RECLANATION Managing Water in the West

2D Flow Modeling with SRH-2D

Yong G. Lai, Ph.D., Hydraulic Engineer Sedimentation and River Hydraulics Technical Service Center

U.S. Department of the Interior Bureau of Reclamation

Part 1: Introduction

SRH-2D Stands for:

Sedimentation and River Hydraulics – 2D

Major Capabilities

- Two Dimensional (2D) Depth-Averaged Modeling for Open Channel Flows
- Dynamic Wave Solver
- Steady or Unsteady Flows
- Sub-, Super-, and Trans-Critical Flows
- Unstructured or Structured Arbitrarily-Shaped Meshes

Why SRH-2D?

- Commercial Codes
 - Not convenient for occasional use
 - Expensive to own
 - Too many inputs & turning parameters
 - Not suitable for advanced use
 - Black-box style: garbage-in garbage-out

Research Codes

- Availability issue
- Hard wired
- User unfriendly
- Error prone

SRH-2D Development Philosophy

Easy to Learn

- A tutorial case exercise + Occasional references to the User's Manual
- An interactive preprocessor to guide input setup
- Easy to Apply
 - Flexible mesh: less restrictive on the requirements of mesh
 - Very few input parameters for model tuning
 - Dynamic run-time execution control
 - Interface with SMS or GIS for result post-processing
- Easy to Solve
 - Robust and stable numerical algorithm for field applications

Current Limitations

• Flow Only:

Erosion and sediment transport will be added in future versions.

 Solver Module Only: Mesh generation: SMS
Post-Processing: SMS, GIS, or TECPLOT

 Flows with in-stream structures such as weirs, diversion dams, release gates, cofferdams, etc.

Why 2D Modeling?Flows through meander bends

- Perched channel system
- Flows with multiple channel systems.

 Interested in local flow velocities, eddy patterns, and flow recirculation

- Interested in lateral variations
- Flow spills over banks and levees

 Flow over vegetated areas and interaction with main channel flows

Zonal Modeling

Roughness Zone

Zonal Modeling

Modeling Feature: Flexible Mesh

Model Output Variables:

- Inundation Map
- Water Surface Elevation
- Water Depth
- Velocity Vector and Magnitude
- Froude Number
- Bed Shear Stress
- Sediment Transport Capacity
- Critical Sediment Diameter

Output for Geomorphic Assessment: Critical Diameter

SRH-2D Structure

What's Needed?

Three Steps \rightarrow Three Modules Mesh Generation SMS (Map Mesh Scatter) Numerical Solution – SRH-2D program Post Processing - SMS, TECPLOT, or GIS

About SRH-2D

SRH-2D consists of two modules

Preprocessor
– srhpre

Solver
– srh2d

SRH-PRE:

Interactive Q&A session

- Prepare an Input File for SRH-2D: – named as case.dat
- Script Output File (SOF):
 - case_SOF.dat
- Script Input File (SIP):
 - case_SIF.dat
- See Chapter 4 of the Manual for all inputs

SRH-2D: Flow Solver Module

Read Input File

- case.dat
- Run Time Monitoring
- Output Results for Post Processing

RECLAMATIC

– case_SMSi.dat

Part 2: Governing Equations and Boundary Conditions

Governing Equations

Dynamic Wave Equations (St Venant Equations)

$$\frac{\partial h}{\partial t} + \frac{\partial hU}{\partial x} + \frac{\partial hV}{\partial y} = e$$

Manning's Roughness Equations

• Equation:

$$\begin{pmatrix} \tau_{bx} \\ \tau_{by} \end{pmatrix} = \rho C_f \begin{pmatrix} U \\ V \end{pmatrix} \sqrt{U^2 + V^2}; \qquad C_f = \frac{gn^2}{h^{1/3}}$$

- About Manning's Coefficient:
 - Does not change with flow
 - Spatially distributed depending on bed types.
 - Conversion from equivalent roughness height using the Strickler's formula:

$$n = \frac{k_s^{1/6}}{A}$$

Turbulence Stress Equations

$$T_{xx} = 2(\upsilon + \upsilon_t) \frac{\partial U}{\partial x} - \frac{2}{3}k$$

$$T_{xy} = (\upsilon + \upsilon_t)(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x})$$

$$T_{yy} = 2(\upsilon + \upsilon_t) \frac{\partial V}{\partial y} - \frac{2}{3}k$$

