Best Practices in Dam and
Levee Safety Risk Analysis

-5. Event Trees

June 23, 2015

ez RECLAMATION

e Managing Water in the West

m US Army Corps of Engineers
BUILDING STRONG¢«

BUReay ¢




Outline

e Introduction and basic concepts

— What is an event tree?
— What do | need to construct an event tree?
— What is the theoretical basis for an event tree?

e Special topics

— Partitioning the range of loadings

— Background calculation
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What is an event tree?

* A graph object consisting of any number of
branches and vertices (or “nodes”)




Are event trees helpful in a risk analysis?

e Event trees can help improve understanding of the
causal structure of the potential failure mode (PFM)

being considered

 The benefits of using an event tree include:

— Improved understanding of the PFMs by team members
(i.e. those who are estimating risks) '

Improved understandlng of the PFMs by repo -




Are event trees required in a risk analysis?

e No! While convenient, the use of an event
tree is by no means required
— The phrase “event tree approach” is sometimes

used interchangeably with the phrase “risk
analysis”.

— However, the rules of probability that govern
risk analysis process hold true regardles
vhether an event tree
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What do | need to construct an event tree?

e A potential failure mode description

* Probability estimates for the component
events of the PFM

e A software program for building event trees

— BOR uses Precision Tree, a component of the
Palisade Decision Suite that functlons as @
on to Microsoft ExceI '




Is there a theoretical basis for event
tree calculations?

 The internal logic of an event tree is almost
entirely based on:
— The intersection formula (multiplication rule)
 P(AB) =P(A) * P(B|A) note: AB is short for An B
 P(ABC) =P(A) * P(B|A) * P(C|AB)
— The total probability theorem
~ * Given ME and E ever B, ¢
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Example 1
e Consider the following PFM description:

— In the year under consideration, an earthquake with a
peak horizontal acceleration in excess of 0.6g occurs at the
site, triggering foundation liquefaction. Embankment slope
instability occurs upstream, resulting in crest loss in excess
of the available freeboard and a breach of the reservoir

e The PFM can be discretized as follows:
— Event E1: 0.6g PHA is exceeded at the 5|te in ¢
- — Event E2: Extenswef- ' {




Example 1

 For the component events of the PFM, the

following probabilities have been estimated:
— P(E1) = 0.001

— P(E2|E1)=0.5

— P(E3|E1 N E2)=0.1

— P(E4|E1 N E2 N E3)=0.2

 What is the Annual Failure Probability (
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“Spreadsheet” solution

e Use the intersection probability formula

e For four events A, B, C, D, the formula is:
— P(ABCD) = P(A) * P(B|A) * P(C|AB) * P(D|ABC)

* |n our case,

— P(E1 n E2 Nn E3 N E4)
= P(E1) * P(E2|E1) * P(E3|E1 N E2) * P(E4|
- =0.001*0.5*0.1 : =
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“Event tree ” solution

 Event would first be constructed using the
event tree software

* Once probability estimates are placed in the
correct slots, APF is automatically calculated

P(E1) P(E2IE1)  P(E3|E1E2)
\ \ P(E4|E1E2E3) AFP
@ g @ o e @ g ¥ @ 5 ey, o I'ZOFS




Example 2

e Consider the following slightly modified PFM
description:

— In the year under consideration, an earthquake occurs at
the site, triggering foundation liqguefaction. Embankment
slope instability occurs upstream, resulting in crest loss in
excess of the available freeboard and a breach of the
reservoir

e Because failure is no Ionger premlse '
ceedance of a parti




Example 2

 For the component events of the PFM, the

following probabilities have been estimated:

— P(PHA < 0.3g) = 0.9; P(0.3g < PHA < 0.6g) = 0.099;
P(PHA > 0.6g) = 0.001

PHA < 0.3g) = 0; P(E2|0.3g < PHA < 0.6g) = 0.05;

