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Objectives
» Understand the mechanisms that affect spillway erosion

* Understand how to construct an event tree to represent
spillway erosion

» Understand the considerations that make this potential
failure mode more/less likely

 Understand the differences and limitations of the models
used to quantify erosion of rock and soll




Key Concepts — Spillway Erosion

* Recognize that the failure progression is duration dependent
(jud emel:[]t r)equwed iIn evaluating rate of erosion, duration of
oading, etc.

* Understand the difference between erosion of a uniform
material and that of a varied geology

* There are multiple methods available for estimating
erosion/scour potential

* Scour is complicated and cross-disciplinary

* This failure mechanism can be linked to the likelihood of other
failure modes _ﬁe_.g. control section stability, spillway chutes,
tunnels and stilling basins)
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Outline

» Overview of the Process

» Case Histories

* Typical Event Tree

» Key Factors Affecting Vulnerability

* Analytical Methods

» Crosswalk to Other Potential Failure Modes




Overview of the Process




Spillway Erosion/Scour Process

‘ Instantaneous processes ‘ ‘

Time-dependent processes

End state of scour formation by uplift

fransient response

M rock to crack
propagafion (= fracture|

fluctuating pressures
acting on exisfing rock
fissures

t

Brittle fracture occurs
when stress intensity
at tip of crack exceeds
the resistance of the

a%0
'@fﬁ
t toughness)

Spatally distibuted

t

Pedling off of surface layers
by local flow velodity and block
profrusion

UPLIFT / BRITTLE PEELING FATIGUE
EJECTION FAILURE OFF FAILURE
End siate of scour
End date of scour . ) End state of scour
| : formafion by peeling off fomation th
| @ mﬂﬂrmm”gh _“'—\_‘_ {f\/—CQ\ ﬁ?aygr o

t

Final ejection of rock blocks
formed by completion of
fissure nework

Fluctuating pressures
at wakr-rock inteface

Local stress niensity
K at fipof cack
propagates the fissure

Bollaert (2010)
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» Turbulence Production
* Impinging Jet
Submerged Jet
Back Roller
Hydraulic Jump
Boundary Eddy Formation

 Particle Detachment
« Brittle Failure
Fatigue Failure
Block Removal (Ejection or Peeling)
Abrasion
Tensile Block Failure

 Particle Breakup/Transport

« Armoring
« Breakup
e Transport




Case Histories
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Rlcobayo Dam Splllway
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* Owned by Iberdrola

Dam and Spillway Construction
complete in 1933

320-ft Tall Arch Dam

1300-ft long Unlined Spillway
Channel

Spillway channel was open-jointed
granite

An Anticline and fault are located
along the Chute




Rlcobayo Dam Spillway




Ricobayo Dam Spillway

Zone 2: Joint structure dipped against the
direction of flow, which results in greater
resistance to the erosive capacity of water.
Only small blocks of rock are removed. if at all.
— — : -
sl £ Flow direction R _

: System B \

Zone I: Joint structure dipped in the direction
of flow, which is more conducive to scour
failure and removal of laree blocks of rock.

Anticline axis .
System A
-

Zone 2 | Zone 1
1 T 1 |

Annandale (2006)
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Ricobayo Dam Spillway

Zone 2: Joint structure dipped against the

direction of flow. which tesults in greater Zowne I Joint structure dipped in the direction
] F=3 " . WE

resistance 1o the erosive capacity of water, ?f.:'“w’ "":"Ch 1= ":m?]c“"dl;wim ?_Cm{;
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Saylorville Dam Spillway

« USACE (Rock Island) Dam in lowa, in
operation in 1977

« Uncontrolled Ogee Weir and unlined
downstream chute

 Spillway is comprised of gently dipping
shales, calcareous siltstones, thin
limestones, coal, and sandstone

