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Outline 
• Introduction and basic concepts 

– What is an event tree? 
– What do I need to construct an event tree? 
– What is the theoretical basis for an event tree? 

• Special topics 
– Partitioning the range of loadings 
– Background calculations 
– Annualized Life Loss and event trees 
– Common Cause Adjustment 
– Monte Carlo simulation 
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What is an event tree? 

• A graph object consisting of any number of 
branches and vertices (or “nodes”) 
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Are event trees helpful in a risk analysis? 

• Event trees can help improve understanding of the 
causal structure of the potential failure mode (PFM) 
being considered 

• The benefits of using an event tree include: 
– Improved understanding of the PFMs by team members 

(i.e. those who are estimating risks) 
– Improved understanding of the PFMs by report authors 

(i.e. those who are interpreting the risks) 
– Improved understanding of the PFMs by by decision 

makers (i.e. those who must act based on reported risks) 
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Are event trees required in a risk analysis? 

• No! While convenient, the use of an event 
tree is by no means required 
– The phrase “event tree approach” is sometimes 

used interchangeably with the phrase “risk 
analysis”.  

– However, the rules of probability that govern the 
risk analysis process hold true regardless of 
whether an event tree is constructed 

– There is nothing that an event tree can do that 
cannot be done using a spreadsheet alone 
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What do I need to construct an event tree? 
• A potential failure mode description 
• Probability estimates for the component 

events of the PFM 
• A software program for building event trees 

– BOR uses Precision Tree, a component of the 
Palisade Decision Suite that functions as an add-
on to Microsoft Excel 

– Additional software may be necessary to perform 
a Monte Carlo simulation. BOR uses the @risk 
component of the Palisade Decision Suite 
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Is there a theoretical basis for event 
tree calculations? 

• The internal logic of an event tree is almost 
entirely based on: 
– The intersection formula (multiplication rule) 

• P(AB) = P(A) * P(B|A)    note: AB is short for A ∩ B  
• P(ABC) = P(A) * P(B|A) * P(C|AB) 

– The total probability theorem 
• Given ME and CE events A, B, and C, P(E) = P(E|A)P(A) + 

P(E|B)P(B) + P(E|C)P(C) 
• The conditioning events could be e.g. load ranges 
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Example 1 
• Consider the following PFM description: 

– In the year under consideration, an earthquake with a 
peak horizontal acceleration in excess of 0.6g occurs at the 
site, triggering foundation liquefaction. Embankment slope 
instability occurs upstream, resulting in crest loss in excess 
of the available freeboard and a breach of the reservoir 

• The PFM can be discretized as follows: 
– Event E1: 0.6g PHA is exceeded at the site in a given year 
– Event E2: Extensive foundation liquefaction is triggered 
– Event E3: Upstream slope instability occurs 
– Event E4: A breach occurs 
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Example 1 
• For the component events of the PFM, the 

following probabilities have been estimated: 
– P(E1) = 0.001 
– P(E2|E1) = 0.5 
– P(E3|E1 ∩ E2) = 0.1 
– P(E4|E1 ∩ E2 ∩ E3) = 0.2 

• What is the Annual Failure Probability (AFP)? 
• Hint: The AFP is equal to the  

intersection probability of the 
 events that comprise the PFM 
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“Spreadsheet” solution 

• Use the intersection probability formula 
• For four events A, B, C, D, the formula is: 

– P(ABCD) = P(A) * P(B|A) * P(C|AB) * P(D|ABC) 

• In our case, 
– P(E1 ∩ E2 ∩ E3 ∩ E4)  

 = P(E1) * P(E2|E1) * P(E3|E1 ∩ E2) * P(E4|E1 ∩ E2 ∩ E3) 
 = 0.001 * 0.5 * 0.1 * 0.2 
 = 0.00001 

• The AFP is equal to 0.00001 
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“Event tree ” solution 

• Event would first be constructed using the 
event tree software 

• Once probability estimates are placed in the 
correct slots, APF is automatically calculated 
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Example 2 
• Consider the following slightly modified PFM 

description: 
– In the year under consideration, an earthquake occurs at 

the site, triggering foundation liquefaction. Embankment 
slope instability occurs upstream, resulting in crest loss in 
excess of the available freeboard and a breach of the 
reservoir 

