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I-1. Basics of Probability and 
Statistics 

Key Concepts 
During a risk analysis, various numbers called probabilities are estimated and used to 
describe the likelihood of events and characterize the risks associated with those events.  
The mathematical theory of probability is not concerned with the origin of these numbers 
or their underlying meaning.  The theory only tells us how to apply the numbers in a 
credible and consistent manner.  The facilitator and estimators are responsible for 
defining what is being estimated and ensuring that the numbers represent what they are 
intended to mean. 
 
Do probabilities reflect a process that is inherently random or do they characterize a 
degree of belief based on our knowledge?  In the case of a flood frequency function, the 
answer is both.  The potential exceedance of the 100 year flood elevation this year is 
usually treated as an inherently random process that is described by the frequency 
function.  The probability that the 100 year flood elevation will be within a particular 
range of values is usually treated as a degree of belief that is described by the uncertainty 
about the frequency function.  This separation of the probabilities based on the source 
and nature of the uncertainty exists only in the risk model and not in the real world.  The 
occurrence of floods is not necessarily random.  We choose to model them as a random 
process because we don’t have (and perhaps can’t obtain) sufficient knowledge to predict 
long term weather patterns at specific locations.  Modeling flood occurrences as a random 
process provides a more convenient and/or improved estimate compared with attempting 
to model the uncertainty in our knowledge of weather patterns.  Separation of uncertainty 
in a risk analysis is an important modeling decision.  Probabilities associated with 
randomness become statements about frequency of occurrence in time or space.  
Probabilities associated with knowledge limitations become statements about our degrees 
of belief regarding a particular claim.    
 
Probabilities can be estimated using a variety of techniques.  Statistical estimates can be 
made from past observations using empirical data.  Analytical models based on physical 
processes and reasoning from first principles of physics can be applied.  Expert opinion 
can be solicited to obtain probabilities in cases where data or models do not exist.  In 
practice, the risk analyst should combine all of these methods when feasible to support 
robust probability estimates.  Judgment should always be applied as an overlay to these 
methods to express our degree of belief in the adequacy of the methods and their 
parameters.     

Deductive and Inductive Logic 
Critical thinking is the application of reason to evaluate the extent to which a claim is 
believed (or known) to be true.  It requires a “disciplined process of actively and 
skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating 
information gathered from, or generated by, observation, experience, reflection, 
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reasoning, or communication, as a guide to belief and action.” (Scriven and Paul, 1987)  
All levels of decision making are impacted by critical thinking.  In order to make better 
decisions, we must assess our beliefs and the beliefs of others.  Questioning the beliefs 
and rationale of others is an essential element of the critical thinking process and should 
not be viewed as a personal criticism.  The wise decision maker is the one who knows 
how to identify and minimize errors and biases in critical thinking to support more 
credible decisions. 
 
Logical arguments derive from the process of evaluating whether or not a claim is 
believed (or known) to be true.  These arguments can be characterized as either deductive 
or inductive.  Deductive arguments arrive at conclusions that are guaranteed to be certain 
given certain premises.  Inductive arguments support conclusions that are likely or 
probable based on the supporting evidence.  In practice, actual truth is a challenging 
matter to assess.  How do you know for certain that other countries in the world exist?  
Have you visited them?  Is the map correct?  Is the teacher correct? 
 
Deductive arguments are valid when the conclusions necessarily follow if the premises 
are assumed to be true.  A valid deductive argument does not require the premises to 
actually be true.  This is a potential source of disagreement among rational people 
because actual truth is independent of validity and difficult to prove.  Given a premise 
that all dams reduce flood risk and that John Rapids is a dam, it necessarily follows that 
John Rapids Dam must reduce flood risk.  This is a valid deductive argument even 
though we know the premise that all dams reduce flood risk is not true.  Navigation dams 
or hydropower dams may not be designed to reduce flood risk.  A deductive argument is 
sound if and only if it is both valid and all of its premises are actually true.  In the 
previous example, the argument that John Rapids Dam reduces flood risk is not sound 
because we know the premise is false.  It is important to understand that both invalid and 
valid but unsound arguments can still have true conclusions.  John Rapids Dam might 
reduce flood risk even though the argument is unsound.  The conclusion of a deductive 
argument should not be automatically rejected based on flaws in its validity or soundness.   
 
