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INTRODUCTION 
 
 This paper is concerned with incorporating earthquake excitation in the analysis 
of a structure using methods that allow for interaction between the structure and its 
supporting region (soil, rock, etc.), include spatial nonlinearity in the excitation, and 
permit the structure and some of the adjacent supporting region to undergo nonlinear 
behavior.  This is the most general case.  Two techniques are discussed:  a three-step, 
free-field method and a simpler incident wave method.  The main purpose of this paper is 
to reveal some previously unrecognized problems with the incident wave method.  These 
problems do not arise with the free-field method.  A corrected incident wave method is 
also discussed.  For background information, the reader is directed to an extensive 
literature (…..). 
 
 

FREE-FIELD METHOD 
 

 The system to be analyzed is divided into two parts denoted 1 and 2.  Part 1 
contains the entire structure and the part of the supporting region that exhibits nonlinear 
behavior.  Part 2 consists of the rest of the supporting region, which is assumed to remain 
linearly elastic.  These features are illustrated in Figure 1 where Part 1 includes the dam 
and water (together considered to be the structure) and some of the adjacent supporting 
region.   
 
 The free-field method consists of three steps.  First is computation of the free-
field motions, defined as the motions that the earthquake would produce at the interface 
between Parts 1 and 2 if Part 1 were absent.  As far as Part 1 is concerned, these free-field 
motions completely define the earthquake, and they can be constructed empirically, 
analytically or by some numerical method.    This process may be made easier if the 
interface between Parts 1 and 2 is located to simplify the geometries involved.  
Relocation of this interface is possible by placing any amount of the linearly elastic 
portion of the supporting region into Part 1.  Details of computing the free-field motions 
are not presented here. 
 
 The second step is to find a set of forces that, when applied to Part 2 with Part 1 
removed, causes the interface between Part 2 and the absent Part 1 to move at the free-
field motions obtained in the first step.  For this purpose, consider a truncated Part 2 
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where the infinite extent has been replaced by transmitting boundaries (Figure 2).  A 
finite element discretization is employed to obtain the equations of motion of Part 2 as 
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where [ ]K , [ ]C  and [ ]M  are stiffness, damping and mass matrices, which include 
appropriate transmitting boundary terms; the overbar denotes that these matrices are 
computed from the finite element discretization of Part 2; { })(td , { })(tv  and { })(ta  are 
displacement, velocity and acceleration degree-of-freedom vectors; )(t  denotes function 
of time; i denotes the degrees of freedom on the interface with the absent Part 1; the 2 
denotes the degrees of freedom of Part 2 not located on the interface; and { })(tf  is the 
dynamic load vector. To compute the forces to be applied to Part 2 to represent the 
earthquake, insert the free-field motions from the first step for the interface degrees of 
freedom and insert any arbitrary motion for the other degrees of freedom; thus,  
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where eq signifies that the forces generate the earthquake; ff denotes the free-field 
motions; and arb denotes the arbitrary motions.  Choice of the arbitrary motions, which 
could even be taken as zero, should not affect the final result except possibly for some 
numerical accuracy issues.  This is not discussed here except to say that equation (1) 
should be solved with the loads from equation (2) to ensure that the resulting motions of 
the interface degrees of freedom are close to the desired free-field displacements, 
velocities and accelerations. 
 
 The final step is to apply the earthquake loads to a combined finite element 
discretization of Parts 1 and 2, which entails solving 
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where { })(tR  is the vector of nonlinear stiffness forces for Part 1; [ ]C  and [ ]M  are 
damping and stiffness matrices for Part 1; the 1 denotes the degrees of freedom of Part 1 
not located on the interface with Part 2; and { }stf  is the static load vector.  Equation (3) 
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can be solved by standard methods consisting of a static solution for the static loads and a 
dynamic analysis for the earthquake loads (ref). 
 
 In equation (3), nonlinear effects have been assumed to be associated only with 
the Part 1 stiffness.  Motions computed from equation (3) are total motions for the types 1 
and i degrees of freedom, but not for the type 2 degrees of freedom.  This is why Part 2 
must remain linearly elastic, i.e., superposition would be necessary to obtain the total 
motions of the Part 2 degrees of freedom. 
 
