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SUMMARY 
 
 Rayleigh damping is commonly used to provide a source of energy dissipation in 
analyses of structures responding to dynamic loads such as earthquake ground motions.  
In a finite element model, the Rayleigh damping matrix consists of a mass-proportional 
part and a stiffness-proportional part; the latter typically uses the initial linear stiffness 
matrix of the structure.  Under certain conditions, for example, a nonlinear analysis with 
softening nonlinearity, the damping forces generated by such a matrix can become 
unrealistically large compared to the restoring forces, resulting in an analysis being 
unconservative.  Potential problems are demonstrated in this paper through a series of 
examples.  A remedy  to these problems is proposed in which bounds are imposed on the 
damping forces. 
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INTRODUCTION 

 
 Numerical models of vibrating structures account for three sources of energy 
dissipation through nonlinear restoring forces, energy radiation, and damping in the 
structure.  In most applications, energy dissipation is desirable since it reduces the level 
of response.  Since too much energy dissipation can be unconservative, accurate 
representation in a model is important. 
 
 Knowledge of energy dissipation comes mainly from laboratory testing of 
structural components and materials, system identification using time history records of 
structural response, and field testing with portable shaking machines.  Laboratory test 
data tends to be very specific and can be translated directly into nonlinear restoring force 
models, such as elastic-plastic hysteretic behavior.  System identification results are 
generally much less specific in that all three sources of energy dissipation may be present, 
and seldom can characteristics of the individual sources be separated out.  Field vibration 
testing is usually always performed at low amplitude levels, and so the determined 
damping values would contain only contributions from energy radiation and damping in 
the structure.  This data is useful for calibrating numerical models in the low-amplitude 
range, but again, the relative amounts of these two mechanisms of energy dissipation are 
not generally determined.  The same can be said of those system identification studies 
that examine low-amplitude records, including ambient data. 
 
 Given the nature of the available data, a logical procedure to calibrate the energy 
dissipation features of a numerical model would be to include appropriate energy 
radiation mechanisms such as energy absorbing foundation elements or transmitting 
boundaries, and then provide enough damping in the structure to match the low-
amplitude field test or system identification data.  For higher levels of response, nonlinear 
restoring force models based on laboratory tests would be added, which would act 
together with the previously defined energy radiation and structural damping mechanisms.  
Sometimes, for simplicity, the energy radiation components could be omitted; then the 
low-amplitude calibration would be done only with the damping in the structure. 
 
 Numerical models almost always represent damping in the structure as the linear 
viscous type.  Although an approximation, this type of damping is mathematically 
convenient.  In the equation of motion, linear viscous damping takes the form of a 
damping matrix of constant coefficients multiplying a vector of velocities of the degrees 
of freedom.  The calibration exercise consists of choosing the coefficients so that 
amounts of modal damping consistent with the data are produced for modes of the linear 
system.  However, such calibration is not always sufficient to guarantee that the effects of 
linear viscous damping will be reasonable.  Of course, in a standard linear analysis, 
viscous damping must behave predictably because of the modal nature of linear response 
and the association of the damping matrix with modal damping values.  In other cases, 
problems can occur.  Typical users of commercial finite element programs may not be 
aware of these potential problems because damping forces are seldom included in a 
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program’s output.  Nor would effects on the results that are included in a program’s 
output necessarily be evident. 
 
 The next section gives background on Rayleigh damping, which is the particular 
form of linear viscous damping considered in this paper.  The main body of the paper 
presents examples where Rayleigh damping is shown to generate unrealistically high 
damping forces.  Each example is accompanied by a discussion of what goes wrong, and 
sometimes possible remedies are suggested.  Then, a capped viscous damping 
formulation is introduced that can overcome some of the problems described. 
 
 

RAYLEIGH DAMPING 
 
 Of interest in this paper are those cases where for various reasons, such as the 
presence of nonlinear restoring forces, the matrix equation of motion of a structure must 
be solved directly, rather than the uncoupled modal equations.  The matrix equation of 
motion takes the form [1] 
 

[ ]{ } [ ]{ } { } { } { })()()()( tFFtRtxCtxM dynstats +=++ &&&             (1) 
 
where { })(tx  contains the displacement degrees of freedom (translations and rotations) as 
a function of time t, an over dot denotes a time derivative, [ ]M  is the mass matrix, [ ]C  is 
the damping matrix, { })(tRs  is the vector of restoring forces (forces and moments), 
{ }statF is the static load vector, and { })(tFdyn  is the dynamic load vector.  Linear viscous 
damping in the structure is assumed, and [ ]C  could contain energy radiation terms.  
However, this paper focuses on Rayleigh damping, in which case [ ]C  is expressed as            
 

[ ] [ ] [ ]KaMaC KM +=            (2) 
 
where Ma  and Ka  are constants with units of 1−s  and s, respectively, and [ ]K  is the 
linear stiffness matrix of the structure constructed with initial tangent stiffnesses.  Thus, 
[ ]C  consists of a mass-proportional term and a stiffness-proportional term.  This choice 
of [ ]K  in the stiffness-proportional damping term may be the only option offered by a 
commercial finite element program. 
 
 The procedure for determining Ma  and Ka  involves imparting appropriate values 
of damping, to the degree possible, to the modes of the linear system, which is 
represented by equation (1) except that the restoring forces are given by 
 
                                           { } [ ]{ })()( txKtRs = .            (3) 
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Damping of mode i is quantified by the damping ratio iξ , the ratio of the mode’s 
damping to the critical value [2].  If Ma  and Ka  are known, iξ can be found from 
 

K
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1 ω
ω

ξ +=             (4) 

 
where iω  is the natural frequency (rad/s) of mode i.  Thus, Ma  and Ka  can be set to give 
any damping ratio to any two modes.  Other modes will receive default amounts of 
damping that can be computed from equation (4). 
 