Inductive arguments provide a framework to address issues of absolute truth by 
supporting certain conclusions that are more reasonable to believe than others.  If sand 
boils were observed near the levee toe during the last flood, then it is likely that sand 
boils will be observed during the next flood.  We can’t know this for certain, but our 
conclusion is rationally supported by the available evidence.  The conclusion of an 
inductive argument becomes more likely to be true as more supporting evidence is 
obtained.  As a simple example, consider a box containing 100 vibrating wire 
piezometers.  Without looking inside the box, we begin to pull piezometers out.  The first 
few piezometers we pull out are broken.  At what point would you conclude that most of 
those remaining in the box are also broken?  Our confidence that the conclusion is true 
will increase as we remove and test more piezometers.  We might consider other 
evidence to bolster our conclusion, such as observing damage to the box or witnessing 
the delivery person dropping the box.  The more evidence we obtain, the stronger we 
believe in our conclusion.  In practice, the amount of evidence will be limited and we 
must rely on the judgment and experience of experts. 
 
 
 
Because induction is not an exact science and evidence is often limited, errors in 
reasoning can occur and it is possible to reach wrong conclusions.  Recognizing and 
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dealing with issues that can lead to such errors (e.g. overestimating the strength of 
evidence, overconfidence in expert judgment, group think, misplacing burden of proof, 
and many others) can strengthen inductive arguments.  The validity of inductive 
conclusions must be evaluated against alternative conclusions to determine how strong 
they are.  Decision makers often use objective standards to compare the alternatives and 
assess whether a particular conclusion is preferred over another.  
 
In practice, both deductive and inductive arguments are necessary for a credible 
systematic approach to risk analysis.  Deduction can provide absolute proof for a 
conclusion, but the premises can rarely be tested and verified to be actually true.  
Induction is driven by the available evidence, but proof of a theory cannot be obtained.  
Risk analysis requires a careful synthesis of these two logical approaches. 

Set Theory 
Many of the characteristics of a risk analysis problem can be defined and modeled using 
sets.  Set theory is a branch of mathematics that deals with the properties and 
relationships of collections of elements or events.  Risk analysis relies on set theory to 
provide a logical framework for the analysis of events and the relationships between 
events. 
 
A set is a well defined collection of unique elements or events.  The sample space for a 
set includes all possible outcomes of a random trial or experiment.  For example, the 
sample space for a single coin toss might be represented by a set containing two possible 
events {head, tail}.  The complement of an event A, expressed as Ā, includes all of the 
events that are not A.  For the coin toss, the complement of {head} would include all 
other outcomes that are not {head} which in this case would simply be {tail}.   Events are 
mutually exclusive when they both cannot occur during the same random trial or 
experiment.  The events {head} and {tail} are mutually exclusive because a single coin 
toss cannot result in both a head and a tail.  Events are collectively exhaustive when at 
least one of the events must occur during a random trial or experiment.  Assuming the 
coin does not land on its side, the collectively exhaustive events for a coin toss would be 
{head, tail}.  The union of two (or more) events, denoted by A ∪ B, is the set that 
includes all outcomes that are either A or B or both. For the coin toss example, the union 
of all possible outcomes would again be the set {head, tail} The intersection of two (or 
more) events, denoted by A ∩ B or simply AB is the set of all outcomes that include both 
A and B. For the coin toss example, the intersection of the possible outcomes would be 
the null set{φ}, since the outcomes are mutually exclusive.    
 
Consider the following dam-related example. A flood overtopping Potential Failure 
Mode developed by a risk analysis team for an embankment dam forming a pumped 
storage reservoir consist of three events: A, a flood occurs; B, the reservoir elevation 
exceeds the available freeboard; and C, a breach occurs. In order for failure to occur by 
this Potential Failure Mode, all three of these events must occur.  Failure of the dam for 
this Potential Failure Mode can be described as the intersection of the three events 
(ABC).  A second flood overtopping Potential Failure Mode developed by the risk 
analysis team results in overtopping and breach without the occurrence of a flood due to 
misoperation of the pumps. The Potential Failure Modes of flood overtopping (PFM 1) 
and misoperation (PFM 2) are themselves events, whose occurrence or nonoccurrence 
can be used to describe the state of the system.  Assuming no other Potential Failure 
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Modes are plausible, the normal state of the system could be described by the intersection 
event 𝑃𝐹𝑀 1  ∩   𝑃𝐹𝑀 2 (neither failure mode occurs).  Each of the intersection events 
𝑃𝐹𝑀1 ∩  𝑃𝐹𝑀2, 𝑃𝐹𝑀1 ∩  𝑃𝐹𝑀2, and PFM1 ∩ 𝑃𝐹𝑀2 describe a potential failure state 
for the system.  The occurrence of both failure modes (event PFM1 ∩ 𝑃𝐹𝑀2) is usually 
unlikely in most cases. 
 
The basic concepts of set theory can be illustrated using Venn diagrams.  A sample space 
is represented by a rectangle.  Events and their relationships are normally depicted on the 
Venn diagram by overlapping circles or other closed shapes within the sample space.  
The Venn diagrams in Figure I-1-1 summarize some of the basic set theory concepts and 
operations.  Venn diagrams can be developed for risk analysis to obtain a better depiction 
and understanding of the relationship between events to support constructing event trees, 
estimating probabilities, or combining and portraying risks.  For example, the 
relationships between multiple potential failure modes can be illustrated using Venn 
diagrams and evaluated using set theory. 

