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A-8. COMBINING AND PORTRAYING RISKS

A-8.1 Key Concepts

After all potential failure modes (PFM) have been identified and described, and 
their risks have been evaluated, the results need to be combined and portrayed so 
that the technical reviewers and decision makers can understand and act upon 
them.  This requires attention to detail, and if not undertaken properly, could 
result in an incorrect portrayal of the risk.  This chapter describes some of the 
details needed to properly do the job. 

A risk analysis, whether by a team or by an individual, produces estimates of risk 
for individual potential failure modes.  These estimates might include probability 
or risk values for different loading conditions, loading ranges, spatial segments, or 
other situations.  The risks from individual potential failure modes are often 
combined in some way to express their collective effect. 

In combining risk estimates, some of the most common problems encountered 
during risk analyses are related to systems, correlations, and common-cause 
loading.  Although the methods to evaluate these issues can become complex, 
some simplifications can be applied to situations commonly seen when evaluating 
risks for dams and levees. 

A-8.2 System Considerations

For the purposes of dam and levee safety risk analysis, a dam or levee system is 
typically defined to include all components of the project that are intended to 
retain the reservoir (dams) or exclude water from the leveed area.  In both cases, 
the system considers those components that can affect a common consequence 
center(s) within the associated floodplain. 

A-8.3 Mutually Exclusive Events

The probability of the union of two or more mutually exclusive events is equal to 
the sum of their probabilities.  Similarly, risks associated with mutually exclusive 
events can be directly summed.   In an event tree, all branches originating from 
the same node are mutually exclusive.  This allows the Annualized Failure 
Probability (AFP) and Annualized Life Loss (ALL) values at the end branches of 
an event tree to be summed to obtain the total risk for an individual potential 
failure mode or group of potential failure modes.  Similar event tree summations 
can be performed to obtain the risks associated with a particular loading range 
(e.g., floods having a return period more frequent than 100 years), a physical 
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feature (e.g., spillway), or a particular breach mechanism.  In summing risk 
estimates developed using separate event trees, it is common practice to ignore 
the intersection between the PFMs, even though there usually is one.  In most 
cases this is a reasonable assumption because the “size” of the intersection is 
small.  As a result, the risks associated with floods and earthquakes, for example, 
can usually be evaluated using separate event trees and the results summed 
directly to obtain a reasonable estimate of the total risk. 

A-8.4 Collectively Exhaustive Events

Events that are collectively exhaustive include all possible outcomes.  In an event 
tree, all branches originating from the same node are collectively exhaustive.  The 
probabilities associated with all branches originating from a particular node must 
sum to 1.0.  This can be used as a check that the event tree has been properly 
constructed. 

A-8.5 Statistically Independent Events

Two or more events are statistically independent (SI) if the occurrence of one 
event does not affect the probability for occurrence of the other event(s).  The 
definition of statistical independence means that the probability of one event can 
be estimated without explicitly considering whether the other event(s) has 
occurred or not.  In practice, a potential failure mode is often developed under the 
assumption that the PFM is statistically independent of other potential failure 
modes.  Correlation and/or common cause effects, if they are relevant, can be 
accounted for by adjusting the total probability estimates and/or modifying the 
event tree structure.    

A-8.6 Conditional Probability

Two or more events are statistically dependent if the occurrence of one event 
affects the probability for occurrence of the other event(s).  For such events, the 
occurrence of the conditioning event must be considered when estimating the 
conditional probability of the dependent event.  Conditional probabilities of 
failure are often dependent on the magnitude of the load because a greater load 
will typically result in a greater probability of failure.  Event trees are constructed 
such that conditional probabilities are shown to the right of the events on which 
their probabilities are conditioned.  Note that the product of the probability 
estimates to the right of the load probability is termed the conditional failure 
probability. 
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A-8.7 Correlated Events 
 
Correlation is the degree to which the probabilities for two or more events are 
linearly related.  For correlated events, the occurrence of one event is an 
indication that the other event is also likely to occur (positive correlation or 
dependence) or likely to not occur (negative correlation or dependence).  
Probabilities associated with dam/levee components of similar character 
(e.g., spillway gates, concrete monoliths) might be correlated.  If one spillway 
gate fails to operate, then it may be likely that additional spillway gates will also 
fail to operate.  Correlation can be quantitatively accounted for in the risk analysis 
using correlation matrices or more qualitatively accounted for by applying expert 
judgment to the estimated probabilities associated with the responses of groups of 
similar components. 
 