Turbulence Models

• Parabolic Equation:

$$v_t = C_t U_* h$$

• Two-Equation *k-e* Model:

$$\frac{\partial hk}{\partial t} + \frac{\partial hUk}{\partial x} + \frac{\partial hVk}{\partial y} = \frac{\partial}{\partial x} \left(\frac{h\upsilon_t}{\sigma_k} \frac{\partial k}{\partial x}\right) + \frac{\partial}{\partial y} \left(\frac{h\upsilon_t}{\sigma_k} \frac{\partial k}{\partial y}\right) + P_h + P_{kb} - h\varepsilon$$

$$\frac{\partial h\varepsilon}{\partial t} + \frac{\partial hU\varepsilon}{\partial x} + \frac{\partial hV\varepsilon}{\partial y} = \frac{\partial}{\partial x} \left(\frac{h\upsilon_t}{\sigma_{\varepsilon}}\frac{\partial\varepsilon}{\partial x}\right) + \frac{\partial}{\partial y} \left(\frac{h\upsilon_t}{\sigma_{\varepsilon}}\frac{\partial\varepsilon}{\partial y}\right) + C_{\varepsilon 1}\frac{\varepsilon}{k}P_h + P_{\varepsilon b} - C_{\varepsilon 2}h\frac{\varepsilon^2}{k}$$

Initial Conditions

Steady Simulation

- U, V, WSE are needed in theory
- Only water surface elevation is critical
- U and V are setup automatically by SRH-2D
- Options for initial WSE:
 - Dry bed
 - From another SRH-2D solution
- Unsteady Simulation
 - Use a steady-state solution from SRH-2D

RECLAMATIC

Boundary Condition: Inlet

- Inlet: water is to flow into the domain
 - Portion of the boundary may be dry!
- Multiple inlets may be used
- Information needed at an inlet:
 - Flow Discharge (steady or time-series hydrograph)
 - Lateral Velocity Distribution:
 - Constant-v Setup: uniform velocity across the inlet
 - Constant-q Setup: uniform q=vh across the inlet
 - Sub-critical or Super-critical?
- Additional Information at a Supercritical Inlet:
 - Water Surface Elevation

Boundary Condition: Exit

- Exit: water is to flow out of the domain
 - Portion of the boundary may be dry!
- Multiple exits may be used
- Information needed at an exit:
 - Sub-critical or Super-critical?
 - Water Surface Elevation if a Sub-critical Exit
 - Constant WSE
 - Time series WSE
 - Normal Depth
 - None if Super-critical Exit

Additional Boundary Conditions

- Solid Wall: No User Definition is Needed
 - no water is flowing through
 - represent banks and islands
 - No-slip condition; the boundary exerts a frictional force
- Symmetry: User Definition is Needed
 - no water is flowing through
 - the boundary is frictionless, slip condition
 - Derivatives of all main variables are zero except the normal velocity (zero normal velocity)

Part 3: Selected Verification Studies: a presentation

2D Diversion Flow in a Channel

Shetta and Murthy (1996)

Case Description

- Solution Domain:
 - a main channel: 6.0m in length and 0.3m in width
 - a side channel: 3.0m in a length and 0.3m in and width

ECLAMA

- Mesh:
 - main channel: 120-by-30 elements
 - side channel: 40-by-30 elements

Flow Condition

- Main channel flow discharge: 0.00567 m3/s
- Water surface elevation at main channel exit: 0.0555m
- Water surface elevation at side channel exit: 0.0465m
- The Manning's roughness coefficient: 0.012
- The parabolic or k-e turbulence model
Flow Streamlines

Comparison of WSE

Along both walls of the main channel

Along both walls of the side channel

Comparison of Velocity

0.6

0.4

0.2

0.0

0.1

0.2 0.3 U (m/s) 0.4 0.5

χB

RECLAMATION

0.4 0.5

0.6

0.4

0.2

0.0L

0.1

0.2 0.3 U (m/s)

χB

Comparison of Velocity

•

Verification & Validation Cases: Savage Rapids Dam (SW Oregon)