 
 

Figure I-1-1. Set Theory Concepts and Operations 

Combinatorics 
Combinatorics is a branch of mathematics that includes the study of the enumeration, 
combination, and permutation of set elements.  Risk analysis can utilize combinatorics to 
identify relevant outcomes from a set of possible events. 
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Permutation with Repetition 
If each event outcome can be realized more than once and the order of the events matters, 
then the number of permutations is nk where n is the number of event outcomes available 
to choose from and k is the number of events that occur.  For example, there are 8 
permutations for k=3 potential failure modes (perhaps internal erosion, overtopping, and 
structural collapse of a spillway gate) and n=2 possible outcomes for each potential 
failure mode (breach or no breach).  The eight permutations for this example are 
summarized in Table I-1-1.  A key decision for the risk analyst at this stage would be to 
decide whether or not scenarios with multiple breach mechanisms should be considered 
in the risk analysis based on the plausibility of these scenarios and their potential effect 
on the estimated risk.  Additional information on the treatment of multiple breach 
mechanism scenarios is covered in Chapter I-5 – Event Trees. 
 

Table I-1-1.  Permutation with Repetition 
Permutation System Response for 

Potential failure mode 1 
System Response for 

Potential failure mode 2 
System Response for 

Potential failure mode 3 
1 No Breach No Breach No Breach 
2 Breach No Breach No Breach 
3 No Breach Breach No Breach 
4 No Breach No Breach Breach 
5 Breach Breach No Breach 
6 Breach No Breach Breach 
7 No Breach Breach Breach 
8 Breach Breach Breach 

 

Permutation without Repetition 
If each event outcome can be realized only once and the order of the event outcomes 

matters, then the number of permutations within a subset of m events is 
)!(

!
mi

i
−

where i 

is the total number of events.  For example, the outcome represented by permutation 5 in 
Table I-1-1 { FM1, FM2, AFM̄̄E A3} could have 6 additional permutations for (i=m=3) if 
multiple breach mechanisms are plausible and the order in which the potential failure 
modes initiate is important.  The permutations for this example are summarized in Table 
I-1-2.  A particular potential failure mode occurring first (say internal erosion or 
overtopping) could preclude other potential failure modes from developing (say structural 
collapse of a spillway gate) due to rapid evacuation of the pool through the initial breach.  
On the other hand, structural collapse of a spillway gate may not necessarily preclude 
internal erosion from also developing if the increased discharge through the failed gate is 
not sufficient to evacuate the pool.  As a result, the order in which potential failure modes 
initiate might be important to consider in the risk analysis.    
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Table I-1-2.  Permutation without Repetition 
Permutation First Outcome Second Outcome Third Outcome 

5-1 FM1 FM2 AFM̄̄E A3 
5-2 FM1 AFM̄̄E A3 FM2 
5-3 FM2 FM1 AFM̄̄E A3 
5-4 FM2 AFM̄̄E A3 FM1 
5-5 AFM̄̄E A3 FM1 FM2 
5-6 AFM̄̄E A3 FM2 FM1 

    

Probability and Statistics 
Physical (or frequency) probability and degree of belief probability describe two broad 
interpretations of probability.  In practice, the two interpretations of probability are 
complementary; both are useful in risk analysis and both follow the same probability 
calculus.  Physical probabilities are based on a stable frequency for the occurrence of an 
event over a long sequence of trials.  For example, the frequency of rolling a 2 using a 
standard 6 sided die should be about 1/6.  Similarly, observations can be used to estimate 
probabilities for a dam or levee risk analysis.  If damage to clay tile drains has been 
observed at 50 out of 100 dams inspected, then a risk analyst might estimate the 
probability of clay tile drain damage at the dam under consideration to be about 50% as 
long as the conditions at the dam being evaluated are reasonably consistent with the 
conditions at the inspected dams.  A sufficient number of observations is also required to 
obtain a reasonably accurate probability estimate.  Degree of belief probabilities are 
based on a rational weighting of evidence that is manifested by a willingness to take a 
particular action, to bet at particular odds, or to consider particular odds as fair.  Personal 
experience, expert judgment, or some other combination of deductive and inductive 
reasoning is often used as the basis for estimating degree of belief probabilities.  For 
example, a degree of belief interpretation might arrive at the same probability of 1/6 for 
rolling a 2 based on the available evidence (assumption that the die is fair, visual 
observation of the die characteristics, measurement of the die properties, or past 
experience with similar looking die).  Similarly, an expert might combine their general 
knowledge of the internal erosion mechanism (physics of the process, key considerations, 
knowledge of past incidents) with the specific characteristics of an embankment dam 
(construction practices used, soil properties, location of the phreatic surface) to estimate 
the probability of internal erosion initiation under a particular type of loading.   