 
A-8.8 Total System Probability 
 
The uni-modal bounds theorem (Ang and Tang 1984) stated that for ‘n’ 
positively correlated events (E1, E2, E3, …, En) with corresponding probabilities 
[P(E1), P(E2), P(E3), …, P(En)], the total probability P(E) for the union of 
the events, which cannot always be calculated directly by using the formula 
[P(E) = P(E1 ⋃ E2 ⋃ E3 …⋃ En)], lies between the upper and lower bounds 
given by the following equation: 

 
The upper bound on the right side of the equation is based on a calculation of the 
total probability using DeMorgan’s rule.  The lower bound on the left side of the 
equation is tied to the event with the largest individual probability. 
 
The uni-modal bounds theorem can be used to obtain the upper and lower bounds 
of the total probability of failure for a dam or levee system from a set of failure 
probabilities associated with individual potential failure modes.  The lower bound 
is obtained if the potential failure modes are perfectly correlated.  The upper 
bound is obtained if the potential failure modes are statistically independent.  In 
practice, the upper bound is often used in dam and levee safety risk analysis 
unless specific knowledge of the degree of positive correlation is available. 
If one potential failure mode is dominant (i.e., has a probability significantly 
greater than that of all other failure modes), then the upper bound and lower 
bound obtained from the above equation will be approximately equal to each 
other. 
  

max[P(E1), P(E2), P(E3), … , P(En)] ≤ P(E) ≤ 1 −�[1 − P(Ei)]
n

i=1

 Equation A-8.1 
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If the conditional failure probabilities for individual potential failure modes are 
small compared to 1, the upper bound of their union can be approximated by 
summing the individual conditional failure probabilities.  For a set of positively 
correlated PFMs, the maximum possible error in this approximation will be less 
than about 5% if the sum of the individual conditional failure probabilities is less 
than about 0.1.  In practice, the error is typically much less than this maximum 
value.  For two PFMs with conditional failure probabilities of 0.02 and 0.08, the 
summation would be 0.1 and the upper bound would be 0.098 resulting in an error 
of less than 2%.  As the sum increases, the error in the approximation also 
increases.  When the sum of the conditional probabilities is equal to 1, the 
maximum possible error is about 60%.  When the sum of the conditional 
probability estimates becomes greater than 1.0 (a situation that would imply 
certain failure under the given loading condition), the summing approximation 
violates the axioms of probability and is probably not appropriate to use. 
 
Consider a dam with the following three seismic potential failure modes: A) 
sliding within the foundation of a concrete gravity monolith, B) buckling of a 
spillway gate arm, and C) liquefaction of the embankment foundation leading to 
crest deformation and overtopping.  The conditional probability of failure for each 
of these potential failure modes given a 0.001 Annual Exceedance Probability 
(AEP) seismic loading has been estimated independently and is shown below. 
Note that in practice the seismic loading would typically be divided into multiple 
loading partitions with conditional failure probabilities for each PFM estimated 
separately for each partition. 
 

P(A) = 0.3 
P(B) = 0.1 
P(C) = 0.2 

Equation A-8.2 
 

 
Applying the uni-modal bounds theorem, the total conditional probability of 
failure for the dam is estimated to be between 0.3 and 0.496. 
 

max{0.3, 0.1, 0.2} ≤ P(Fail)
≤ 1
− (1 − 0.3)(1
− 0.1)(1 − 0.2) 

 
0.3 ≤ P(Fail) ≤ 0.496 

Equation A-8.3 
 

 
These values place bounds on the total conditional probability of failure estimated 
for the dam.  In contrast, a summation of the individual probabilities of failure 
would result in an estimate of 0.6.  Using the summation approximation would in 
this case overestimate the total conditional probability of failure by about 20%.  
The total AFP for the dam would be about 5E-4 using the upper bound estimate, 
3E-4 using the lower bound estimate, and about 6E-4 using the summation 
approximation.  The difference between the AFP estimates in this example would 



Chapter A-8  Combining and Portraying Risks 
 
 

 
 

A-8-5 
July 2019 

typically have a minimal impact on risk informed decisions.  In this case, the 
summation approximation would likely be a reasonable simplification for 
portraying the total risk in this example.   
 
