2D Flow Modeling with SRH-2D

Yong G. Lai, Ph.D., Hydraulic Engineer Sedimentation and River Hydraulics Technical Service Center
U.S. Department of the Interior Bureau of Reclamation

Part 1: Introduction

SRH-2D Stands for:

Sedimentation and River Hydraulics -2D

Major Capabilities

- Two Dimensional (2D) Depth-Averaged Modeling for Open Channel Flows
- Dynamic Wave Solver
- Steady or Unsteady Flows
- Sub-, Super-, and Trans-Critical Flows
- Unstructured or Structured Arbitrarily-Shaped Meshes

Why SRH-2D?

- Commercial Codes
- Not convenient for occasional use
- Expensive to own
- Too many inputs \& turning parameters
- Not suitable for advanced use
- Black-box style: garbage-in garbage-out
- Research Codes
- Availability issue
- Hard wired
- User unfriendly
- Error prone

SRH-2D Development Philosophy

- Easy to Learn
- A tutorial case exercise + Occasional references to the User's Manual
- An interactive preprocessor to guide input setup
- Easy to Apply
- Flexible mesh: less restrictive on the requirements of mesh
- Very few input parameters for model tuning
- Dynamic run-time execution control
- Interface with SMS or GIS for result post-processing
- Easy to Solve
- Robust and stable numerical algorithm for field applications

Current Limitations

- Flow Only:

Erosion and sediment transport will be added in future versions.

- Solver Module Only:

Mesh generation: SMS
Post-Processing: SMS, GIS, or TECPLOT

Why 2D Modeling?

- Flows with in-stream structures such as weirs, diversion dams, release gates, cofferdams, etc.

Why 2D Modeling?

- Flows through meander bends

Why 2D Modeling?

- Perched channel system
- Flows with multiple channel systems.

Why 2D Modeling?

- Interested in local flow velocities, eddy patterns, and flow recirculation

Why 2D Modeling?

- Interested in lateral variations
- Flow spills over banks and levees

Why 2D Modeling?

- Flow over vegetated areas and interaction with main channel flows

Zonal Modeling

- Roughness Zone

RECLAMATION

Zonal Modeling

RECLAMATION

Modeling Feature: Flexible Mesh

Model Output Variables:

- Inundation Map
- Water Surface Elevation
- Water Depth
- Velocity Vector and Magnitude
- Froude Number
- Bed Shear Stress
- Sediment Transport Capacity
- Critical Sediment Diameter

Output for Geomorphic Assessment: Critical Diameter

SRH-2D Structure

What's Needed?

Three Steps \rightarrow Three Modules

- Mesh Generation
- SMS (Map Mesh Scatter)
- Numerical Solution
- SRH-2D program
- Post Processing
- SMS, TECPLOT, or GIS

About SRH-2D

SRH-2D consists of two modules

- Preprocessor
- srhpre
- Solver
- srh2d

SRH-PRE:

Interactive Q\&A session

- Prepare an Input File for SRH-2D:
- named as case.dat
- Script Output File (SOF):
- case_SOF.dat
- Script Input File (SIP):
- case_SIF.dat
- See Chapter 4 of the Manual for all inputs

SRH-2D: Flow Solver Module

- Read Input File
- case.dat
- Run Time Monitoring
- Output Results for Post Processing
- case_SMSi.dat

Part 2: Governing Equations and Boundary Conditions

Governing Equations

- Dynamic Wave Equations (St Venant Equations)

$$
\frac{\partial h}{\partial t}+\frac{\partial h U}{\partial x}+\frac{\partial h V}{\partial y}=e
$$

$$
\frac{\partial h U}{\partial t}+\frac{\partial h U U}{\partial x}+\frac{\partial h V U}{\partial y}=\frac{\partial h T_{x x}}{\partial x}+\frac{\partial h T_{x y}}{\partial y}-g h \frac{\partial z}{\partial x}-\frac{\tau_{b x}}{\rho}+D_{x x}+D_{x y}
$$

$$
\frac{\partial h V}{\partial t}+\frac{\partial h U V}{\partial x}+\frac{\partial h V V}{\partial y}=\frac{\partial h T_{x y}}{\partial x}+\frac{\partial h T_{y y}}{\partial y}-g h \frac{\partial z}{\partial y}-\frac{\tau_{b y}}{\rho}+D_{y x}+D_{y y}
$$