 The following procedure is convenient for determining Ma  and Ka .  Select a 
desired amount of damping ξ  and a frequency range from ω̂  to ω̂R  covering those 
modes important to the response, where R >1.  Compute ∆  from 
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where ∆  determines bounds on the damping ratios that are imparted to those modes 
within the specified frequency range.  Any such mode will have a damping ratio bounded 
by ∆+= ξξmax  and ∆−= ξξmin .  If these bounds are satisfactorily narrow, the 
constants Ma  and Ka  are then found from 
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and can be used to compute an actual damping value iξ  for mode i from equation (4) if 

iω  is known.  Figure 1 shows that maxξξ =i  if ωω ˆ=i  or ωω ˆRi = , and that minξξ =i  if 

ωω ˆRi = .  If iω  is outside the range ω̂  to ω̂R , then maxξξ >i .  Above ω̂R , iξ  
increases with iω , approaching a linear relation as the last term in equation (4) dominates.  
 
 Having a small ∆  (relative to ξ ) and a large R are desirable but, as is evident 
from equation (5), competing goals.  If for a given R the value of ∆  from equation (5) is 
unacceptably large, then R must be reduced.  Some compromise will usually have to be 
made.  Consider an example to illustrate what can be achieved.  Suppose the fundamental 
frequency 1ω  of a building is expected to shorten to 13

2ω  due to nonlinear softening.  
Then ω̂  can be set to 13

2ω .  If the building behaves like a shear beam in its linear range, 
then its second-mode frequency 2ω  equals 13ω .  To cover the frequency range from 13

2ω  
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to 13ω , R is set to 4.5.  This gives ∆  from equation (5) as 0.129ξ .  Thus, if ξ  = 0.05, 
then maxξ = 0.056 and minξ = 0.044, which are reasonably narrow bounds.  If mode 3 has 
frequency 3ω  equal to 15ω , its damping would be higher at 3ξ  = 0.083, as computed 
from equations (4) and (6). 
 
 The above procedure aims to achieve a near constant value of damping for all 
modes whose frequencies iω  fall in the range from ω̂  to ω̂R .  This is consistent with 
much field data, which indicates modal damping ratios are fairly constant for a given 
structure.  In general, civil engineering structures are lightly damped, with modal 
damping ratios seldom exceeding 0.10 and sometimes as low as 0.01 or 0.02.  
 
 Other formulations of the linear viscous damping matrix are available that offer 
greater control over the damping ratios imparted to the modes [2].  However, these [ ]C  
matrices are full; they lack the sparse and banded features of [ ]K  and [ ]M .  Thus, their 
presence greatly increases the computational effort required to integrate the matrix 
equation of motion.  For this reason, they are seldom used.  With Rayleigh damping, 
sparseness and bandedness are imparted to [ ]C  since it is the scaled sum of [ ]M  and [ ]K . 
 
 Another feature of Rayleigh damping is that [ ]C  has a simple physical 
interpretation [3].  If [ ]M  is a diagonal matrix (often the case or can be made so with 
good approximation), then the diagonal coefficients of [ ]MaM  are mass-proportional 
damping constants for a set of linear viscous dampers that connect each degree of 
freedom to a fixed support.  The coefficients of [ ]KaK  are stiffness-proportional damping 
constants for a set of linear viscous dampers that interconnect the degrees of freedom in 
an arrangement “parallel” to the structural stiffness. 
 
 The terms [ ]MaM  and [ ]KaK  can be viewed as originating from rate-dependent 
additions to the equations of elasticity that provide damping.  The momentum and 
constitutive relations [4] are augmented as follows: 
 

iMii
i

ij uauX
x

&&& ρρ
σ

+=+
∂

∂
            (7) 

 
klijklKklijklij KaK εεσ &+=             (8) 

 
where σ , ε  and K are stress, strain and elasticity tensors, respectively, x is spatial 
coordinate, X is body force, ρ  is mass density, u is displacement, and i, j, etc. denote 
directions in a rectangular coordinate system.  Upon application of finite element 
discretization procedures, the iM ua &ρ  term ends up as [ ]{ })(txMaM & , and the klijklK Ka ε&  

term ends up as [ ]{ })(txKaK & . 
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 The augmented constitutive relation (8) represents a form of viscoelasticity 
known as a Voigt solid [4] and is a valid type of material model.  However, the 
augmented momentum equation is invalid because the iM ua &ρ  term represents the effects 
of a viscous, penetrating ether in which the structure is immersed.  Even though this 
mass-proportional part of Rayleigh damping can not exist for an actual structure, it is still 
widely used in finite element practice because of the additional control it provides over 
the modal damping ratios. 
 
 The simple physical interpretation of the Rayleigh damping matrix serves as a 
general tool that can be used to assess the effects of the damping and the size of the 
damping forces.  For a linear structure, modal concepts are also available for this purpose 
using the modal damping ratios.  However, modal damping ratios may not always be a 
suitable tool, such as when Rayleigh damping is being applied in a nonstandard way or 
when the restoring forces are nonlinear.  In such cases, the question arises as to whether 
the damping forces generated by the [ ]MaM  and [ ]KaK  terms are reasonable.  The 
following section presents some examples from earthquake engineering to illustrate 
problems that can arise. 
 
 

EXAMPLES 
 
Earthquake Formulation 
  
 This first example has to do with the way in which earthquake excitation is 
included in the equation of motion of a structure.  For simplicity, the interaction between 
the structure and its foundation or supporting medium is neglected; the earthquake 
ground motion is assumed to be spatially uniform; and only one horizontal component is 
considered.  This simple case is sufficient to describe how Rayleigh damping can have 
different effects depending on how the earthquake excitation is formulated. 
 