 

INCIDENT WAVE METHOD 
 
 The earthquake is represented by incident waves that propagate in the supporting 
region toward the structure.  With reference to Figure 3, a common technique is to 
generate upward propagating S and P waves by applying tractions to the base of the 
supporting region, where the bottom transmitting boundary is also located.  In Figure 3, x 
and y are horizontal coordinates and z is vertical. According to 1-dimensional wave 
propagation theory, uniformly distributed x and y tractions can be used to generate planar 
Sx and Sy waves, respectively, and uniformly distributed z tractions can be used to 
generate planar P waves.  These tractions must generate the incident waves as well as 
move the transmitting boundary.  Thus, they consist of two parts, which can be computed 
separately. 
 
 Let ),(, td incx  )(, tv incx  and )(, ta incx denote the x components of the displacement, 
velocity and acceleration of the incident wave as generated at the base of the supporting 
region, similarly for the y and z components.  For a linearly elastic, homogeneous 
supporting region, this incident motion can be simply taken as one half any desired 
reference motion at the top surface, because of the doubling effect when a wave reaches a 
free surface.  For a nonhomogeneous region where the material properties are a function 
only of the z coordinate, a deconvolution can be performed to determine the appropriate 
incident wave form.  Based on 1-dimensional wave propagation theory and considering 
first the case where the transmitting boundary (t.b.) at the base is not present, the tractions 
applied to the bottom surface of the supporting region to produce the desired incident 
wave motion are   
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where eq signifies that the tractions generate the incident waves representing the 
earthquake; G is the shear modulus; )21/()1( 2' ννν −−−= EE ; E is Young’s modulus, ν 
is Poisson’s ratio; CS is the S wave speed; and CP is the P wave speed.  In equation (4), 

)(tt eq
x  and )(tt eq

y  are shear tractions and )(tt eq
z  is a normal traction. 
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 A simple and commonly used transmitting boundary, which is also based on 1-
dimensinal wave propagation theory, applies tractions to the base of the supporting 
region proportional to and with opposite sign to the velocity there (ref): 
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where tb denotes tractions applied by the transmitting boundary.  Therefore, when this 
transmitting boundary is present at the base of the supporting region, additional tractions 
in the amount given by equation (4) must be applied to move the base at the incident 
wave motions.  Thus, the tractions from equation (4) must be doubled: 
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This doubling is reasonable since these tractions are essentially generating both upward 
and downward propagating waves, hence, the factor of two. 
 
 In the finite element discretization, the tractions from equation (6) are converted 
to nodal forces { })(tf eq  in the usual way.  The equation of motion to be solved is 
 

{ } [ ]{ } [ ]{ } { } { })()()()( tfftaMtvCtR eqst +=++      (7) 
 

where the nodal forces in { })(tf eq  are non-zero for only degrees of freedom at the nodes 
on the bottom of the supporting region.  The transmitting boundary condition given by 
equation (5), as well as similar conditions along the sides of the supporting region 
adjusted for different normal and tangent directions, are incorporated into the damping 
matrix [ ]C .  More exact transmitting boundaries could also be used.  In general, 
transmitting boundaries only replace regions that remain linearly elastic; however, both 
the structure and the supporting region shown in Figure 3 can be nonlinear. 
 
 

FREQUENCY-DOMAIN TEST OF THE INCIDENT WAVE METHOD 
 
 The intent of the incident wave method is to generate planar Sx, Sy and P waves at 
the base of the supporting region that will then travel upward toward the structure.  After 
generation, the 1-dimensional character of the wave propagation will be appropriately 
modified by inhomogeneity in the medium, irregular surface features, the presence of the 
structure to be analyzed, and any nonlinear behavior.  However, the transmitting 
boundaries along the sides of the supporting region, which are designed to absorb 
outward propagating waves generated by the aforementioned factors, are not compatible 
with the upward traveling incident waves.  This can alter the desired motions imparted to 
the structure, and the effect can be surprisingly large. 
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 To investigate, consider a test problem consisting of a rectangular block of depth 
h and lateral dimensions 2h by 2h.  The material is linearly elastic and homogeneous, and 
Poisson’s ratio is taken as 0.20.  Symmetry considerations allow only one quarter of the 
block to be modeled (Figure 4).  The analysis is performed in the frequency domain with 
normalized frequency parameter 
 