• Because failure is no longer premised on the 
exceedance of a particular threshold, several 
different load ranges must now be considered  

12 



Example 2 
• For the component events of the PFM, the 

following probabilities have been estimated: 
– P(PHA < 0.3g) = 0.9; P(0.3g < PHA < 0.6g) = 0.099;  

P(PHA > 0.6g) = 0.001 
– P(E2|PHA < 0.3g) = 0; P(E2|0.3g < PHA < 0.6g) = 0.05; 

P(E2|PHA > 0.6g) = 0.5 
– P(E3|0.3g < PHA < 0.6g ∩ E2) = 0.1;   

P(E3| PHA > 0.6g ∩ E2) = 0.1 
– P(E4|0.3g < PHA < 0.6g ∩ E2 ∩ E3) = 0.2;  

P(E4|PHA > 0.6g ∩ E2 ∩ E3) = 0.2 

• What is the Annual Failure Probability (AFP)? 
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“Spreadsheet” solution 

• Step 1. Use intersection probability formula 
• For the PHA < 0.3g load branch, no failure 
• For the 0.3g < PHA < 0.6g load branch, the 

“sub-AFP” is: 
– P(Load ∩ E2 ∩ E3 ∩ E4)  

 = 0.099 * 0.05 * 0.1 * 0.2 = 0.00001 

• For the PHA > 0.6g load branch:  
– P(Load ∩ E2 ∩ E3 ∩ E4)  

 = 0.001 * 0.5 * 0.1 * 0.2 = 0.00001 
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“Spreadsheet” solution 

• Step 2. Use the total  
probability theorem 

• AFP = {P(Fail|PHA < 0.3g)}*P(PHA < 0.3g)+ 
{P(Fail|0.3g < PHA < 0.6g)}*P(.3g < PHA < 0.6g) 
+ {P(Fail|PHA>0.6g)} *P(PHA>0.6g)  
= 0 + 0.000099 + 0.00001 = 0.000109 

• Note the expressions in the curly brackets are 
referred to as conditional failure probabilities 
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“Event tree ” solution 
• Less messy than the spreadsheet solution 
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Summary of the basic concepts 
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Partitioning the load range 

• When the possibility of failure is tied to the 
exceedance of a simple threshold (such as in 
the case of a static PFM), it is relatively easy to 
assign a load probability. (→exceedance curve) 

• For a seismic or hydrologic PFM, performance 
of the dam could vary depending on the 
magnitude of the loading. For example, there 
may be a higher conditional probability of 
failure at a 0.6g PHA than a 0.3g PHA. 
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Partitioning the load range 

• To help develop estimates that are sensitive to 
the magnitude of the loading, the overall load 
range is split into bins, as in the case of the 
previous example 
– Load range 1: PHA < 0.3g; Load range 2: 0.3g < PHA < 0.6g 

Load range 3: PHA > 0.6g 

• Continuous sampling of load probability is also 
possible, but beyond the  
scope of this presentation 
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Partitioning of the load range 
• The appropriate number of load bins to use 

depends on the specific needs of the risk 
team, and on the information available 
– The use of not enough load bins could result in a 

critical load range being masked, or in broad 
uncertainty in the probability estimates 

– The use of too many load bins could result in an 
unmanageable number of risk estimates, and 
imply a degree of precision that is not really there 
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Partitioning of the load range 
• In many cases, the type and number of 

available analysis results can provide the team 
with a sense of how many load bins to use 

• For example, if finite element deformation 
results were available for 5K, 20K, and 50K 
ground motions, it would make sense to use 
four load bins (with the lowest not associated 
with a significant probability of failure) 
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Selecting load bin bounds 

• Suppose that analysis results are available for 
the 5K (PHA = 0.3g), 20K (PHA = 0.6g), and 50K 
(PHA = 0.9g) ground motions.  