 One method to apply the earthquake loading is to specify the earthquake motions 
at the base of the structure.  A convenient way to do this, which can be accommodated by 
most commercial computer programs, is to attach a large artificial mass bm  to each node 
at the base of the structure and apply to each of the horizontal degrees of freedom in the 
direction of the ground motion a horizontal force 
 

)()( txmtF eqbeq &&=             (9) 
 
where )(txeq&&  is the ground acceleration time history.  The vector { })(tFdyn  in equation (1) 
would be comprised of such forces. Typically, the total artificial mass added to the base 
would be at least 103 to 104 times the total mass of the structure.  The formulation is 
depicted in Figure 2a which also shows the mass-proportional and stiffness-proportional 
damping mechanisms. 
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 Ideally, the role of damping in a structure under earthquake excitation should be 
to damp the vibrational motion of the structure relative to its base motion.  As seen in 
Figure 2a, the mass-proportional dampers, being connected to fixed supports, damp the 
total motion of the structure.  A better arrangement would be for these dampers to 
connect to a frame that moves with the base of the structure.  To accomplish this in the 
equation of motion, express the total motion of the structure { })(tx  as the sum of a rigid 
part moving with the base and a part relative to the base: 
 

{ } { } { })()()( txtxrtx releq +=             (10) 
 
where { }r  is a vector of 1’s in positions corresponding to horizontal degrees of freedom 
in the direction of the ground motion and 0’s elsewhere.  Substitution into equation (1) 
gives 
 

[ ]{ } [ ]{ } { } { } [ ]{ } )()()()( txrMFtRtxCtxM eqstatsrelrel &&&&& −=++             (11) 
 
where a term [ ]{ } )(txrC eq&  has been discarded.  Omitting this term is equivalent to 
reconnecting the mass-proportional dampers to a frame moving with the base.  (Note that 
[ ]{ }rC  equals [ ]{ }rMaM  since { }r  is a rigid body motion.)  See Figure 2b. 
 
 Equation (11) is a standard earthquake loading formulation [2] and is 
implemented in some commercial finite element computer programs.  It is an alternative 
to equations (1) and (9) and is preferred because it excludes the extraneous damping 
forces [ ]{ } )(txrMa eqM & .  To demonstrate the potential significance of these forces, take 
=ω̂  (1400 m/s)/H , ξ  = 0.10, and R = 4.5 as for the concrete gravity dam example 

presented later, where H is the height of the dam and ξ  is the desired damping ratio.  
With =H 100 m, Ma  is computed as 2.6 1−s  from equation (6a).  The peak for the ground 
velocity )(txeq&  is chosen as 100 cm/s, which is on the high side but not an upper bound.  

With these values, the extraneous damping forces are evaluated as [ ]{ }⋅rM 260 2/ scm , 
which would not likely be negligible.  However, the extraneous damping forces would be 
smaller for more lightly damped structures or for ones with a lower fundamental 
frequency 1ω  (giving a lower value of ω̂ ). 
 
 Another issue with the mass-proportional damping term arises with the 
formulation of equations (1) and (9).  The large base masses bm  should not be included 
in the mass matrix [ ]M  when it is used to compute the [ ]MaM  part of the damping 
matrix [ ]C .  Otherwise, the forces )(tFeq  in equation (9) need to be augmented as 
 

)()()( txmatxmtF eqbMeqbeq &&& +=             (12) 
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to obtain the correct base motion.  To demonstrate the potential importance of the last 
term in equation (12), again take Ma  as 2.6 1−s  and the peak for )(txeq&  as 100 cm/s.  

With these values, the last term in equation (12) is evaluated as ⋅bm 260 cm/ 2s , which 
indicates that the imposed base acceleration of the structure would be significantly in 
error if the last term were omitted.  This error would be smaller for lighter damping or a 
lower 1ω . 
 
 Examples in the following sections use the earthquake formulation in terms of 
relative motion, i.e., equation (11).  This avoids the potential problems discussed above. 
 
10-Story Building 
 
 In this example, a 10-story building (Figure 3) is subjected to an actual ground 
motion record (Figure 4).  The building’s stiffness is modeled with a bilinear shear spring 
in each story, the ratio of post-yield stiffness to initial stiffness being 0.03.  Initial 
stiffnesses jk  of the springs are proportional to the story values shown in Figure 3 and 
are scaled to give the building a fundamental period 1T  of 1.4 seconds, all floor masses 
being taken as equal.  The yield strengths jsyR ,  of the springs are also proportional to the 
same story values and are scaled so that the first-story spring has a yield strength of 0.12 
times the weight W of the building; W = 10 mg, where m = floor mass and g = 
gravitational acceleration.  This is a reasonable strength for Zone 4 seismic design and 
includes a significant margin above typical code requirements.  The shear spring in each 
story has the same yield displacement of 1.1 cm. 
 
 Rayleigh damping is employed using the following parameters:  )/2(ˆ 13

2 Tπω =  to 
account for some drop in 1ω  due to nonlinear softening, ξ  = 0.05, and R = 4.5.  The 

[ ]KaK  term is computed using the initial spring stiffnesses which, as mentioned earlier, 
is how many commercial computer programs operate.   
 
 Shown in Figures 5 and 6 are comparisons of time histories of the shear-spring 
force in the first story and the total damping force on the building.  These are consistent 
quantities to be compared since the shear-spring force in the first story represents the total 
restoring force acting on the building.  The total damping force is found by adding the 
damping force in the first story, computed as )(,11 txka relK & , to the external damping force 
on the building, computed by summing the [ ]{ })(txMa relM &  forces. 
 