The upper bound estimate is represented by the shaded area on the Venn diagram 
in figure A-8-1.  The estimate includes the total area enclosed by all of the circles, 
each representing an individual potential failure mode (from a set of SI PFMs).  
The uni-modal bounds equation calculates a range of total areas using the limiting 
cases of circle overlap.  The summation approximation, which does not consider 
the intersection area, is subject to double counting error (i.e., the overlapping 
areas on the Venn diagram are counted more than once).  The double counting of 
the overlapping area is the source of the 20% error in the example. 
 
 

 

Figure A-8-1.—Venn diagram for upper bound estimate. 

A-8.9 Common Cause Adjustment 
 
In typical dam and levee safety risk analyses, intersection events representing the 
occurrence of two or more potential failure modes are not explicitly evaluated in 
the event trees.  This is usually, but not always, a reasonable simplification.  If the 
probabilities of the intersection events are small relative to the probabilities of 
each potential failure mode, then the intersection event probabilities can be 
ignored.  This allows the potential failure mode probabilities to be summed to 
obtain a reasonable approximation of the total probability of failure.  When the 
intersection probabilities are not small, adjustments to account for the over 
counting of the intersection probability may need to be made so that the 
correct total probability of failure can be obtained.  The term “common cause 
adjustment” refers to any of the methods that can be used to make this correction.  



Chapter A-8  Combining and Portraying Risks 
 
 

 
 

A-8-6 
July 2019 

In dam safety risk analysis, the AFP associated with a simple adverse event chain 
(e.g., A happens, B happens, C happens, D happens ...) is calculated as the 
probability of the intersection event P(ABCD...).  For a dam susceptible to 
multiple adverse event chains (i.e., potential failure modes), the total probability 
of failure would be properly calculated as the probability of the union event.  For 
example, given potential failure modes (PFMs) 1 and 2 with calculated annualized 
failure probabilities AFP1 and AFP2, the total AFP would be calculated as:  
 

P(PFM 1 ∪ PFM 2) = P(PFM 1) + 
P(PFM 2) – P(PFM 1 ∩ PFM 2) 

= AFP1 + AFP 2 – є 

 
Equation A-8.4 

 
 
where є is a number between zero and the smaller of (AFP1, AFP2).  If PFMs 1 
and 2 are SI, є is usually small enough to be ignored without inflating the total 
risk estimate (not because SI events have trivial intersections, but because 
P(PFM 1 ∩ PFM 2) typically reduces to the product of two small numbers for 
SI PFMs).  However, if PFMs 1 and 2 are not SI at the level of the overall sample 
space (for example, if both PFMs involve the occurrence of a flood or 
earthquake), it may not be possible to simply assume that є is negligible. 
 
Consider a set of seismic related potential failure modes, PFMs 1 and 2.  The risks 
for both PFMs are controlled by the occurrence of a 50,000-year earthquake. 
Given the occurrence of the earthquake (Event Q), the probability of breach due 
to embankment liquefaction (response event A) is estimated to be 0.5 (= P[A|Q]) 
and the probability of breach due to the gravity section sliding (response event B) 
as 0.9 (= P[A|Q]).  Because the response events involve completely different 
mechanisms of failure, they could be considered independent given the 
occurrence of triggering event, or “conditionally independent” (Galic 2017).  
Since the rules of probability theory still apply within a reconditioned sample 
space, the fact that the conditional probabilities of A and B sum to greater than 1 
implies that within the reconditioned sample space, there is intersection between 
the events.  Note that this does not imply there is anything “wrong” with the 
team’s conditional probability estimates. 
 
Figure A-8-2 shows the Venn diagram for the above example, both before (left) 
and after (right) the sample space transformation associated with the occurrence 
of the 50,000-year earthquake.  Prior to the occurrence of the quake, the “area” 
of S occupied by Q is relatively small (since the earthquake has only about a 
1/50,000 chance of occurring).  However, once it is known that the earthquake has 
occurred, the sample space changes from all of S to only the region bounded by 
Q.  Although the “size” of AB given Q is not obvious from the sum of the 
response probabilities, the conditional probability of A ∩ B can be estimated 
using the information already known, provided that A and B are statistically 
independent within the reconditioned sample space (i.e., conditionally 
independent).  Once quantified, the conditional probability of the intersection 
can be used to correct the total AFP estimate.  The process is as follows:  
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Step 1. Calculate P(AB|Q): P(AB|Q) = P(A|Q)*P(B|Q) = 0.5*0.9 = 0.45 