SC
hωω =~      (8) 

 
where ω is the actual frequency in rad/s.  Thus, in a normalized time of one, a shear wave 
travels the block depth h.  Spatially uniform tractions ( )eq

xt ω%  and ( )eq
zt ω%  are applied to 

the base of the block, and response velocities are computed.   
 

When ( )eq
xt ω%  is applied, the velocity components are normalized as 
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where ),~(ωxv  )~(ωyv  and )~(ωzv  are the components of the actual velocity, and ( )eq

xt ω%  is 

taken from the frequency-domain version of equation 6 with , ( )x incv ω%  equal to one half.  
Under conditions of 1-dimensional wave propagation in an infinite medium, the 
generated incident Sx wave will cause velocity amplitudes at the top surface of  

,1)~(~ =ωxv ,0)~(~ =ωyv and 0)~(~ =ωzv .  For this test problem under application of ( )eq
xt ω% , 

this is the desired motion.  When ( )eq
zt ω%  is applied, the velocity components are 

normalized as 
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,     (10) 

where ( )eq
zt ω%  is taken from the frequency-domain version of equation 6 with , ( )z incv ω%  

equal to one half.  Under conditions of 1-dimensional wave propagation in an infinite 
medium, the generated incident P wave will cause velocity amplitudes at the top surface 
of  ,0)~(~ =ωxv ,0)~(~ =ωyv and 1)~(~ =ωzv .  For this test problem under application of 

( )eq
zt ω% , this is the desired motion. 

 
 In the finite element discretization, cubic 8-noded solid elements are employed 
with side length h/16.  Thus, a total of 4096 elements are needed for the quarter block 
shown in Figure 4.  In some of the results, mass-proportional damping is added over the 
domain of the block in the amount of 5% of critical at a normalized frequency of 

πω ⋅= 6.1~  rad/s. 
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 Two types of results are presented.  First is the amplitude of the complex-valued 
frequency response function for normalized velocity at point C, the center point of the top 
surface of the full block, as a function of normalized frequency from 0~ =ω  to πω ⋅= 8~  
(Figures 5 to 8).  Components )~(~ ωxv  and )~(~ ωzv  at point C are plotted when ( )eq

xt ω%  and 

( )eq
zt ω%  are applied, respectively.  Frequency responses are presented for three cases of 

boundary conditions on the two exterior sides of the quarter block at hx =  and hy = :  
conditions to force a 1-dimensional wave propagation solution (Case 1D), traction-free 
conditions (Case F), and the transmitting boundary conditions (Case TB).  For Case TB, 
the equations used in the transmitting boundary are the frequency-domain versions of 
 

);()(
'

tv
C
Ett x

P

tb
x −=  );()( tv

C
Gtt y

S

tb
y −=  )()( tv

C
Gtt z

S

tb
z −=      (11) 

 
on side hx =  and 
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on side .hy =   For all three cases, the transmitting boundary condition of equation (5) is 
used at the base of the supporting region. 
 
 The second type of result shows the normalized velocity response shapes of three 
faces of the quarter block at selected frequencies for Case TB where transmitting 
boundaries are used on the exterior sides.  The three faces over which the response shapes 
are shown are the 0=y  plane of symmetry viewed from a negative y position, the 0=x  
plane of symmetry viewed from a positive x position, and the top face at hz =  viewed 
from above.  At each frequency, a group of six plots is presented. The top row of three 
plots are the normalized velocity shapes of the three faces at the instant of time when a 
component of velocity of point C ( )~(~ ωxv  when )~(ωxt  is applied, )~(~ ωzv  when )~(ωzt  is 
applied) reaches its maximum value.  The bottom row of three plots reveals phase 
information, showing normalized velocity shapes at the instant of time when the 
aforementioned velocity components reach zero.  All six plots in each group are plotted 
to the same scale; a normalized velocity amplitude of one extends over two undeformed 
element lengths.  An undeformed mesh appears shaded in the background for reference.  
A key diagram is provided in Figure 9, and the velocity response shapes are shown in 
Figures 10 and 11 for application of ( )eq

xt ω%  and ( )eq
zt ω% , respectively. 