 For the results in Figure 5, the ground acceleration history is scaled down to a 
peak acceleration of 0.15 g so that the response of the building just remains in the linear 
range.  On average, the ratio of peaks in the total damping force to peaks in the first-story 
spring force is about 9%.  This is as expected since, in the present case, the building 
vibrates primarily in its fundamental mode and frequency.  Theoretically, for such 
vibration the ratio of these forces is 12ξ , which is 0.092 for this 10-story building.  
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 When the full-scale ground acceleration is applied (Figure 6), significant yielding 
takes place, and the ratio of the peak total damping force to the peak first-story spring 
force is 46%.  In terms of the building’s weight, the peak total damping force is 0.072W , 
which equals 60% of the yield strength of the building (0.12W ).  No conceivable 
mechanism in an actual building exists that could produce a damping force this high 
relative to the strength of the building.  Such large damping forces mean the results of the 
analysis are unconservative. 
 
 The situation still exists if mass-proportional damping only is used ( 0=Ka , 

ωξ ˆ2=Ma ) or if stiffness-proportional damping only is used ( Ma = 0, ωξ ˆ/2=Ka ).  For 
these two cases, the peak total damping force reaches 29% and 102%, respectively, of the 
yield strength of the building.  The source of the problem is that a yielding mechanism is 
provided to limit the spring forces, but no such mechanism is used for the damping forces.  
The linearity assumption on the damping forces means they are always proportional to 
the velocities, no matter how large they become.    
 
 Finally, if the building were modeled as a frame of beam and column elements 
that are capable of forming plastic hinges to represent nonlinear bending effects, a similar 
situation to that described above for the building comprised of nonlinear shear springs 
would be encountered.  The plastic hinges would limit the moments that could develop at 
the ends of the beams and columns, which in turn would limit the shear forces in these 
elements and to some extent the axial forces.  The damping forces and moments, on the 
other hand, without their own limiting mechanism, could reach unrealistically high values. 
 
Base-Isolated Building  
 
 Consider a base-isolated building (Figure 7) with fundamental period of the 
superstructure denoted by ST  (period if base were fixed) and with design period of the 
isolated building denoted by IT .  Suppose [ ]C  is constructed using only the 
superstructure properties since all energy dissipation associated with the isolators is to be 
modeled explicitly in the isolator elements.  Let ξ  denote the desired damping in the 
superstructure.  The frequency ω̂  is chosen as ST/2π  since the superstructure is 
expected to remain linear.  The ratio of ST  to IT  is taken as 1 to 5, which is reasonable 
for a 3 or 4-story superstructure and a typical value of 2.5 seconds for IT . 
 
 During vibration from an earthquake, the mass-proportional damping forces 

[ ]{ })(txMa relM & on the superstructure produce a total damping force of 
 

)()( , tvMatR relSSM
mp
d =             (13) 

 
where SM  is the mass of the superstructure and )(, tv relS  is the velocity of the 
superstructure relative to the ground.  Equation (13) is a good approximation because, 
with 5/IS TT = , the entire superstructure can be assumed to move as a rigid body on the 
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flexible isolators, i.e., as a single degree of freedom.  Note that the stiffness-proportional 
part of [ ]C  does not contribute to the total damping force on the superstructure.  From 
equation (13) the damping value IC  in a single-degree-of-freedom equation of motion 
for the isolated building is SM Ma , which can also be expressed in the usual way as 

SII Mωξ2 , where Iξ  is the resulting damping ratio for the single-degree-of-freedom 
structure (i.e., the isolated building) and II T/2πω = .  Setting the two expressions for IC  
equal to each other and solving for Iξ  gives 
 

IMI a ωξ /2
1= .            (14) 

 
Substitution for Ma  from equation (6a) and replacing frequencies by periods leads to 
 

S

I
I T

T
RR

R
21

2
++

= ξξ .            (15) 

 
 With ξ  = 0.05 for the superstructure, R = 4.5, and 5/IS TT =  as stated above, the 
resulting damping ratio Iξ  for the isolated building equals 0.23.  This unintentionally 
high value is completely unrealistic and does not even include any energy dissipation 
associated with the isolation system.  In this case the mass-proportional damping term is 
the source of the problem, along with the non-standard application of Rayleigh damping 
as it is used only for the relatively high-frequency superstructure.  Unlike the example 
10-story building in the previous section, no nonlinearity in the restoring forces is 
required for the unrealistic damping effect to occur in the base-isolated building. 
 
 A possible solution to the problem is to use only stiffness-proportional damping.  
Suppose this is done, but also the contribution from the isolator stiffness is included when 
computing the stiffness-proportional damping term [ ]KaK .  Bilinear springs are to be 
employed for the isolators (Figure 8), where the initial stiffness Lk  is β  times the secant 
stiffness Ik  used in design to achieve the period IT  for the isolated building (idealized as 
a single-degree-of-freedom structure).  It is Lk  that is used in [ ]K . 
 
 During earthquake vibration, the stiffness-proportional damping exerts a force on 
the superstructure at the location of the isolators given by 
 

)()( , tvkatR relSLK
sp
d =             (16) 

 
where, again, the superstructure is assumed to move as a rigid body and )(, tv relS  is its 
velocity relative to the ground.  For stiffness-proportional damping only, ωξ ˆ/2=Ka , 
where ξ  is the desired damping for the isolated building and IT/2ˆ πω = .  The term 

LK ka  in equation (16) is the damping value IC  in a single-degree-of-freedom equation 
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of motion for the isolated building, which also equals SII Mωξ2  as before.  Equating the 
two expressions for IC  and solving for Iξ  gives 
 

SI
LKI M

ka 11
2
1

ω
ξ = .            (17) 

 
Substituting for Ka  and replacing Iω  by 2

1

)( SI Mk  leads to βξξ =I  where IL kk=β . 
 
