

Bureau of Reclamation Automated Modified Einstein Procedure (BORAMEP) Program for Computing Total Sediment Discharge

U.S. Department of the Interior Bureau of Reclamation

Mission Statements

The mission of the Department of the Interior is to protect and provide access to our Nation's natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

Cover Photo: View near Escondida, New Mexico taken on January 14, 2009. Courtesy of David Varyu, Bureau of Reclamation.

Bureau of Reclamation Automated Modified Einstein Procedure (BORAMEP) Program for Computing Total Sediment Discharge

prepared by

Bureau of Reclamation - Technical Service Center

Sedimentation and River Hydraulics Chris Holmquist-Johnson, P.E., Hydraulic Engineer*

Flood Hydrology and Emergency Management David Raff, Ph. D., P.E., Hydraulic Engineer

Sedimentation and River Hydraulics

Kendra Russell, Hydraulic Engineer

* Current location: Eco-hydrologist, USGS Fort Collins Science Center

U.S. Department of the Interior Bureau of Reclamation

Peer Review Certification: This document has been peer reviewed per guidelines established by the Technical Service Center and is believed to be in accordance with the service agreement and standards of the profession.

PREPARED BY:

- linis H

Chris Holmquist-Johnson, P.E. Hydraulic Engineer Sedimentation and River Hydraulics Group (86-68240)

DATE: <u>April 04, 2009</u>

DATE:_____

David Raff, Ph.D., P.E. Hydraulic Engineer Flood Hydrology and Emergency Management (86-68250)

DATE:_____

Kendra Russell, M.S. Hydraulic Engineer Sedimentation and River Hydraulics Group (86-68240)

PEER REVIEWED BY:

DATE:_____

Paula Makar, P.E. Hydraulic Engineer Sedimentation and River Hydraulics Group (86-68240)

Executive Summary

In 1950, Einstein presented a procedure for computing the total discharge of sediment of sizes found in appreciable quantities in the stream bed for a long reach of a stream channel. However, acquiring the data required by Einstein's procedure was very labor intensive and time consuming. In 1955, Colby and Hembree presented a modified version of Einstein's procedure that used data from a single cross section to calculate the total sediment discharge for a particular reach.

The modified Einstein method (MEP) of computing total sediment discharge in open channels is based on the original work of Einstein (1950) and is widely used by engineers and water resource managers. The MEP is considered an improvement over the original Einstein method because it is simpler in computation and it uses parameters more readily available from actual stream measurements. The modified method, however, requires a great deal of experience and judgment in order to obtain reliable results and often times the results are not easily replicated by multiple users. Computations are made for several ranges of particle sizes and involve many variables resulting in a very complex process of computing total sediment load. As a result, a simplified automated method of computing total sediment discharge for a given reach that can be reproduced by numerous users is of great interest.

The primary objective of this investigation was to create a computer program that would automate the process of computing total sediment discharge using the MEP procedure. The program would be applicable to a wide range of flow and sediment conditions and provide information to identify areas where additional research might be needed. This paper describes the Bureau of Reclamation Automated Modified Einstein Procedure (BORAMEP) program and procedures that were used in order to automate the process of calculating total sediment load using the MEP procedure.

Contents

Execu	tive Sun	nmary	i
1.0	INTRO	DUCTION	
1.1	Ack	nowledgements	
1.2	2 Acq	uiring BORAMEP	
1.3	B Dis	claimer	
2.0	METH	[ODS	
2.1	Mo	dified Einstein Equations and Procedure	
2.2	BOL	RAMEP Program	
	2.2.1	Program Input	
	2.2.2	Program Output	
	2.2.3	Error Checking	
3.0	SAMP	LE PROCEDURE	
3.1	l Mo	dified Einstein Procedure	
3.2	BOL	RAMEP Program Solution	
	3.2.1	Single Sample	
	3.2.2	Multiple Samples	
4.0	GLOS	SARY OF TERMS	
5.0	REFEI	RENCES	

TABLE OF FIGURES

Figure 1. Correction x in the logarithmic friction formula in terms of k_s/δ	5
Figure 2. Vertical distribution of stream flow.	7
Figure 3. Z-value Regression Analysis.	12
Figure 4. BORAMEP Startup form.	15
Figure 5. BORAMEP Input form for single sample	15
Figure 6. Input form to generate BORAMEP input file from USGS gage data.	16
Figure 7. Format for BORAMEP Input file.	17
Figure 8. Example open input file message box.	18
Figure 9. Example save output file message box	19
Figure 10. Example program complete message box.	19
Figure 11. Example <i>filename</i> .txt output for one sample date	20
Figure 12. Example <i>filename</i> .txt.sum output	20
Figure 13. Example <i>filename</i> .txt.err output.	21
Figure 14. Z-value Regression Analysis.	34
Figure 15. Example problem using BORAMEP input form	36
Figure 16. Example problem total load results using BORAMEP input form	36
Figure 17. BORAMEP Startup Form.	38
Figure 18. Open Input File Message Box.	38
Figure 19. Save output file message box.	39
Figure 20. BORAMEP status message box.	39
Figure 21. Program complete message box.	40
Figure 22. filename.txt.sum output part 1 (imported into Excel).	41
Figure 23. filename.txt.sum output part 2 (imported into Excel).	41
Figure 24. Example of total load rating curve analysis.	43
Figure 25. Example filename.error.txt.err output.	43

TABLE OF TABLES

Table 1. Classification of the total sediment load for a sand bed stream	1
Table 2. Classification of the total sediment load for a gravel bed stream	1
Table 3. Input data for BORAMEP program	14
Table 4. Explanation of input variables in BORAMEP input file format	17
Table 5. Error codes returned by BORAMEP.	22
Table 6. Hydraulic data and properties for sampled data.	24
Table 7. Sediment size fractions for sampled data	24
Table 8. Hydraulic and Sediment data for BORAMEP calculations	25
Table 9. Shear Intensities for Size Classes.	29
Table 10. Intensity of Bed-Load Transport (ϕ_*)	29
Table 11. Unit Bed-Load.	30
Table 12. Computed Bed-Load	30
Table 13. Computed Suspended Load.	31
Table 14. Ratio of Suspended Load to Bed-Load	31
Table 15. Z-value Determination for Suspended Load	32
Table 16. Summary of Z-values and Fall Velocities.	33
Table 17. Computed Total Load.	35

1.0 INTRODUCTION

Developing a reliable and consistent method of computing total sediment discharge within a river is one of the most important practical objectives of research in fluvial processes (Burkham and Dawdy, 1980). The movement of sediment in an alluvial stream is complex and the ability to calculate the amount of sediment being transported by a given flow can be very complicated. The total sediment that is transported by a given discharge within a stream can be broken down in three ways (Julien 1995): measurement method, transport mechanism, or sediment source (Table 1 and Table 2). The size of the sediment (i.e. boulders, gravel, or sand) largely determines how the sediment is transported.

Measurement Method	Transport Mechanism	Sediment Source
Unmeasured Load	Bed Load	
		Bed Material Load
Measured Load	Suspended Load	Wash Load

 Table 1. Classification of the total sediment load for a sand bed stream

Table 2.	Classification	of the total	sediment load	for a gra	vel bed stream
	0				

Measurement Method	Transport Mechanism	Sediment Source
Unmeasured Load		
	Bed Load	
		Bed Material Load
Measured Load	Suspended Load	Wash Load

Current techniques for suspended sediment collection do not allow sampling throughout the entire depth of flow and therefore the concentration and particle size distribution in only part of the flow can be determined from the suspended-sediment samples. The unsampled flow near the stream bed normally contains higher concentrations and coarser particle-size distributions than the flow in the sampled zone. Thus, the concentration of suspended-sediment samples is usually lower than the suspended-sediment concentration for the entire depth, and the particle sizes of the samples are usually smaller that the particle sizes for the entire depth.

The sediment discharge computed from the concentration of depth-integrated sediment samples and water discharge is called measured load, and the difference between the total load and the measured load is called the unmeasured load. Ratios of unmeasured load and the measured load are highly variable from stream to stream, cross section to cross section, and from time to time at a given cross section. They can vary with depth, velocity, sediment concentrations, particle size of the suspended and bed sediments, and other factors. The unmeasured load is composed mostly of sand or coarser sediments, and knowledge of the rate of discharge of sediment of these larger sizes is often more helpful in design and other problems than knowledge of the rate of discharge of the fine sediment. As a result, a method of computing sediment discharge in the unmeasured zone is of great importance.

In 1950, Einstein presented a procedure for computing the total discharge of sediment of sizes found in appreciable quantities in the stream bed for a long reach of a stream channel. However, acquiring the data required by Einstein's procedure was very labor intensive and time consuming. In 1955, Colby and Hembree presented a modified version of Einstein's procedure that used data from a single cross section to calculate the total sediment discharge for a particular reach.

The modified Einstein procedure (MEP) of computing total sediment discharge in open channels is based on the original work of Einstein (1950) and is widely used by engineers and water resource managers. The MEP is considered an improvement over the original Einstein method because it is simpler in computation and it uses parameters more readily available from actual stream measurements. The modified method, however, requires a great deal of experience and judgment in order to obtain reliable results and often times the results are not easily replicated by multiple users. Computations are made for several ranges of particle sizes and involve many variables resulting in a very complex process of computing total sediment load. As a result, a more simplified and automated method of computing total sediment discharge for a given reach that can be reproduced by numerous users is of great interest.

The primary objective of this investigation was to create a computer program that would automate the process of computing total sediment discharge using the MEP procedure. The program would be applicable to a wide range of flow and sediment conditions and provide information to identify areas where additional research might be needed. This paper describes the Bureau of Reclamation Automated Modified Einstein Procedure (BORAMEP) program and procedures that were used in order to automate the process of calculating total sediment discharge using the MEP procedure.

1.1 Acknowledgements

The following persons contributed to this report:

- **Data Analysis Checking:** Erin Gleason, Seema Shah, Jason Albert, Forest Jay, Walter Johnson, Blair Greimann, and Paula Makar
- Software Development and Support: Seema Shah, Jason Albert, and Dr. Pierre Julien at Colorado State University
- **Funding:** Reclamation Science and Technology Program, Reclamation Technical Service Center Manuals and Standards Program, Reclamation Albuquerque Area Office, and Colorado State University (In Kind Service)

1.2 Acquiring BORAMEP

The latest information about BORAMEP is placed on the Web and can be found by accessing <u>http://www.usbr.gov/pmts/sediment/model/boramep/index.html</u> and following the links on the web page.

1.3 Disclaimer

The program BORAMEP and information in this manual are developed for use at the Bureau of Reclamation. Reclamation does not guarantee the performance of the program, nor help external users solve their problems. Reclamation assumes no responsibility for the correct use of BORAMEP and makes no warranties concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the software or the information contained in this manual. BORAMEP is a program that requires engineering expertise to be used correctly. Like other computer programs, BORAMEP is potentially fallible. All results obtained from the use of the program should be carefully examined by an experienced engineer to determine if they are reasonable and accurate. Reclamation will not be liable for any special, collateral, incidental, or consequential damages in connection with the use of the software

The BORAMEP program, methods, and accompanying forms, tables, and charts are presented to standardize and document the computations of the modified Einstein procedure currently used by the Bureau of Reclamation (BOR). The modified Einstein procedure for computing total sediment load was first presented by Colby and Hembree (1955) and later revised by the Bureau of Reclamation in 1966.

2.0 METHODS

2.1 Modified Einstein Equations and Procedure

The following presents the essential steps and fundamental equations used by the BORAMEP program for calculating total sediment load.

1) Compute the measured suspended load:

 $Q_s = 0.0027 Q Conc (tons/day)$ Equation 1

Where:

Q = discharge (cfs);

Conc = *suspended sediment concentration (mg/l)*.

2) Compute the product of the hydraulic radius and friction slope assuming x = 1:

2a) First, compute the value of $\sqrt{(SR)}$ using Colby and Hembree 's (1955) equation E:

$$\sqrt{(RS_f)} = \frac{V_{avg}}{32.63 \log \left[12.27 \frac{h}{k_s} x \right]}$$

Equation 2

Where:

 V_{avg} = average stream velocity (ft/s);

$$h = flow depth (ft);$$

x = *dimensionless parameter; and*

$$k_s = effective \ roughness = d_{65} \ (ft).$$

2b) Compute the shear velocity:

$$U_* = \sqrt{g(RS_f)}$$
 Equation 3

Where:

g = acceleration due to gravity (ft/s²); and

SR = *slope-hydraulic radius function (ft)*.

2c) Compute the laminar sublayer thickness δ :

$$\delta = \frac{11.6v}{U}$$

Equation 4

Where:

v

= kinematic viscosity (ft^2/s); and

$$U_*$$
 = shear velocity (ft/s).

2d) Recheck x to make sure that the initial guess is valid. Check Figure 1 (Einstein's Plate #3) for a value of x given k_s / δ or use the equation to determine the value of x. This is a trial and error process to determine the value of x and is carried out by the program using a solver routine.

3) Compute the value of P:

$$P = 2.303 \log \left[30.2 \frac{hx}{k_s} \right]$$

Equation 5

Where:

h = flow depth (ft);

x = dimensionless parameter (from 2d above); and

$$k_s$$
 = effective roughness = d_{65} (ft).

4) Compute the fraction of the flow depth not sampled (A'):

 $A' = \frac{d_n}{d_s}$ Equation 6

Where:

 d_n = vertical distance not sampled (ft); and

 d_s = vertical distance sampled (ft).

5) Compute the sediment discharge Q's through the sampled zone. This is calculated using a percentage of the flow sampled determined from Figure 2 (Einsteins' Plate #4) or from the appropriate equation for the value of A' and P. Note: choose the equation below based on a P value closest to the computed P value from above.

$$Q'_{stotal} = Q_s * \%$$
 flow sampled Equation 7

For P = 4, % flow sampled =

$$\frac{100 - 2941.79A'^{2} + 265357.48A'^{4} + 64219.08A'^{6} - 325482.24A'^{8}}{1 - 29.38A'^{2} + 2621.48A'^{4} + 5407.23A'^{6} + 157.44A'^{8} + 1272.32A'^{10}}$$
Equation 8

For P = 8, % flow sampled =

$$\frac{100 + 30991.16A'^{2} + 21184.18A'^{4} + 211800.14A'^{6} - 263775.36A'^{8}}{1 + 325.87A'^{2} + 1201.21A'^{4} + 1872.11A'^{6} + 5759.38A'^{8} - 2976.45A'^{10}}$$
Equation 9

For P = 11, % flow sampled =

$$\frac{100.19 + 31425.83A'^{2} - 54359.86A'^{4} + 1566703.2A'^{6} - 1543898.1A'^{8}}{1 + 336.12A'^{2} + 444.29A'^{4} + 15662.05A'^{6} + 18936.5A'^{8} - 5820.32A'^{10}}$$
Equation 10

For P = 14, % flow sampled =

$$\frac{100.31 + 45744.98A'^{2} + 103307.39A'^{4} + 635604.51A'^{6} - 784215.44A'^{8}}{1 + 485A'^{2} + 2934.57A'^{4} + 7640.27A'^{6} + 11737.99A'^{8} - 3015.81A'^{10}}$$
Equation 11

Where:

 Q_s = measured suspended load (tons/day); and

A' = fraction of the flow depth not sampled.