Manning's Roughness Equations

- Equation:

$$
\binom{\tau_{b x}}{\tau_{b y}}=\rho C_{f}\binom{U}{V} \sqrt{U^{2}+V^{2}} ; \quad C_{f}=\frac{g n^{2}}{h^{1 / 3}}
$$

- About Manning's Coefficient:
- Does not change with flow
- Spatially distributed depending on bed types.
- Conversion from equivalent roughness height using the Strickler's formula:

$$
n=\frac{k_{s}^{1 / 6}}{A}
$$

Turbulence Stress Equations

$$
\begin{aligned}
& T_{x x}=2\left(v+v_{t}\right) \frac{\partial U}{\partial x}-\frac{2}{3} k \\
& T_{x y}=\left(v+v_{t}\right)\left(\frac{\partial U}{\partial y}+\frac{\partial V}{\partial x}\right)
\end{aligned}
$$

$$
T_{y y}=2\left(v+v_{t}\right) \frac{\partial V}{\partial y}-\frac{2}{3} k
$$

Turbulence Models

- Parabolic Equation:

$$
v_{t}=C_{t} U_{*} h
$$

- Two-Equation k-e Model:

$$
\frac{\partial h k}{\partial t}+\frac{\partial h U k}{\partial x}+\frac{\partial h V k}{\partial y}=\frac{\partial}{\partial x}\left(\frac{h v_{t}}{\sigma_{k}} \frac{\partial k}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{h v_{t}}{\sigma_{k}} \frac{\partial k}{\partial y}\right)+P_{h}+P_{k b}-h \varepsilon
$$

$$
\frac{\partial h \varepsilon}{\partial t}+\frac{\partial h U \varepsilon}{\partial x}+\frac{\partial h V \varepsilon}{\partial y}=\frac{\partial}{\partial x}\left(\frac{h v_{t}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x}\right)+\frac{\partial}{\partial y}\left(\frac{h v_{t}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial y}\right)+C_{\varepsilon 1} \frac{\varepsilon}{k} P_{h}+P_{s b}-C_{\varepsilon 2} h \frac{\varepsilon^{2}}{k}
$$

Initial Conditions

- Steady Simulation
- U, V, WSE are needed in theory
- Only water surface elevation is critical
- U and V are setup automatically by SRH-2D
- Options for initial WSE:
- Dry bed
- From another SRH-2D solution
- Unsteady Simulation
- Use a steady-state solution from SRH-2D

Boundary Condition: Inlet

- Inlet: water is to flow into the domain
- Portion of the boundary may be dry!
- Multiple inlets may be used
- Information needed at an inlet:
- Flow Discharge (steady or time-series hydrograph)
- Lateral Velocity Distribution:
- Constant-v Setup: uniform velocity across the inlet
- Constant-q Setup: uniform q=vh across the inlet
- Sub-critical or Super-critical?
- Additional Information at a Supercritical Inlet:
- Water Surface Elevation

Boundary Condition: Exit

- Exit: water is to flow out of the domain
- Portion of the boundary may be dry!
- Multiple exits may be used
- Information needed at an exit:
- Sub-critical or Super-critical?
- Water Surface Elevation if a Sub-critical Exit
- Constant WSE
- Time series WSE
- Normal Depth
- None if Super-critical Exit

Additional Boundary Conditions

- Solid Wall: No User Definition is Needed
- no water is flowing through
- represent banks and islands
- No-slip condition; the boundary exerts a frictional force
- Symmetry: User Definition is Needed
- no water is flowing through
- the boundary is frictionless, slip condition
- Derivatives of all main variables are zero except the normal velocity (zero normal velocity)

Part 3: Selected Verification Studies: a presentation

2D Diversion Flow in a Channel

Shetta and Murthy (1996)

Case Description

- Solution Domain:
- a main channel: 6.0 m in length and 0.3 m in width
- a side channel: 3.0 m in a length and 0.3 m in and width
- Mesh:
- main channel: 120-by-30 elements
- side channel: 40-by- $\mathbf{3 0}$ elements