 Thus, the actual damping ratio Iξ  for the isolated building, idealized as a single-
degree-of-freedom structure, is a factor β  larger than intended.  This does not include 
additional energy dissipation from hysteresis in the bilinear isolator model (Figure 8).  
Since β  could be a factor of three or more [5], the effect is significant.  The problem is 
basically similar to that encountered in the previous section with the 10-story building, 
although a slightly different interpretation can be offered here.  When the isolated 
building vibrates from the design earthquake, the equivalent linear stiffness of the 
isolators is the secant stiffness Ik , yet the stiffness-proportional damping term [ ]KaK  is 
computed with the higher initial stiffness Lk .  This leads to a damping shear force across 
the isolators that is too large by the factor β  relative to the intended damping force.  Use 
of Ik  in the [ ]KaK  damping term would be a better choice. 
 
Gravity Dam Undergoing Sliding 
 
 Consider a concrete gravity dam of approximately triangular cross-section with 
height H and base length HB 8.0=  (Figure 9).  Water is represented as added mass that 
augments the mass of the dam, i.e., [ ] [ ] [ ]watdam MMM += .  A pre-existing horizontal 
crack, along which the dam can slide, runs through the bottom row of finite elements in 
the dam mesh.  If sliding is not taking place, xycxy dGd γτ ⋅= , and during sliding, 

yxy µστ ±= , where xyτ  and xyγ  are the shear stress and strain associated with the sliding 
plane, cG  is the shear modulus of concrete, yσ  is the vertical stress, and µ  is the 
coefficient of friction.  These relations are enforced at the integration points of the 
elements, a technique known as the smeared crack method.    
 
 Rayleigh damping is employed with both mass and stiffness-proportional 
damping parts.  The desired level of damping is ξ  = 0.10, and R is chosen as 4.5.  The 
frequency ω̂  is set to )/2( 13

2 Tπ  to account for nonlinear softening.  The fundamental 
period 1T  of the linear dam-water system is expressed as (0.003 s/m) H⋅ , consistent with 
approximate period formulas [6].  A possible value for the sliding velocity sldv  along the 
base crack during an earthquake is 50 cm/s based on previous studies [7]; this should not 
be considered as an upper bound. 
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 The magnitude of the damping force exerted on the dam by the mass-proportional 
damping term during sliding can be estimated by assuming the dam slides as a rigid body 
at velocity sldv .  Thus, 
 

sldM
mp
d MvaR =             (18) 

 
where M is the combined mass of the dam and water taken approximately as 
 

2
3

2
1

2
3 ⋅⋅⋅=⋅=

g
HBMM c

dam
γ

            (19) 

 
where the 2

3  approximately accounts for the water contribution to the mass, cγ  is the unit 
weight of concrete, and g is gravitational acceleration.  Substitution of equations (6a) and 
(19) into equation (18) leads to 
 

dam
sldmp

d W
g

v
RR

RR ⋅
++

=
21

2ˆ3 ωξ             (20) 

 
where damW  is the weight of the dam.  Further substitution of the suggested values of ω̂ , 

1T , R and sldv  gives 
 

dam
mp
d W

H
mR ⋅=

20 .            (21) 

 
Thus for a 100 m high dam, the damping force would reach 20% of the dam’s weight for 
a sliding velocity of 50 cm/s, acting in a direction to oppose the sliding.  This can be 
compared to a frictional force of 70% of the dam’s weight if, say, the friction coefficient 
µ  were 0.70.  So, the additional resistance to sliding provided by the mass-proportional 
damping is moderately significant.  Of course, no such additional resistance should be 
present since, as pointed out earlier, mass-proportional damping can not exist in a real 
structure. 
 
 The damping force of interest from the stiffness-proportional damping term acts 
along the crack as a shear force during sliding.  The magnitude of this force is given by 
 

BR xyd
sp
d ⋅= ,τ             (22) 

 
where the damping shear stress is 
 

xycKxyd Ga γτ &=, .            (23) 
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This assumes the stiffness-proportional damping is computed using the initial linear [ ]K  
of the dam, i.e., the presence of the base crack is not represented.  Substitution of 
equation (6b) and noting that hvsldxy /=γ&  during sliding, where h is the height of the 
bottom row of finite elements in the dam mesh, gives 
 

B
h

v
G

RR
R sld

c
sp
d 21

2
ˆ
12

++
=

ω
ξ .            (24) 

 
Some further modification results in 
 

dam
sld

c

csp
d W

h
vG

RR
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++
⋅=

γ
ξ

21
2)/( 350

1             (25) 

 
where the previously mentioned expressions for ω̂ and 1T  have been used, and B has 
been eliminated using equation (19).  Finally, taking ccG γ = 400,000 m, setting h to 5m, 
and substitution of the other suggested values for ξ , R and sldv  gives sp

dR  = 2.3 damW .  
However, such a huge damping force probably would never develop because the sliding 
velocity would stay small.  Regardless, the conclusion is that stiffness-proportional 
damping can greatly inhibit sliding. 
 
 This problem with stiffness-proportional damping is similar to that seen in the 
previous examples with the 10-story building and the base-isolated building.  However, 
the situation with the concrete gravity dam is more severe because the initial linear shear 
stiffness of the finite elements containing the crack, which is used in the [ ]KaK  term, is 
very high.  Obviously, the damping force needs to be limited in some way in order for 
realistic results to be obtained. 
 
Gravity Dam Undergoing Cracking 
 
 This example is another demonstration of the problem with stiffness-proportional 
damping in a nonlinear analysis when the initial linear [ ]K  is used in the [ ]KaK  term.  
Consider the formation, opening and closing of cracks in a concrete gravity dam 
discretized with finite elements.  When a crack forms in an element, the stress nσ  in the 
direction normal to the crack is set to zero as long as the crack is open, this condition 
being enforced at the integration points (smeared crack method).  Frictional sliding 
criteria can also be imposed after a crack forms.  The strain rate nε& associated with 
opening and closing of the crack generates an opposing damping stress nd ,σ  owing to 
stiffness-proportional damping.  The magnitude of this damping stress is approximately 
equal to 
 

ncKnd Ea εσ &=,             (26) 
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where cE  is Young’s modulus for concrete, and where the coupling terms involving 
Poisson’s ratio have been neglected.  Use of the initial linear stiffness in the [ ]KaK  term 
is assumed, i.e., the presence of the crack is not represented.  In terms of the crack 
opening/closing velocity ocv , nε&equals hvoc / , where h is the element dimension in the 
direction normal to the crack.  Based on previous studies [8], a possible value of ocv  is 50 
cm/s, which should not be considered an upper bound.   
 