Figure 2. Vertical distribution of stream flow.

6) Compute the bed-load for each size fraction:

6a) The first step in computing the bedload is to calculate the shear intensity (ψ) for all particle sizes in the analysis. ψ is calculated using the greater of the following two equations for all size classes.

$$\psi = 1.65 \left(\frac{d_{35}}{RS_f}\right) \text{ or } 0.66 \left(\frac{d_i}{RS_f}\right)$$
 Equation 12

Where:

 d_{35} = particle size at which 35 percent of the bed material by weight is finer (*ft*);

(SR) = hydraulic radius-slope parameter (ft); and

 d_i = the geometric mean for each size class (ft).

6b) Compute the intensity of the bed-load transport (ϕ_*) using the following equation.

$$\phi_* = \frac{0.023p}{(1-p)}$$
 Equation 13

Where p is the probability a sediment particle is entrained in the flow and is calculated using the following version of the Error Function (Yang, 1996):

 $p = 1 - \frac{1}{\sqrt{\pi}} \int_a^b e^{-t^2} dt$

Equation 14

Where:

$$a = -B_*\psi - \frac{1}{\eta_0}; and$$

$$b \qquad = B_* \psi - \frac{1}{\eta_0}.$$

and B_{*} is equal to a value of 0.143 and η_0 is equal to a value of 0.5.

Note: The Error Function is computed as the following integral.

$$ERF = \frac{2}{\sqrt{\pi}} \int_{a}^{b} e^{-t^{2}} dt$$
 Equation 15

Therefore, to compute the probability "p", evaluate the Error function from a to b. Then, multiply the Error Function by $\frac{1}{2}$ and subtract it from 1. Microsoft Excel can be used to evaluated the error function form a to b by ERF(b) – ERF(a).

6c) Compute the unit bed-load for each size fraction using the following equation:

$$i_B q_B = 1200 d_i^{\frac{3}{2}} i_B \frac{\phi_*}{2}$$

Equation 16

Where:

 d_i = geometric mean diameter of a size range (ft);

 i_b = fraction of bed material in a given size range; and

 ϕ_* = intensity of bedload transport for individual grain size.

6d) Compute the bed-load for each size fraction in tons/day by multiplying by the conversion factor 43.2 and the channel width.

$$i_B Q_B = i_B q_B (43.2W)$$
 Equation 17

Where:

 $i_b q_b$ = sediment discharge through the bed layer (lb/s per foot of width); and

$$W = channel width (ft).$$

7) Compute Suspended Load (Q'_s) for each size fraction by multiplying the total sampled suspended load $(Q'_{s,total})$ by the suspended load fractions for the sample.

 $Q'_{s} = i_{s} Q'_{s total}$

Equation 18

Where:

 i_s = fraction of suspended material in a given size range; and

 $Q'_{s,total}$ = total suspended sediment load (tons/day).

8) Compute the theoretical exponent for vertical distribution of sediment (Z). This process is a trial and error method. **Note:** The original BOR method from 1955 provided a figure (Plate 8) to determine Z (termed Z' in the initial calculations) by computing the ratio of the suspended load (Q'_s) to the bed-load (i_BQ_B) for each size class. However, Plate 8 was based solely on data from the Niobrara River near Cody, Nebraska. A subsequent study completed by the BOR in 1966 (Computation of Z's for use in the Modified Einstein Procedure) determined that using the regression line in Plate 8 produced errors on the order of 20% for the total load. As a result, the following guidelines for the selection of suspended and bed material limits (% in bin) for computation of Z values were established:

When computing total sediment load using the Bureau of Reclamation's Modified Einstein procedure, two rules and three guidelines apply for the selection of the suspended and bed material limits for computation of Z values. The rules are rigid and must be followed for the procedure to be applied. Failure to follow rules will result in computational failure. Guidelines should be adhered to if at all possible, but are flexible and may be stretched or adapted if measured data so requires:

Rules

- In order to fit a curve to determine Z values at least two suspended and bed material points must be included. Obviously, a curve cannot be fitted to a single point. Z limits must be chosen to include data from at least two overlapping suspended and bed material size classes to define the Z curve.
- Sediment must exist in at least two overlapping suspended and bed material size classes. This relates to the above rule that a minimum of two points are needed to define a curve. If a sample gradation contains bed sediment in a given size class but no suspended sediment (or if the converse is true), then data for that size class cannot be used in Modified Einstein computations.

Guidelines

- Do not include suspended or bed material size classes smaller than sand (0.0625 mm).
- Do not include size classes that contain less than about five percent of the total sample in a given size class. If less than five percent of a total sample is included in a particular size class, the significance and accuracy of that measurement becomes questionable. Does a percentage less than five truly

represent the sediment sizes that exist in a sample? Can less than five percent of a total sediment sample be accurately measured?

• Select Z limits that minimize the difference between the percentage of suspended and bed material in included size classes. A large discrepancy between the amount of bed and suspended material in a size class can incorrectly skew the Z value curve, producing incorrect results.

The above guidelines are generalized instructions for the selection of Z values. It is not always possible to satisfy all of the above guideline requirements. If one or more of the guidelines cannot be followed due to the characteristics of a particular data set, a decision must be made to either go outside of the guidelines or simply exclude that data set from the computations.

Therefore, the following process determines the Z-values only by trial and error. Reasonable assumptions should be bound between approximately 0.01 and 1.8 as this was the range of Z' from the original Plate 8.

8a) Compute the ratio
$$\frac{Q_s}{i_B Q_B}$$
 for all size classes with suspended load transport

8b) Size classes that have calculated values for the ratio of the suspended load to the bed-load are used as the reference ranges for Z-value computations. However, if any of the ratios are for a size range less than 0.0625 mm they are not used. This is the break between suspended load and bed load; bed load (sizes less than 0.0625 mm) is not found in large quantities in the bed. The ratio of suspended load to bed-load is set equal to a function with the parameters $I_1^{"}, J_1^{"}, J_1^{"}, J_1^{'}, J_2^{'}$ as the following (BOR,1955):

$$\frac{Q'_{s}}{i_{B} Q_{B}} = \frac{I''_{1}}{J''_{1}} \left(PJ'_{1} + J'_{2} \right)$$

Equation 19

Where:

$$I_1$$
" = mathematical abbreviation that contains J_1 " and A";

- J_1 " = mathematical abbreviation that contains A";
- J_1' = mathematical abbreviation that contains A';

 J_2 ' = mathematical abbreviation that contains A'; and

P = mathematic abbreviation for equation 2-5.

Due to the lack of computer resources available in 1955 to explicitly solve the integral form of the equations for $I_1^{"}, J_1^{'}, J_2^{'}$, these values were read from plates 9-11 from the 1955 BOR publication. However, current computer technology allows for an explicit solution to these integrals which results in a more precise answer to the parameters compared to reading the values off the plates. The dependent variables for these parameters are A' and A''. A' has previously been computed.

A' has previously been computed. A'' is calculated as the following for each size class that meets the criteria for the minimum percent of sediment contained in a size class that should be used in calculating the z-values:

$$A^{"} = \frac{2d_i}{h}$$
 Equation 20

Where:

 d_i

= geometric mean diameter of a size range (ft); and

h = flow depth (ft).

For each size class that meets the minimm percent overlapping criteria an initial Z-value must be assumed and then the equations given below are used to determine the parameters contained in plates 9-11. In order to provide some guidance in the initial guess of the Z-value, the following equation is used (from Einstein's Plate #8):

$$Z_{guess} = -0.1465 \ln\left(\frac{Q_s'}{i_B Q_B}\right) + 1.0844$$
Equation 21

Using the initial guess for the Z-values and the equations given below for $I_1^{"}, J_1^{'}, J_1^{"}, J_2^{'}$, a trial and error process is carried out for each size class using a solver routine to determine the value of Z by minimizing the difference between the ratio

$$\frac{Q'_{s}}{i_{B}Q_{B}} \text{ and } \frac{I''_{1}}{J''_{1}} \left(PJ'_{1}+J'_{2}\right).$$

$$I''_{1} = 0.216 \frac{A''^{(z-1)}}{(1-A'')^{z}}J''_{1} \qquad \text{Equation } 22$$

$$J'_{1} = \int_{A'}^{1} \left(\frac{1-y}{y}\right)^{z} dy \qquad \text{Equation } 23$$

$$J''_{1} = \int_{A''}^{1} \left(\frac{1-y}{y}\right)^{z} \log_{e}(y) dy \qquad \text{Equation } 24$$

$$-J'_{2} = \int_{A'}^{1} \left(\frac{1-y}{y}\right)^{z} \log_{e}(y) dy \qquad \text{Equation } 25$$

$$-J''_{2} = \int_{A''}^{1} \left(\frac{1-y}{y}\right)^{z} \log_{e}(y) dy \qquad \text{Equation } 26$$

8c) Once the Z-values have been determined for the suspended load, a log-log plot is made of the relationship between Z and the fall velocity for each size class. A power function equation is then developed such that $Z = a \omega^b$. The remaining Z-values for the bed-load are computed using this relationship. The fall velocity is computed using Rubey's Equation.

$$\omega = F\left[d_i g\left(\frac{\gamma_s - \gamma}{\gamma}\right)\right]^{\frac{1}{2}}$$

Where:

F = mathematical abbreviation for equation 2-28;

- g = acceleration due to gravity (ft/s^2) ;
- d_i = geometric mean diameter of a size range (ft);
- v = kinematic viscosity;
- γ_s = specific weight of sediment (lb/ft³); and

$$\gamma = specific weight of water (lb/ft3).$$

$$F = \left[\frac{2}{3} + \frac{36\nu^2}{g d^3 \left(\frac{\gamma_s}{\gamma} - 1\right)}\right]^{\frac{1}{2}} - \left[\frac{36\nu^2}{g d^3 \left(\frac{\gamma_s}{\gamma} - 1\right)}\right]^{\frac{1}{2}}$$
 Equation 28

Equation 27

Figure 3 is an example plot of three suspended load points indicating the power function regression relationship $Z = a \omega^b$ and the resulting Z-values that are calculating using the regression equation.

Figure 3. Z-value Regression Analysis.

9) Compute the total sediment load.

9a) Calculate the total load due to suspended sediment. Calculate the

ratio $\frac{\left(PJ_{1}^{"}+J_{2}^{"}\right)}{\left(PJ_{1}^{'}+J_{2}^{'}\right)}$ for the size classes used in determining the z-values for suspended

load and smaller and multiply this ratio by the computed suspended sediment for each size class as calculated in step 7 of this procedure to compute the total load due to suspended sediment.

$$Qs_{total suspended} = Q'_{s} \frac{\left(P J_{1}^{"} + J_{2}^{"}\right)}{\left(P J_{1}^{'} + J_{2}^{'}\right)}$$
 Equation 29

9b) The total load for the remaining size classes are calculated using the computed bed-load. Using the Z-values calculated with the power function from step 8c, calculate $I_1^{"}$ and $-I_2^{"}$ using the following equations:

$$I_{1}^{"} = 0.216 \frac{A^{"(z-1)}}{(1-A^{"})^{z}} J_{1}^{"}$$
 Equation 30
- $I_{2}^{"} = 0.216 \frac{A^{"(z-1)}}{(1-A^{"})^{z}} J_{2}^{"}$ Equation 31

Then, compute the value $(PI_1^{"} + I_2^{"} + 1)$ and multiply by the computed bed-load for that size class to compute the total load due to bed-load.

$$Qs_{total \, bed} = i_B Q_B \left(P I_1^{"} + I_2^{"} + 1 \right)$$
 Equation 32

9c) The total load is then the sum of the total suspended or total bed load for each size class. Theoretically, either equation 2-29 or 2-32 can be used throughout all particle sizes. However, equation 2-29 is accurate for the ranges of fine particle sizes and equation 2-32 is accurate for the ranges of coarse particle sizes. Also, equation 2-29 is most applicable when Z is small and equation 2-32 is most applicable when Z is small and equation 2-32 is most applicable when Z is large because the percentage of variation in the calculated Z values changes the computed sediment discharges more in equation 2-29 when Z is large and more in equation 2-32 when Z is small (BOR, 1955 and Yang, 1996).

$$Qs_{total} = Qs_{total \, suspended} + Qs_{total \, bed}$$
 Equation 33

2.2 BORAMEP Program

In order to automate the process of calculating the total load using the modified Einstein procedure presented above, a visual basic program was written to calculate the total load for numerous samples at one time. The following sections describe the input to the program, how to run the program, the output that is generated by the program, and how to interpret the output and results.

2.2.1 Program Input

The BORAMEP program can be used either for a single sample date entered by the user or an input file containing multiple sample dates.

If single sample data are entered; the input data that is required for the program is presented in Table 3 with example sediment and hydraulics values. A glossary of terms used is presented in Section 4.

Constants/	Properties:		Sediment:				
g =	32.17 ft/s ²		$C_s =$	2560	PPM		
v =	1.35E-05	ft^2/s	$d_{65} =$	0.235	mm		
$\gamma_{\rm w} =$	62.4	lb/ft ³	$d_{35} =$	0.199	mm		
$\gamma_{\rm s} =$	165	lb/ft ³	$d_s =$	1.6	ft		
$d_n =$	0.3	ft	Particle Size	Susp	Bed		
Hydraulics	:		(mm)	%	%		
Q =	777	ft ³ /s	0.001 - 0.0625	65.00	0.00		
$V_{avg} =$	3.6	ft/s	0.0625 - 0.125	12.00	5.00		
h =	1.6	ft	0.125 - 0.25	18.00	76.00		
W =	130	ft	0.25 - 0.5	5.00	18.00		
A =	208	ft^2	0.5 - 1	0.00	1.00		
T =	51.8	°F	1 - 2	0.00	0.00		

 Table 3. Input data for BORAMEP program

When the BORAMEP program is run, the user has the option to use an input file or an input form and enter a value for the minimum percent of sediment contained in a size class that should be used in calculating the z-values (Figure 4). A default value of 5% is used for the minimum percent overlap between suspended and bed material size classes. A value less than 5% is not recommended unless the user is familiar with the data being used and has proper justification for using such a small amount of overlap between suspended and bed material to estimate total sediment load.