Axioms 
Probability theory is founded on three axioms that have been attributed Kolmogorov.  
The first axiom states that the probability of an event (A) is a non-negative real number.  
The second axiom states that the probability of the certain event is equal to one.   The 
third axiom (sometimes referred to as the addition rule) states that the union of two or 
more mutually exclusive events is equal to the sum of the probabilities for each event.  
These axioms are summarized by the three equations below. 
 

First Axiom:     𝑃(𝐴) ≥ 0 
 

Second Axiom:     𝑃(𝑆) =  1 
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Third Axiom:     𝑃(𝐴 𝑈 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 
 
The third axiom can be expressed as a multiplication rule instead of the addition rule.  In 
practice, it makes no difference because the remaining probability formulas can be 
derived from either set of axioms.  The multiplication rule can be expressed using the 
equation below.   
 

Multiplication Rule:     𝑃(𝐴 ∩  𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) 
 

In the above equation, P(A|B) is the conditional probability of event A given that event B 
has occurred.  In a risk analysis, this might correspond to the probability that a levee will 
breach given that a 50 year flood occurs, expressed as P(Breach|Flood). Note that the 
Annualized Failure Probability (AFP) is calculated (using the multiplication rule) as the 
intersection probability of the events that comprise the Potential Failure Mode. 

Expressing Probabilities 
Common ways to express probabilities include as a percent (10% chance), as a fraction 
(1/10 chance), as a decimal (0.1 probability), or as odds (1:9).  Each of the values in this 
particular example has the same value and the same meaning.  Probabilities that occur on 
a time scale are often expressed as an annual chance exceedance (ACE) or an annual 
exceedance probability (AEP).  Probabilities can also vary with time to represent 
temporal processes such as climate change or deterioration due to corrosion.    

Random Variables 
A random (or stochastic) variable is used to represent an uncertain quantity whose value 
can take on a number of possible values.  The uncertainty associated with the random 
variable could be the result of natural variability or a lack of knowledge.  Despite the 
name, random variables do not necessarily have to be associated with a random process.  
For example, the magnitude of a spring flood might be modeled as a random process that 
varies from year to year, whereas a fault in the dam foundation might be modeled as a 
state of nature, either it exists or it does not.  Both of these scenarios can be described 
using random variables.  The flood might be described by a range of peak discharge 
values and the presence of the fault might be described by two values, either ‘yes, it 
exists’ or ‘no, it does not exist’. 
 
The event described by a particular value (or range of values) of a random variable must 
be expressed with an associated probability.  Probability distributions describe the 
probabilities associated with all possible values of a random variable.  For example, we 
can estimate a probability distribution for a random variable describing the annual peak 
ground acceleration at a dam site.  This probability distribution can then be used to 
estimate the probability that the peak ground acceleration next year will be large enough 
to cause liquefaction.  Virtually all parameters considered and applied in a risk analysis 
have some degree of uncertainty and are therefore treated as random variables. 
 
Random variables can be discreet or continuous.  For discrete random variables, a 
probability of occurrence can be assigned to each of a finite number of possible values.  
The number obtained by rolling a standard six sided die has 6 possible values each with a 
probability of 1/6.  A probability mass function is used to express the distribution of 
probabilities for the finite set of values.  A probability mass function for the sum of the 
numbers obtained by rolling two standard 6 sided dice is shown in Figure I-1-2.  There 
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are 62 or 36 possible permutations.  A sum of 4 can be obtained from 3 of these 
permutations [{3,1}, {1,3}, {2,2} ].  The probability for a sum of 4 is 3/36 or about 0.08.  
Probabilities for the other permutations can be estimated in a similar manner. 
 

 
Figure I-1-2.  Probability Mass Function 

 
Continuous random variables can take on an infinite number of possible values.  For 
example, the peak ground acceleration measured this year at the dam site might be any 
value greater than or equal to 0g and less than about 2g.  The probability for any specific 
value (say a ground acceleration of 0.3g) is zero for continuous random variables.  This is 
why continuous random variables, such as those typically used to characterize flood or 
seismic loading, must be evaluated in the risk analysis using partitions (also commonly 
referred to as ranges or intervals). 
 
A probability density function is used to describe the probability distribution for 
continuous random variables.  From this distribution, the probability that a random 
variable will fall between two particular values can be obtained.  This can be expressed 
mathematically with the following equation. 