 Using equation (6b), equation (26) is written as 
 

tenoc
ten

c
nd v

h
E

RR
σ

σω
ξσ ⋅

++
=

1
21

2
ˆ
12,             (27) 

 
introducing the tensile strength of concrete tenσ .  Inserting the expressions for ω̂  and 1T  
from the previous example, 
 

tenoc
ten

c
nd v

h
HE

RR
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σ
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++
⋅=

21
2)/( 700

1
, .            (28) 

 
Finally, substituting ξ  = 0.10, R = 4.5, ocv  = 50 cm/s, and taking tencE σ = 8000 and  

hH  = 20, the damping stress nd ,σ  is found as 2.3 tenσ . 
 
 This large value indicates that two significant artificial effects can occur regarding 
the extent of cracking.  First, after the first element along the edge of the dam cracks, the 
opening of this crack could be restrained enough to falsely impede the propagation of the 
crack further into the interior of the dam mesh.  Second, the tensile damping stresses 
carried across the crack as it opens could load the adjacent elements above and below the 
cracked element enough to produce false cracks at these locations.  An appropriate limit 
on the damping stress nd ,σ  would resolve these problems.  Damping effects associated 
with sliding along a crack would have to be dealt with simultaneously. 
 
Penalty Elements 
 
 Penalty elements are commonly used to impose constraints, such as those 
involving contact and sliding along interfaces.  The simplest such application employs 
nonlinear axial and shear springs shown in parts a and b of Figure 10.  The springs would 
be oriented normal and tangent, respectively, to the interface at the point of contact or 
potential contact.  The stiffness ak  of the axial spring needs to be high to minimize 
penetration of the surfaces when in contact, similarly for stiffness sk  of the shear spring 
to minimize slip when the sliding condition is not met.  If the stiffness-proportional 
damping term [ ]KaK  is formed using such high stiffness values, then large damping 
forces would be generated upon separation or sliding, which would greatly restrain 
further movement between the surfaces. 
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 The effect is similar to that demonstrated previously for base sliding and crack 
opening/closing of the concrete gravity dam example, only even more severe.  If the h 
dimension of a finite element of the dam mesh containing a smeared crack (element 
width normal to crack) were reduced to a small value, the element would act essentially 
as a penalty element.  As seen in equations (25) and (28), the damping force or stress is 
inversely proportional to h. 
 
 Another application of penalty elements is using rotational springs to model 
plastic hinges in beam elements (Figure 10c).  When the moment M carried by a spring is 
less than the plastic moment capacity pM  of the beam, then the rotational stiffness rk  of 
the spring needs to be high to minimize its contribution to the flexibility of the beam.  If 
such a high stiffness is included in the [ ]KaK  term, a large damping moment will be 
generated when M reaches pM  and the spring starts to develop a relative rotation, which 
will then act to greatly restrain further relative rotation.   
 
 The simplest solution to the stiffness-proportional damping problem with penalty 
elements is not to include any stiffness contributions from these elements in the [ ]KaK  
term of the damping matrix.  Since penalty elements are present to provide constraints 
and do not contribute to the elastic deformability of the structure, there is no physical 
reason why they should contain damping.  On the other hand, if some damping is needed, 
say, to control spurious oscillations, then appropriate limits on the damping forces should 
be employed to avoid unrealistically high damping forces being generated. 
 

 
CAPPED VISCOUS DAMPING 

 
 As demonstrated in the previous examples, under certain conditions problems can 
occur with both the mass and stiffness-proportional parts of Rayleigh damping.  In this 
section, a modified damping formulation is examined in which the mass-proportional 
contribution is eliminated and the stiffness-proportional contribution is bounded.  This is 
an attempt to overcome the problems that have been discussed. 
  
 Consider as an example the simple model used earlier for the 10-story building 
shown in Figure 3.  A capped viscous damper is placed in each story along side the shear 
spring there.  The amplitude of the shear force in the damper in story j is computed as  
 

( )jsyjreljreljKjd RtxtxkatR ,1,,, 2,)()(min)( ξ−−±= &&             (29) 
 

where ωξ ˆ/2=Ka , ξ  is the damping parameter, ( )13
2 /2ˆ Tπω = , jsyR ,  is the yield 

strength of the shear spring in story j, and )(, tx orel&  is taken as zero.  The sign of )(, tR jd  is 
chosen so that this force opposes the shearing velocity of the story.  For a low level of 
excitation, the building will respond as if it had linear stiffness-proportional damping, i.e., 
[ ] [ ]KaC K= with [ ]K computed using the initial stiffnesses of the story shear springs.  At 
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higher levels of excitation, the story damping forces will be capped by the jsyR ,2ξ  term, 
so the damping becomes nonlinear.    The ξ2  multiplier comes from the fact that, with 

Ka  computed as ωξ ˆ/2 , the peak damping shear force in a story equals ξ2  times the 
peak shear-spring force in that story when the building undergoes harmonic linear 
response at the frequency ω̂ .  So, with ξ  =0.05 as taken previously, the damping force in 
each story will be capped at 10% of the shear-spring yield strength of that story.  This 
seems like a reasonable limit to place on the damping forces. 
 