Step 2. Calculate the uncorrected total AFP: AFP = P(Q)*P(A|Q)+P(Q)*P(B|Q) 
= 1/50,000*(0.5+0.9) = 1.4/50,000 

Step 3. Calculate the corrected total AFP: AFP = P(Q)*[P(A|Q)+P(B|Q) – 
P(AB|Q)] = 1/50,000 (0.5+0.9-0.45) = 0.95/50,000 

Step 4. Calculate the percent error: Error = 1 – (corrected AFP/uncorrected 
AFP) = 1– 0.95/1.4 = 0.32 

Equation A-8.5 

Figure A-8-2.—The probabilities of events A (e.g., breach due to liquefaction 
mechanism) and B (e.g., breach due to gravity section sliding mechanism) within 
the overall sample space (left panel) and the reconditioned sample space 
associated with the occurrence of  event Q, a 50,000-year earthquake (right panel). 

The final step would be to decide whether a formal AFP correction needed to be 
reported.  Although the error calculated in the example may appear significant, 
the potential impact on the dam safety decision (or lack thereof) must be taken 
into account (as well as the fact that risks are typically plotted on a log scale).  In 
this example, correction for the 32% error would result in a relatively small 
difference in the plotting position if an fN chart (“little f-n”) were being used to 
plot the risks.  If it was decided to report the correction the final step in the 
process would be to change the automatically summed AFP total to the number 
obtained in Step 3.  The individual PFM risk estimates are already “correct”, and 
would not need to be adjusted on the fN chart.  The process outlined in the 
example can be generalized to any number of PFMs, or any number of load 
ranges (for multiple controlling load ranges, a separate adjustment would be 
performed for each load range).  It should be stressed that the process outlined in 
the example is only applicable to conditionally independent PFMs (or those that 
are essentially so). 

The considerations that sometimes lead to a total AFP adjustment are also 
applicable to the calculation of total An ALL.  However, because the ALL is a 
different kind of mathematical object than the AFP (an expectation versus a 
probability) the process used to adjust the ALL is slightly different, and depends 
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on whether the PFMs involve different or similar life loss estimates, and on 
whether the populations at risk overlap or are unique to each PFM (Galic 2017).  
For the purposes of this introductory course on risk analysis, the ALL Common 
Cause Adjustment can be summarized as follows: 
 

• When the life loss estimates for the PFMs over which the adjustment is 
being performed are identical or reasonably similar, and when the 
inundation area associated with each of the PFMs is identical or 
reasonably similar, the corrected total ALL can be obtained simply by 
multiplying the corrected total AFP by the estimated life loss.  The percent 
error in the ALL correction will be the same as for the total AFP in this 
case.  

 
• When the life loss estimates associated with the PFMs over which the 

adjustment is being performed are additive (for example, when 
considering a pair of dikes constructed over different drainages), no ALL 
adjustment is required, and the total ALL can be calculated from the 
individual PFM risk estimates (which are already “correct”, and therefore 
not subject to adjustment).   

 
• When the life loss estimates for the PFMs over which the adjustment is 

being performed differ significantly, a specific value of life loss must be 
assigned to the intersection event (Galic 2017).  However, in most cases, 
the percent error for this situation would be relatively small, and there 
would typically not be a compelling reason to perform a common cause 
adjustment for the total ALL.  