Plainview and Contours

Mesh: 20,468 Points; Flow: 2,800cfs

Comparison of Water Surface Elevation (Q=2,800 cfs)

Measurement Points for Velocity Comparison

Velocity Comparison at XS 1 to 4Dynamic SolverDiffusive Wave Solver

Velocity Comparison at XS 5 to 8Dynamic SolverDiffusive Wave Solver

Velocity Comparison downstream of DamDynamic SolverDiffusive Wave Solver

Verification & Validation Cases: Elwha Surface Diversion Project (WA)

One Lane Bridge

Downstream Cofferdam

Diversion Channel Intake for Pumps

Intake

Tunnel

Upstream Cofferdam

Fish Screen Structure

Mesh: ~ 10,000 Points; Low Flow: 1,025 cfs High Flow: 28,500cfs (2002 Flood)

Comparison of Water Surface Elevation

10 9 5		leasured Elevation 20 leasured/Estimated H STAR-W Diffusive 10 STAR-W Dynamic 10 STAR-W Diffusive 28	01, 1025 cfs igh Water Mark 2002 25 cfs 25 cfs 500 cfs	2, 28500cfs	
	Collins	West Bank	Rainney	Intake at	High
	House East	upstream	Well	Diversion	Voltage
	Bank	Bridge		Dam	Area
Surveyed /Estimated(ft)	83.0	80.2	79.4	75.7	63.0
Model Predicted(ft)	84.1	78.9	78.5	75.6	62.8
River Mile					

l

Verification & Validation Cases: Sandy River Delta (Oregon)

Domain: 9.5 mi of Columbia River 1.2 mi of Sandy River Mesh: ~ 40,000 points

Topography & Landuse Zones

Comparison of Water Surface Elevation (Q_sandy=377cfs; Q_columbia=123,000cfs)

Comparison of Velocity Magnitude

Comparison of Velocity Vector

Part 4: Sample Practical Applications

Sample Applications

- Dam Removal: Savage Rapids Dam
- Temporary Diversion: Elwha River
- Levee Setback:

Lower Dungeness River

Savage Rapids Dam Removal Study

Intake Location Selection

Intake Location Selection

tam Removal Scenario#7) cfs (April-October 1% Exceedance

New Intake Location

Intake Cofferdam

Right Cofferdam Design

Left Cofferdam Design

1:2 Vertical Distortion

After Dam Removal Inundation 900cfs 8,390cfs

Elwha Surface Diversion Project

Topography by Mesh

Cofferdam Design & Inundation at Q=5,000cfs

Flood Inundation 10,000cfs

25,000cfs

Velocity 10,000cfs

25,000cfs

Intake Cofferdam Design 5,000cfs 25,000cfs

Lower Dungeness Levee Setback Study

Property Owner Setback

ACOE Levee

2005 NAIP Photo

Beebe Levee

2005 NAIP Photo

A REAL

The second

Towne Road Option
Property Owner Setback
ACOE Levee

Beebe Levee

- Sequim Dungeness Road Option
- Towne Road Option
- Property Owner Setback
 - ACOE Levee

005 NAIP Photo

A Real

To-

Beebe Levee

005 NAIP Photo

New York

1

- Beebe Setback Option
- Sequim Dungeness Road Option
- Towne Road Option
- Property Owner Setback
- ACOE Levee
- Beebe Levee

005 NAIP Photo

North States

1

- Ward Road Option
- Beebe Setback Option
- Sequim Dungeness Road Option
- Towne Road Option
- Property Owner Setback
- ACOE Levee
- Beebe Levee

Mesh: ~ 50,000 points

Topography by Mesh

2002 Flood Simulation (6,280cfs)

Comparison of Inundation

Comparison of Inundation

Comparison of Inundation

Existing Conditions 100-Year Flood

100-Year Flood Inundation Conclusions

 The Sequim-Dungeness and Ward Road setback options provide the closest match to the pre-levee inundation condition

100-year flood depths and velocity vectors for Existing Conditions

100-year flood depths and velocity vectors for ACOE levee-setback alternatives

100-year flood depths and velocity vectors for ACOE levee-setback alternatives

100-year flood depths and velocity vectors for ACOE levee-setback alternatives

