Renewable Energy Powered Desalination Systems for Potable Water Production in Rural Communities

KATIE GUERRA, PhD, PE

Presented at AWWA Sustainable Water Management Conference, Denver CO, March 31, 2014
In remote areas treatment must be low cost, reliable, and easy to operate.

Need for fresh water supplies for drinking and agriculture
Availability of solar resource

PV
Hypothesis

Solar resource: PV and/or solar concentrating

Desalination: reverse osmosis/nanofiltration or membrane distillation

Increased water supply for remote areas
Goals of this Phase of Research

1. Establish benchmark for off-grid desalination using readily available components

2. Develop methodology for comparing different types of renewable-energy powered desalination technologies
Photovoltaic-Powered Reverse Osmosis (PVRO)

Benefits
- Combines 2 readily-available technologies
- Inexpensive capital investment
- Allows for automation and complexity in implementation
- Allows for operational improvements

Limitations
- Membrane scaling/fouling
- Need for membrane replacement
- Inherent losses in converting solar energy to DC power
Simple PVRO Photos
System Component and Installation Costs

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO system (wateranywhere.com)</td>
<td>(2) 2.5” x 40” membranes</td>
<td>2,400</td>
</tr>
<tr>
<td>PV (local hardware store)</td>
<td>400 Watt</td>
<td>1,800</td>
</tr>
<tr>
<td>Pump</td>
<td>1/5 HP, DC motor</td>
<td>1,100</td>
</tr>
<tr>
<td>Labor</td>
<td>40 hrs @ $50/hr</td>
<td>2,000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7,300</td>
</tr>
</tbody>
</table>

* Does not include the cost of well development or wellhead pumping
Operating Conditions

- Feed water: 2000 mg/L NaCl
- Membrane recovery: 30%
- Maximum feed pressure: 120 psi
- Feed pressure is a function of solar input
Data Collection

• Date, local time, latitude and longitude

• PV System
 – Panel angle (angle from the horizontal)
 – Panel bearing (from North)
 – Solar irradiance (typically horizontal indirect measurement)

• Membrane System
 – Feed: temperature, pressure, conductivity
 – Concentrate: pressure, flowrate, conductivity
 – Permeate: flowrate, conductivity
Solar Data Analysis Protocol

- Date, time
- Lat/Long
- Pyranometer reading
- Panel orientation

Solar 3D Model

Energy input to panel (W·hr/m²)
Solar 3D Model

\[\theta = 53^\circ \]
\[\beta = 34^\circ \]

\[\vec{U}^{sol} = \pm \sin(Z^N) \cdot \cos(h)i - \cos(Z^N) \cdot \cos(h)j - \sin(h)k \]

Energy input = \(U \cdot I \)
PVRO Operational Data

- Permeate Flow Rate (L/min)
- Salt Rejection

Solar Energy Input to System (W/m²)
Summary of PVRO Results

- Cumulative water production: 144 L
- Solar input: 2195 W·hr/m²
- Solar panel area: 1.57 m²
- Average salt rejection: 94%
Performance Metric Allows For Comparison Between Projects

Water Production (L)

Solar Energy Input (W·hr)

Performance Metric (L/W·hr) 0.042
Extrapolation to Other Location/Conditions

Solar insolation data → Panel orientation → Solar 3D Model → Solar input W·hr × Performance metric L/W·hr → Water Production Volume
Establishing a Benchmark

Performance metric for PVRO = 0.042 L/W·hr

Metric allows for comparison of

- Systems run in different geographic locations and with different solar resource (i.e. seasonal, weather events)
- Different types of solar-desalination hybrid systems
 - Solar distillation
 - Solar-membrane distillation
 - PV-ED/EDR
- Performance metric of system improvements
 - Adding batteries
 - Energy recovery
Things to be Considered…

- Develop metric to incorporate system cost
- Incorporate energy requirement for source water pumping
- Concentrate disposal
- Develop testing/data analysis methodology for brackish groundwater source
Test Facility for Renewable Energy-Desalination Research

- Supply 4 different brackish water sources
- Abundant solar resource
- Outdoor test pads
- Laboratory facility
- 3+ years of meteorological data
Partnerships and Programs

• Reclamation programs
 – Science and Technology Program
 – Desalination and Water Purification Program (grants.gov)
 – Cooperative agreement with NMSU

• Securing Water for Food Grand Challenge – USAID
 – www.thedesalprize.net
Funding and Contributors

Funding provided by Reclamation’s Science and Technology Program

PVRO system and testing: Dan Gonzales, Andrew Katers, Nathan Myers, Mike Simonovice (Reclamation)

Solar 3D Model: Dr. Andrés Guerra (Colorado School of Mines)
Contact Information
PVRO, desalination technology information
Katie Guerra, kguerra@usbr.gov, 303.445.2013

Brackish Groundwater National Desalination Research Facility
Randy Shaw, rshaw@usbr.gov, 575.443.6540

Solar Calculations
Andrés Guerra, aguerra@mines.edu, 303-910-9320