𝑃(𝑎 < 𝑋 ≤  𝑏) = �𝑓𝑋(𝑥)𝑑𝑥
𝑏

𝑎

 

Using the peak ground acceleration example, the probability that the peak ground 
acceleration this year will be between 0.5g and 1g can be represented graphically as the 
shaded area under the probability density function in Figure I-1-3.  It is important to 
remember that the values on the vertical axis are not probabilities but instead are a 
measure of the probability density and that the probability of any specific ground 
acceleration (say 0.5g) is equal to zero.  The total area under the probability density 
function is always equal to one.  
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Figure I-1-3.  Probability Density Function 

 
A Cumulative Distribution Function (CDF) can be developed for both discrete and 
continuous random variables.  A CDF describes the probability that a random variable 
will have a value less than or equal to a particular value0F

1.For discrete random variables, 
the cumulative distribution can be obtained by summing the probability mass values 
associated with each value of the random variable that is less than or equal to the target 
value.  For the previous example of rolling two dice, the CDF is presented in Figure I-1-
4.  The probability that the sum is less than 4 can be estimated directly from Figure I-1-4 
as 0.17 or by summing the appropriate probability mass values for sums of 2, 3, and 4 
from Figure I-1-2 as 0.03 + 0.06 + 0.08. 

 
Figure I-1-4.  Cumulative Distribution Function for a Discrete Random Variable 

 
                                                      
1   The ‘or equal’ convention applies when developing loading functions such as the annual chance 
exceedance function for reservoir water surface elevation or peak ground acceleration.  A ‘less 
than’ convention applies when portraying risks on an F,N chart.   
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For continuous random variables, the cumulative distribution function is obtained by 
integrating the probability density function as illustrated by the following equation.  

𝑃(−∞ < 𝑋 ≤  𝑏) = �𝑓𝑋(𝑥)𝑑𝑥
𝑏

−∞

 

For the previous peak ground acceleration example, the cumulative distribution function 
is presented in Figure I-1-5.  The probability that the peak ground acceleration this year 
will be less than 0.5g can be estimated as about 0.65. 
 

 
Figure I-1-5.  Cumulative Distribution Function for a Continuous Random Variable 
 
Hydrologic and seismic hazards are typically characterized by complementary 
cumulative distribution functions.  These functions describe the probability that a 
particular value for a random variable will be exceeded.  They can be obtained by 
integration of the probability density function using the equation below.  
 

𝑃(𝑎 < 𝑋 ≤  ∞) = � 𝑓𝑋(𝑥)𝑑𝑥
∞

𝑎

 

 
The complementary cumulative distribution (CCDF) can also be obtained by recognizing 
that the probability of exceeding a value is equal to one minus the probability of non 
exceedance.  
 

𝑃(𝑎 < 𝑋 ≤  ∞) = 1 −  𝑃(−∞ < 𝑋 ≤  𝑎) 
 
The CCDF for the peak ground acceleration example is provided in Figure I-1-6.  From 
this figure, the probability that the peak ground acceleration this year will be greater than 
0.5g can be estimated as 0.35.  Note that the probability of an acceleration greater than 
0.5g plus the probability of an acceleration less than or equal to 0.5g is equal to 1 which 
satisfies the axioms of probability given the fact that the two events are complementary. 
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Figure I-1-6.  Complementary Cumulative Distribution Function for a Continuous 

Random Variable 
 
Correlation is the degree to which two or more random variables are linearly related to 
each other.  For example, standard penetration test blow counts might be correlated with 
the shear strength of soils.  Higher blow counts might be an indicator of higher shear 
strengths.  This can facilitate the indirect estimation of random variable parameters 
without having to measure the parameter directly.  The concept can also be used to 
provide internal consistency between parameters within a risk analysis.  For example, the 
number of people estimated to be sleeping when the flood warning is issued might be 
correlated with the time of day.  Note that correlation does not automatically imply 
causation.  A causal connection may exist when there is a plausible cause and effect 
explanation.   

Events 
Two (or more) events are mutually exclusive when both events cannot occur at the same 
time.  Floods and earthquakes are often modeled as mutually exclusive events in a risk 
analysis (even though they are not) so that their risks can be estimated separately and 
then summed to obtain the total risk.  This is usually a reasonable simplifying assumption 
because the joint probability of a flood and an earthquake is usually very remote.  This 
assumption, however, may not be reasonable in every situation.  For mutually exclusive 
events,  

𝑃(𝐴 𝑈 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) 
 
Two (or more) events are statistically independent if the occurrence of one event does not 
affect the probability for occurrence of the other event(s).  For example, floods and 
earthquakes may be statistically independent events when the occurrence of an 
earthquake does not change the probability that a flood will occur.  Potential failure 
modes are often developed in a way that assumes each individual potential failure mode 
is statistically independent.  Statistically independent events satisfy the following 
equation. 
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𝑃(𝐴 ∩  𝐵) =  𝑃(𝐴)𝑃(𝐵) 

 
Two (or more) events are statistically dependent if the occurrence of one event affects the 
occurrence probability of the other event(s).  Potential failure modes can sometimes be 
statistically dependent events.  During a flood event the occurrence of a breach by 
overtopping (and subsequent draining of the reservoir) might decrease the probability of 
initiation of internal erosion.  Statistically dependent events satisfy the following 
equation.   
 