— P(E2

P(E2
— P(E3
P(E3
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PHA > 0.6g) = 0.5

0.3g<PHA<0.6g N E2) =0.1;
0.1




“Spreadsheet” solution

e Step 1. Use intersection probability formula
 For the PHA < 0.3g load branch, no failure

 Forthe 0.3g < PHA < 0.6g load branch, the
“sub-AFP” is:

— P(Load N E2 N E3 N E4) 4
=0.099 *0.05*0.1*0.2=0.00001




“Spreadsheet” solution

e Step 2. Use the total <\___>/

probability theorem  |%% ~% |
e AFP = {P(Fail | PHA < 0.3g)}*P(PHA < 0.3g)+
{P(Fail|0.3g < PHA < 0.6g)}*P(.3g < PHA < 0.6¢
+ {P(Fail|[PHA>0.6g)} *P(PHA>0.6g)
= 0+ 0.000099 + 0.00001 = 0.00010¢

Failure Event




“Event tree ” solution

e Less messy than the spreadsheet solution

1.00€-05

Sub-AFP 1
Sub-AFP 2

Liquefaction Triggered
0

An EQ occurs

0

Total AFP 1.09E-04
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Summary of the basic concepts

Calculations in this direction are based on the intersection formula
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Partitioning the load range

 When the possibility of failure is tied to the
exceedance of a simple threshold (such as in
the case of a static PFM), it is relatively easy to
assign a load probability. (- exceedance curve)

* For a seismic or hydrologic PFM, performan :
of the dam could vary depending on tl
- magnitude of the loading |
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Partitioning the load range

 To help develop estimates that are sensitive to
the magnitude of the loading, the overall load

range is split into bins, as in the case of the
previous example

— Load range 1: PHA < 0.3g; Load range 2: 0.3g < PHA < 0. 6g
Load range 3: PHA > 0.6g |

* Continuous sampling of load prob:z

.......................




Partitioning of the load range

e The appropriate number of load bins to use
depends on the specific needs of the risk
team, and on the information available

— The use of not enough load bins could result in a
critical load range being masked, or in broad
uncertainty in the probability estimates

— The use of too many load bins could




Partitioning of the load range

* In many cases, the type and number of
available analysis results can provide the team

with a sense of how many load bins to use

* For example, if finite element deformation
results were available for 5K, 20K, and 50K




Selecting load bin bounds

e Suppose that analysis results are available for
the 5K (PHA = 0.3g), 20K (PHA = 0.6g), and 50K
(PHA = 0.9g) ground motions.

 What would be the appropriate bin bounds to
select given the available data?

— Approach 1: Select bounds that correspc '
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Approach 1

e Advantages

— Simple and straightforward

e Disadvantages

— Conditional probability estimates, in addition to
taking into account other uncertainty sources
must also reflect the fuII range of resp on




Approach 2

* Advantages

— Conditional probability estimates can now be
focused on a single “typical” set of analysis
results, while still taking into account the
uncertainty of those results

e Disadvantages
— Requires a bit of thinking

4K to 18K
18K to 45K




Step 1: Define a rt. period distribution

e The distribution of return periods for a given Range p
load branch (e.g. 100 to 1000-yr) can be 100to 200year  0.56
approximated as a histogram with a finite 200to 300year ~ 0.19
number of bins (say, 9) 300to 400year  0.09

« This histogram can be generated by 400to 500year  0.06
rewriting the intersection probability formula 50010 600year | 0.04
as P(A|B) = P(AB)/P(B), and applying it to 600to 7/00year  0.03
each of the chosen bins 700to 800year  0.02

« For example, for the 100-200 yr bin, have 800to S year  0.02

P(100-200 yr eq | 100-1000 yr eq) = S00to 1000year _ 0.01
P(100-200 yr eq AND 100-1000 yr eq) a
+ P(100-1000 yr eq) =l

= P(lOO -200 yr eq) P(100-1000 yreq)