Figure 4. BORAMEP Startup form.

The input form option allows the user to calculate the total load for a single sample for data that is entered into the input form (Figure 5) by the user. The resulting total load and size class breakdowns are presented on the form itself as well as in an output file.

atainput				
TITLE				
		Use Altern	ative Grain Sizes	
g (ft/s ²)	32.2	Suspended Load Percentages	Bed Load Percentages	Calculated Sediment Transport (Tons/Day)
γ _w (lb/ft ³)	64.4	0.001 - 0.062	0.001 - 0.062	0.001 - 0.062
γ_s (lb/ft ³)	165.0	0.062 - 0.125	0.062 - 0.125	0.062 - 0.125
Q (ft ³ /s)		0.125 - 0.25	0.125 - 0.25	0.125 - 0.25
V _{avg} (ft/s)		0.25 - 0.5	0.25 - 0.5	0.25 - 0.5
h (ft)	[0.5 - 1.0	0.5 - 1.0	0.5 - 1.0
W (ft)	[1.0-2.0	1.0 - 2.0	1.0-2.0
T (°F)		2.0 - 4.0	2.0 - 4.0	2.0-4.0
d _n (ft)		4.0 - 8.0	4.0 - 8.0	4.0-8.0
C _s (PPM)	[8.0 - 16.0	8.0 - 16.0	8.0 - 16.0
d ₆₅ (mm)	[16.0 - 32.0	16.0 - 32.0	16.0 - 32.0
d ₃₅ (mm)		· · · · · · · · · · · · · · · · · · ·		
d _s (ft)				
Sample Date		Exit	Calculate	Total Load
Sample Time				
Energy Slope (ft/ft)				

Figure 5. BORAMEP Input form for single sample.

The input file option allows the user to generate a comma separated file prior to running the BORAMEP program that contains the input data for multiple samples in a specified format. The BORAMEP program will run all the samples at one time.

If multiple sample dates are downloaded from the United States Geological Society (USGS) website or provided by USGS personnel, another program has been written to translate the USGS information into a format that can be input into the BORAMEP program. The USGS website has field/lab water quality samples that can be downloaded based on gage site number. The data should be downloaded as tab-separated data with expanded attributes and saved as a *.doc file extension. Data provided by USGS

personnel will typically be a *.txt file. The file format for these files must be PC for the translate program to work.

The translate program is a visual basic program within a Microsoft Excel document (Figure 6). To start the program, select the CommandButton1. A new window is launched where the USGS gage data file will be selected. The button "Generate output for use with BORAMEP Program" must be selected as well as the period of record requested, the management of duplicate data, and output format.

Input Form for generating BORAMEP input data		×
Input File Location		ОК
Gage Input Options Generate input for all gages		Cancel
Period of Record to Use for Generating Input Data Use all available dates Use Specified date range Beginning Date (mm/dd/yyyy) Ending Date (mm/dd/yyyy)	Options for Managing Duplicated Data Marge duplicated data (Date & Discharges must be the same) Keep duplicated data as is Ouput Format Generate output for use with BORAME	P Program

Figure 6. Input form to generate BORAMEP input file from USGS gage data.

The user will be asked to specify the name and location of the file generated. The default file name is identical to the name of the translate program excel file. Two files will be created in the location chosen. One file is an intermediate file, the other is a comma delimited file that will be saved as "Gage#Merged_MEPInput.csv". The gage number may be added to the file title and there is also a column in the *.csv file to include a gage site name for clarity and organization.

An input file can also be manually generated from other sample data. Figure 7 provides an example input format that is used by the program. As a result of the width of the input file, the input below has been broken into two parts. The first part contains the hydraulics and properties data and the second part contains the sediment data information. Note: When generating the input file, this data should all be contained on one line (part one immediately followed by part two) and not broken up as it is for this example.

Part 1														
***	:	b	in1	ł	əin2		bin3	bin4		bin	5	bi	n6	
	6	0.001	0.0625	0.0625	0.125	0.125	0.25	0.25	0.5	0.5	1	1	2	
Input Vari	iables	Title	Date	Time	S_energy	g (ft/s2)	γ _{water} (lb/ft3)	γ _{sediment} (lb/ft3)	Q (cfs)	Vavg (ft/s)	h (ft)	W (ft)	T (F)	dn (ft)
###		08354900	10/22/1975	1200	0.0008	32.17	62.4	165	153	2	0.92	85	49.1	0.3
###		08354900	3/3/1982	1200	0.0008	32.17	62.4	165	777	3.6	1.6	130	51.8	0.3
###		08354900	5/5/1982	1200	0.0008	32.17	62.4	165	4630	4	5.6	206	59	0.3
###		08354900	7/18/1985	1200	0.0008	32.17	62.4	165	2600	4.4	3.7	158	77	0.3
Part 2		d65 (mm)	d35 (mm)	de (ft)	sushin1	sushin?	sushin3	sushin4	sushin5	susbin6	bedbin1	bedbin?	hedbin3	bedbin/
Cs (ppm)					3030111	3030112	0000110	00000111	3030110	00000000	DOGDINI		Deubilio	Deability
Cs (ppm)	655	0.238	0.206	0.92	0	31	40	4	0	0	4	76	20	0
Cs (ppm)	655 2560	0.238	0.206	0.92 1.6	0 26	31 12	40 18	4	0	0	4 5	76 76	20 18	0
Cs (ppm)	655 2560 5210	0.238 0.235 0.392	0.206 0.199 0.243	0.92 1.6 5.6	0 26 20	31 12 12	40 18 7	4 5 9	0	0 0 0 0	4 5 5	76 76 33	20 18 49	0

Figure 7. Format for BORAMEP Input file.

The input file contains two specific input codes for a sample or set of samples: (***) and (###). The first parameter code *** is used to designate the beginning of input for a set of data associated with a specified number of sediment bins (Note: any text following *** on the same line is not read or used by the program and can be used for notes or heading information) and requires two additional lines of information to define the format of the sample data being used:

- 1. The first line to follow the *** code designates the number of sediment bins used and the size class breakdowns for each bin in mm.
- 2. The second line to follow the *** code provides a description of the input variables (see Table 4) and must adhere to the formats shown in Figure 7 and be comma separated.

Whenever the number of sediment bins used to define the suspended and bed material changes, it must be identified using the *** code described above in order for the BORAMEP program to know that the number of sediment bins has changed. The second parameter code ### is used to designate sample data and must follow the input format described above. A value of -9999 should be used for data that is missing or unknown.

Column	Heading	Description
Order	_	
1	Input variables	###
2	Title	Name of sample location (USGS Gage site number, if applicable)
3	Date	Sample date (mm/dd/yyyy)
4	Time	Sample time
5	S_energy ¹	Energy slope (ft/ft)
6	$g(ft/s^2)$	Gravity constant = 32.17
7	$\gamma_{\rm w}$ (lb/ft ³)	Specific weight of water constant = 62.4
8	$\gamma_{\rm s}({\rm lb/ft}^3)$	Specific weight of sediment = 165
9	Q (cfs)	Discharge at sample cross section on sample date
10	V _{avg} (ft/sec)	Average velocity at sample location on sample date
11	h (ft)	Depth of water at sample location
12	W (ft)	Width of channel at sample location
13	T (F)	Water temperature on sample date

 Table 4. Explanation of input variables in BORAMEP input file format.

14	dn (ft)	Vertical distance not sampled; the distance between the bottom of the sampled zone and the streambed as defined by the sampler used
15	Cs (ppm)	Sediment concentration at sample location
16	d35 (mm)	Particle size at which 35 percent of the bed material by weight is finer
17	d65 (mm)	Particle size at which 65 percent of the bed material by weight is finer
18	ds (ft)	Vertical distance sampled; the average of the total depths recorded at the sampling verticals
19-xx (depends on # of classes)	susbin#	Percent of suspended load in particle class #
xx-yy (depends on # of classes	bedbin#	Percent of bed load in particle class #

¹ While slope is listed above, it is not used on the total load calculation and therefore is not required by the program to run.

² The number of input variables changes depending on the number of sediment bins used to define the sample data. Variables 1 thru 18 will always be used while variables 19 and on will change depending on the number of sediment bins defined in part a.

Once the input file has been generated manually or through the translate program, the BORAMEP program can be run for multiple samples. The user will be prompted to select the input file using windows explorer (Figure 8).

Figure 8. Example open input file message box.

Once the input file is selected the user is then prompted to select a file name and location for the output files generated by the program (Figure 9).

Figure 9. Example save output file message box.

After the output file name and location is selected, the program starts calculating total load for each record contained in the input file. Once the program is finished, it will prompt the user with a dialog box stating the program is complete and list the number of errors that were generated (Figure 10).

MEP1
Program Complete with a total of 6 errors
OK

Figure 10. Example program complete message box.

Once the program runs successfully, there are three output files that are generated and can be used for additional analysis. The information contained in each of the output files is described in the following section.

2.2.2 Program Output

As mentioned in Section 2.1, when the Modified Einstein Procedure was first introduced, "Z" values were determined by applying the 0.7 power to the fall velocities. This exponent was determined to only be applicable to the Niobrara River near Cody, Nebraska. For the BORAMEP program, "Z" values are computed differently. "Z" values are computed for size ranges that have both suspended and bed load sediments using a trial and error procedure. The other "Z" values are computed by finding a power relationship between the fall velocity and "Z" value and applying this relationship to all other size ranges.

The BORAMEP program generates three output files: *.txt, *.txt.sum, and *.txt.err. The first file called *filename*.txt (Figure 11) contains output in a format that is similar to output from a previous program (Psands or KPsands) used by the Bureau of Reclamation. This output allows previous users of the Psands program to view the output in a format that they are familiar with as well as new users to view the input data for a sample and the results generated from the MEP calculations.

						OUTP 0831	UT 9000 - RIO	GRANDE AT	SAN FELT	PE				
METH	OD OF	COMPU	TATIC	N	MODIFIED	EINSTEIN	DATE OF C	OMPUTATION	7/14/200	8				
DATE	OF S	AMPLE	5	5/10/	1971	TIME OF S	AMPLE	1200		TEMPER	RATURE	64.4	SLOPE OF ENERGY GRADIENT	0.001
D65	=	0.286	6594											
			n	nn	D35 =	0.202947	8							
							nm							
Velo	city	(ft/s)	-	4	Widt	h (ft) =	163	Dept	h (ft) =		1.8			
Dn (ft) =			0.3	Ds (ft) =	1.8							
	SIZE	FRACTI	ON		PERCENT C	F MATERIAL	IBQB	QPRIME	Z-V	ALUES	COMPUTAT	TIONAL FACTOR	S COMPUTED	
	IN MI	LLIMET	ERS		SUSPENDED	BED	T/D	SUBS(T/D)	COMPUTED	FITTED	F (J)	F(I)+1	TOTAL LOAD	
	0.00	1 0.	002		15	0	-9999	236.030	-9999	0.054	1.190	-9999	280.838	
	0.00	2 0.	004		2	0	-9999	31.471	-9999	0.082	1.207	-9999	37.991	
	0.00	4 0.	016		4	0	-9999	62.941	-9999	0.154	1.258	-9999	79.205	
	0.01	6 O.	0625		15	0	-9999	236.030	-9999	0.353	1.471	-9999	347.256	
	0.06	25 0.	125		17	10	9.473	267.500	0.660	0.650	2.164	67.008	578.854	
	0.12	5 0.	25		38	50	133.974	597.942	0.892	0.926	3.832	14.543	2291.146	
	0.25	i o.	5		9	30	227.360	141.618	1.206	1.180	7.342	6.321	1437.232	
	0.5	1			0	8	111.729	0	-9999	1.383	-9999	4.308	481.3	
	1	2			0	2	24.351	0	-9999	1.567	-9999	3.474	84.598	
	2	4			0	0	-9999	0	-9999	1.752	-9999	-9999	0	
	4	8			0	0	-9999	0	-9999	1.951	-9999	-9999	0	
	8	16			0	0	-9999	0	-9999	2.168	-9999	-9999	0	
	16	32			0	0	-9999	0	-9999	2.409	-9999	-9999	0	
	32	64			0	0	-9999	0	-9999	2.676	-9999	-9999	0	
	64	12	8		0	0	-9999	0	-9999	2.972	-9999	-9999	0	
	128	25	6		0	0	-9999	0	-9999	3.301	-9999	-9999	0	
	TOTAL												5618.419	

Figure 11. Example *filename*.txt output for one sample date.

The output file lists each sample date and either the calculated values or an error message associated with the date. The calculated values include z-values, the computed total load, the total load for each size fraction, and other values used throughout the modified Einstein procedure.

The second file called *filename*.txt.sum contains a comma separated summary of the output data that was generated by the program. This file can easily be imported into an Excel spreadsheet and used to view the results of the MEP calculations and determine which samples provided errors. An example of the data presented in a *filename*.txt.sum file is presented in Figure 12.

***		Discharge	Conc	Suspended	d65	d35
Location	Date	(cfs)	(PPM)	Sample (tons/day)	(mm)	(mm)
08319000 - RIO GRANDE AT SAN FELIPE	5/10/1971	1180	565	1800.09	0.2866594	0.2029478
08319000 - RIO GRANDE AT SAN FELIPE	3/24/1972	1170	1600	5054.4	0.3493135	0.2005669
08319000 - RIO GRANDE AT SAN FELIPE	11/17/1972	986	1590	4232.898	0.2057127	0.1509518

Temp		Computed tot	al load by size fracti	on (tons/day)		Total Load	Total Sand Load
F	0.001 - 0.002	0.002 - 0.004	0.004 - 0.016	0.016 - 0.0625	0.0625 - 0.125	(tons/day)	(>0.625mm)(tons/day)
64.4	280.8385	37.99134	79.20501	347.2555	578.8538	5618.4192	4873.128914
50.9	771.9286	155.2965	210.6068	785.2655	1178.378	6981.12795	5058.030491
41	174.2772	0	45.22285	553.3947	2646.114	7857.72977	7084.834976

Figure 12. Example *filename*.txt.sum output.