 
As demonstrated above, the intersection between PFMs may support a decision to 
adjust the total AFP and ALL estimates.  In typical risk assessments, only the total 
AFP and ALL should be adjusted.  Individual PFM risk estimates are typically not 
adjusted.  However, if the intersection event has the potential to be a significant 
contributor to the total AFP or ALL with potential impacts to a decision, the risk 
analyst might consider portraying the intersection event separately.  In this 
situation, the individual PFMs A and B would need to be adjusted so as to not 
include the intersection event, which could be done with the help of the 
complementary events ⌐A (read “not A”) and ⌐B.  In the example, if the life loss 
is estimated to be about 10 for event A⌐BQ, 20 for event ⌐ABQ, and 50 for event 
ABQ, then the intersection event accounts for about 47% of the total AFP and 
about 80% of the total ALL.  The risk analyst could choose to portray event  
A⌐BQ with AFP of 9E-6 and ALL as 9E-5; event ⌐ABQ with AFP of 1E-6 and 
ALL of 2E-5, and event ABQ with AFP of 9E-6 and ALL of 5E-4.  This would 
convey that the intersection event (e.g., multiple failures occur as a result of the 
earthquake) is the most likely outcome and has the highest risk.  
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Hill et al (2003) have proposed a simplified approach for adjusting the system 
response probabilities for each potential failure mode as a way of adjusting 
the total AFP and ALL.  The method redistributes the overlapping area in 
figure A-8-1 to each individual failure mode (or response event, in the case of a 
reconditioned sample space).  The magnitude of the redistribution is proportional 
to the estimated probability of failure for each potential failure mode (or the 
conditional probability of failure for a common load condition).  Events with 
larger probabilities of failure receive a larger portion of the overlapping area.  The 
approach is implemented using the following equation, where 𝑝𝑝𝑗𝑗  is the 
unadjusted probability of failure for potential failure mode (or response event) 
j and 𝑝𝑝𝑗𝑗′  is the adjusted probability of failure. 

pj′ = pj
1 −∏ [1 − pi]n

i=1
∑ pin
i=1

Equation A-8.6 

For the example on page A-8-4, the adjusted probabilities of failure are 

pA′ = 0.3
1 − (1 − 0.3)(1 − 0.1)(1 − 0.2)

0.3 + 0.1 + 0.2
= 0.248 

pB′ = 0.1
1 − (1 − 0.3)(1 − 0.1)(1 − 0.2)

0.3 + 0.1 + 0.2
= 0.083 

pC′ = 0.2
1 − (1 − 0.3)(1 − 0.1)(1 − 0.2)

0.3 + 0.1 + 0.2
= 0.165 

The adjusted failure probabilities could now be added to calculate a total AFP, or 
multiplied by the associated life loss estimates and added to obtain a total ALL to 
portray on an fN chart.  In typical risk assessments, adjustments to the individual 
PFMs would not be portrayed on fN charts but, the adjusted individual failure 
probabilities are required when an FN chart is being used to portray the risks.  

Additional details regarding this approach are provided in Hill et al (2003). 

A-8.10 Length Effects

Dam and levee systems may be comprised of significant lengths of constructed 
embankments or walls extending thousands of feet to hundreds of miles.  This 
may result in considerable uncertainty about the loadings, performance, and 
consequences for sections within the system. 

Systems fail at locations where loads are high and strengths are low.  If these 
critical locations are known and identified ahead of time, traditional methods can 
be used to analyze stability and estimate probabilities of failure.  In such 
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situations, the overall length of the system is immaterial, because the weakest 
spots have been identified, and the performance of the system depends on the 
probability of failure for the weak spots.  The more common situation is that the 
system is not characterized with enough detail for the risk analyst to know with 
reasonable certainty where the weakest spots are.  In this case, any section of the 
system has some probability of experiencing higher than average loads and/or 
lower than average strengths.  Since these locations cannot be uniquely identified 
before a failure occurs, a longer system length results in a greater probability of a 
failure somewhere. 

A detailed discussion of length effects is beyond the scope of this manual.  Risk 
analysts should consult with appropriate experts when estimating risks for long 
systems or for systems with many components (e.g., a levee with many pipe 
penetrations).  

A-8.11 Cascading Events

Individual dams and levees are often part of larger infrastructure systems.  Within 
these watershed systems, risk is typically attributed to the specific dam or levee 
that is the source of the risk.  

Estimating and attributing risk to an individual dam or levee can sometimes be 
complicated by system effects.  Failure of a dam or levee might impact the 
performance of other dams or levees in the system.  Breach of an upstream levee 
might reduce the loading on a downstream levee.  Failure of an upstream dam 
might result in overtopping of a downstream dam.  In these situations, agency 
specific policy and methodology will dictate the scenarios that need to be 
evaluated in order to estimate, attribute, and portray risks.  

To support portfolio prioritization decisions or to communicate the flood risk 
from multiple flooding sources, there may be a benefit in estimating the risk from 
a river systems perspective.  These analyses can support improved prioritization 
decisions within the larger watershed to obtain more efficient and effective total 
risk reduction across the portfolio.  In these situations, it may be appropriate to 
evaluate the cascading impacts of failure.  