𝑃(𝐴 ∩  𝐵) =  𝑃(𝐴)𝑃(𝐵|𝐴) 
 
The probability of the union of two events can be estimated using the following equation.  
The concept can be expanded when more than two events are involved.  The equation can 
quickly become quite long and cumbersome as the number of events increases.    
 

𝑃(𝐴 ∪  𝐵) =  𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵) 

DeMorgan’s Rule 
For two events A and B, DeMorgan’s rule states that the complement of the union of two 
events is equal to the intersection of their complements ( AA U B¯¯¯¯¯E A= AĀE A∩ AB̄E A).  The Venn 
diagram in Figure I-1-7 illustrates DeMorgan’s rule.   

 
Figure I-1-7. DeMorgan’s Rule 

 
DeMorgan’s rule can simplify the calculation for the probability of the union of two or 
more events.  In practice, it can be used to estimate the total probability of system failure 
given ‘n’ potential failure modes. 
 

 

Uni-Modal Bounds 
The uni-modal bounds theorem (Ang and Tang, 1984) states that for ‘n’ positively 
correlated events (E1, E2, E3, …, En) with corresponding probabilities [P(E1), P(E2), P(E3), 
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…, P(En)], the total probability for the union of the events [P(E) = P(E1 ∪ E2 ∪ E3 …∪ 
En)] lies between the upper and lower bounds given by the following equation.   
 

max
i

P(Ei) ≤ P(E) ≤ 1 −�[1 − P(Ei)]
n

i=1

 

 
Calculation of the upper bound is based on application of de Morgan’s rule whereas the 
lower bound is equal to the probability of the most likely individual event.  Events that 
are highly correlated will yield a total probability closer to the lower bound.  Events that 
are highly uncorrelated will yield a total probability that is closer the upper bound.  In 
practice, the degree of positive correlation is difficult to estimate and risk analysts often 
assume the upper bound value unless there is specific information to indicate correlation 
is important.      

Point Estimators 
The mean is the expected value for a random variable.  The mean is located at the 
centroid of the probability distribution.  It can be estimated as the sum (or integral) over 
every possible value weighted by the probability for that value.  The median is the 50th 
percentile which means that there is equal probability for values greater than and less 
than the median value.  The median divides the probability distribution into equal areas.  
The mode is the most probable value of a random variable.  The mode has the largest 
probability (discrete random variable) or the largest probability density (continuous 
random variable).  A graphical depiction of these point estimators is presented in Figure 
I-1-8 for a continuous random variable. 
 

 
Figure I-1-8.  Point Estimators for a Probability Density Function 

 
Properties of a random variable and its underlying probability distribution can be 
characterized using parameters such as the mean, variance, and skew.  These parameters 
can be estimated from available information such as observations, measurements, or 
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expert opinion.  The mathematical form for these parameters is provided in Table I-1-4.  
Other common parameters can be derived from these basic parameters.  The standard 
deviation is simply the square root of the variance.  The coefficient of variation is simply 
the standard deviation divided by the mean.  
 

Table I-1-4. Common Statistical Parameters 

Parameter Meaning Discrete Random Variable Continuous Random 
Variable 

Mean First moment, 
expected value 𝑥̅ = �𝑥𝑖𝑝(𝑥𝑖)

𝑛

1

 𝑥̅ = � 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
 

Variance Second moment, 
central tendency 𝜎2 = �(𝑥𝑖 − 𝑥̅)2𝑝(𝑥𝑖)