» Spillway operated from the period of 18
June to 3 July 1984

* Flow was estimated at 9-precent of
design discharge

» Severe Damage to the unlined spillway

D-2 13




Figure 13. Downstream view of the severe erosion that

oceurred in the unstable portion of the Saylorville

emergency spillway discharge channel during the 1984
overflow

Figure 14, An upstream view of the Saylorville

spillway discharge chamnel illustrating the

"stair-step" erosional pattern exhibiting almost
30 ft of local relief

RRTWENT OF THE
< pEP ” Wrez; 53
m (atdds e

BUBERY o AEcuATIR—~




Saylorville Dam Spillway

Figure 6. Saylorville Lake Dai
lines, spillway discharge

channel
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Saylorville Dam Spillway
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Figure 8. Detailed stratigraphy and lithologies underlying the lower portion of
the Saylorville Dam emergency spillway discharge channel
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Tuttle Creek Dam Spillway

« USACE (Kansas City) Dam in Kansas,
In operation in 1962

2 TN « Controlled Crest, Lined Chute, Unlined
Exit Channel

« Spillway is comprised of units of
Limestone underlain by Shale

« 1993 Spillway Event

» Spillway operated for 21 days
» Peak Discharge of 60 kcfs

» Multiple Headcuts Formed and
Advanced, controlled by limestone
units
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Tuttle Creek Dam Sp
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Tuttle Creek Dam Spillway

Figure B-14 Photo from Station 4 Showing Points H, G-1, and G-2,
on 3 August 1993

Figure B-15 Photo from Station 4 Showing Points H, G-1, and G-2,
on 9 August 1993
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Typical Event Tree
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Typical Event Tree for Spillway Erosion

% Flows of Sufficient Energy to Fail Protective Lining or
Cover or initiate erosion in unlined channels

U Headcut Initiates/Advances
& Defensive Measure do not exist or are ineffective
% Intervention Unsuccessful
U Head Cut Progresses to Reservoir (failing
control structure or control section)

% Breach downcutting and widening




Key Factors Affecting
Vulnerability




Factors Affecting Vulnerability

 Erodibility of the spillway material (Soil or Rock)

/~ For Soil: N /For Rock: A
> Gradation > Vegetative Cover > Joint Spacing > Lithology
» Cementation  » Surface Irregularity > Joint Orientation > Rock Strength
» Water Content » Detachment rate » Joint Condition
. > Clay Cont-ent coefficient VAN )
* Energy of spillway/outlet flows - Armoring/Limitations on Transport
* Geometry of channel » Ability to intervene
* Energy dissipation » Inspection and Maintenance

 Jet break up/tailwater/stilling basin :
.  Presence and effectiveness of
> Locat|0n Of headCUt development defensive measures
 Duration of spillway flow

* Length of scour/erosion pathway




Analytical Methods
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Analytical Methods (EIM)

10000 -

1000

100 +

Stream Power, P (kW/m?)

| Threshold Line from ¢ g
+ Annandale 2005

0.1 1 10 100 1000 10000

Headcut Erodibility Index, Ky

P=0.99

P=0.50

P=0.01

Adapted from Wibowo and Murphy 2005
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« The Erodibility Index Method (EIM) was developed by Dr. George
Annandale

» Uses a semi-empirical relationship of Available Stream Power and
Erodibility Index to estimate incipient scour (judgement required)
» Erodibility Index is a geo-mechanical index
v' Mass Strength of Intact Rock (UCS)
v’ Effective Block Size (RQD, # Joint Sets)
v’ Effective Matrix Resistance (Joint Roughness, alteration)
v Primary Jointing Orientation (Joint strike and dip)
» Stream Power can be estimated:
v" Analytically with hydraulic formulas

v" Direct measurement of dynamic pressure fluctuations from scale
model or prototype

 Figure Predicts initiation of Scour

« Method can predict ultimate scour (Potential limitation — does not
directly predict rate of scour, although the magnitude of exceeding
the threshold provides a relative indication)

 May need to iterate based on changing Erodibility Index at depth
and/or tailwater effects £




Analytical Methods (CSM)

| nstantaneousprocesses | Time doponden pocesses | »« The Comprehensive Scour Model (CSM)
UPLIFT / BRITTLE PEELING FATIGUE .
EJECTION FALURE oFF FAILURE was developed by Dr. Eric Bollaert

'_?. | D e | T LI ZR™ e More Physically Based Approach
: am;fm o N " 4 » Represents separate detachment/transport
mechanisms