Note: As a result of the width of the output file, the output was been broken into two parts. The output file will all be contained on one line (part one immediately followed by part two).

The output file contains the title, date, discharge, concentration, d65, d35, and temperature from the input file. In addition included in the file is the calculated suspended sample (tons/day), the total load, total sand load (which is the load with a sediment size greater than 0.625 mm), and total load divided into the sediment size fractions.

The third file called *filename*.txt.err contains a comma separated summary of any errors that were encountered by the program as well as output for samples that did not meet the MEP criteria but might be able to be used with additional analysis. An example of the data presented in a *filename*.txt.sum file is presented in Figure 13.

Title	Date		Error
08319000 - RIO GRANDE AT SAN FELIPE	5/19/1970	-9999	THERE WAS AN ERROR DURING FILE INPUT
08319000 - RIO GRANDE AT SAN FELIPE	6/1/1970	-9999	THERE WAS AN ERROR DURING FILE INPUT
08319000 - RIO GRANDE AT SAN FELIPE	9/20/1971	-9999	THERE WAS AN ERROR DURING FILE INPUT
08319000 - RIO GRANDE AT SAN FELIPE	9/20/1974	-9999	NOT ENOUGH OVERLAPPING BINS FOR MEP
08319000 - RIO GRANDE AT SAN FELIPE	4/17/1973	-9999	THERE WAS AN ERROR DURING FILE INPUT

Figure 13. Example *filename*.txt.err output.

2.2.3 Error Checking

There are a number of error checking routines within the algorithms of BORAMEP. The error checking routines were largely designed to identify input errors while allowing user flexibility in use of the software and the codes returned are given in Table 5. Many of the input errors occurring during the use of BORAMEP have been documented by Jay et. al. (2005) and Shah (2006) who included recommendations for error messages. These have been included in the error codes returned by BORAMEP.

First, each field in either the input form or the input file is checked such that the type of variable expected has been entered. There have been some occurrences where a date value (not used for anything other than labeling the output and for user identification) has caused problems with execution. Further checks are made to ensure that the suspended sediment load is not be greater than the total sediment load. The value of d_{35} entered must be less than or equal to d_{65} . The input values of d_{35} and d_{65} are checked against the particle size distribution (this check returns an error if the values differ by greater than 20%). The continuity equation, Q=VA, is checked (this check returns an error if the values differ by greater than 20%). The measured and unmeasured depths are checked such that they add to the total depth (this check returns an error if the values differ by greater than 1 ft). The temperature entered must be within a range of 32 to 80 °F. The user supplies a percentage value that suspended and bed sediment must overlap in a size fraction in order to use the algorithm. If this threshold is not met then an error is generated. If a *z* value is calculated in an unrealistic manner (*e.g.*, negative) or not obtained then an error is also generated.

At the completion of execution, there is a check such that the total load is set to zero if the concentration, depth, width, discharge, and / or velocity are zero. If the shear stress is less than the critical shear stress then the sediment transport is zero.

	~
ERR Number OR CODE	Indication
1	Not enough overlapping bins in particle size
	distributions for MEP calculations
2,1112	A realistic value of z was failed to be obtained
3	Temperature Error
4	Continuity is not satisfied within tolerance
5	Measured and unmeasured depths do not add to total
	depth within tolerance
6	The values of d35 and / or d65 do not check against
	the input particle size distribution
7	Shear stress is less than critical shear stress
8	The value of d35 is greater than d65
9	Suspended sediment load is greater than the total
	sediment load
98,99	Error in read of input file

Table 5. Error codes returned by BORAMEP.

3.0 SAMPLE PROCEDURE

A single sample is calculated using both the Modified Einstein Procedure and the BORAMEP program. In addition multiple samples are calculated using the BORAMEP Program. Table 6 and Table 7 have the parameters for the single sample.

Table 8 has the multiple samples' parameters.

Hydraulics	:		Constants/P	roperties	
Q =	777	ft3/s	g =	32.17	ft/s2
$V_{avg} =$	3.6	ft/s	v =	1.35E-05	ft2/s
h =	1.6	ft	$\gamma_{\rm W} =$	62.4	lb/ft3
W =	130	ft	$\gamma_{\rm S} =$	165	lb/ft3
A =	208	ft2	$d_n =$	0.3	ft
T =	51.8	oF	$X_{assumed} =$	1.535	

 Table 6. Hydraulic data and properties for sampled data.

	Table 7.	Sediment	size	fractions	for	sampled	data
--	----------	----------	------	-----------	-----	---------	------

Sediment:						
	$C_s =$	2560	PPM	$d_s =$	1.6	ft
	$d_{65} =$	0.235	mm	$d_{65} =$	0.00077	ft
	$d_{35} =$	0.199	mm	$d_{35} =$	0.00065	ft
	Particle S	ize	Susp	Bed	Geometric	Mean
Bin#	(mm)		%	%	(mm)	(feet)
1	0.001	0.002	26.00	0.00	0.0014	0.000005
2	0.002	0.004	8.00	0.00	0.0028	0.000009
3	0.004	0.016	12.00	0.00	0.008	0.000026
4	0.016	0.0625	19.00	0.00	0.0316	0.000104
5	0.0625	0.125	12.00	5.00	0.0884	0.00029
6	0.125	0.25	18.00	76.00	0.1768	0.00058
7	0.25	0.5	5.00	18.00	0.3536	0.00116
8	0.5	1	0.00	1.00	0.7071	0.00232
9	1	2	0.00	0.00	1.4142	0.00464
10	2	4	0.00	0.00	2.8284	0.00928

Table 8. Hydraulic and Sediment data for BORAMEP calculations.Note: As a result of the width of the input file, the input was broken into five parts. The input file will all
be contained on one line (part 1 followed immediately by part 2, etc.)