 The previous 10-story building example is now repeated with all mass, stiffness 
and strength parameters as before, but with capped viscous damping at ξ  = 0.05.  Figure 
11 corresponds to Figure 6 and shows the time history of the capped viscous damping 
force in the first story along with the time history of the shear-spring force there.  The 
capping of the damping force at 0.10 of the shear-spring yield strength is evident.  This 
reduction in the damping force leads to a higher first story displacement, which is 
reflected by an increase in the post-yield force in the shear spring (compare to the spring 
force in Figure 6).  The displacement time histories of all ten floor levels of the building 
are shown in Figure 12 for two cases:  linear viscous damping (the previous case) on the 
top and capped viscous damping on the bottom.  The plotted displacements are relative to 
the ground.  Large increases occur in the shearing displacements of the first three stories 
of the building when capped viscous damping is used.  For the first, second and third 
stories, peak shearing displacements are 12.2 cm, 8.2 cm and 6.0 cm for the linear 
damping case and 16.9 cm, 12.6 cm and 9.5 cm for the capped viscous damping case.  
These significant increases demonstrate that the unrealistically high linear viscous 
damping forces generated by the Rayleigh damping matrix produce very unconservative 
results.  
 
 The concept of capped viscous damping can be generalized to more complex 
systems.  In solid mechanics where stress and strain are used, the mass-proportional term 

iM ua &ρ  in equation (7) would be dropped, and bounds would be placed on the stiffness-
proportional damping stresses given by the klijklK Ka ε&  term in equation (8).  For a 
situation where plastic yielding is the dominant nonlinear mechanism, appropriate caps 
could be based on the yield strengths of the material scaled down by the ξ2  factor.  With 
other types of nonlinearity, such as interfaces where opening, closing and sliding occur, 
the choice of appropriate caps for the damping stresses is less obvious.  For example, the 
sliding strength of the interface depends on the instantaneous value of the normal stress, 
which could vary within a wide range, including being zero when separation occurs.  
Such issues, as well as other damping formulations that overcome the problems 
demonstrated in the previous sections, are the subject of continuing investigation.    
 
 One of these potential damping formulations that is sometimes employed is to use 
the current tangent stiffness matrix in the stiffness-proportional part of the Rayleigh 
damping matrix.  This will reduce the damping forces when the tangent stiffness reduces 
during yielding, sliding, opening, etc., which would seem to alleviate some of the 
problems discussed in this paper that occur when stiffness-proportional damping uses the 
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initial linear stiffness matrix.  However, use of the tangent stiffness is an ad hoc approach 
since there is no physical basis to such a damping mechanism.  Furthermore, the damping 
forces can change rapidly in time and even be discontinuous when there is a sudden 
change in tangent stiffness.  For the example of the cracked gravity dam discussed earlier, 
during crack closing the damping stress nd ,σ  would jump from zero to a possibly large 
value, dependent on the closing velocity, as soon as contact is made.  Such behavior can 
cause convergence difficulties.  Use of the tangent stiffness matrix in the damping 
formulation is not recommended.  

 
 

CONCLUSIONS 
 

 The use of Rayleigh damping in finite element analyses of structures under 
dynamic loads can result in damping forces that, under certain conditions, are 
unrealistically large and, thus, unconservative.  Assessment of these damping forces is 
aided by a physical interpretation of the mass and stiffness-proportional parts of the 
damping matrix. 
 
 The mass-proportional part of Rayleigh damping corresponds physically to linear 
viscous dampers that connect degrees of freedom of the structure to external supports.  
Although such a mechanism can not possibly exist, mass-proportional damping is 
commonly included in dynamic analyses because of the increased control it allows over 
modal damping ratios.  However, problems can occur.  Formulation of an earthquake 
analysis in terms of total motion involves a component of rigid body motion that 
generates extraneous damping forces if mass-proportional damping is present.  An 
alternate formulation using motion relative to the ground solves this problem.  Another 
example occurs in analysis of a base-isolated structure if the Rayleigh damping matrix is 
constructed using properties of the relatively stiff superstructure alone.  The damping 
ratio imparted to the overall structure consisting of the superstructure and the flexible 
isolators can be very high owing to the mass-proportional damping term.  A third type of 
problem arises if a portion of a structure breaks loose and thereby develops a high 
velocity; in which case, large mass-proportional damping forces can also develop.  An 
example of this is a structure sliding on its base such as a concrete gravity dam.  
Quantification of the undesirable effects in all of these cases is detailed in the paper. 
 
 The stiffness-proportional part of Rayleigh damping corresponds physically to 
linear viscous dampers that interconnect the degrees of freedom of a structure.  In a 
nonlinear analysis where the nonlinearity is of the softening type, limits on the restoring 
forces are imposed by various mechanisms such as yielding, cracking, sliding and 
buckling.  If the initial linear stiffness matrix is employed to construct the stiffness-
proportional damping term., then the damping forces in a softening element can reach 
unrealistically high values compared to the element’s restoring forces as the velocity 
gradient across the softening element increases.  The greater the initial stiffness of the 
softening element and the higher the velocity gradient, the greater is the effect.  As 
quantified in the paper, this effect can be very significant.   
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 One suggested remedy to the problems with Rayleigh damping is to eliminate the 
mass proportional damping contribution and bound the stiffness-proportional damping 
contribution.  This keeps the damping forces within reasonable limits set by the analyst.  
In some situations, such as nonlinear contact, appropriate cap values may not be obvious.  
Formulation of damping strategies that ensure reasonable damping forces for a wide 
variety of nonlinear structural behavior is an area that needs further research.      
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FIGURE CAPTIONS 

 
Figure 1.  Actual damping ratio iξ  of mode i as a function of frequency iω  of mode i 
when [ ]C  is given by equation (2). 
 
Figure 2.  Two formulations to implement earthquake excitation. 
   