𝑛

1

 𝜎2 = � (𝑥 − 𝑥̅)2𝑓(𝑥)𝑑𝑥
∞

−∞
 

Skew Third moment, 
symmetry 𝛾 =

∑ (𝑥𝑖 − 𝑥̅)3𝑝(𝑥𝑖)𝑛
1

𝜎3
 𝛾 =

∫ (𝑥 − 𝑥̅)3𝑓(𝑥)𝑑𝑥∞
−∞

𝜎3
 

Distributions 
A multitude of probability distributions are available to describe random variables.  Some 
of the more common types used in risk analysis include uniform, triangular, normal, log 
normal, and Weibull.  Other distributions are available and may be more appropriate for a 
particular situation.  A uniform distribution can be used to describe a random variable 
whose possible values are all equally likely to occur.  The uniform distribution is defined 
by a lower and upper limit.  Triangular distributions are defined by a lower limit, upper 
limit, and mode.  Normal distributions are well known for their bell curve shape.  The 
normal distribution can be defined by a mean and variance (or standard deviation).  A 
more generalized form of the normal distribution may also include a skew parameter.  
The log normal distribution is used when the logarithm of a random variable is normally 
distributed as is typically the case for unregulated annual peak discharges or volumes.  A 
useful characteristic of the log normal distribution is that all values of the random 
variable must be non-negative.  The Weibull distribution is a generalization of the 
exponential distribution that is described by a shape parameter and a scale parameter.  
The Weibull distribution can be used to develop relationships that describe the rate of 
failure over time.  These relationships are commonly referred to as bathtub curves.  They 
are characterized by a wear-in or early failure period (region A), a random failure period 
(region B), and a wear-out period (region C).  Each type of distribution has advantages 
and disadvantages.  The facilitator and risk analysts should be familiar with various 
distribution types and their relative strengths and weaknesses.  An illustration of the 
probability density function for the common distributions is provided in Figure I-1-9. 
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Figure I-1-9.  Common Probability Distributions 
 
A truncated distribution is obtained by limiting the domain of another distribution.  
Distributions such as the normal distribution, whose theoretical range is from -∞ to +∞, 
can be truncated to exclude values that are not of interest or not plausible.  For example, 
the friction angle for a soil or the yield strength of steel might be represented by truncated 
distributions to exclude unrealistic values that are too low and/or too high. 
 
According to the Central Limit Theorem (see e.g. Ang and Tang 1984), the probability 
distribution of random variable that is obtained by summing random variables will trend 
toward a normal distribution regardless of how the summed random variables are 
distributed.  Similarly, the probability distribution of a random variable that is obtained as 
a product of random variables will trend toward a log normal distribution regardless of 
how the random variables being multiplied are distributed.  
 
Selecting an appropriate distribution to characterize a random variable in a risk analysis 
is not a trivial task.  The facilitator and estimators should consider the nature of the 
random variable, the parameters associated with the random variable (when data or 
observations are available), the model to which the random variable is being applied, and 
their own state of knowledge.  Risk analyses for dam and levee safety can sometimes be 
influenced by rare events represented in the tails of distributions which may extend 
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beyond the range of observed data or experience.  Also, the quantity of information is 
often limited.  In these situations, distributions should be selected after careful 
consideration, and sometimes only after a sensitivity analysis to help understand the 
effect the selected distribution may have on the estimated risk has been performed.    

Confidence Intervals 
A confidence interval is used to describe the amount of uncertainty associated with an 
estimated or sampled value for a random variable.  The confidence interval [a,b] for a 
specified degree of confidence (C%) can be estimated using the following relationship. 
 

𝐶% = � 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 

 
As an example, assume the friction angle for the soils at a particular site is believed to 
follow a normal distribution with an estimated mean of 32° and an estimated standard 
deviation of 1°.  The probability (or confidence) that the phi angle is between 30° and 33° 
can be estimated as about 82%.  This value is represented by the shaded area under the 
probability distribution in Figure I-1-10.     
 

 
   Figure I-1-10. Confidence Interval 

 
A summary of confidence intervals associated with normally distributed random 
variables is provided in Table I-1-5.  The confidence intervals are defined as a function of 
the mean and standard deviation.  
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Table I-1-5. Confidence Intervals for Normal Distribution 

Confidence Interval 
 

Meaning 

68% Ax̄E A-σ ≤ x < Ax̄E A+σ 
Plus or minus 1 
standard deviation from 
the mean 

95% Ax̄E A-2σ ≤ x < Ax̄E A+2σ 
Plus or minus 2 
standard deviations 
from the mean 

99.7% Ax̄E A-3σ ≤ x < Ax̄E A+3σ 
Plus or minus 3 
standard deviations 
from the mean 

 

Uncertainty 
Two general types of uncertainty can be described as aleatory (natural variability) and 
epistemic (knowledge uncertainty).  Aleatory uncertainty characterizes processes that are 
assumed to be random in time and space.  The occurrence of floods might be assumed to 
be random in time and the geologic properties of a foundation might be assumed to be 
random in space.  In practice, aleatory uncertainty is treated as irreducible.  In other 
words, there is no practical way to reduce the uncertainty through the acquisition of more 
knowledge.  Epistemic uncertainty characterizes our lack of knowledge regarding the 
state of nature.  The foundation flaw either exists or it does not exist, but we don’t have 
sufficient knowledge to determine for certain whether or not the flaw exists.  Epistemic 
uncertainty considers the uncertainty in both models and model parameters.  Uncertainty 
in modeling includes our ability to identify a proper model, the ability of the model to 
represent reality, and our understanding of how the model may be changing over time.  
Uncertainty in model parameters includes our ability to identify the appropriate 
representative parameters and consistently estimate values for the parameters through 
observation or measurement.  In practice, epistemic uncertainty is treated as reducible.  In 
other words, more knowledge can be obtained to reduce the magnitude of the uncertainty.  
These uncertainty concepts are applicable not only to risk analysis models and risk 
estimates but also to decision making processes. 