***	bir	11				bin2	Ş		bin3				bin4			
	10	1995 - 1975 		0.001	0.002	0.002	8	0.004	0.0)4	(0.016	8	(0.016	0.062
Input Variab	1es Tit	le			Date	Time	S er	nergy	g (ft/s2) gam	ma w (lb/	(ft3)	gamm	a s(lb/	/ft3)	Q (cfs
min	08	330000	- Sampl	e1	3/3/1982	1200	- (0.0008	32.	17		62.4			165	77
####	08	330000	- Sampl	e2	5/8/1969	1200	0	0.0008	32.	17		62.4			165	457
####	08	330000	- Sampl	e3	9/2/1969	1200	0	0.0008	32.	17		62.4			165	78
+++++	08	330000	- Sampl	e4	9/30/1969	1200	(0.0008	32.	17		62.4			165	55
####	08	330000	- Sampl	e5	7/27/1971	1200	0	0008	32	17		62.4			165	546
***	hir	1	o annp.		112111011	hin2	2		hin3	1.12			hin4		100	
	9			0.001	0.002	0.002	2	0.004	0.0	14	ſ	0.16	enn		0.016	0.062
Innut Variah	les Tit	10		0.001	Date	Time	S al	nerav	a (ft/s)) dam	ma w (lh	(#3)	damm	a e (lh.	/#3)	0.002
шрас • анао ####	103 111	330000	- Samp	96	7/7/1060	1200	0_0		32	17 17	inu_w (ib/	62.4	gunni	<u></u> (10)	165	31
11111	00	330000	- Sampl	07	10/5/1070	1200		00000	32.	17		62.4	21		165	_000
	00	330000	Sampl	08	2/16/1071	1200		00000	32.	17		62.4			165	88
++++++	00	220000	- Sampi	09	7/07/1071	1200		00000	22.	17		62.4	6		165	46
/////	00	220000	- Sampi	010	2/40/4072	1200		0000	32.	17		62.4			100	40
***** ****	08	-1	- sampi	eru	2119/19/2	1200 hip2		1.0008	SZ.	17		02.4	bin4		100	113
	12	11		0.004	0.000		2	0.004		14	,	0.46	UITI4	7	0.046	0.000
T	15	1.0		0.001	0.002 Dista	0.002 Time -	C .	0.004	0.0)4		J.U16 #20			0.016 /#21	0.062
input Variab	ies i it	.10	0	- 1 1		111110	5_ei	nergy	g (π/s2) gam	inia_w (ib/	113)	gamm	a_s (ID/	115)	
m##	80	330000	- Sampl	e11	//30/19/3	1200		1.0008	32.	17		02.4			165	327
/////	08	330000	- Sampl	e12	1/22/1979	1200		1.0008	32.	17		62.4	1.3		165	96
***	bir	11				bin2			bin3	_	1.0		bin4			
	16	1 contract		0.001	0.002	0.002	_	0.004	0.0)4	(0.016		0	0.016	0.062
Input Variab	les Tit	le			Date	Time	S_er	nergy	g (ft/s2) gam	ima_w (lb <i>i</i>	'ft3)	gamm	a_s (lb/	/ft3)	Q (cfs
111111	08	330000	- Sampl	e13	12/3/1979	1200	0	8000.0	32.	17		62.4	ñ		165	168
	0.0	220000	Compl	A14	A/E/1006	1200	(C	10000	20	17		624			165	1.4
####	08	330000	- Sampl	e14	4/5/1996	1200	(0.0008	32.	17		62.4			165	4:
#### bin5	08	330000 bin6	- Sampi	bin7	4/5/1996	1200 bin8	(0.0008	32.	bin9		62.4 bin1			165	43
### bin5 0.0625	08	bin6 0.125	- Samp 0.25	bin7 0.25	4/5/1996	1200 bin8	0.5	0.0008	32.	17 bin9 1	2	62.4 bin1) 2		165	43
//////////////////////////////////////	08 0.125 h (ft)	bin6 0.125 W (ft)	- Samp 0.25 T (F)	e14 bin7 0.25 dn (ft)	4/5/1996 0.5 Cs (ppm)	1200 bin8 d65 (mn	0.5 n)	0.0008 d35 (r	32. 1 nm)	bin9 1 ds (ft)	2 susbin1	62.4 bin1) 2 in2		165	43
www #### bin5 0.0625 Vavg (ft/s) 3.6	08 0.125 h (ft) 1.6	bin6 0.125 W(ft) 130	- Samp 0.25 T (F) 51.8	e14 bin7 0.25 dn (ft) 0.3	4/5/1996 0.5 Cs (ppm) 2560	1200 bin8 d65 (mr 0.235	0.5 n) 0684	0.0008 d35 (r 0.19	32. 1 nm) 994948	bin9 1 ds (ft) 1.6	2 susbin1 26	62.4 bin1 susb) 2 in2 8		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48	08 0.125 h (ft) 1.6 5	bin6 0.125 W(ft) 130 206	- Sampl 0.25 T (F) 51.8 10.2	bin7 0.25 dn (ft) 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200	1200 bin8 d65 (mn 0.235 0.382	0.5 n) 0684 2299	0.0008 d35 (r 0.19 0.23	32. 1 nm) 994948 337722	bin9 1 ds (ft) 1.6 5	2 susbin1 26 8	62.4 bin1 susb) 2 in2 8 1		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29	08 0.125 h (ft) 1.6 5 1.3	bin6 0.125 W(ft) 130 206 263	- Sampl 0.25 T (F) 51.8 10.2 73.4	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880	1200 bin8 d65 (mn 0.235 0.382 0.247	0.5 n) 0684 2299 5072	d35 (r 0.1(0.2(0.2)	1 nm) 994948 337722 157136	bin9 1 ds (ft) 1.6 5 1.3	2 susbin1 26 8 57	62.4 bin11 susb	0 2 in2 8 1 10		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999	08 0.125 h (ft) 1.6 5 1.3 -9999	bin6 0.125 W(ft) 130 206 263 -9999	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922	1200 bin8 d65 (mn 0.235 0.382 0.247 -	0.5 n) 0684 2299 5072 9999	d35 (r 0.19 0.29	1 nm) 994948 337722 157136 -9999	bin9 1 ds (ft) 1.6 5 1.3 -9999	2 susbin1 26 8 57 37	62.4 bin1 susb	2 in2 8 1 10 4		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6	08 0.125 h (ft) 1.6 5 1.3 -9999 3.9	bin6 0.125 W(tt) 130 206 263 -9999 300	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415	0.5 n) 0684 2299 5072 9999 8953	0.0008 d35 (r 0.19 0.20 0.20	32. 1 nm) 994948 337722 157136 -9999 366196	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9	2 susbin1 26 8 57 37 37 34	bin1	2 in2 8 1 10 4 17		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5	0.125 h (ft) 1.6 5 1.3 -9999 3.9	bin6 0.125 W(ft) 130 206 263 -9999 300 bin6	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 bin7	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8	0.5 n) 0684 2299 5072 9999 8953	d35 (r 0.19 0.29 0.20	1 nm) 994948 337722 157136 -9999 366196	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9	2 susbin1 26 8 57 37 37 34	bin1	2 in2 8 1 10 4 17		165	
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 -9999 4.6 bin5 0.0625	08 0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125	bin6 0.125 W(tt) 130 206 263 -9999 300 bin6 0.125	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 bin7 0.25	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8	0.5 n) 0684 2299 5072 9999 8953 0.5	d35 (r 0.19 0.29 0.20	1 nm) 994948 337722 157136 -9999 366196 1	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1	2 susbin1 26 8 57 37 34 2	bin1 susb) 2 in2 8 1 10 4 17		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s)	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft)	bin6 0.125 W(ft) 130 206 263 -9999 300 bin6 0.125 W(ft)	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F)	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 bin7 0.25 dn (ft)	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm)	bin8 d65 (mm 0.235 0.382 0.247 	0.5 n) 0684 2299 5072 9999 8953 0.5 n)	d35 (r 0.19 0.20 0.20 0.20 0.20	1 nm) 994948 337722 157136 -9999 366196 1 nm)	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1 ds (ft)	2 susbin1 26 8 577 37 34 2 susbin1	62.4) 2 in2 8 1 10 4 17 17 in2		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1	bin6 0.125 W (tt) 130 206 263 -9999 300 bin6 0.125 W (tt) 202	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 bin7 0.25 dn (ft) 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 236	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8 d65 (mn 0.416	0.5 n) 0684 2299 5072 9999 8953 0.5 n) 0.84	d35 (r 0.19 0.20 0.20 0.20 0.20 0.20 0.20	1 nm) 994948 337722 157136 -9999 5666196 1 nm) 513029	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1 ds (ft) 1	2 susbin1 26 8 57 37 34 2 susbin1 0	62.4	2 in2 8 1 10 4 17 17 10 0		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1 -9999	bin6 0.125 W (ft) 130 206 263 -9999 300 bin6 0.125 W (ft) 202 -9999	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 bin7 0.25 dn (ft) 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999	1200 bin8 d65 (mn 0.235 0.382 0.247 	0.5 n) 0684 2299 5072 9999 8953 0.5 n) 0884 7394	d35 (r 0.20 0.20 0.20 0.20 0.20 0.20	1 nm) 994948 337722 157136 -9999 566196 1 nm) 513029 185397	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1 ds (ft) 1 -9999	2 susbin1 26 8 57 37 34 2 susbin1 0 0 -9999	bin11 susb	2 in2 8 1 10 4 17 in2 0 9999		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1 -9999 1.4	330000 bin6 0.125 W(ft) 1300 206 263 -9999 300 bin6 0.125 W(ft) 202 -9999 253	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 Cs (ppm) 236 -9999 1220	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8 d65 (mn 0.416 0.289 0.262	0.5 n) 0684 2299 5072 9999 8953 0.5 n) 0884 7394 8688	d35 (r 0.22 0.22 0.22 0.22 0.22 0.22	1 nm) 994948 337722 157136 -9999 566196 1 1 nm) 513029 185397 202773	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1 ds (ft) 1 -9999 1.4	2 susbin1 8 57 37 34 2 susbin1 9999 7	bin11 susb	2 in2 8 1 10 4 17 17 17 999		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6	0.125 h (ft) 1.6 5 3.9 0.125 h (ft) 0.125 h (ft) 1 -9999 1.4 3.9	bin6 0.125 W (ft) 130 2006 263 -9999 300 bin6 0.125 W (ft) 2002 -9999 253 300	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900	1200 bin8 d65 (mr 0.235 0.382 0.247 	0.5 n) 0684 2299 5072 9999 8953 0.5 n) 0884 7394 8688 8953	d35 (r 0.15 0.20 0.20 0.20 d35 (r 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	1 nm) 994948 337722 157136 -9999 566196 1 1 nm) 513029 185397 202773 566196	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1 ds (ft) 1 -9999 1.4 3.9	2 susbin1 26 8 57 37 34 2 susbin1 2 susbin1 0 -9999 7 34	62.4 bin11 susb	2 in2 8 1 10 4 17 in2 0 999 1 17		165	
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 -9999 2.4 4.6 2.8	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1 -9999 1.4 3.9 1.6	bin6 0.125 W(ft) 130 206 263 -9999 300 bin6 0.125 W(ft) 202 -9999 253 300 253 300	- Sampl 0.25 T (F) 51.8 10.25 73.4 71.6 63.5 0.25 T (F) 78.8 60 056.3 63.5 44.6	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900 2780	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8 d65 (mn 0.416 0.262 0.262 0.245 0.248	0.5 n) 0684 2299 5072 9999 8953 0.5 n) 0884 7394 8688 8953 3769	d35 (r 0.19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1.3 -9999 3.9 bin9 1.4 (s (ft) -9999 1.4 3.9 1.6	2 susbin1 26 8 8 57 37 37 34 2 susbin1 0 -9999 7 34 10	bin11 susb	2 in2 8 1 10 4 17 in2 0 999 1 17 2		165	
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1.4 3.9 9999 1.4 3.9 1.6	bin6 0.125 W(ft) 130 206 263 -9999 300 bin6 0.125 W(ft) 202 -9999 253 300 260 bin6	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 44.6	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 2366 -9999 1220 39900 2780	1200 bin8 d65 (mn 0.235 0.323 0.3247 	0.5 n) 0684 2299 5072 99999 8953 0.5 n) 0884 7394 8688 8953 3769	d35 (r 0.20 0.20 0.20 d35 (r 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1.3 (ft) 1 ds (ft) 1 -9999 1.4 3.9 1.6 bin9	2 susbin1 26 8 57 37 37 34 2 susbin1 0 -9999 7 7 34 10	bin11 susb	2 in2 8 1 10 4 17 9999 1 17 2 0		165	43
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625	0.125 h (ft) 1.6 5 1.3 -9999 0.125 h (ft) 1.4 3.9 9.1.6 0.125	bin6 0.125 W (ft) 130 206 263 -9999 300 bin6 0.125 W (ft) 202 -9999 253 300 260 bin6 0.125	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 64.6 0.25	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900 2780 0.5	1200 bin8 d65 (mn 0.235 0.382 0.247 0.2475 bin8 d65 (mn 0.415 0.249 0.415 0.248 bin8	0.5 n) 0684 2299 5072 9999 8953 0.5 0.5 3769 0.5	0.0008 d35 (r 0.1! 0.2: 0:	1 mm) 994948 337722 157136 -9999 366196 1 mm) 313029 185397 202773 3666196 907277 1	bin9 1 ds (ft) 1.6 5 1.3 -9999 3.9 bin9 1 ds (ft) 1 -9999 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	2 susbin1 26 8 57 37 34 2 susbin1 0 -9999 7 34 10 2 2	bin11 susb	2 in2 8 1 10 4 17 10 999 10 17 20 2		165	
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625 Vavg (ft/s)	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1.4 3.9 1.6 0.125 h (ft) 0.125 h (ft)	bin6 0.125 W (ft) 130 206 263 -9999 300 bin6 0.125 W (ft) 202 -9999 253 300 260 bin6 0.125 W (ft)	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 44.6 0.25 T (F) 78.8 78.8 60 56.3 63.5 44.6 0.25 T (F) 78.8 78.7 78.8 78.8 78.8 78.7 78.8 78.	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900 2780 0.5 Cs (ppm)	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8 d65 (mn 0.416 0.289 0.262 0.415 0.248 bin8 d65 (mn	0.5 n) 0684 2299 5072 9999 8953 0.5 n) 0884 7394 8688 8953 3769 0.5 n)	0.0008 d35 (r 0.11 0.22 0.2	1 nm) 994948 337722 157136 -9999 366196 1 1 nm) 313029 185397 202773 366196 907277 1 1 nm)	bin9 16 (ft) 1.6 5 1.3 -9999 3.9 bin9 1 ds (ft) 1 -9999 1.4 3.9 1.6 bin9 1.6 bin9 1 ds (ft) 1 ds (ft) 1 ds (ft) 1.6 bin9 1 ds (ft) 1.6 bin9 1.6 ds (ft) 1.6 bin9 1.6 ds (ft) 1.6 bin9 1.6 ds (ft) 1.6 ds	2 susbin1 26 8 57 37 34 2 susbin1 0 -9999 7 34 10 2 susbin1	bin11 susb susb	2 in2 8 1 10 4 17 17 9999 1 17 2 0 2 2 in2		165	
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625 Vavg (ft/s) 0.0625 Vavg (ft/s) 3.8	0.125 h (ft) 1.6 5 1.3 -9999 0.125 h (ft) 1.4 3.9 1.6 0.125 h (ft) 0.125 h (ft) 2.9	330000 bin6 0.125 W(ft) 1300 2006 263 -9999 300 bin6 0.125 W(ft) 202 -9999 253 300 260 bin6 0.125 W(ft) 300	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 44.6 0.25 T (F) 69.8	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.25 dn (ft) 0.25 dn (ft) 0.25 dn (ft) 0.25 dn (ft) 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900 2780 0.5 Cs (ppm) 2570	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8 d65 (mn 0.262 0.415 0.248 bin8 d65 (mn 0.232	0.5 n) 0684 2299 5072 9999 8953 0.5 0.5 0.8 8888 8953 3769 0.5 0.5 n) 0.5281	0.0008 d35 (r 0.22 0	1 nm) 994948 337722 157136 -9999 566196 1 1 nm) 513029 185397 202773 566196 907277 1 1 nm) 377907	bin9 13 13 1.6 5 1.3 -9999 3.9 9999 1.4 3.9 1.4 1.4 5 1.4 1.4 5 1.4 1.4 5 1.4 1.4 5 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	2 susbin1 8 57 37 34 2 susbin1 0 -9999 7 34 10 -9999 7 34 10 2 susbin1 8	62.4 bin11 susb	2 in2 8 1 10 4 17 0 999 1 17 2 0 2 in2 1 17 2 1			
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625 Vavg (ft/s) 3.8 2.3	0.125 h (ft) 1.6 5 -9999 3.9 0.125 h (ft) 1 -9999 1.4 3.9 1.6 0.125 h (ft) 2.9 1.6	330000 bin6 0.125 W(ft) 130 2066 263 -9999 300 bin6 0.125 W(ft) 2002 -9999 253 300 260 bin6 0.125 W(ft) 300 260	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 44.6 0.25 T (F) 69.8 39.2	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900 2780 0.5 Cs (ppm) 2570 912	1200 bin8 d65 (mr 0.235 0.382 0.247 	0.5 n) 06844 229999 99999 8953 0.5 0.2 0.5 n) 0.8844 7394 8888 8953 3769 0.5 n) 0.5 281 33769	0.0008 d35 (r 0.11 0.22	1 nm) 994948 337722 157136 -9999 566196 1 1 nm) 513029 185397 202773 566196 907277 1 1 nm) 377907 183168	bin9 13 13 145 (ft) 1.3 -9999 3.9 bin9 1.3 15 13 13 14 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 3.9 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	2 susbin1 8 57 37 37 34 2 susbin1 0 -9999 7 34 10 0 -9999 7 34 10 2 susbin1 8 49	bin11 susb	2 in2 8 1 10 4 17 in2 0 9999 1 17 2 0 2 in2 1 7			
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625 Vavg (ft/s) 3.8 2.3 bin5 0.0625	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1.4 3.9 1.6 0.125 h (ft) 2.9 1.6	330000 bin6 0.125 W(ft) 130 2066 263 -9999 300 bin6 0.125 W(ft) 2999 253 300 260 bin6 0.125 W(ft) 300 260 bin6 0.125	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 44.6 0.25 T (F) 69.8 39.2	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900 2780 Cs (ppm) 0.5 Cs (ppm) 2570 912	1200 bin8 d65 (mr 0.235 0.382 0.247 	0.5 n) 06844 22999 50722 99999 8953 0.5 n) 0.884 7394 8688 8953 3769 0.5 n) 5281 3113	0.0008 d35 (r 0.11 0.22	1 nm) 999948 337722 157136 -9999 566196 1 nm) 513029 185397 202773 566196 907277 1 nm) 377907 483168	bin9 13 13 145 (ft) 1.6 5 1.3 -9999 3.9 5 1.9 9999 1.4 3.9 1.6 5 5 1.9 1.6 5 1.6 5 1.6 5 1.6 5 1.6 5 1.7 1.6 5 1.6 5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	2 susbin1 26 8 57 37 34 2 susbin1 2 susbin1 0 -9999 7 34 10 2 susbin1 2 8 9999 7 7 34 10 9 9999 7 7 34 10 9 9999 7 7 34 9 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	62.4 bin11 susb susb bin11 susb bin11 bin11	2 in2 8 1 10 4 17 in2 0 9999 1 17 2 0 2 in2 17 2 0 2 17 7 0			
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625 Vavg (ft/s) 3.8 bin5 0.0625 Vavg (ft/s) 3.8 2.3 bin5 0.0625	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1.4 3.9 9.999 1.4 3.9 1.6 0.125 h (ft) 2.9 1.6 0.125	bin6 0.125 W(ft) 1300 2063 -9999 3000 bin6 0.125 W(ft) 2022 -9999 2533 3000 2600 bin6 0.125 W(ft) 3000 2600 bin6 0.125	- Sampl 0.25 T (F) 51.8 10.25 T (F) 73.4 71.6 63.5 0.25 T (F) 78.8 60 0.25 44.6 0.25 T (F) 69.8 39.2 0.25	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 2360 -9999 1220 39900 2780 0.5 Cs (ppm) 2570 0.5 Cs (ppm) 0.5 Cs (ppm) 0.5 Cs (ppm) 0.5 0.5 Cs (ppm) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	1200 bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8 d65 (mn 0.416 0.262 0.415 0.248 bin8 d65 (mn 0.232 0.245 bin8	0.5 n) 0684 2299 5072 99999 8953 0.5 7394 8688 8953 3769 0.5 5281 3113 0.5	0.0008 d35 (r 0.22 0.2	1 1 1 1 1 1 1 1 1 1 1 1 1 1	bin9 13 14 16 1.6 5 1.3 -9999 3.9 bin9 1.3 -9999 3.9 bin9 1.3 -9999 3.9 bin9 1.3 -9999 3.9 bin9 1.3 -9999 3.9 bin9 1.3 -9999 3.9 bin9 1.3 -9999 3.9 bin9 1.4 3.9 1.6 bin9 1.3 -9999 1.4 3.9 1.6 bin9 1.3 -9999 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 1.6 bin9 1.4 1.6 bin9 1.4 1.6 bin9 1.4 1.6 bin9 1.6 bi	2 susbin1 26 8 8 57 37 37 34 2 susbin1 0 -9999 7 34 10 -9999 7 34 10 2 susbin1 2 2 susbin1 2 2 2 2 2	62.4 bin11 susb susb 	2 in2 8 1 10 4 17 in2 0 9999 1 17 2 0 2 in2 17 2 0 2 2 0 2			
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625 Vavg (ft/s) 3.8 2.3 bin5 0.0625 Vavg (ft/s)	0.125 h (ft) 1.6 5 1.3 -9999 3.9 0.125 h (ft) 1.4 3.9 0.125 h (ft) 2.9 1.6 0.125 h (ft) 2.9 1.6 0.125 h (ft)	bin6 0.125 W(ft) 130 206 263 -9999 300 bin6 0.125 W(ft) 202 -9999 253 300 260 bin6 0.125 W(ft) 300 260 bin6 0.125 W(ft) 300 260 bin6 0.125 W(ft)	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 44.6 0.25 T (F) 69.8 39.2 0.25 T (F) 69.8 39.2 0.25 T (F)	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 2366 -9999 1220 39900 2780 0.5 Cs (ppm) 2570 0.5 Cs (ppm) 2570 0.5 Cs (ppm)	1200 bin8 d65 (mn 0.235 0.323 0.3247 	0.5 n) 06844 2299 5072 99999 8953 0.5 n) 0.5 8688 8953 3769 0.5 n) 5281 3113 3113	0.0008 d35 (r 0.11 0.22 0	1 nm) 994948 337722 157136 -9999 566196 1 nm) 513029 165397 202773 566196 907277 11 153397 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 17 10 10 10 10 10 10 10 10 10 10	bin9 13 13 1.6 5 1.3 -9999 3.9 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 bin9 1.4 3.9 1.6 1.6 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	2 susbin1 26 8 57 37 34 2 susbin1 0 -9999 7 34 10 - 9 999 7 34 10 2 susbin1 8 49 2 susbin1 2 susbin1	62.4 bin11 susb susb bin11 susb bin11 susb	2 in2 8 1 10 4 17 10 4 17 17 20 2 17 20 2 17 20 2 17 7 0 2 17 7 0 2 17 7 0 2 17 10 10 10 10 10 10 10 10 10 10 10 10 10			
bin5 0.0625 Vavg (ft/s) 3.6 4.48 2.29 -9999 4.6 bin5 0.0625 Vavg (ft/s) 1.53 -9999 2.4 4.6 2.8 bin5 0.0625 Vavg (ft/s) 3.8 2.3 bin5 0.0625 Vavg (ft/s) 3.8 2.3 0.0625 Vavg (ft/s) 0.0625 Vavg (ft/s) 2.7 0.0625 Vavg (ft/s) 0.0625 Vavg (ft/s) 2.7 0.0625 Vavg (ft/s) 2.7 0.0625 Vavg (ft/s) 2.7 0.0625 Vavg (ft/s) 2.7 0.0625 Vavg (ft/s) 2.7	0.125 h (ft) 1.6 5 1.3 -9999 0.125 h (ft) 1.4 3.9 1.6 0.125 h (ft) 2.9 1.6 0.125 h (ft) 2.9 1.6 0.125 h (ft) 2.9 1.6	bin6 0.125 W (ft) 130 206 263 -9999 300 bin6 0.125 W (ft) 202 -9999 253 300 260 bin6 0.125 W (ft) 300 260 bin6 0.125 W (ft) 300 260 bin6 0.125 W (ft) 300 260 bin6 0.125 W (ft) 300 260 bin6 0.125 W (ft) 300 260 bin6 0.125 W (ft) 300 260 bin6 0.125 W (ft) 300 260 263 300 260 263 300 260 263 300 260 263 300 260 263 300 260 263 300 260 263 300 260 263 300 260 263 300 260 263 300 260 263 263 263 263 263 263 263 263 263 263	- Sampl 0.25 T (F) 51.8 10.2 73.4 71.6 63.5 0.25 T (F) 78.8 60 56.3 63.5 44.6 0.25 T (F) 69.8 39.2 0.25 T (F) 69.8 39.2 0.25 T (F) 40.4 0.25 T (F) 40.1 0.25 T (F) 40.25 T (F) 40.15 T (F) 40.5 T	e14 bin7 0.25 dn (ft) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	4/5/1996 0.5 Cs (ppm) 2560 3200 5880 922 39900 0.5 Cs (ppm) 236 -9999 1220 39900 2780 0.5 Cs (ppm) 2570 912 0.5 Cs (ppm) 1620 0.5 Cs (bin8 d65 (mn 0.235 0.382 0.247 - 0.415 bin8 d65 (mn 0.416 0.289 0.262 0.415 0.248 bin8 d65 (mn 0.232 0.395 bin8 d65 (mn 0.232 0.395 bin8	0.5 n) 00684 2299 5072 99999 8953 0.5 n) 0.5 n) 0.5 281 3769 0.5 281 3113 0.5 5199 0.5 199	0.0008 d35 (r 0.22 0.	1 nm) 994948 337722 157136 -9999 366196 1 nm) 313029 185397 202773 366196 907277 1 1 nm) 377907 1 83168 1 nm) 221283	bin9 13 14 16 16 5 1.3 -9999 3.9 10 1 1 1 1 1 1 1 1 1 1 1 1 1	2 susbin1 26 8 57 37 34 2 susbin1 0 -9999 7 34 10 -9999 7 34 10 -9999 7 34 10 -9999 7 2 susbin1 2 susbin1 2 susbin1 2 2 susbin1 2 2 3 2 3 3 4 3 4 3 3 4 3 5 7 3 7 3 7 3 4 3 4 3 5 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3	bin11 susb susb bin11 susb	2 in2 8 1 10 4 17 10 9999 1 17 2 0 2 17 2 0 2 17 2 0 2 17 2 0 2 17 2 0 2 17 0 9999 1 17 2 0 9999 1 17 2 0 9999 1 17 2 0 9999 1 17 2 0 9999 1 17 2 0 17 17 17 17 17 17 17 17 17 17 17 17 17			

