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Objectives

•Define terms
•Develop theory
•Demonstrate common applications
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Outline of Topics

•Sets Theory and Events
•Probability Theory
•Statistics
•Monte Carlo Method
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Key Concepts
• Risk Analysis utilizes Set Theory, Probability Theory, and Statistics to 

improve and communicate our understanding of the risks associated 
with the operation of water retention infrastructure.

• Set Theory provides a framework for the analysis of events and the 
relationships between events. It is based on logic alone.

• Probability Theory provides a framework for analyzing the likelihoods
of events and combinations of events. It is based on set theory and 
math.

• Statistics is the branch of science that deals with the interpretation and 
analysis of data. The concepts of distributions and random variables are 
introduced through statistics.
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Set Theory
• Used to describe relationships between events
• Events are the basic building blocks of risk analysis. One way to 

describe an event is as something that could happen, projected 
into the present as certain (no matter how likely or unlikely)

• e.g. “An earthquake could occur in September” can be projected 
into the present as “an earthquake occurs in September”

• Other examples of events:
• Joe attends Best Practices training
• Bill misses his flight to Denver and misses his 5 AM alarm
• The maximum reservoir elevation in 2018 exceeds El. 4453
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Set Theory
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Probability Theory
• Probability theory introduces the concept of “size” to the sample 

space.
• p(...) can be thought of as a function that maps events in sample 

space to the real number interval [0,1]
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Probability Axioms
• Probabilities are non-negative real numbers

• Probability of the certain event is 1.0

• Probability of the union of two mutually exclusive 
events is equal to the sum of their probabilities
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𝑃𝑃(𝐴𝐴) ≥ 0 

𝑃𝑃(𝑆𝑆) =  1 

𝑃𝑃(𝐴𝐴 𝑈𝑈 𝐵𝐵) = 𝑃𝑃(𝐴𝐴) + 𝑃𝑃(𝐵𝐵) 



Conditional Probability and Statistical Independence
• The expression P(A|B) is read “probability of A given B”
• Example: Probability that internal erosion initiates vs. probability 

that internal erosion initiates given that the maximum annual 
reservoir elevation exceeds El. 300

• If P(A|B) = P(A), then events A and B are statistically independent
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Probability Interpretations
• Physical (frequency)

• Basis: observation
• E.g., spillway flow 

has occurred twice 
over the past 
decade.  The annual 
probability of spillway 
flow is about 0.2.

• Evidential (degree of 
belief)

• Basis: Personal 
experience, expert 
judgment, weight of 
evidence

• E.g., probability of cracking 
is about 0.3% based on 
construction records, 
measured concrete 
strengths, the results of an 
NL finite element analysis, 
and observed performance 
of similar dams
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Commonly used probability formulas
• P(Ā) = 1 – P(A)

• Probability of no breach (Ā) equals one 
minus the probability of breach (A)

• P(A U B) = P(A) + P(B) – P(AB)
• Total probability of breach given two 

potential failure modes, A and B

• Total probability theorem
• For a set of mutually exclusive and collective exhaustive events Ei

• P(A) = P(A|E1)P(E1) + P(A|E2)P(E2) + ... + P(A|En)P(En)

A

S

Ā

S

BA



P(A ∩ B) = P(A) * P(B | A)
• General case – applies to all types of 

intersections
• Basic formula used to in risk analysis
• e.g. the probability of a breach 

occurring in an earthquake is equal to 
the probability of the earthquake times 
the conditional probability of failure 
given the earthquake

• P(A ∩ B) = P(A) * P(B)
• Special case - statistically independent 

events only (the events that define a 
given potential failure mode are typically 
not statistically independent)

Commonly used probability formulas



Example:
Probability theory applied to risk analysis
• What is the annualized probability of failure?
• Assuming failure results from a sequence of four events
• An earthquake occurs, P(E1)
• Foundation liquefaction occurs, P(E2|E1)
• The crest settles, P(E3|E1 ∩ E2)
• The dam overtops, P(E4|E1 ∩ E2 ∩ E3)
• The annualized failure probability is calculated as 

the probability of the intersection
• AFP = P(E1) * P(E2|E1) * P(E3|E1 ∩ E2) * P(E4|E1 ∩ E2 ∩ E3)

E1 E2

E3 E4

E1E2E3E4



Binomial Theorem
Pascal’s Triangle

• Probability of k occurrences in n trials

• Trials must be statistically independent
• Given 4 spillway gates each with 0.1 

probability of not opening
• Probability of 2 gates not opening is
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Combinations for Statistically 
Independent Events
• System of two dams and one levee
• Two outcomes for each

• Breach or No Breach
• 23 = 8 possible combinations
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Combination Dam A Dam B Levee

1 NB NB NB
2 B NB NB
3 NB B NB
4 NB NB B
5 B B NB
6 B NB B
7 NB B B
8 B B B

1 2 3

4

5

6 78

B = Breach ; NB = No Breach

3 combinations for k=3, n=2

1 combination for k=3, n=0

3 combinations for k=3, n=1

1 combination for k=3, n=3

• Binomial coefficient
𝑛𝑛
𝑘𝑘 =

𝑛𝑛!
𝑘𝑘! 𝑛𝑛 − 𝑘𝑘 !