 
Results for application of ( )eq

xt ω% .  The desired response of the block is 1-dimensional 
where the top surface moves uniformly in the x direction at a frequency-independent 
normalized velocity of one.   Case 1D achieves this 1-dimensional response by fixing the 
z degrees of freedom on the exterior face hx = .  As shown in Figure 5, the amplitude of 
the normalized velocity )~(~ ωxv  is correct at 0~ =ω .  At this zero frequency the block 
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moves as an unstressed rigid body.  However, frequency independence is not achieved as 
peaks in the normalized velocity occur at the frequencies of the discretized block’s fixed-
base shear modes, which, for the lower modes, are approximately equal to the normalized 
frequencies of the continuous block given by   
 

);12(
2

~ −= ii
πω  i = 1,2,3…     (13) 

 
The peaks in Figure 5, whose heights increase with frequency, are due to reflections off 
the bottom surface of the block where the transmitting boundary is located.  The 
transmitting boundary is not exact when used with a finite element discretization of the 
block, even for this 1-dimensional response where the waves are plane and normally 
incident.  This effect can be reduced by refining the finite element mesh in the vertical 
direction. 
 
 Also shown in Figure 5 is the normalized velocity )~(~ ωxv  at point C when the 
exterior faces hx =  and hy = are treated as free surfaces (Case F).  Compared to Case 
1D, this just involves freeing the z degrees of freedom at the hx =  face, which does not 
alter the response of the block at 0~ =ω  since the motion is stress free.  However, there is 
a dramatic effect at higher frequencies where a pronounced frequency independence is 
introduced due to many 3-dimensinal modes being excited.  Peak amplitudes exceed 
twice the desired response amplitude of one. 
 
 Results for normalized velocity )~(~ ωxv  at point C when transmitting boundaries 
are employed on the exterior faces hx =  and hy = (Case TB) are presented in Figure 6.  
At 0~ =ω  a drag effect from the side transmitting boundaries as well as a rotational 
component of the block motion reduces )~(~ ωxv  at point C to a value of 0.17, much less 
than the desired value of one.  At higher frequencies, the response exhibits considerable 
variation with frequency, although less than that of Case F because of the extra damping 
effect of the side transmitting boundaries.  Across the frequency range considered, the 
average response amplitude is close to one, although the fluctuations exceed 50% of the 
average amplitude.  When mass-proportional damping is added, the frequency variations 
are suppressed further, and the average level of response drops to about 0.70 over the 
frequency range considered. 
 
 Response shapes of the block for normalized velocity at the four frequencies 
marked in Figure 6 are shown in Figure 10 for Case TB without mass-proportional 
damping.  Certainly, the block does not respond under 1-dimensional wave propagation 
as intended; the deformations are very 3-dimensional.  In addition to the false frequency 
variations that are introduced into the motion of the top surface, where a structure would 
be located, there is false spatial nonuniformity as well.  These spatial variations could be 
significant in the case of an extended structure, such as a bridge.  The exterior faces 

hx =  and hy =  containing the side transmitting boundaries are more restrained in their 
motion compared to the rest of the block. 
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Results for application of ( )eq
zt ω% .  The desired response of the block is 1-dimensional 

where the top surface moves uniformly in the z direction at a frequency-independent 
normalized velocity of one.   Case 1D achieves this 1-dimensional response by fixing the 
x degrees of freedom on the exterior face hx =  and the y degrees of freedom on the 
exterior face hy = .  As shown in Figure 7, the amplitude of the normalized velocity 

)~(~ ωzv  is correct at 0~ =ω .  At this zero frequency the block moves as an unstressed rigid 
body.  However, frequency independence is not achieved as peaks in the normalized 
velocity occur at the frequencies of the discretized block’s fixed-base vertical modes, 
which, for the lower modes, are approximately equal to the normalized frequencies of the 
continuous block given by   
 
 

;)12(
2

~
S

P
i C

Ci −=
πω  i = 1,2 ,3…     (13) 

 
with peak height increasing with frequency.  The effect is similar to that observed for 
Case 1D involving application of ( )eq

xt ω% , and can also be reduced by refining the finite 
element mesh in the vertical direction. 
 