Figure 3.  Ten-story building shown with the force-displacement relation for a typical 
story:  ( )tx relj ,  = displacement of floor j; m = floor mass; jk  = initial shear stiffness of 
story j; jsR ,  = restoring shear force in story j; jsyR ,  = yield value of restoring shear force; 
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j∆  = displacement of story j (difference of floor displacements above and below).  The 
story values are scaled to compute the jk  and jsyR ,  values. 
 
Figure 4.  Top:  displacement, velocity and acceleration time histories recorded at the 
Olive View Hospital free-field site during the 1994 Northridge earthquake.  Bottom:  
pseudo-acceleration (light gray) and displacement (dark gray) response spectra at 5% 
damping.   
 
Figure 5.  Time histories of the shear-spring force in the first story (solid) and the total 
damping force on the building (dashed) for the Olive View ground motion scaled by 0.15 
(linear response).  The forces are normalized by the yield strength of the first story.   
 
Figure 6.  Time histories of the shear-spring force in the first story (solid) and the total 
damping force on the building (dashed) for the full-scale Olive View ground motion 
(nonlinear response).  The forces are normalized by the yield strength of the first story. 
   
Figure 7.  Base-isolated building.  
 
Figure 8.  Force-displacement relation for the isolation system (all isolators together):  

IR  = restoring shear force of the isolation system; IyR  = yield value of the restoring 
shear force; DD  = isolator design displacement; Ik  = secant shear stiffness of the 
isolation system when displaced at the design displacement; Lk  = initial shear stiffness of 
the isolation system. 
 
Figure 9.  Concrete gravity dam that slides along a pre-existing crack through the bottom 
layer of finite elements. 
. 
Figure 10.  Force-displacement (or moment-rotation) relation of high-stiffness penalty 
springs:  aR , a∆ , ak  = force, displacement, stiffness of an axial spring; sR , s∆ , sk  = 
frictional force, sliding displacement, stiffness of a shear spring; µ  = coefficient of 
friction; M , θ , rk  = plastic hinge moment, rotation, stiffness of a rotational spring; PM  
= plastic moment capacity. 
 
Figure 11.  Time histories of the shear-spring force in the first story (solid) and the 
damping shear force in the first story (dashed) for the full-scale Olive View ground 
motion (nonlinear response).  The forces are normalized by the yield strength of the first 
story.  These results are for capped viscous damping. 
 
Figure 12.  Time histories of displacements of the floors of the 10-story building for the 
full-scale Olive View ground motion (nonlinear response).  The top plot is for linear 
viscous damping, and the bottom plot is for capped viscous damping.  The ten curves in 
each plot correspond to the ten floor levels of the building and are motions relative to the 
ground. 
 



 20

 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

Figure 1.  Actual damping ratio iξ  of mode i as a function of frequency iω  of mode i 
when [ ]C  is given by equation (2). 
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Figure 2.  Two formulations to implement earthquake excitation. 
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Figure 3.  Ten-story building shown with the force-displacement relation for a typical 
story:  ( )tx relj ,  = displacement of floor j; m = floor mass; jk  = initial shear stiffness of 
story j; jsR ,  = restoring shear force in story j; jsyR ,  = yield value of restoring shear force; 

j∆  = displacement of story j (difference of floor displacements above and below).  The 
story values are scaled to compute the jk  and jsyR ,  values. 
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Figure 4.  Top:  displacement, velocity and acceleration time histories recorded at the 
Olive View Hospital free-field site during the 1994 Northridge earthquake.  Bottom:  
pseudo-acceleration (light gray) and displacement (dark gray) response spectra at 5% 
damping.   

 
 

 
 
 
 
 



 24

 
 
 
 
 
 
 
 
 
 

 2  4  6  8 10
−1.5

−1.0

−0.5

 0.0

 0.5

 1.0

 1.5

Time (sec)

N
or

m
al

iz
ed

 f
or

ce

 
 

Figure 5.  Time histories of the shear-spring force in the first story (solid) and the total 
damping force on the building (dashed) for the Olive View ground motion scaled by 0.15 
(linear response).  The forces are normalized by the yield strength of the first story.   
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Figure 6.  Time histories of the shear-spring force in the first story (solid) and the total 
damping force on the building (dashed) for the full-scale Olive View ground motion 
(nonlinear response).  The forces are normalized by the yield strength of the first story. 
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Figure 7.  Base-isolated building.  
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Figure 8.  Force-displacement relation for the isolation system (all isolators together):  
IR  = restoring shear force of the isolation system; IyR  = yield value of the restoring 

shear force; DD  = isolator design displacement; Ik  = secant shear stiffness of the 
isolation system when displaced at the design displacement; Lk  = initial shear stiffness of 
the isolation system. 
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Figure 9.  Concrete gravity dam that slides along a pre-existing crack through the bottom 
layer of finite elements. 
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Figure 10.  Force-displacement (or moment-rotation) relation of high-stiffness penalty 
springs:  aR , a∆ , ak  = force, displacement, stiffness of an axial spring; sR , s∆ , sk  = 
frictional force, sliding displacement, stiffness of a shear spring; µ  = coefficient of 
friction; M , θ , rk  = plastic hinge moment, rotation, stiffness of a rotational spring; PM  
= plastic moment capacity. 
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Figure 11.  Time histories of the shear-spring force in the first story (solid) and the 
damping shear force in the first story (dashed) for the full-scale Olive View ground 
motion (nonlinear response).  The forces are normalized by the yield strength of the first 
story.  These results are for capped viscous damping. 
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Figure 12.  Time histories of displacements of the floors of the 10-story building for the 
full-scale Olive View ground motion (nonlinear response).  The top plot is for linear 
viscous damping, and the bottom plot is for capped viscous damping.  The ten curves in 
each plot correspond to the ten floor levels of the building and are motions relative to the 
ground. 

 