A-8.12 Intervention

The ability to intervene to mitigate or prevent failure of a dam or levee is an 
important consideration in risk analysis.  The potential for successful intervention 
can be important in setting priorities across a portfolio and in developing specific  
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risk reduction actions at a dam or levee.  Risk analysts should refer to agency 
specific policy and methodology for information on how intervention should be 
considered in the portrayal of risk.  

A-8.13 Incremental Risk

Risks can be estimated and attributed to a PFM based on the total consequences 
associated with the failure of a particular dam or levee.  For example, the risk for 
a levee overtopping PFM might include an AFP of 0.0002, a total life loss of 25, 
and an ALL of 0.005.  In this scenario, all of the risk associated with the failure 
event would be attributed to the levee. 

Risks can also be estimated and attributed based on the incremental consequences 
associated with a failure.  The incremental consequences are calculated as the 
difference between the total consequences that occur with a failure and the 
consequences that would have occurred for the same event if the structure had not 
failed.  If the same levee overtops and does not fail, the life loss estimate may be 
10. The incremental risk associated with the failure would include an AFP of
0.0002, an incremental life loss of 15, and an ALL of 0.003.  In this scenario, only
the risk associated with the actual failure of the levee is attributed to the levee.

Risk analysts should refer to agency specific policy and methodology for whether 
or not to consider incremental consequences in the estimation and portrayal of 
risk. 

A-8.14 System Response Curves

In dam and levee risk analysis, probability of failure estimates associated with 
system response curves are often interpreted as the products of conditional breach 
probabilities and specific load probabilities.  This is a simplification that is made 
to facilitate event tree analysis and event tree calculations.  This approach 
assumes that breach will occur at the maximum loading during a flood or 
earthquake event.  It is important to recognize that a system response curve is 
actually a cumulative distribution function for the capacity or strength of the dam 
or levee.  In practice, this means that the system response curve gives the 
probability that a failure or breach will occur at a load that is less than or equal to 
the specified load.  This means that breach can occur at a loading that is less than 
the maximum loading experienced during a specific flood or earthquake event. 

Characterizing the system response curve as a cumulative distribution function 
provides an important and powerful tool for simulation based risk models.  For 
each simulation, the capacity of the system can be randomly sampled from the 
system response curve prior to the start of the simulation.  During the simulation, 
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the modeled failures or breaches occur when the demand reaches the sampled 
capacity.  In this framework, it is not necessary to assume that failure or breach 
always occurs at the peak demand.  Not making this assumption allows for 
explicit consideration of the temporal aspects of loading events such as floods and 
explicit analysis of scenarios where a failure or breach can occur at a water level 
that is less than the peak water level. 

The branches in an event tree do not explicitly consider the temporal aspects of 
events like floods, and it is often assumed that failure or breach will occur at the 
peak load.  The risk analyst should keep in mind that failure or breach can also 
occur at loads less than the peak load for the event.  This simplification is usually 
not a significant issue when estimating or portraying the total annual probability 
of failure or breach.  It can sometimes be an issue when estimating or portraying 
the total ALL.  In certain situations, failure at a load less than the peak load could 
result in different consequences and different risks.  In these situations, the risk 
analyst should consider whether or not further refinement of the risk model is 
needed to obtain a more accurate portrayal of the risk for decision makers. 

A-8.15 Monte Carlo Simulation

In dam safety risk analysis, the intersection formula or “multiplication rule” is 
used to compute the Annualized Failure Probability (AFP) associated with each 
PFM.  The intersection formula uses conditional probabilities as its primary 
inputs, and since the probability estimates developed throughout a risk analysis 
are conditional probability estimates, the AFP (e.g., for a given PFM load range) 
often reduces to a simple product of the probabilities estimated by the team.  
However, due to the uncertainty inherent in subjective probability estimation, the 
conditional probability estimates are usually developed as ranges or distributions, 
rather than as single values.  In this case, the probability estimates are themselves 
random variables, and the AFP obtained from the intersection formula is a 
product function of the n random variables that comprise the PFM. 

In order to obtain an estimate of the mean of a product distribution, it would first 
be necessary to derive an equation for the PDF of the distribution of the product 
function.  Unfortunately, this is difficult to accomplish unless the input random 
variables are jointly lognormal.  Since this is not typically the case with subjective 
probability estimates, Monte Carlo simulation (e.g., Ang and Tang 1984) is used 
instead to approximate the analytical product distribution.  The process can be 
implemented through the use of specialized software, often available in the form 
of an add-on to Microsoft Excel, that allows input distributions to be entered in 
terms of their key parameters.  For a given trial, the Monte Carlo simulation 
process consists of randomly sampling the input probability distributions 
associated with a PFM, and passing each set of sampled values through the 
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intersection formula to obtain a trial value of AFP.  Over thousands of trials, an 
AFP output distribution, whose mean can be calculated numerically, is built up. 