• What would be the appropriate bin bounds to 
select given the available data? 
– Approach 1: Select bounds that correspond to the 

return periods associated with the results 
– Approach 2: Select bounds such that the return 

periods associated with the results are the 
“typical” return periods of the load bin 
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Approach 1 
• Advantages 

– Simple and straightforward 

• Disadvantages 
– Conditional probability estimates, in addition to 

taking into account other uncertainty sources, 
must also reflect the full range of responses 
spanned by the bounding sets of results 
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Approach 2 
• Advantages 

– Conditional probability estimates can now be 
focused on a single “typical” set of analysis 
results, while still taking into account the 
uncertainty of those results 

• Disadvantages 
– Requires a bit of thinking - how to select bounds? 
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• The distribution of return periods for a given 
load branch (e.g. 100 to 1000-yr) can be 
approximated as a histogram with a finite 
number of bins (say, 9) 

• This histogram can be generated by 
rewriting the intersection probability formula 
as P(A|B) = P(AB)/P(B), and applying it to 
each of the chosen bins 

• For example, for the 100-200 yr bin, have 
P(100-200 yr eq | 100-1000 yr eq) = 
 P(100-200 yr eq AND 100-1000 yr eq)  
 ÷ P(100-1000 yr eq) 
= P(100-200 yr eq) ÷ P(100-1000 yr eq) 
= (1/100 – 1/200)  ÷ (1/100 – 1/1000) 
= 0.56 

• The histogram can then be programmed as 
an @risk distribution  
 

 

Step 1: Define a rt. period distribution 
Range p

100 to 200 year 0.56
200 to 300 year 0.19
300 to 400 year 0.09
400 to 500 year 0.06
500 to 600 year 0.04
600 to 700 year 0.03
700 to 800 year 0.02
800 to 900 year 0.02
900 to 1000 year 0.01



• We need to determine which point estimator to focus on for 
selecting the “typical” return period of each load branch 

• For the 100-1000 year distribution, µ = 264 and x50 = 190 
• Mode undefined for the histogram but presumably = 100 

 
 

 
 

 

Step 2. Look for a “typical” rt. period 



• Selecting the mode would make sense if we 
were using Approach 1, since the mode is 
equal to the lower bound, and for Approach 
1, the upper and lower bounds are the ones 
associated with the available results 

• Either the mean µ or the median x50 EQ of 
the return period distribution should be used 
to represent the “typical EQ” 

• The mean is often selected, since it is more 
familiar to many estimators than x50  

• Note that if we had simply assumed a PERT 
distribution, would have gotten nearly the 
same results. E.g. for the 100-1000 yr 
branch, µ = 250 and x50 = 217,  
using PERT(100,100,1000) 
 

 

Step 3: Select a “typical” rt. period 



Background calculations 

• In many cases, the conditional probability 
estimates are plugged directly into the event 
tree. 

• In some cases, instead of being directly 
estimated, these probability estimates are 
calculated from other quantities that have 
been directly estimated 
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Background calculations 

• In these cases, the event tree must be linked 
to background calculations, often located in 
an adjacent spreadsheet tab 

• Occurs in the context of seismic and 
hydrologic PFMs 

• In evaluating the conditional probability of 
breach by overtopping, a risk team often 
develops a system response (“fragility”) curve 
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System response curve 

• Allows the conditional probability of breach to 
be evaluated over a continuous range of 
residual freeboards 

• Residual freeboard can be randomly sampled 
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Annualized Life Loss 
• An event tree built using event tree software 

often has “slots” for consequence estimates 
• The number shown to the right of the slot is 

referred to as the Annualized Life Loss 
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Annualized Life Loss 
• In a multiple-branch event tree, the total 

Annualized Life Loss would be calculated by 
summing across branches 
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Annualized Life Loss 

• The theoretical basis for these operations is 
different than that of the AFP calculations 