 Also shown in Figure 7 is the normalized velocity )~(~ ωzv  at point C when the 
exterior faces hx =  and hy = are treated as free surfaces (Case F).  Compared to Case 
1D, this just involves freeing the degrees of freedom in these faces’ respective normal 
directions, which does not alter the response of the block at 0~ =ω  since the motion is 
stress free.  However, a pronounced frequency independence is introduced at higher 
frequencies due to many 3-dimensinal modes being excited.  Peak amplitudes exceed 
twice the desired response amplitude of one.  This effect is similar to that seen for Case F 
involving application of ( )eq

xt ω% ; although, in the present case the large frequency 
variations can be attributed entirely to Poisson’s ratio being non-zero.  If Poisson’s ratio 
were zero, no lateral strains occur, and the response becomes 1-dimensional.  
  
 Results for normalized velocity )~(~ ωzv  at point C when transmitting boundaries 
are employed on the exterior faces hx =  and hy = (Case TB) are presented in Figure 8.  
At 0~ =ω  a drag effect from the side transmitting boundaries reduces )~(~ ωzv  at point C 
below one to a value of 0.45.  At higher frequencies, the response exhibits considerable 
variation with frequency, although less than that of Case F because of the extra damping 
effect of the side transmitting boundaries.  Across the frequency range considered, the 
average response amplitude is close to one although the fluctuations exceed 50% of the 
average amplitude.  Addition of mass-proportional damping further suppresses the 
frequency variations and reduces the average level of response to about 0.85 over the 
frequency range considered. 
 
 Response shapes of the block for normalized velocity at the six frequencies 
marked in Figure 8 are shown in Figure 11 for Case TB without mass-proportional 
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damping.  The deformation is very 3-dimensional, not at all 1-dimensional as intended.  
The motion of the top surface exhibits significant false frequency variations as well as 
false spatial nonuniformity.  The transmitting boundaries on the exterior faces hx =  and 

hy =  restrain the motion of these faces compared to the rest of the block. 
 
 

TIME-DOMAIN TEST OF THE INCIDENT WAVE METHOD 
 

 The same system from the previous section is employed except that the response 
of the block is computed in the time domain.  Only Case TB without mass-proportional 
damping is examined.  The ratio SCh /  is selected as 0.25 s, which means that the 
maximum actual frequency in the plots of Figures 5 to 8 is πω ⋅= 32  rad/s.  The desired 
motion for the block’s top surface is selected as a horizontal component from the Olive 
View Hospital free-field site during the 1994 Northridge earthquake.  Displacement, 
velocity and acceleration time histories are shown on the left side of Figure 12, along 
with 5% damped displacement and pseudo-acceleration response spectra on the left side 
of Figure 13.  For use as the incident velocity )(, tv incx  in equation (6) to compute )(tt eq

x , 
the Olive View Hospital time history is halved in amplitude because of the doubling that 
occurs during reflection at the top surface of the block.  Only )(tt eq

x  is applied. 
 
 The resulting motions at point C in the x direction are shown on the right side of 
Figure 12.  These are computed by direct time integration of the finite element equations 
of motion.  Also shown are the 5% damped displacement and pseudo-acceleration 
response spectra on the right side of Figure 13.  The significant differences between the 
computed results on the right and the desired results on the left are consistent with the 
differences between the frequency-domain response shown in Figure 6 without mass-
proportional damping and the desired response amplitude of one for the normalized 
velocity.  Computed peak values of displacement, velocity and acceleration at point C in 
the x direction are -8.3 cm, -38 cm/s and 598 cm/s2 compared to the desired peak values 
of -31.3 cm, -131 cm/s and 818 cm/s2, respectively. 
 
