 

 (3) The parabolic turbulence model may be adequate to predict the water surface 

elevation or the velocity for most flow areas. However, it is less accurate for flow velocity 

prediction in areas of flow separation or steep banks. For flows with separation or steep 

banks, the ε−k  turbulence model is recommended. 

 (4) The measured water surface elevation is the recommended data for calibrating the 

Manning’s roughness coefficient, which is the only calibration parameter recommended. It 
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is shown that the water surface elevation is an easier variable to model, while the velocity 

distribution and the associated bed shear stress need finer mesh.  
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Figure 1. Schematic illustrating a polygon cell P along with one of its neighboring 
polygons N 
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Figure 2. Comparison of simulated water surface elevation with analytical solutions for 

Case 1 of MacDonald (1996). 
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Figure 3. Comparison of simulated water surface elevation with analytical solutions for 
Case 6 of MacDonald (1996). 

 29



  

 

Figure 4. Layout of the solution domain and the predicted flow pattern with the ε−k model 
for the case of Shettar and Murthy (1996). 
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(a) Along the main channel 

 

(b) Along the side channel 

Figure 5. Comparison of water depth along both walls of the main and side channels for the 
case of Shettar and Murthy (1996). Left and right are defined when facing the main flow 
direction of the channel. 
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Figure 6. Comparison of x-velocity profiles at selected x locations in the main channel for 
the case of Shettar and Murthy (1996). Symbols: measured data; Solid lines: computed 
results with the ε−k model; Dashed lines: computed results with the parabolic model. 
 
 
 

 

Figure 7. Comparison of y-velocity profiles at selected y locations in the side channel for 
the case of Shettar and Murthy (1996). Symbols: measured data; Solid lines: computed 
results with the ε−k model; Dashed lines: computed results with the parabolic model. 
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Figure 8. The geometry and the structured quadrilateral mesh of the meandering channel
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(a) Unstructured triangular mesh 

 
(b) Hybrid quadrilateral and triangular mesh 
Figure 9. The unstructured triangular mesh and the hybrid mesh used for the meandering 
channel simulation. 
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Figure 10. Comparison of lateral water surface elevation distributions at three cross 
sections for three meshes. 
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Figure 11. Comparison of lateral velocity distributions at three cross sections for three 
meshes. 
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Figure 12. The study area of the Sandy and Columbia River confluence, along with the 
topography for the solution domain. 
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Figure 13. A portion of the mesh used to model the Sandy River and Columbia River Delta 
 
 
 
 

 
Figure 14. Roughness zones used for the Sandy River Delta simulation 
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(a) Along Sandy River 

 
(b) Along Columbia River 

 
Figure 15. Comparison of field measured and model predicted water surface elevations for 
the October 12, 2005 flow conditions 
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(a) Along Sandy River 

 
(b) Along Columbia River 

 
Figure 16. Comparison of field measured and model predicted depth-averaged velocity for 
the October 12, 2005 flow conditions 
 


	ABSTRACT    
	An unstructured hybrid mesh numerical method is developed to simulate open channel flows. The method is applicable to arbitrarily-shaped mesh cells and offers a framework to unify many mesh topologies into a single formulation. The finite-volume discretization is applied to the two-dimensional depth-averaged St. Venant equations, and the mass conservation is satisfied both locally and globally. An automatic wetting-drying procedure is incorporated in conjunction with the segregated solution procedure that chooses the water surface elevation as the main variable. The method is applicable to both steady and unsteady flows and covers the entire flow range: subcritical, transcritical and supercritical. The proposed numerical method is well suited to natural river flows with a combination of main channels, side channels, bars, floodplains and in-stream structures. Technical details of the method are presented, verification studies are performed using a number of simple flows, and a practical natural river is modeled to illustrate issues of calibration and validation.