Final ejection of rock blocks

Pedhgoffofmrfa}ue layers ol combietiond . .
aitoictmacons | oo o v' Comprehensive Fracture Mechanics (CFM) Method

Qeﬁ

{%{E}eﬁg F . sl UZ', v Dynamic Impulsion (DI) Method
e T » Incorporates amplitude and frequency of
fluctuating pressures explicitly

' toughness)
) t t | =
), " iﬂ. Spatialy distributed R | NI
*'."i fluctuating pressures tL;‘;I--“;s--h-r;@- . S .
S | | SR ot » Method provides the ability to predict temporal
aspects of scour

propagates he fissure

1 %tlﬂltlm uplft + brtte fracturing Years of -
Do T e P » Potential limitations:
f?:;ljhr bnnhc:fracturmgpeemgOif \\\ . I » |dealized blocks
» Dependent on confidence in geologic
Bollaert (2010) characterization
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Analytical Methods (NRCS-WINDAM)

« Developed by NRCS

« Semi-Empirical Headcut Erosion Method

* Three Phases to Erosion/Scour for Soil Channels or Unlined Spillways
» Cover Failure (vegetation or riprap)
» Headcut Formation (downstream erosion)
» Headcut Advance and Deepening (upstream migration)

 Erodibility Index is compatible

« Default values for threshold hydraulic attack and headcut advance rate are
EMPIRICAL from a predominately soil dataset

Surface Detachment Impinging Jet Scour
* Allows for user defined:
» Hydraulic Attack Thresholds
» Headcut Advance Rates
« Simplified Hydraulics and Geology CPEY

* Not applicable to highly turbulent incipient flows

L
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Analytical Methods (NRCS-WINDAM)

* Output Includes - Spillway Erosion
» Estimated Erosion Profile Legend
» Rate of erosion 610 T L ALLUVIUM
> Time series output - 1 N/ THRD-ROC
SHALE
» Breach i
E B LIMESTONE
< Geometry | s
¢ Progression e .
W
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t 590
i
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Analytical Methods (NRCS-WINDAM)

WINDAM Modeling Things to Remember

« Geometry and flow are as important as erodibility and other factors. More than one
alignment may be necessary.

« Relationships are generally conservative if default values are used due to
interpretation of empirical data (substantial enveloping)

* Flow Duration Relationship is Important, Extreme floods may not control

* Flow Concentrations due to lateral variations in geometry and geology are not
considered

« User defined Thresholds and Advance Rates should be used if possible
 WINDAM is generally not appropriate to evaluate:
»Localized Scour and Undercut at a control structure or engineered slab
»Highly Turbulent Incipient Flow (e.g. stilling basins, plunge pools)




Cross Walk to other
Potential Failure Modes




Cross Walk to other PFM'’s
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Headcut
advances under
slab, slab fails
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Cross Walk to other PFM'’s
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* Oroville Dam

» Chute slab failure

* Erosion
Future investigations will
provide additional insight
into this PFM

32




Cross Walk to other PFM'’s

- » Paradise Dam Spillway

(Australia)
« Small Apron
* Endsill was compromised
- < Scour up to 40ft occurred on
\ a near vertical face at the
endsill
« Similar to the chute slab failure
mode, progression potential
affected by:
« ability for the slab to
cantilever
* localized hydraulic
characteristics
» geology under the slab
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Takeaway Points

* Unlined Spillway Erosion in Cohesive Materials Consists of 3-Basic
Processes:
» Particle Detachment, Particle Transport, and Turbulence Production (not in detail)

« Case studies illustrate the importance of:
» Geology (individual units and lithology), Armoring, and Flow Frequency/Duration

* There are several methods for estimating scour for unlined spillways; but
all are simplifications and critical thinking and a foundational
understanding of the process cannot be understated

* The mechanisms for progression of other spillway and stilling basin
PFM'’s are similar to the unlined spillway erosion PFM (other PFM'’s
required to initiate erosion or complete the breach)

» Multi-Discipline Effort (Involve the right people)




Questions or
Comments? 3
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