Subbinity Subbinity <t< th=""></t<>
12 19 12 10 5 0 0 0 0 0 0 0 3 14 35 29 10 0 0 0 0 0 0 19 9 2 10 0 0 0 0 0 0 11 12 9 21 6 0 0 0 0 0 11 12 9 21 6 0 0 0 0 0 11 12 9 21 6 0 0 0 0 0 0 12 19 4 3 1 0 0 0 0 0 0 usbin3 susbin4 susbin5 susbin6 susbin7 susbin8 susbin9 bedbin1 bedbin3 bedbin4 0 54 25 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 9 2 10 0 0 0 0 0 0 11 12 9 21 6 0 0 0 0 0 0 11 12 9 21 6 0 0 0 0 0 0 11 12 9 21 6 0 0 0 0 0 0 0 10 0
11 12 9 21 6 0 0 -9999 -9999 -9999 22 19 4 3 1 0 0 0 0 0 0 0 usbin3 susbin4 susbin5 susbin6 susbin7 susbin8 susbin9 bedbin1 bedbin2 bedbin3 bedbin4 0 54 25 21 0 0 0 0 0 0 -9999 -9999 -9999 -9999 -9999 0 0 0 0 0 -9999 -9999 -9999 -9999 -9999 0 0 0 0 0 -9999 -9999 -9999 -9999 -9999 0 0 0 0 22 19 4 3 1 0 0 0 0 0 3 15 31 22 3 0 0 0 0 0 0 22 19 4 3 16 16 32
11 12 0 1 0 0 0 0 0 0 11 12 0 1 0 0 0 0 0 0 0 11 1 0
usbin3 susbin4 susbin5 susbin6 susbin7 susbin8 susbin9 bedbin1 bedbin2 bedbin3 bedbin4 0 54 25 21 0 <t< th=""></t<>
usbin3 susbin4 susbin5 susbin6 susbin7 susbin8 susbin9 bedbin1 bedbin2 bedbin3 bedbin4 0 54 25 21 0 <t< th=""></t<>
usbin3 susbin4 susbin5 susbin6 susbin7 susbin8 susbin9 bedbin1 bedbin3 bedbin4 0 54 25 21 0
0 54 25 21 0 0 0 0 0 0 0 -9999 -9999 -9999 -9999 -9999 -9999 0 0 0 0 3 15 31 38 5 0 0 0 0 0 22 19 4 3 1 0 0 0 0 0 5 25 33 22 3 0 0 0 0 0 5 bin11 bin12 bin13 4 4 8 8 16 16 32 usbin3 susbin4 susbin5 susbin6 susbin7 susbin8 susbin10 susbin11 susbin12 susbin13 4 14 18 28 13 13 1 0 0 0 8 10 4 17 5 0 0 0 0 0
-9999 -9999 -9999 -9999 -9999 0 0 0 3 15 31 38 5 0 0 0 0 0 22 19 4 3 1 0 0 0 0 0 5 25 33 22 3 0 0 0 0 0 bin11 bin12 bin13 - - - - - - 4 4 8 8 16 16 32 - - - 4 14 18 28 13 13 1 0 0 0 0 8 10 4 17 5 0
3 15 31 38 5 0 0 0 0 0 22 19 4 3 1 0 0 0 0 0 5 25 33 22 3 0 0 0 0 0 bin11 bin12 bin13
22 19 4 3 1 0 0 0 0 0 0 5 25 33 22 3 0 0 0 0 0 0 bin11 bin12 bin13
bin11 bin12 bin13 o <tho< th=""> o o <!--</th--></tho<>
4 4 8 8 16 16 32
usbin3 susbin4 susbin5 susbin6 susbin7 susbin8 susbin9 susbin10 susbin11 susbin12 susbin13 4 14 18 28 13 13 1 0 0 0 8 10 4 17 5 0
4 14 18 28 13 1 0 0 0 8 10 4 17 5 0 0 0 0 0 bin11 bin12 bin13 bin14 bin15 64 64 12
8 10 4 17 5 0
bin11 bin12 bin13 bin14 bin15
4 4 0 0 10 10 32 32 04 04 12
3 2 27 52 13 3 0 a
edbin1 bedbin2 bedbin3 bedbin4 bedbin5 bedbin6 bedbin7 bedbin8 bedbin9 bedbin10
in16
128 256
usbin14 susbin15 susbin16 bedbin1 bedbin2 bedbin3 bedbin4 bedbin5 bedbin6 bedbin7
0 0 0 0 0 1 2 55 35
0 0 0 0 0 0 1 11 44

3.1 Modified Einstein Procedure

1) Compute the measured suspended load in Tons/day using Equation 1:

$$Q_s = 0.0027 Q Conc (tons/day)$$

$$Q_s = 0.0027 * (777) * (2650) = 5,371 \frac{tons}{day}$$

2) Compute the product of the hydraulic radius and friction slope assuming x = 1.535:

2a) First, compute the value of $\sqrt{(SR)}$ using Equation 2:

$$\sqrt{(SR)} = \frac{V_{avg}}{32.63 \log \left[12.27 \frac{h}{k_s} x \right]}$$
$$\sqrt{(SR)} = \frac{3.6}{32.63 \log \left[12.27 * \frac{1.6}{0.00077} * 1.535 \right]} = 0.024$$

2b) Compute the shear velocity using Equation 3:

$$U_* = \sqrt{g(SR)}$$
$$U_* = \sqrt{32.17} * (0.024) = 0.1363 \frac{ft}{s}$$

2c) Compute the laminar sublayer thickness δ using Equation 4:

$$\delta = \frac{11.6v}{U_*}$$
$$\delta = \frac{11.6*(1.35*10^{-5})}{0.1363} = 0.00115 \ ft$$

2d) Recheck x to make sure that the assumption of 1.535 is valid using $k_s = d_{65}$:

$$\frac{k_s}{\delta} = \frac{0.00077}{0.00115} = 0.67$$

Check Figure 1 (Einstein's Plate #3) for a value of $k_s / \delta = 0.67$ or use the equation to determine the value of x. The value of x is approximately 1.5346. Therefore, the assumption of x=1.535 is good. This is a trial and error process to determine the value of x and is carried out by the program using a solver routine to determine the value of x.

3) Compute the value of P using Equation 5:

$$P = 2.303 \log \left[30.2 \frac{hx}{k_s} \right]$$
$$P = 2.303 \log \left[30.2 \frac{(1.6) * (1.5346)}{0.00077} \right] = 11.48$$

4) Compute the fraction of the flow depth not sampled (A') using Equation 6:

$$A' = \frac{d_n}{d_s}$$
$$A' = \frac{0.3}{1.6} = 0.1875$$

5) Compute the sediment discharge Q'_{s,total} through the sampled zone from Equation 7. This is calculated using a percentage of the flow sampled determined from (Einstein's Plate #4) or from the appropriate equation for the value of A' and P (Equation 8 through Equation 11). For an A' of 0.1875 and P of 11.48, the percentage of sampled is approximately 85.5% (Figure 2).

$$\% flowsampled = \frac{100.19 + 31425.83A'^2 - 54359.86A'^4 + 1566703.2A'^6 - 1543898.1A'^8}{1 + 336.12A'^2 + 444.29A'^4 + 15662.05A'^6 + 18936.5A'^8 - 5820.32A'^{10}}$$

with A'=0.1875, the % flow sampled = 0.85 and

$$Q'_{s,total} = Q_s$$
 % flow sampled
 $Q'_{s,total} = 5,371*(0.85) = 4,592\frac{tons}{day}$

6) Compute the bed-load for each size fraction from Table 7:

6a) The first step in computing the bedload is to calculate the shear intensity (ψ) for all particle sizes in the analysis. ψ is calculated using the greater of the following two equations (Equation 12) for all size classes.

$$\psi = 1.65 \left(\frac{d_{35}}{RS_f} \right) \text{ or } 0.66 \left(\frac{d_i}{RS_f} \right)$$

The d_i used in the second equation is the geometric mean for each size class.

$$\psi = 1.65 \left(\frac{0.00065}{0.000576} \right) = 1.858$$
, or $\psi = 0.66 \left(\frac{0.00029}{0.000576} \right) = 0.33$

Size Classes	Geometric Mean	Shear Intensity (ψ)
(mm)	(mm)	
0.001 - 0.002	0.0014	N/A
0.002 - 0.004	0.0028	N/A
0.004 - 0.016	0.0080	N/A
0.016 - 0.0625	0.0316	N/A
0.0625 - 0.125	0.0884	1.858
0.125 - 0.25	0.1768	1.858
0.25 - 0.5	0.3536	1.858
0.5 - 1	0.7071	2.653
1 - 2	1.4142	N/A
2 - 4	2.8284	N/A

 Table 9. Shear Intensities for Size Classes.

6b) Compute the intensity of the bed-load transport (ϕ_*) using Equation 13. ϕ_* can also be determined from Einstein's Plate #5 (a relationship between ψ and ϕ_*):

$$\phi_* = \frac{0.023\,p}{(1-p)}$$

where p is the probability a sediment particle is entrained in the flow and is calculated using Equation 14 and Equation 15. Therefore, to compute the probability "p", evaluate the Error function from a to b. Then, multiply the Error Function by $\frac{1}{2}$ and subtract it from 1. The following table shows the values computed for ϕ_* and $\phi_*/2$ using Error Function evaluation.

Geometric Mean	Shear Intensity (ψ)	Intensity of Bed-	1/2 φ*
(mm)		Load (ϕ_*)	
0.0014	N/A	N/A	N/A
0.0028	N/A	N/A	N/A
0.0080	N/A	N/A	N/A
0.0316	N/A	N/A	N/A
0.0884	1.858	3.563	1.781
0.1768	1.858	3.563	1.781
0.3536	1.858	3.563	1.781
0.7071	2.653	2.152	1.076
1.4142	N/A	N/A	N/A
2.8284	N/A	N/A	N/A

Table 10. Intensity of Bed-Load Transport (ϕ_*).