Bayes Theorem 
Bayes theorem expresses the way in which a degree of belief probability should 
rationally change to account for new evidence.  According to Ang and Tang (1975), the 
Bayesian method provides a useful approach when dealing with limited available 
information and when reliance on subjective judgments is necessary.  It can be used to 
inform subjective judgments so that the available evidence is not given too much weight 
or too little weight when estimating probabilities. 
 
The method begins with an estimate of the prior probability of an event based on 
available information.  The significance of new information or evidence can then be 
considered by using Bayes theorem to obtain an updated or posterior estimate of the 
event probability (Hartford and Baecher 2004).  For example, given some background 
rate of levee breach due to embankment stability, and given that levees with longitudinal 
cracking are more likely to experience an embankment stability breach, an observation of 
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longitudinal cracking on a particular levee should logically increase the estimated 
probability that the levee will breach under flood loading. 
 
To illustrate the concept, it is convenient to start with the general form of Bayes theorem 
using the equation below, where P(x|O) is the posterior probability of an event x given an 
observation O, P(x) is the prior probability of the event x absent information, P(O|x) is 
the conditional probability of the observation O given the event x, and P(O) is the 
probability of the observation. 

( ) ( ) ( )
( )OP

xOPxP
OxP =  

A simple example is presented to illustrate the application of Bayes Theorem for the case 
of a single observation.  The Venn diagram shown in Figure I-1-11 provides the prior 
probability of breach, P(x), in the absence of any specific information.  It represents an 
average or expected breach rate given a flood loading.  For this example, it is assumed 
that the average or base rate of breach given a flood loading is 0.2. 

 

 
Figure I-1-11. Base Rate of Levee Breach given a flood 

The Venn diagram shown in Figure I-1-12 provides additional information about 
performance when seepage is observed.  These values can be obtained from a 
combination of observations, analytical models, and expert opinions.   

 

 
Figure I-1-12. Evidence Related to Observed Seepage given a flood 
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Given the new information (seepage is observed), Bayes theorem can be applied using 
the equation below to improve the estimate of the probability of breach.  As one might 
expect, the observation of seepage increases the estimated probability of breach. 

( ) ( ) ( )
( ) 375.0

25.015.0
05.015.0

15.02.0|
=

+
+==

seepageP
breachseepagePbreachPseepagebreachP  

When dealing with multiple observations, it is more convenient to express Bayes theorem 
in terms of odds and likelihood ratios using the equation below.  In this equation, x is 
taken to be the outcome of breach and x’ is taken to be the outcome of no breach.  The 
expression P(x|O)/P(x’|O) represents the posterior odds of breach given the observation 
and P(x)/P(x’) represents the prior odds of breach absent the information.  The term 
P(O|x)/P(O|x’) is commonly referred to as the likelihood ratio for the observation, which 
represents the value gained by having the additional information.  When the likelihood 
ratio is equal to 1.0, the observation provides no additional information on the expected 
performance.  A likelihood ratio greater than 1.0 will increase the estimated probability 
of breach.  Similarly, a likelihood ratio less than 1.0 will decrease the estimated 
probability of breach based on the observation.   

 
( )
( )

( )
( )

( )
( )''' xOP

xOP
xP
xP

OxP
OxP

=   

 
For the example presented in Figure I-1-12, the likelihood ratio for observed seepage can 
be computed using the equation below. 

 
( )
( ) 4.2

55.025.0
25.0

05.015.0
15.0

'
=









+









+=
xOP
xOP

  

In the case of multiple observations, the likelihood ratio can be computed as the joint 
likelihood of the observations using the equation below. 

 
( )
( )

( )
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If the observations are assumed to be mutually statistically independent, then the joint 
likelihood ratio calculation reduces to the simple product in the equation below. 
 

( )
( )

( )
( )∏= n

i
i

i

n

n

xOP
xOP

xOOP
xOOP

'',...,
,...,

1

1
 

 
The posterior odds of breach can then be computed from the likelihood ratios using the 
equation below. 
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Given the posterior odds of breach and knowing that the posterior probability of breach is 
the complement of the posterior probability of no breach, [P(x’) = 1 – P(x)], the posterior 
probability of breach can be computed using the equation below.  This form of the 
equation provides a method for systematically weighing the evidence obtained from 
observations to update the probability of breach estimate.   
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For the previous example, the probability of breach given observed seepage can 
alternatively be computed as follows. 
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