RECLAMATION

Managing Water in the West

Linking Extreme Precipitation and Floods: Implications for Climate Change Scenarios

Research Question and Objective

Study Question

 Do the largest precipitation events produce the largest floods and if not, why?

Objectives

- Examine basin response to extreme precipitation in regions of the western U.S.
- Identify basin factors and storm conditions that produce the largest floods
- Apply results to regional climate change scenarios to determine potential changes in basin response

From M. Dettinger, USGS-SIO

Research Strategy

Data sources

- Precipitation (~2964 stations)
 - Cooperative Observer Program (COOP) network (NOAA)
 - Top 10 values from each gage (1950-2010)
 - <10% missing records</p>
 - 1-, 3-, 5-, 7-day durations (independent events)
 - Data obtained from Mike Dettinger, USGS-SIO
- Streamflow (~730 stations; 54 California)
 - Hydroclimatic data network (HCDN) (Slack et al. 1993)
 - Gages suitable for climate research
 - USGS records, accessible online
 - Top 10 values from each gage (1950-2010)
 - Annual instantaneous peak discharges
 - <10% missing records</p>

Methods

- Compare top 10 precip and streamflow records for stations in each basin
 - Selected HUC6 basins to analyze based on resolution of available data
- How many dates match between the extreme rainfall events and the extreme flood events?
 - (i.e., is there an extreme rainfall in the top 10 records that is also recorded as an annual peak in the top 10 records)?
 - 1-day, 3-day, 5-day, and 7day windows

Lower Sacramento Basin

USGS #11132500

COOP	#42500	004455

Date	Peak Discharge (ft³/s)		
3/15/1952	11400		
1/18/1973	8280		
3/18/1991	7890		
3/10/1995	7850		
1/27/1983	7740		
2/3/1998	7470		
2/9/1962	7400		
1/24/1967	7090		
3/4/1978	7040		
2/14/1986	6270		

	TTLUUUUTTUU	
Date	Precipitation (mm)	
1/31/63	84.3	
3/10/95	76.2	
2/3/98	68.6	
12/23/55	61.2	
1/7/74	61.2	
3/16/86	58.4	
12/5/97	57.4	
2/15/86	55.1	
12/3/74	53.6	
2/25/04	52.1	

Example Matrix for 1Day Rainfall values

MAX 1DAY		Top 10 rainfall events									
	DATES	1/31/63	3/10/95	2/3/98	12/23/55	1/7/74	3/16/86	12/5/97	2/15/86	12/3/74	2/25/04
	3/15/1952	0	0	0	0	0	0	0	0	0	0
ts	1/18/1973	0	0	0	0	0	0	0	0	0	0
Events	3/18/1991	0	0	0	0	0	0	0	0	0	0
	3/10/1995	0	1	0	0	0	0	0	0	0	0
Runoff	1/27/1983	0	0	0	0	0	0	0	0	0	0
	2/3/1998	0	0	1	0	0	0	0	0	0	0
p 10	2/9/1962	0	0	0	0	0	0	0	0	0	0
Тор	1/24/1967	0	0	0	0	0	0	0	0	0	0
	3/4/1978	0	0	0	0	0	0	0	0	0	0
	2/14/1986	0	0	0	0	0	0	0	0	0	0

California Region

- Subbasins with no HCDN data:
 - North Lahontan
 - Mono-Owens Lakes
 - Southern Mojave
 - Lower Colorado
- 13 subbasins examined

HUC 6 Basin	Number of COOP stations	Number of HCDN stations
Central CA Coastal	33	6
Klamath	22	6
Laguna San Diego Coastal	16	1
Lower Sacramento	57	9
Northern CA Coastal	23	10
Northern Mojave	14	1
Salton Sea	15	3
San Francisco Bay	27	3
San Joaquin	34	6
Santa Ana	14	2
Tulare Buena Vista Lakes	28	3
Upper Sacramento	12	3
Ventura San Gabriel Coastal	42	2

Seasonality of COOP and HCDN data (CA)

DEC-MAR

 Extreme rainfall and streamflow have similar percentages

APR-JUN

Minor snowmelt component in streamflow

SEP-NOV

Dry conditions preceding rainfall, few extreme flood records

Summary of subbasin analysis

- 5-day duration appears to be most important in the generation of extreme floods from extreme rainfall
 - Implies that back to back storms/stalling storm patterns, antecedent conditions play a critical role
- 1-day duration is least important, suggests that short intense rainfall produces fewer extreme basin responses (based on current dataset)

California Region

General patterns in rainfall-runoff relationships

- What is the probability that the top 10 ranked annual peak discharges will match a top 10 precipitation value?
 - Includes all durations (1-,3-,5-,7day durations)
 - General decreasing probability from the top ranked peak discharge to the 10th ranked peak discharge

California Region

Summary of California results

- 5-Day duration most important for generating extreme floods within the California Region
 - Antecedence is important factor
- 1-Day duration is the least important for flood generation, indicates that more than just high intensity storms are needed to generate extreme floods
- Largest peak discharge (Rank=1) is more often recorded by an extreme rainfall event while the smallest peak discharge (Rank=10) is less often recorded by an extreme rainfall event

Study Limitations

Gage elevations for California Region

- Only Top 10 Annual peaks of record used
 - Extreme rainfall values could be recorded in peaks that were not the annual extreme
- Gage locations
 - Some COOP stations located in different subbasins or downstream (at lower elevations) from streamflow data
 - Limits conclusions regarding rainfall-runoff relationships

Study Limitations (cont.)

Availability of streamflow data

- Regulation/human manipulation limits the number of suitable gages for analysis
- Length of record (60-year requirement), online availability also limited the number of gaging stations in the analysis

Drainage area

 Suitable stations are typically located in smaller drainage areas due to downstream regulation in larger basins

Implications for climate change

- Dettinger et al. (2011)
 - Increases in:
 - Number of years with higher numbers of AR events
 - ARs with greater than historical water vapor transport
 - Temperatures associated with ARs
 - Peak season length for ARs
- Das et al. (2011), Sierra Nevada (some conflicting results)
 - Frequency and size of storms expected to increase
 - More precipitation as rain versus snow
- Implications for floods (from above studies):
 - More winter rainfall floods vs. snowmelt floods
 - Increase in the frequency of floods and in 3-day flood magnitude

Implications for climate change (cont.)

This study

- Longer duration events (5-, 7-day durations) have produced a greater number of extreme floods in the historical record
- Suggests that investigating longer durations (>3-day duration) of extreme precipitation are important for simulations of projected changes in floods due to climate change
- Further analysis of basins would help to define factors important in basin response to extreme precipitation and to help inform rainfall-runoff modeling in various regions.

Further work

- Data analyses for each region (HUC2)
- Detailed data analyses for subbasins (HUC6 or HUC8) or for individual storms across subbasins
 - Rainfall-runoff relationships in individual basins, spatial variability across subbasins
- Additional gages
 - Precipitation: higher elevation gages
 - Streamflow: add gages not online, allow record length to vary (?)
- Analyze for flow volumes (long duration flows compared to high magnitude flows)
- Analyses to link extreme floods with Atmospheric River events

Acknowledgements

- Research and Development Office, Reclamation
- Mike Dettinger, USGS-SIO (COOP data)
- Marty Ralph, NOAA-ESRL
- Frank Dworak, Reclamation, Flood Hydrology Group
- Jan Oliver, Reclamation, Sedimentation and River Hydraulics Group