The Monte Carlo generated AFP output distribution is often approximately 
log-normal (figure A-8-3), consistent with the predictions of the Central Limit 
Theorem for product functions of random variables (e.g., Ang and Tang 1975). 

Figure A-8-3.—Comparison of a Monte Carlo AFP output distribution (blue) 
and the PDF of an analytical lognormal distribution (red line). 

However, this may not always be the case, especially if the event tree contains 
many “short” branches; when summation, rather than multiplication, is the 
dominant event tree operation, the output distribution tends toward a normal 
distribution shape.  For consequence estimates, the shape of the output 
distribution can be log-normal (as in the case of an ALL distribution obtained 
from a simple event tree), normal (e.g., when the ALL is obtained as a sum across 
many branches), or neither (e.g., when a life loss distribution is back-calculated 
from the ALL and AFP). 

A-8.16 Informing Decisions

Risk analysis results are typically portrayed on an f-N or F-N chart.  The usual 
format for an f-N plot features an annual failure probability on the vertical axis 
and the estimated life loss by PFM on the horizontal axis.  Note that the latter is 
not the same as the ALL, whose value is read in the up-right diagonal direction.  
The F-N plot features an annual probability of N or more consequences on the 
vertical axis and the magnitude of consequences on the horizontal axis.  In both 
plots, the axes are shown with a log scale.   
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Another type of risk plot is the scatter plot (e.g., figure A-8-4), which uses the 
same log-scale axes as the fN chart and can also be generated using a standardized 
template.  In order to obtain the data required for a scatter plot, a Monte Carlo 
simulation must first be performed, as discussed below.  Figure A-8-4 is an 
example of a scatter plot produced from the results of individual Monte Carlo 
trials for a dam where the slip rate of a local fault was unknown.  In this case, a 
recommendation was made not to investigate the fault any further because its 
existence would not have a significant effect on the final decision.  The point 
clouds for both slip rate assumptions (red versus blue) are similarly shaped and 
plot over nearly the same area, suggesting that further refinement of the 
seismology would not change the decision. 

Figure A-8-4.—f–N scatter plot used to make a case 
against fault investigation. 

Many types of charts can be generated depending on the information needing to 
be conveyed.  Some of the common charts used as supplementary information 
are: 
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• Charts that show the relative contribution to the total risk from each
potential failure mode

• Charts that show the contribution to risk from each load range or slip rate
assumption (as in figure A-8-5 for example)

• Charts that show effects of applying different flood-related assumptions
(showing the value of additional hazard studies)

• Charts that show the effects of different foundation assumptions (showing
the value of additional geologic investigation)

Figure A-8-5.—Contributions to risk by load range. 

The spreadsheets used to create the standard risk plots often require the user to 
enter plausible ranges for the probabilities of failure and consequences.  The 
lower and upper bounds of these ranges can be estimated using several different 
approaches, and their use helps communicate the uncertainty of the risk estimates.  
In each case, the meaning of and reason for the uncertainty bounds used should be 
explained in the report.  Some of the more commonly used lower and upper 
bounds are: 

• +/- 1 standard deviation

• The 5th and 95th percentiles of the Monte Carlo output

• The 1st and 99th percentiles of the Monte Carlo output
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• The absolute bounds of the entire Monte Carlo range (i.e., 0 and
100 percentiles)

• +/- one order of magnitude from the mean estimate

• The range over which the mean estimate could reasonably change with
additional information or with more refined analysis

The report should always explain how and why a particular set of uncertainty 
bounds was selected.  The reporting of uncertainty bounds is always 
recommended, but they do not by themselves make a compelling case for the risk 
estimates.  Identifying the separate components of risk, discussing the meaning 
and importance of a particular load range, and describing the sensitivity of the 
results to a key probability estimate are examples of other things could be done to 
help build the case for a particular interpretation of risk.  The key question would 
be whether the uncertainty of the probability estimates has the potential to affect 
the overall dam safety case. 
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