—1/200) +

ﬂ' M@ ms, \
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Step 2. Look for a “typical” rt. period

 We need to determine which point estimator to focus on for
selecting the “typical” return period of each load branch

e For the 100-1000 year distribution, p = 264 and x;; = 190
 Mode undefined for the histogram but presumably = 100

NBUREAY oF RECLAMATON



. (“ - )
Step 3: Select a “typical
. Selecting the mode would make sense if we &
were using Approach 1, since the mode is
equal to the lower bound, and for Approach

1, the upper and lower bounds are the ones
associated with the available results

e Either the mean pu or the median x;, EQ of
the return period distribution should be used
to represent the “typical EQ”

» The mean is often selected, since it is more
familiar to many estimators than Xz,

* Note that if we had simply assumed a PERT
distribution, would have gotten nearly the

i

period
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Background calculations

* In many cases, the conditional probability
estimates are plugged directly into the event

tree.
* |[n some cases, instead of being directly
estimated, these probablllty estlmates :




Background calculations

* |n these cases, the event tree must be linked
to background calculations, often located in
an adjacent spreadsheet tab

 Occurs in the context of seismic and
hydrologic PFMs

* In evaluating the conditional probabi

[

T




System response curve

* Allows the conditional probability of breach to
be evaluated over a continuous range of
residual freeboards

* Residual freeboard can be randomly sampled

a/h )
A

P(bre

nnnnnnnnnnnnnn 22 -3’
Resid

170 3
Freeboard

Randomly sampled residual freeboard



Annualized Life Loss

 An event tree built using event tree software
often has “slots” for consequence estimates

e The number shown to the right of the slot is
referred to as the Annualized Life Loss

Input slot for estimated life loss

Output slot for Annualized Life Loss
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Annualized Life Loss

* In a multiple-branch event tree, the total
Annualized Life Loss would be calculated by
summing across branches

0.2 1.00E-05
100 1E-3
al curs
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Annualized Life Loss

 The theoretical basis for these operations is
different than that of the AFP calculations

 Annualized Life Loss is interpreted as the

expected value of Life Loss, itself interpreted
as a random variable (RV) whose outco mes”
are the life loss estlmates develo ;




Annualized Life Loss

* The formula governing this operation is the
expectation formula for a discrete RV:

— Let L be a random variable representing the life
loss associated with the failure of a dam or levee

— For an event tree with n branches leading to
breach, E[L] = X} ; * P(l;), where [is th




Annualized Life Loss: summary

. No fail branch
< 4K f"' :
life loss outcome 1
life loss outcome 2
Dam breaches :
- PFM 2 life loss outcome 3
0.0021075

1.94E-06 1.94EL06 Breach by gradual IE
1.94E-06 ALL (1)

4K to 18K
1 1
——— AE—OG‘ 1.67E06 Breach by sudden IE
/ /10 10 + 1.67E-05 ALL (2)
2 H9E-05 2.09¢05 Breach by rapid OT
1 01"

> 45K
100 + 2.09E-03 ALL (3)

= 2.11E-03 Total ALL

probability of life loss outcome 1
probability of life loss outcome 2
probability of life loss outcome 3

Expected Life Loss in a given year by this PFM
:- <
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Common Cause Adjustment

e This topic is covered in detail in the Combining
and Portraying Risks presentation

 The purpose of these slides is to illustrate how
the use of event tree techniques could help
identify the need to perform a CCA

 Note: could apply at various levels of event
S Q

A ;, \ B /,>'
Earthquake
Q Occurs




Background

e Asplitin the event tree represents a partition
of the total event space (or a reconditioned
sample space) into mutually exclusive and
collectively exhaustive sub-events.