6c) Compute the unit bed-load for each size fraction using Equation 16:

$$i_B q_B = 1200 d_i^{\frac{3}{2}} i_B \frac{\phi_*}{2}$$

$$i_B q_B = 1200(0.00029)^{\frac{3}{2}} * (0.05) * (1.781) = 0.002 \frac{\frac{lb}{s}}{ft}$$

Geometric Mean (mm)	$1200 d_i^{\frac{3}{2}}$	i _B	1⁄2 φ _*	Unit Bed-Load, i _B q _B (lb/s)/ft
0.0014	N/A	0	N/A	N/A
0.0028	N/A	0	N/A	N/A
0.0080	N/A	0	N/A	N/A
0.0316	N/A	0	N/A	N/A
0.0884	0.006	0.05	1.781	0.00053
0.1768	0.017	0.76	1.781	0.0227
0.3536	0.047	0.18	1.781	0.0152
0.7071	0.13	0.01	1.076	0.0014
1.4142	N/A	0	N/A	N/A
2.8284	N/A	0	N/A	N/A

Table 11. Unit Bed-Load.

6d) Compute the bed-load for each size fraction in tons/day by multiplying by the conversion factor 43.2 and the channel width (Equation 17).

$$i_B Q_B = i_B q_B (43.2W)$$

$$i_B Q_B = (0.00053) * (43.2) * (130) = 2.96 \frac{Tons}{day}$$

Table 12.	Computed	Bed-Load.
-----------	----------	------------------

Geometric Mean	i _B	Unit Bed-Load, i _B q _B	Bed-Load, i _B Q _B
(mm)		(lb/s)/ft	(Tons/day)
0.0014	0	N/A	0.00
0.0028	0	N/A	0.00
0.0080	0	N/A	0.00
0.0316	0	N/A	0.00
0.0884	0.05	0.00053	2.96
0.1768	0.76	0.0227	127.44
0.3536	0.18	0.0152	85.37
0.7071	0.01	0.0014	8.10
1.4142	0	N/A	0.00
2.8284	0	N/A	0.00

7) Compute Suspended Load (Q_s) for each size fraction by multiplying the total sampled suspended load $(Q_{s,total})$ by the suspended load fractions for the sample (Equation 18).

$$Q'_{s} = i_{s} Q'_{s,total}$$

 $Q'_{s} = (0.12) * (4592) = 551 \frac{Tons}{day}$

Geometric Mean	Suspended Load	Suspended Load in	Suspended
	Fractions (1_S)	sampled zone (Q'_{stotal})	$\operatorname{Load}(Q_s)$
(mm)	(%)	(Tons/day)	(Tons/day)
0.0014	0.26	4,592	1,194
0.0028	0.08	4,592	367
0.0080	0.12	4,592	551
0.0316	0.19	4,592	872
0.0884	0.12	4,592	551
0.1768	0.18	4,592	827
0.3536	0.05	4,592	230
0.7071	0.00	0	0
1.4142	0.00	0	0
2.8284	0.00	0	0

Table 13.	Computed	Suspen	ded Load.
-----------	----------	--------	-----------

8) Compute the theoretical exponent for vertical distribution of sediment (Z). This process is a trial and error method.

8a) Compute the ratio $\frac{Q'_s}{i_B Q_B}$ for all size classes with suspended load transport:

$$\frac{Q'_s}{i_B Q_B} = \frac{(551)}{(2.96)} = 186.1$$

Geometric Mean	Suspended Load	Bed-Load	$Q_{\rm s}^{\rm '}$
	(\mathcal{Q}_{s})	$i_B Q_B$	$\overline{i_B \ Q_B}$
(mm)	(Tons/day)	(Tons/day)	
0.0014	1,194	0.00	0.00
0.0028	367	0.00	0.00
0.0080	551	0.00	0.00
0.0316	872	0.00	0.00
0.0884	551	2.96	185.906
0.1768	827	127.44	6.486
0.3536	230	85.37	2.690
0.7071	0	8.10	0.00
1.4142	0	0.00	0.00
2.8284	0	0.00	0.00

8b) There are three size classes that have calculated values for the ratio of the suspended load to the bed-load. None of the ratios is for a size range less than sand/silt split of 0.0625 and should not be used. Therefore, all three size classes will be used as the reference ranges for Z-value computations. The ratio of suspended load to bed-load is set equal to a function with the parameters $I_1^{"}$, $J_1^{"}$, $J_1^{"}$, $J_2^{'}$ using Equation 19 (BOR,1955):

$$\frac{Q'_{s}}{i_{B} Q_{B}} = \frac{I''_{1}}{J''_{1}} \left(PJ'_{1} + J'_{2} \right)$$

The dependent variables for the integral form of the equations for $I_1^{"}, J_1^{"}, J_1^{'}, J_2^{'}$ are A', A'', and Z. A' has previously been computed. A'' is calculated as the following for each size class (Equation 20):

$$A'' = \frac{2d_i}{h}$$
$$A'' = \frac{2*(0.00029)}{(1.6)} = 0.00036$$

For each size class an initial Z-value must be assumed. In order to provide some guidance in the initial guess of the Z-value, Equation 21 is used (from Einstein's Plate #8):

$$Z_{guess} = -0.1465 \ln\left(\frac{Q_{s}}{i_{B}Q_{B}}\right) + 1.0844$$

For the size class 0.062 mm - 0.125 mm an initial Z-value of 0.32 was calculated. For this Z-value, Equation 22 through Equation 26 were used to determine the parameters contained in plates 9-11.

Substituting these values into the right side of Equation 19 gives the following:

$$\frac{I_1^{"}}{J_1^{"}} \left(P J_1^{'} + J_2^{'} \right) = \frac{(56.3)}{(1.18)} \left[(11.48)^* (0.73) + (-0.57) \right] = 372.793$$

372.793 is not "relatively" close to 186.15, therefore, another guess at a Z-value must be computed in order to provide better results. This is a trial and error process that is carried out by the program using a solver routine to determine the value of Z

by minimizing the difference between the ratio $\frac{Q'_{s}}{i_{B} Q_{B}}$ and $\frac{I'_{1}}{J'_{1}} (PJ'_{1} + J'_{2})$.

Through the minimization process, a Z-value of 0.406 computes a close match with a difference of only 8.94E-05. Therefore, a Z-value of 0.406 is selected for this size class. The same technique is applied to the remaining two sizes classes. The final results are presented in the following table:

Grain	A'	$A^{"}$	Z	$I_1^{"}$	$J_1^{"}$	$J_1^{'}$	$-J_{2}^{'}$	Q_{s}	$\frac{I_{1}^{''}}{I_{1}}(PJ_{1}^{'}+J_{2}^{'})$
Size								$i_{P} Q_{P}$	$J_1^{"}$
(mm)								<i>b</i> ∼ <i>b</i>	
0.0884	0.1875	0.00036	0.406	31.514	1.316	0.729	0.597	185.906	185.906
0.1768	0.1875	0.00072	0.823	2.571	3.308	0.795	0.786	6.486	6.486
0.3536	0.1875	0.00145	0.946	1.404	4.58	0.839	0.864	2.690	2.69

 Table 15. Z-value Determination for Suspended Load

8c) Once the Z-values have been determined for the suspended load, a log-log plot is made of the relationship between Z and the fall velocity for each size class. A power function equation is then developed such that $Z = a \omega^b$. The remaining Z-values for the bed-load are computed using this relationship. In this example, the fall velocity has been computed using Rubey's Equation (Equation 26 and Equation 28).

$$F = \left[\frac{2}{3} + \frac{36v^2}{g d_i^3 \left(\frac{\gamma_s}{\gamma} - 1\right)}\right]^{\frac{1}{2}} - \left[\frac{36v^2}{g d_i^3 \left(\frac{\gamma_s}{\gamma} - 1\right)}\right]^{\frac{1}{2}}$$
$$F = \left[\frac{2}{3} + \frac{36*(1.35*10^{-5})^2}{(32.17)*(0.00029)^3*\left(\frac{(165)}{(62.4)} - 1\right)}\right]^{\frac{1}{2}} - \left[\frac{36*(1.35*10^{-5})^2}{(32.17)*(0.00029)^3*\left(\frac{(165)}{(62.4)} - 1\right)}\right]^{\frac{1}{2}} = 0.1433$$

$$\omega = F \left[d_i g \left(\frac{\gamma_s - \gamma}{\gamma} \right) \right]^{\frac{1}{2}}$$

$$\omega = (0.1433) * \left[(0.00029) * (32.17) * \left(\frac{(165) - (62.4)}{(62.4)} \right) \right]^{\frac{1}{2}} = 0.01774 \frac{ft}{s}$$

Table 16 presents the complete summary of fall velocities and Z-values for all sizes classes. Figure 14 is the plot of the three suspended load points indicating the power function regression relationship $Z = a \omega^b$ and the resulting Z-values that were calculating using the regression equation; where **a** is equal to a value of 2.2944 and **b** is equal to a value of 0.415.

di	F	ω	Zassume	Z _{calc}
(mm)		ft/s		
0.0014	0.0003	0.00000	-	0.015
0.0028	0.0008	0.00002	-	0.024
0.0080	0.0040	0.00015	-	0.059
0.0316	0.0317	0.00235	-	0.186
0.0884	0.1433	0.01774	0.406	0.430
0.1768	0.3439	0.06023	0.823	0.715
0.3536	0.5819	0.14414	0.946	1.026
0.7071	0.7229	0.25323	-	1.298
1.4142	0.7820	0.38742	-	1.548
2.8284	0.8041	0.56339	-	1.808

Table 16. Summary of Z-values and Fall Velocities.

Figure 14. Z-value Regression Analysis.

9) Compute the total sediment load.

9a) Calculate the total load due to suspended sediment. Calculate the

ratio $\frac{\left(PJ_{1}^{"}+J_{2}^{"}\right)}{\left(PJ_{1}^{'}+J_{2}^{'}\right)}$ for the size classes used in determining the z-values for suspended

load and smaller (0.001mm to 0.5mm). Multiply this ratio by the computed suspended sediment for each size class as calculated in step 7 of this procedure to compute the total load due to suspended sediment (Equation 29).

$$\frac{\left(P J_{1}^{"} + J_{2}^{"}\right)}{\left(P J_{1}^{'} + J_{2}^{'}\right)} = \frac{\left[\left(11.48\right)*\left(1.365\right) + \left(-2.68\right)\right]}{\left[\left(11.48\right)*\left(0.73\right) + \left(-0.61\right)\right]} = 1.673$$

$$Q_{s,total \, suspended} = Q_{s}^{'} \, \frac{\left(P J_{1}^{"} + J_{2}^{"}\right)}{\left(P J_{1}^{'} + J_{2}^{'}\right)}$$

$$Q_{s,total \, suspended} = (551)*\left(1.673\right) = 921.77 \, \frac{tons}{day}$$

9b) The total load for the remaining size classes are calculated using the computed bed-load. Using the Z-values calculated with the power function from step 8c, calculate $I_1^{"}$ and $-I_2^{"}$ using Equation 30 and Equation 31:

$$I_1^{"} = 0.216 \frac{A^{"(z-1)}}{(1-A^{"})^z} J_1^{"}$$
$$-I_2^{"} = 0.216 \frac{A^{"(z-1)}}{(1-A^{"})^z} J_2^{"}$$

Then, compute the value $(PI_1^{"} + I_2^{"} + 1)$ and multiply by the computed bed-load for that size class to compute the total load due to bed-load (Equation 32).

$$Q_{s,total \ bed} = i_B Q_B \left(P I_1^{"} + I_2^{"} + 1 \right)$$
$$Q_{s,total \ bed} = (8.103) * \left[(11.48) * (0.53) + (-2.13) + 1 \right] = 40.43 \frac{Tons}{day}$$

9c) The total load is then the sum of the total suspended or total bed load of each size class (Equation 33).

$$Q_{s,total} = \sum Q_{s,totalsuspended} + \sum Q_{s,totalbed}$$

Table 17 is shows the complete total load:

Geometric	Q'_{s}	i _B Q _B	$(PJ_{1}^{"}+J_{2}^{"})$	$(PI_1'' + I_2'' + 1)$	Total Load
Mean	~ 3		$\overrightarrow{\left(PJ_{1}^{'}+J_{2}^{'}\right)}$, , , , , , , , , , , , , , , , , , , ,	
(mm)	(Tons/day)	(Tons/day)			(Tons/day)
0.0014	1,194	0.00	1.196		1427.87
0.0028	367	0.00	1.202		441.48
0.0080	551	0.00	1.224		674.61
0.0316	872	0.00	1.328		1158.82
0.0884	551	2.96	1.673	256.359	921.77
0.1768	827	127.44	2.580	36.307	2132.63
0.3536	230	85.37	5.151	9.502	811.17
0.7071	0	8.10		4.989	40.43
1.4142	0	0.00			0
2.8284	0	0.00			0
Total Load =					7,608.8

Table 17. Computed Total Load.

In this example, the suspended load equation was used for size classes smaller than 0.25 mm and the total bed load equation was used for the larger size classes. The total load computed was 7,608.8 tons/day. The same example problem was also input into BORAMEP for comparison.

3.2 BORAMEP Program Solution

3.2.1 Single Sample

Using the input form method, the sample is used to show how the input form can be used to calculate total sediment load. Figure 15 shows the input form and Figure 16 shows the results of the calculations.

📙 Da	taInput							
в	TITLE	Example Proble	em - sample1					
				Use Alternative	Grain Sizes			
[g (ft/s²)	32.2	Suspended Load	Percentages	Bed Load Percenta	iges	 Calculated Sediment Transpor (Tons/Dau) 	t —]
Í	γ _w (lb/ft³)	62.4	0.001 - 0.002	26	0.001 - 0.002		0.001 - 0.002	-
	$\gamma_{\rm s}$ (lb/ft ³)	165.0	0.002 - 0.004	8	0.002 - 0.004		0.002 - 0.004	-
	Q (ft ³ /s)	777	0.004 - 0.016	12	0.004 - 0.016		0.004 - 0.016	-
	V _{avg} (ft/s)	3.6	0.016 - 0.0625	19	0.016 - 0.0625	1	0.016 - 0.0625	_
	h (ft)	1.6	0.0625 - 0.125	12	0.0625 - 0.125	5	0.0625 - 0.125	
ļ	W (ft)	130	0.125 - 0.25	18	0.125 - 0.25	76	0.125 - 0.25	
ļ	T (°F)	51.8	0.255	5	0.255	18	0.255	
ļ	d _n (ft)	0.3	.5 - 1		.5 - 1		.5+1	
ļ	C _s (PPM)	2560	1 · 2		1 - 2		1.2	
ļ	d ₆₅ (mm)	0.235068	2 · 4		2 - 4		2 - 4	
ļ	d ₃₅ (mm)	0.199495				-		
ļ	d _s (ft)	1.6			1		Total Load	
ļ	Sample Date	03/03/1982		Exit	Calculate	e		
ļ	Sample Lime	1200	_					
	Energy Slope (It/It)	10.008						11

Figure 15. Example problem using BORAMEP input form.