 

IMPROVED INCIDENT WAVE METHOD 
 
 As demonstrated in the previous two sections with the rectangular block test 
problem, the motions generated by the incident wave method are adversely affected by 
the presence of transmitting boundaries on the sides of the block and by the excitation of 
3-dimensional modes of the block.  False frequency and spatial variations are both 
introduced.  Of interest is how the incident wave method can be corrected, other than just 
using the alternative free-field method.  One technique would be to extend the lateral 
dimensions of the supporting region; however, this is not likely to be computationally 
efficient.  Another technique involves modifying the earthquake force vector { })(tf eq  in 
equation (7) as described below, although there are certain limitations.  Included in the 
discussion is a more detailed explanation than given previously of how the incident wave 
motions are derived.   
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 Consider a rectangular block of dimensions l w h× ×  such as shown in Figure 4, 
where material properties vary only in the vertical direction.  The material profile should 
match as closely as possible that of the site where the structure to be analyzed is located.  
The set of forces { })(tf eq  representing the earthquake is constructed using a finite 
element discretization of this block with transmitting boundaries on the sides and bottom.  
The earthquake itself is defined by specifying the time histories of upwardly incident, 
planar Sx, Sy and P waves at the bottom surface of the block in terms of , ( ),x incv t  , ( )y incv t  
and , ( )z incv t  in equation (6).  These wave time histories can be computed using a 1-
dimensional deconvolution applied to a selected earthquake record appropriate in terms 
of event magnitude and distance to the fault.  With reference to Figure 14, suppose the 
chosen record is from a site where the material profile is a-b-c-d, which could be different 
in its upper part from the profile a’-b’-b-c-d where the structure to be analyzed is located.  
The deconvolution is performed using the profile a-b-c to obtain the incident motions at 
the bottom of the block. 
 
 The forces { })(tf eq  are comprised of several contributions.  First are the nodal 
forces { })(1 tf eq  corresponding to tractions given by equation (6).  These are the same 
forces used in the incident wave method described previously and consist of two parts:  
one to generate the upward propagating Sx, Sy and P waves and the other to move the 
transmitting boundary at the bottom of the block.  The material properties E, G and ν in 
equation (6) are the values at the bottom of the block. 
 
 In the improved method, additional contributions { })(2 tf eq  and { })(3 tf eq  are 
needed along the sides of the block to ensure that the block undergoes a 1-dimensional 
response for each wave type.  The Sx and Sy wave parts of the response require nodal 
forces on the sides of the block in the z degrees of freedom to keep them from moving.  
The P wave part of the response requires nodal forces on the 2/dx ±=  sides in the x 
degrees of freedom and on the 2/wy ±=  sides in the y degrees of freedom to keep these 
two sets of degrees of freedom from moving.  The nodal forces { })(2 tf eq  can be computed 
from two dynamic analyses in which the Sx and Sy parts of { })(1 tf eq  are applied in one and 
the P wave part of { })(1 tf eq  is applied in the other.  Fixity conditions are employed for all 
degrees of freedom to be held motionless, and { })(2 tf eq  is constructed from both sets of 
reaction forces.  In these analyses, the transmitting boundaries on the sides of the block 
are omitted.  However, since these transmitting boundaries should actually be present, 
additional nodal forces { })(3 tf eq  are needed to move the sides of the block at the 
computed x and y motions for the Sx/Sy wave analysis and at the computed z motions for 
the P wave analysis.  The forces { })(3 tf eq  are found by multiplying these computed 
motions by corresponding transmitting boundary terms. 
 
 The force vector { })(tf eq  is then 
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{ } { } { } { }.)()()()( 321 tftftftf eqeqeqeq ++=      (14) 
 

When { })(tf eq  is applied to the block with all transmitting boundaries present, the block 
responds in planar Sx, Sy and P waves propagating vertically (up and down), each wave 
being a 1-dimensional response of the block.  A requirement is that this solution be 
linearly elastic. 
 