Flow Condition

- Main channel flow discharge:
$0.00567 \mathrm{~m} 3 / \mathrm{s}$
- Water surface elevation at main channel exit: 0.0555 m
- Water surface elevation at side channel exit: 0.0465 m
- The Manning's roughness coefficient: 0.012
- The parabolic or k-e turbulence model

Flow Streamlines

Comparison of WSE

- Along both walls of the main channel

- Along both walls of the side channel

Comparison of Velocity

n Channel

Comparison of Velocity

Verification \& Validation Cases: Savage Rapids Dam (SW Oregon)

Plainview and Contours

RECLAMATION

Mesh: 20,468 Points; Flow: 2,800cfs

Comparison of Water Surface Elevation (Q=2,800 cfs)

Measurement Points for Velocity Comparison

Velocity Comparison at XS 1 to 4 Dynamic Solver

Velocity Comparison at XS 5 to 8 Dynamic Solver

Velocity Comparison downstream of Dam Dynamic Solver Diffusive Wave Solver

Verification \& Validation Cases: Elwha Surface Diversion Project (WA)

RECLAMATION

Mesh: ~ 10,000 Points; Low Flow: 1,025 cfs High Flow: 28,500cfs (2002 Flood)

RECLAMATION

Comparison of Water Surface Elevation

		Measured Elevation 2001, 1025 cfs Measured/Estim ated High Water Mark 20 GSTAR-W Diffusive 1025 ofs GSTAR-W Dynamic 1025 cfs GSTAR-W Diffusive 28500 cfs		${ }^{28500 c f s}$	
	Collins House East Bank	West Bank upstream Bridge	Rainney Well	Intake at Diversion Dam	High Voltage Area
Surveyed /Estimated(ft)	83.0	80.2	79.4	75.7	63.0
Model Predicted(ft)	84.1	78.9	78.5	75.6	62.8

River Mile

Verification \& Validation Cases: Sandy River Delta (Oregon)

Domain: 9.5 mi of Columbia River 1.2 mi of Sandy River ~ 40,000 points

Topography \& Landuse Zones

Comparison of Water Surface Elevation

(Q_sandy=377cfs; Q_columbia=123,000cfs)

Comparison of Velocity Magnitude

Comparison of Velocity Vector

Part 4: Sample Practical Applications

Sample Applications

- Dam Removal:

Savage Rapids Dam

- Temporary Diversion: Elwha River
- Levee Setback:

Lower Dungeness River

Savage Rapids Dam Removal Study

RECLAMATION

Intake Location Selection

Intake Location Selection

Intake Cofferdam

Right Cofferdam Design

Right Coffer Dam Design Simulation
Savage Rapids Dam, Oregon

Left Cofferdam Design

After Dam Removal Inundation 900cfs 8,390cfs

Elwha Surface Diversion Project

Topography by Mesh

Cofferdam Design \& Inundation at $\mathrm{Q}=5,000 \mathrm{cfs}$

Flood Inundation 10,000cfs

25,000 cfs

Velocity 10,000cfs

25,000 cfs

Intake Cofferdam Design 5,000cfs
 25,000cfs

Lower Dungeness Levee Setback Study

RECLAMATION

Mesh: ~ 50,000 points

Topography by Mesh

2002 Flood Simulation (6,280cfs)

Comparison of Inundation

RECLAMATION

Comparison of Inundation

Comparison of Inundation

Existing Conditions 100-Year Flood

100-Year Flood Inundation Conclusions

- The Sequim-Dungeness and Ward Road setback options provide the closest match to the pre-levee inundation condition

100-year flood depths and velocity vectors for Existing Conditions
Water Surface Elevation (ft)

$\begin{aligned} & 99 \\ & 90 \\ & 81 \\ & 72 \\ & 63 \\ & 54 \\ & 45 \\ & 36 \\ & 27 \\ & 18 \\ & 9 \end{aligned}$

Channel Zalweg

100-year flood depths and velocity vectors for ACOE levee-setback alternatives

100-year flood depths and velocity vectors for ACOE levee-setback alternatives

100-year flood depths and velocity vectors for ACOE levee-setback alternatives