🖳 DataInpu	ıt							
в тітц	5	Example Pro	blem - sample1					
a (ft/s²	1	32.2	Suspended Lo	ad Percentages	Bed Load Percent	ages	Calculated Sed	ment Transport
γ _w (lb/f	(²)	62.4	0.001 - 0.002	26	0.001 - 0.002		(Tons/Day) 0.001 - 0.002	1426.977
γ _s (lb/ft		777	0.002 - 0.004	8	0.002 - 0.004		0.002 - 0.004	441.4996
V _{avg} (ft	, /s)	3.6	0.004 - 0.016	12	0.016 - 0.0625		0.004 - 0.016	1157.102
h (ft)		1.6	0.0625 - 0.125	12	0.0625 - 0.125	5	0.0625 - 0.125	919.9885
Ψ (it) [T (°F)		51.8	0.125 - 0.25	18	0.125 - 0.25	76	0.125 - 0.25	2127.748
d _n (ft)		0.3	.5-1		.5-1		.5-1	0
C _s (PP	M)	2560	1 - 2	0	1 - 2		1-2	
d _{es} (mm d _{as} (mm	າ] າ]	0.199495	2 - 4	0	2 - 4	0	2 - 4	0
d _s (ft)		1.6			1		Total load	7554 070411
Sample	Date Date	03/03/1982		Exit				7334.276411
Energy	Slope (ft/ft)	0.008						
								11

Figure 16. Example problem total load results using BORAMEP input form.

The total load computed in BORAMEP was 7554.3 tons/day which is 54.5 tons/day different than the 7,608.8 tons/day calculated in the step-by-step procedure. The differences are due to small differences in z-value calculations and regression analysis.

3.2.2 Multiple Samples

Using the input file method, total sediment load is calculated for all the samples given in

Table 8 at the same time. Figure 17 thru Figure 18 show the steps required to run the BORAMEP program using the file input method.

Figure 17. BORAMEP Startup Form.

MEP STA	TU 🖲 💿 🗖	· C+ C				
Contraction of the statement of the stat	GET FILE NAME TO) OPEN	10/3/2006 2:4	1:56		
Open						? 🗙
Look in:	Example Pro	blem		•	+ 🗈 💣	
Recent	BORAMEP In	nputsheet	Example Prob	lem.csv		
Desktop						
My Documents						
My Computer	File name: Files of type:	BORAME	EP Inputsheet Ex	ample Probl	em.csv 💌	Open Cancel

Figure 18. Open Input File Message Box.

Once the input file is selected the user is then prompted to select a file name and location for the output files generated by the program (Figure 19). After the output file name and location is selected, the program starts calculating total load for each record contained in the input file (Figure 20).

	ATU (G C	10/3/2006 2:45	35		
Save As						? 🗙
Save in:	Example Prob	lem		•	+ 🗈 💣 🎟 •	
Recent Desktop My Documents	BORAMEP Ex	ample Pr	oblem Output,1	xt		
My Computer	File name:	BORAME	P Example Proble	em Outpul	.txt 💌	Save
-	Save as type:	Text files			•	Cancel

Figure 19. Save output file message box.

Figure 20. BORAMEP status message box.

Once the program is finished, it will prompt the user with a dialog box stating the program is complete and list the number of errors that were generated (Figure 21).

Figure 21. Program complete message box.

Once the program has finished, the file called *filename*.txt.sum is easily imported into an Excel spreadsheet and used to view the results of the MEP calculations and carry out additional analysis (Figure 22 and Figure 23). Due to the width of the output file that is generated, the output has been broken into two parts: Part 1 contains the first 13 columns of data and part 2 contains the remaining columns.

***		Discharge	Conc	Suspended	d65	d35	Temp	Computed to	tal load by siz	ze fraction (tor	ns/day)	
Location	Date	(cfs)	(PPM)	Sample (tons/day)	(mm)	(mm)	F	0.001 - 0.002	0.002 - 0.004	0.004 - 0.016	0.016 - 0.062	0.0625 - 0.12
08330000 - Sample1	3/3/1982	777	2560	5370.624	0.2351	0.1995	51.8	1426.98	441.50	674.43	1157.13	920.00
08330000 - Sample2	5/8/1969	4570	3200	39484.8	0.3822	0.2338	10.2	3176.42	397.52	1197.42	5693.75	15092.72
***		Discharge	Conc	Suspended	d65	d35	Temp	Computed to	tal load by siz	ze fraction (tor	ns/day)	
Location	Date	(cfs)	(PPM)	Sample (tons/day)	(mm)	(mm)	F	0.001 - 0.002	0.002 - 0.004	0.004 - 0.016	0.016 - 0.062	0.0625 - 0.125
08330000 - Sample8	2/16/1971	865	1220	2849.31	0.2629	0.2028	56.3	202.58	29.00	87.82	463.32	1163.61
08330000 - Sample10	3/19/1973	1130	2780	8481.78	0.2484	0.1907	44.6	861.45	172.56	434.41	2269.70	3575.15
***		Discharge	Conc	Suspended	d65	d35	Temp	Computed to	tal load by siz	ze fraction (tor	ns/day)	
Location	Date	(cfs)	(PPM)	Sample (tons/day)	(mm)	(mm)	F	0.001 - 0.002	0.002 - 0.004	0.004 - 0.016	0.016 - 0.062	0.0625 - 0.125
08330000 - Sample12	1/22/1979	964	912	2373.754	0.3953	0.2483	39.2	1181.88	169.36	195.75	259.08	124.83
***		Discharge	Conc	Suspended	d65	d35	Temp	Computed to	tal load by siz	ze fraction (tor	ns/day)	
Location	Date	(cfs)	(PPM)	Sample (tons/day)	(mm)	(mm)	F	0.001 - 0.002	0.002 - 0.004	0.004 - 0.016	0.016 - 0.062	0.0625 - 0.125
08330000 - Sample13	12/3/1979	1680	1620	7348.32	0.2955	0.2221	40.1	150.62	0.00	77.13	81.67	183.32

Figure 22. filename.txt.sum output part 1 (imported into Excel).

						Total Load	Total San	d Load						
0.125 - 0.25	0.25 - 0.5	0.5 - 1	1 - 2	2 - 4		(tons/day)	(>0.625m	m)(tons	/day)					
2127.73	806.54	0	0	0		7554.3	3854.3							
14493.62	7184.38	944.63	106.05	0		48286.5	37821.4							
					Total Load	Total Sand	Load							
0.125 - 0.25	0.25 - 0.5	0.5 - 1	1 - 2		(tons/day)	(>0.625mm)(tons/day)						
2232.29	782.01	42.78	0		5003.4	4220.7								
3957.51	927.77	104.75	0		12303.3	8565.2								
									Total Load	Total San	d Load			
0.125 - 0.25	0.25 - 0.5	0.5 - 1	1 - 2	2 - 4	4 - 8	8 - 16	16 - 32		(tons/day)	(>0.625m	m)(tons/day)			
808.84	659.74	136.08	3	0	0	0	0		3538.4	1732.3				
												Total Load	Total Sand I	Load
0.125 - 0.25	0.25 - 0.5	0.5 - 1	1 - 2	2 - 4	4 - 8	8 - 16	16 - 32	32 - 64	64 - 128	128 - 256		(tons/day)	(>0.625mm)	(tons/day)
9585.01	0.00	864.11	0	0	0	0	0	0	0	0		10941.9	10632.4	

Figure 23. filename.txt.sum output part 2 (imported into Excel).

Figure 24 provides an example of a total sediment load rating curve that was generated using results from the BORAMEP program.

Figure 24. Example of total load rating curve analysis.

The file called *filename*.txt.err provides a summary of errors that were encountered by the program and can be used to determine if any samples might be able to be used if additional data is available or known. An example of the error file generated is shown in Figure 25.

08330000 - Sample2,5/8/1969, ERRORCODE:3, TEMPERATURE NOT BETWEEN 32 and 80 DEGREES F 08330000 - Sample3.9/2/1969, ERRORCODE:1, NOT ENOUGH OVERLAPPING BINS FOR MEP 08330000 - Sample4,9/30/1969, ERRORCODE:98,THERE WAS AN ERROR DURING FILE INPUT, MISSING DATA 08330000 - Sample5,7/27/1971, ERRORCODE:1,NOT ENOUGH OVERLAPPING BINS FOR MEP 08330000 - Sample6,7/7/1969, ERRORCODE:1,NOT ENOUGH OVERLAPPING BINS FOR MEP 08330000 - Sample7,10/5/1970, ERRORCODE:98,THERE WAS AN ERROR DURING FILE INPUT, MISSING DATA 08330000 - Sample9,7/27/1971, ERRORCODE:4,CONTINUITY NOT SATISFIED 08330000 - Sample11,7/30/1973, ERRORCODE:8,D65 < D35 08330000 - Sample14,4/5/1996, ERRORCODE:1112,FITTED Z-VALUES GENERATED NEGATIVE EXPONENT, NOT CONTINUING ...

Figure 25. Example filename.error.txt.err output.

BORAMEP Program Manual

From the error file and codes provided, sample 11 appears that it could be used if the discrepancy between the d65 and d35 was looked into. For this example, the d65 and d35 values were switched, therefore if they are switched back the program is able to calculate total load for this sample. This is just one way that the error file can be used to understand why a sample might generate an error within the program.

4.0 GLOSSARY OF TERMS

•	Single prime mark on A, J, or Q designates association with the sampling depth
"	Double prime mark on A, J, I, or Q designates association with the total depth through which suspended sediment is discharged
А	Stream cross-section area in square feet
Å	Ratio of d _n to d _s
Å"	Ratio of 2d _i to h
B*	Constant, 0.143
Conc or Cs	Measured suspended-sediment concentration
h	Mean depth of water
d _n	Vertical distance not sampled; the distance between the bottom of the sampled zone and the streambed as defined by the sampler used
ds	Vertical distance sampled; the average of the total depths recorded at the sampling verticals
di	Geometric mean diameter of a size range
d ₃₅	Particle size at which 35 percent of the bed material by weight is finer
d ₆₅	Particle size at which 65 percent of the bed material by weight is finer
d ₉₀	Particle size at which 90 percent of the bed material by weight is finer
ERF	Error Function integral
F	A mathematical abbreviation
g	Acceleration of gravity, 32.2 feet per second per second
h	flow depth in feet
$\dot{i}_{\rm B}$	Fraction of bed material in a given size range
\dot{i}_s	Fraction of suspended material in a given size range
$i_{\rm B}q_{\rm B}$	Sediment discharge through the bed layer of particles of a given size range, in pounds per second per foot of width

BORAMEP Program Manual

i _B Q _B	Sediment discharge through the bed layer of particles of a given size range, in tons per day
I" ₁	A mathematical abbreviation that contains J" ₁
J ' ₁	A mathematical abbreviation
J " ₁	A mathematical abbreviation
J'2	A mathematical abbreviation, always negative
k	Effective height of the roughness elements of the channel
k _s	Equivalent sand roughness for a particular roughness k, that particle size of the bed material for which 65 percent by weight is finer
р	Probability of a particle of a diameter D being eroded
Р	Mathematical abbreviation
Q	Water discharge through a cross section, in cubic feet per second
Qs	Discharge of suspended sediment through a cross section, in tons per day
Q ['] s	Discharge of suspended sediment of a size range through a cross section, in tons per day
$Q_{s,total}$ suspended	Total suspended sediment load through a cross section, in tons per day
Qs,total bed	Total bed sediment load through a cross section, in tons per day
Q's,total	Total sediment load through a cross section, in tons per day
R	Hydraulic radius
(SR)	Slope-hydraulic radius function
t	Water temperature in degrees Fahrenheit
V _{avg}	Mean cross-sectional velocity of flow
Vs	Fall velocity for the geometric mean size for a size range
U*	Mean cross-sectional shear velocity; equals $\sqrt{g(R S_f)}$
W	Width of the channel in feet
X	Dimensionless paramenter
Ζ	A theoretical exponent of the equation that describes the vertical distribution of suspended sediment of a size range
δ	Thickness of laminar sublayer
γ_{s}	Specific weight of solids
$\gamma_{\rm W}$	Specific weight of water

$\eta_{\scriptscriptstyle 0}$	Constant, 0.5
ϕ_*	Intensity of bedload transport for individual grain size for the modified Einstein procedure
Ψ	Intensity of shear on particles; function for correlating the effects of flow with the intensity of bedload transport
ν	Kinematic viscosity
ω	Fall velocity, in feet per second; calculated using Rubey's equation

5.0 REFERENCES

- Bureau of Reclamation. (1955 revised). *Step Method for Computing Total Sediment Load by the Modified Einstein Procedure*. Prepared by Sedimentation Section Hydrology Branch Project Investigation Division Bureau of Reclamation.
- Bureau of Reclamation. (1966). *Computation of "Z's" for Use in the Modified Einstein Procedure*. Prepared by Joe Lara, Hydraulic Engineer. Division of Project Investigations Hydrology Branch Sedimentation Section.
- Bureau of Reclamation. (1969). *Guide for Application of Total Sediment Load Computer Program*. Prepared by Sedimentation Section Hydrology Branch Project Investigation Division Bureau of Reclamation.
- Burkham, D.E., and Dawdy, D.R. (1980). *General Study of the Modified Einstein Method of Computing Total Sediment Discharge*. USGS Water Supply Paper 2066.
- Colby, B.R., and Hembree, C.H. (1955). *Computations of Total Sediment Discharge Niobrara River Near Cody, Nebraska*. USGS Water Supply Paper 1357.
- Einstein, H.A. (1950). *The bed-load function for sediment transportation in open channel flows*. U.S. Department of Agriculture, Soil Conservation Service, Technical Bulletin No. 1026.
- Jay, Forrest, Albert, J., and Julien, P.Y., 2005, "Low Flow Conveyance Channel BORAMEP Total Load Analysis" Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado.

Julien (1995). Erosion and Sedimentation. Cambridge University Press.

Shah, Seema C., 2006, "Variability in Total Sediment Load Using BORAMEP on the Rio Grande Low Flow Conveyance Channel" Masters Thesis, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado.

Yang, C.T. (1996). *Sediment Transport Theory and Practice*. The McGraw-Hill Companies, Inc.