Random Variable
• A random variable is used to represent a parameter whose value 

can take on a variety of different outcomes
• Examples in dam safety risk analysis:

• The return period of a 1 Million cfs flood ranges from 5000 to 10,000 years
• The exceedance probability of a 0.8g PHA ranges from 0.001 to 0.01
• The conditional probability of internal erosion initiation ranges from 1E-4 to 

1E-3
• Two basic types of random variables:

• Discrete RVs have specific sets of outcomes
• Continuous RVs have an infinite number of outcomes
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• Commonly used to portray flood and seismic hazards
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Point Estimators
• Mean – Average value
• Median – 50th percentile
• Mode – Most frequent

• Mean – First moment, centroid 
• Variance – Second moment, spread

• Standard Deviation 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
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• Skew – Third moment, symmetry
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Common Probability Distributions
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Bayesian inference
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• Observational Method
• Weight of evidence
• Value of information
• Minimize cognitive biases
• Note: In practice, it is more common to qualitatively 

adjust the probability estimates for new information. 



Bayes Theorem
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• P(x) : Prior probability of an event
• P(O|x) : Probability of an observation given the event
• P(O) : Total probability of the observation (normalizing constant)
• P(x|O) : Posterior probability of the event given the observation

 
( ) ( ) ( )

( )OP
xOPxP

OxP =



Bayes Theorem
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• P(x) : Does the levee foundation have a permeable layer
• Initial estimate of 0.2 based on experience and judgment

• P(O|x) : Exploration does not find a permeable layer
• Boring spacing about 500 feet; Layer extent should be about 200 feet
• Probability of NOT finding (assuming it is there) is about 300/500 = 0.6

• P(O) : Total probability of the observation
• Exists AND Not Found + Does Not Exist AND Not Found
• 0.2 * 0.6 + 0.8 * 1 = 0.92

• P(x|O) : Does the levee foundation have a permeable layer given 
no layer was found

• 0.2 * 0.6 / 0.92 = 0.13
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Correlation
• Any statistical relationship 

between two random variables
• Linear commonly used
• Nonlinear options available

• Used for predictive 
relationships

• Friction angle from SPT blow 
count

• Probability of rain today from 
yesterday’s weather
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Four sets of y values with the same mean, 
variance, correlation coefficient, and 
regression line. 



Central Limit Theorem
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• Sum of distributions trends toward a normal distribution

• Product of distributions trends toward a log normal distribution
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de Morgan’s Rule
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• In theory
• The complement of the 

union of two or more events

• is equal to the intersection 
of their complements
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• For statistically independent events, 
the union probability is sometimes 
easier to compute in this way

𝑃𝑃 𝑓𝑓 = 1 −�
𝑖𝑖=1

𝑛𝑛

[1 − 𝑃𝑃𝑖𝑖]
�𝐵𝐵

�𝑨𝑨 ∩ �𝑩𝑩

One minus the 
probability of no PFMs 
occurring

product of the 
complementary 
probabilities of the 
individual PFMs

E.g., total (union) risk of 
failure for a facility



Uni-Modal Bounds
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• For n positively dependent events, the probability of the union can 
be bounded as follows:

• Lower bound, perfectly correlated
• Upper bound, statistically independent events
• If one event is dominant, the upper and lower bounds are about equal, 

weakest link controls

max
i

P(Ei) ≤ P(E) ≤ 1 −�[1 − P(Ei)]
n

i=1

 



Monte Carlo Simulation
• Used to evaluate output uncertainty
• When analytical solutions are difficult (or don’t exist)
• An output distribution is built up over thousands of simulation trials
• Basic Steps:

• Build a model or event tree
• Assign probability distributions to the model inputs
• Sample the model inputs based on their probability distributions
• Record the output(s)
• Evaluate the probability distributions of the model output(s)



Monte Carlo Example

P(Flood) P(Failure|...) Life Loss AFP ALL
4.1E-4 0.10 30.9 4.1E-5 1.3E-3
5.1E-4 0.081 27.7 4.1E-5 1.1E-3
9.5E-4 0.11 33.0 1.0E-4 3.4E-3
1.4E-3 0.071 31.3 9.9E-5 3.1E-3
2.7E-4 0.035 46.5 9.5E-6 4.4E-4
6.3E-4 0.051 14.4 3.2E-5 4.6E-4
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• AFP = P(Flood) * P(Failure | Flood)
• ALL = AFP * Life Loss



Conclusion
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• Risk analysis is based on fairly simple set theory, probability 
theory, and statistical concepts.

• Risk analysis should not be viewed as a “black box”. 
Understanding what is happening mathematically is well 
within the ability of most risk analysis participants.

• The formulas used are “exact”. However, the outputs are 
only as good as the inputs (which are uncertain), so the 
outputs should not be interpreted as exact numbers.

• Ensuring that the right conceptual model is being used is 
more important than striving for numerical precision. 
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Combining Probabilities Example
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For a gravity dam potential failure mode comprised of the following 
four events, estimate the annualized failure probability
1. Event F – A flood overtops the dam, p(F) = 0.00002
2. Event I – Foundation erosion initiates at the toe of the dam, 

p(I|F) = 0.6
3. Event E – Foundation erosion progresses and causes a weak 

plane to daylight, p(E|F ∩ I) = 0.2
4. Event B – Dam breaches due to sliding instability 

p(B|F ∩ I ∩ E) =0.8
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