• Annualized Life Loss is interpreted as the 
expected value of Life Loss, itself interpreted 
as a random variable (RV) whose “outcomes” 
are the life loss estimates developed for 
different breach mechanisms 
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Annualized Life Loss 
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Annualized Life Loss: summary 
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Common Cause Adjustment 
• This topic is covered in detail in the Combining 

and Portraying Risks presentation 
• The purpose of these slides is to illustrate how 

the use of event tree techniques could help 
identify the need to perform a CCA 

• Note: could apply at various levels of event tree 
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Background 
• A split in the event tree represents a partition 

of the total event space (or a reconditioned 
sample space) into mutually exclusive and 
collectively exhaustive sub-events. 
– At a binary split in an  

event tree, the events  
represented by the two  
branches are not only CE 
and ME, but also  
Complementary. 
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Background 
• Since they are the result of the partitioning of 

event space into ME events, the intersection 
events associated with end-branches are also 
ME (but not CE, unless non-breach considered) 
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Background 
• What this means is that if all the PFMs for a 

dam or levee were portrayed in a single 
properly constructed event tree, there would 
be no need to correct for the intersection area 
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Common Cause Adjustment 
• Unfortunately, the risks of different PFMs are 

often estimated at different times, or by 
entirely different teams  

• Consider for example a seismic spillway PFM 
and a seismic embankment liquefaction PFM 

• For the controlling > 50K EQ, spillway team 
has estimated a conditional failure probability 
of 0.5, whereas the embankment team has 
estimated a 0.7 conditional failure probability 
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Common Cause Adjustment 
• When these results are portrayed in a single 

event tree, one of the axioms of probability 
appears to be violated (P[S] = 1 must still hold 
in a reconditioned sample space)  
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Common Cause Adjustment 
• The problem is not that the risk estimates are 

“wrong”, only that the events that they have 
been estimated for intersect. 

• A finite intersection would be expected for two 
statistically independent events such as spillway 
failure and embankment breach 

• Intersection area could be large in a space 
conditioned by occurrence of an EQ or flood 

• Solution: Common Cause Adjustment (SI events) 
42 



Common Cause Adjustment 
• Purpose is to correct the total AFP 
• For consistency (and bookkeeping), 

the intersection area is reallocated to 
individual PFMs, allowing their AFPs 
to sum directly to the total AFP 

• For the purposes of calculating the 
total AFP, the adjusted PFMs can thus 
be treated as ME. Note this does not 
make them ME. The PFMs remain SI, 
and the original PFM risk estimates 
are still correct (events just intersect) 
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Common Cause Adjustment 

• Adjusted conditional failure probabilities for 
the example (for details, see Combining and 
Portraying Risks presentation) 
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Monte Carlo Simulation 
• Most of the examples and event trees in this 

presentation involve point estimates of 
conditional probability 

• In practice, conditional probabilities are nearly 
always estimated as ranges or distributions 

• The purpose of this is to capture uncertainty 
• The most practical way to reflect the input 

estimate uncertainty in the output AFP is to 
perform a Monte Carlo simulation  
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Monte Carlo Simulation 

• Monte Carlo simulation involves the random 
sampling of input distributions (such as 
conditional probability estimates, life loss 
estimates) in accordance with their shapes 

• For each trial, an output value of AFP (or 
Annualized Life Loss) is recorded 

• Many event tree software packages (such as 
Precision Tree) are set up to perform MC 
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• The AFP is a product function of the n probability 
distributions that form the basic inputs of the event tree 

• The MC simulation process allows an output distribution to 
be built through repeated random sampling of inputs 

• If we could easily develop a closed form solution for the 
PDF of the AFP, there would be no reason to perform MC 

• Since we can’t, the MC  
output distribution pro- 
vides a good model of  
what the analytical AFP 
distribution looks like 
 

 

Understanding MC 



• For simple event trees, the mean AFP can be estimated by 
multiplying out the means of the input distributions. This is typically 
equal to the number shown in the AFP output cell with MC not running 

 

 

 

 

• For complex event trees involving background calculations and 
system response curves, the number shown in the AFP output cell 
with Monte Carlo not running is typically meaningless 

• When probability distributions are used as inputs the mean AFP 
should always taken as the mean of the MC output distribution 

Product Distributions 



• The Central Limit Theorem states that a product distribution of n 
random variables will tend toward the Lognormal as n → large # (also 
predicts that summed distributions approach Gaussian) 

• Holds true regardless of what the input distributions look like, and the 
effect can be observed even when n is relatively small  

• For a lognormal distribution, have µ > x50, so even if the input 
distributions are symmetric, the mean of the output distribution will 
typically not be equal to the product of the input means 
 

 

Central Limit Theorem 



Questions 
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