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Objectives

* Understand the mechanisms that affect buttress dam failure.
» Understand how to construct an event tree to represent buttress dam failure.

« Understand how to estimate nodal probabilities and probability of breach.




Key Concepts

» Buttress dams constructed mainly in early 20" century when labor was cheap
and materials were expensive.

» Buttresses saved on concrete but light structures required upstream sloping
water barriers — water force acting downward needed for stability.

» Designed to carry load in stream direction, but did not consider (seismic)
loading in cross-stream direction.

. ]S)racking or yielding of reinforced concrete members does not equal dam
allure




Load Carrying Mechanism
and Types




Buttress Dams
« Early 20t century

« Expensive materials MULTIPLE ARCH
* Cheap labor

» Sloped upstream face
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lab and Buttress
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Also known 'as an Amburesen Dam
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Case Histories
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Vega de Tera Dam, Spain
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R Ry T * 112" high buttress dam
= completed 1957

 Winter shutdown, little attention
to lift joints

* Failed January 10, 1959
« 144 fatalities




Vega de Tera Dam, Spain
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Buttresses cement mortared masonry.
Grouting in 1956 to control leakage.

Reservoir full in 1958. Empty in October
1958.

In January 1958, heavy rains filled reservoir.
17 buttresses failed in rapid succession.

Failure initiated between masonry and
concrete on sloping portion of foundation.

Modulus of masonry = 140,000 Ib/in®

Official cause of failure attributed to large
deformations due to low modulus masonry.
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Gleno Dam Italy

TR I 164-ft high multiple arch
1?‘} ~“" . » 52-foot high masonry plug constructed

lr 1, ” 5 iIn deep central gorge (lime mortar
b~ instead of specified cement mortar)
% ° Original design called for gravity dam;
design changed and dam built prior to
& approval

* Poor concrete quality
« Dam survived nearly full for 2 months

* Failed October 22, 1923

» 100-foot high wave, widespread
destruction in Dezzo River Valley

« 356 fatalities




Gleno Dam Failure

« Official inquiry indicated the
masonry plug was not stiff enough
nor did it extend far enough
downstream to carry the buttress
loads.

« With complete loss of contact over
the front 35 foot of foundation
(representing the downstream
portion of the masonry plug), the
finite model depicted here fails
catastrophically!

* FE model predicted cracking
matched observed cracking




Seismic Considerations




Typical Event Tree for Seismic Evaluation

< Reservoir at or above threshold level
< Cross stream earthquake load range
< Struts fail in compression
Buttress moment capacity exceeded
C (concrete cracks/reinforcement fails)

Buttress buckles or deforms excessively
< (upstream water barrier lost)

Break outflow loads adjacent
buttress, multiple buttresses falil




Water Barrier Evaluation

* Note that the previous event tree did not address the upstream slabs/corbels,
arches, or domes.

* This would be a separate potential failure mode that should be evaluated
using reinforced concrete principles (covered in another chapter).




Seismic Analysis

» Buttresses weak in cross-canyon .
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* Entire dam must be modeled to
include “racking”
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Reinforcing Steel Considerations

* Most buttress dams are N e e e s e s, | |
getting old, concrete spalls S | ' |
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or cracking can lead to
corrosion
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* Also no air entrainment
(freeze-thaw susceptibility)
and reinforcement not up to
current standards
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Hydrodynamic Interaction

The hydrodynamic forces in stream direction are reduced by the sloping face (the
water will tend to ride up along the face). Zanger approach (below) can be used with
directional masses, or fluid elements if available.
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Saratoga Earthquake reduced by 1/3
forces in strut on left side of dam and
S t ru ts = on right side of dam
e LN AT T AT SRR
« Some buttresses have struts between A0 L 0 L S
buttresses for lateral support ! [ \U i
Il
* As buttresses move in earthquake, -
load accumulates across dam and can | =
overload end struts (push over Saratoga Earthquake

forces in strut on left side of dam and

analysis) . ~ on right side of dam
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« Crushing stress in struts normally P Bl IRl
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Buttresses

e Some buttresses have struts
between buttresses for lateral
support.

) AS b = tt resses move in Contour plot of Maximum Principal Tensile Stress ollowing Stt Removal — Buttress 45 (time= 7.52 sec)
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Moments

As a result of buttress dams
varying in thickness and
reinforcement from base to crest,
the response of the dam and
seismically induced moments in
the buttresses will vary.
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Figure 25a-1 Buttress thickness = 32 inches
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Nonlinear Structural Analysis

« Some nonlinear finite element programs have concrete cracking and steel
reinforcement models that can be used to examine the potential for cracking,
yielding, excessive deformation and failure directly. However, remember
these are just models and careful scrutiny of the input assumptions and output

IS necessary.




Takeaway Points

* Designed to carry load in the stream direction.
* Vulnerable to cross-stream seismic loads.
 Finite element analyses of entire structure are needed to capture response.

» Reinforced concrete risk concepts can be used to examine probability of
nodal estimates.

« Careful consideration of the concrete quality, joint treatment, and reinforcing
details are required.

 Level of analysis for estimating performance should reflect with the level of
study needed for the risk analysis and decision-making.
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