— At a binary split in an
event tree, the events
represented by the two

NNNNNNNNNN
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Background

e Since they are the result of the partitioning of
event space into ME events, the intersection
events associated with end-branches are also
ME (but not CE, unless non-breach considered)

‘ No fail branch

< 4K

Dam breaches
- PFM 2

0.0021075
prrv— 1.94E-06 ‘ 1.94E-06 Breach by gradual 1P
1 1 1.94E-06_A 1)
r—— 1.67E-06‘ 1.67E-06 Breach by sudden |
10 10 1.67E-05 ALL (2)

2.09E-05 Breach by rapid OT

2.09E-05
> 45K
100‘ 100 / 2.09E-03 ALL (3)

< These sub-PFMs are Mutually Exclusive events 2.11E-03 Total ALL




Background

 What this means is that if all the PFMs for a
dam or levee were portrayed in a single

properly constructed event tree, there would
be no need to correct for the intersection area

1 DEpI\RT MENT OF THE ”"75810
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Common Cause Adjustment

e Unfortunately, the risks of different PFMs are
often estimated at different times, or by
entirely different teams

 Consider for example a seismic spillway PFM
and a seismic embankment liquefaction PFM

e For the controlling > 50K EQ, spillwqy 2
has estimated a conditional failure |




Common Cause Adjustment

e When these results are portrayed in a single
event tree, one of the axioms of probability
appears to be violated (P[S] = 1 must still hold
in a reconditioned sample space)

: : 0.5 #VALUE!
Spillway fails
0
- 50K quake occurs +
0.7‘ H#VALUE!

Embankment fails




Common Cause Adjustment

e The problem is not that the risk estimates are

“wrong”, only that the events that they have
been estimated for intersect.

e A finite intersection would be expected for two
statistically independent events such as splllwa
failure and embankment breach

* Intersection area could be large in :

BUREAY oF necunlm“



Common Cause Adjustment

e Purpose is to correct the total AFP

e For consistency (and bookkeeping),
the intersection area is reallocated to |; 5
individual PFMs, allowing their AFPs
to sum directly to the total AFP

e For the purposes of calculating the

total AFP, the adjusted PFMs can thus

be treated as ME. Note thls does not
nem ME. The S re '
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Common Cause Adjustment

e Adjusted conditional failure probabilities for
the example (for details, see Combining and
Portraying Risks presentation)

Spillway fails 0.85/1.2 *0.5<

- 50K quake occurs

Embankment fails
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Monte Carlo Simulation

e Most of the examples and event trees in this
presentation involve point estimates of
conditional probability

e |n practice, conditional probabilities are nearly
always estimated as ranges or distributions

T

ne purpose of this is to capture uncert

ne most practical way to reflect th
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Monte Carlo Simulation

e Monte Carlo simulation involves the random
sampling of input distributions (such as
conditional probability estimates, life loss
estimates) in accordance with their shapes

e For each trial, an output value of AFP (or
Annualized Life Loss) is recorded

s

Many event tree sof
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Understanding MC

 The AFP Is a product function of the n probability
distributions that form the basic inputs of the event tree

 The MC simulation process allows an output distribution to
be built through repeated random sampling of inputs

 If we could easily develop a closed form solution for the
PDF of the AFP, there would be no reason to perform MC

« Since we can’t, the MC | 5158

output distribution pro- .. ‘06 S
vides a good model of
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Product Distributions

« For simple event trees, the mean AFP can be estimated by
multiplying out the means of the input distributions. This is typically
equal to the number shown in the AFP output cell with MC not running

AFP
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Central Limit Theorem

 The Central Limit Theorem states that a product distribution of n
random variables will tend toward the Lognormal as n — large # (also
predicts that summed distributions approach Gaussian)

* Holds true regardless of what the input distributions look like, and the
effect can be observed even when n is relatively small

» For alognormal distribution, have x> X.,, So even if the input
distributions are symmetric, the mean of the output distribution will
typically not be equal to the product of the input means

7.0

O 5 3 49.5% 50,5
g 0.10 7

0.4_1
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