 With the earthquake represented by { })(tf eq , these forces can be applied to a 
modified block that contains the structure to be analyzed, local topography, and local 
variations in material properties.  Behavior within the modified block can be nonlinear.  
The only restriction on the modifications is that the geometry and finite element 
discretization on the sides and bottom of the block, where the forces { })(tf eq  are applied, 
can not be altered.  These features constitute the improved incident wave method.  The 
errors quantified in Figures 5 to 13 for the original incident wave method are the results 
of omitting the forces { })(2 tf eq  and { })(3 tf eq  from the analyses. 

 
 

CONCLUSIONS 
 

The incident wave method as commonly applied may involve errors in the 
earthquake motions incident to a structure due to the excitation of 3-dimensinal modes of 
the supporting region and due to an effect of the transmitting boundaries on the sides of 
this region.  These errors can be quite significant, as demonstrated in this paper on a test 
problem consisting of a simple rectangular block.  To avoid the problem, the incident 
wave method can be corrected with additional forces on the sides of the supporting region.  
An alternative free-field method can also be employed. 
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Figure 1.  Division of the system to be analyzed by the free-field method into Part 1, 
consisting of the structure (dam and water) and the portion of the supporting region that 
exhibits nonlinear behavior, and Part 2, consisting of the rest of the supporting region. 
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Figure 2.  Part 2 of the system to be analyzed by the free-field method, used with Part 1 
absent to compute the forces that represent the earthquake.  Infinite extent of Part 2 has 
been replaced by transmitting boundaries. 
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Figure 3.  System to be analyzed by the incident wave method showing earthquake waves 
generated by tractions applied to bottom of the supporting region. 
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Figure 4.  Quarter foundation block (shown shaded) used in test problem of the incident 
wave method.   
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Figure 5.  Frequency response of the normalized velocity ( )xv ω% %  at point C for application 

of ( )eq
xt ω% .  Cases 1D and F. 
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Figure 6.  Frequency response of the normalized velocity ( )xv ω% %  at point C for application 

of ( )eq
xt ω% . Case TB without mass-proportional damping (MPD).  Dots denote where 

response shapes are plotted in Figure 10.  
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Figure 7.  Frequency response of the normalized velocity ( )zv ω% %  at point C for application 

of ( )eq
zt ω% .  Cases 1D and F. 
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Figure 8.  Frequency response of the normalized velocity ( )zv ω% %  at point C for application 

of ( )eq
zt ω% .  Case TB without mass-proportional damping (MPD).  Dots denote where 

response shapes are plotted in Figure 11.  
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Figure 9.  Key diagram for plots of normalized velocity response shapes at selected 
frequencies; plots are shown in Figure 10 ( eq

xt  applied) and Figure 11 ( eq
zt  applied).  

Component of motion referred to in this figure is x when eq
xt  is applied and z when eq

zt  is 
applied.  
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a.  ω  = 0.00⋅π~
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Figure 10.  Normalized velocity response shapes xv%  at selected frequencies due to 

application of eq
xt .  Case TB without mass-proportional damping.  
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c.  ω  = 4.04⋅π~

d.  ω  = 5.25⋅π~

 
 
 
Figure 10.  (continued) 
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a.  ω  = 0.00⋅π~

b.  ω  = 1.16⋅π~

 
 
Figure 11.  Normalized velocity response shapes zv%  at selected frequencies due to 

application of eq
zt .  Case TB without mass-proportional damping.    
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Figure 11.  (continued) 
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Figure 11.  (continued) 
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Figure 12.  Left:  displacement, velocity and acceleration time histories for the ground 
motions recorded at the Olive View Hospital free-field site during the Northridge 
earthquake.  These are the desired motions for the test block at point C in the x direction.  
Right:  Case TB motions (without mass-proportional damping) are computed by the 
incident wave method for the test block at point C in the x direction.   
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Figure 13.  Displacement (light gray) and pseudo acceleration (dark gray) response 
spectra for the motions shown in Figure 12 (5% damping). 
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Figure 14.  Vertical variation of material properties E or G.  Profile a-b-c-d is from the 
site where the earthquake ground motion is recorded.  Profile a’-b’-b-c-d is from the site 
of the structure to be analyzed.   




