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Executive Summary 
The invention of microcomputers (circa the mid-1980s) started an era of 
unparalleled research in the field of heuristic optimization algorithms. These new 
algorithms are based on physical and biological processes rather than calculus-
based approaches. Four promising evolutionary algorithms (EA’s) were identified 
from the emerging literature; the real coded genetic algorithm (RCGA), 
differential evolution (DE), particle swarm optimization (PSO) and artificial bee 
colony optimization (ABCO).  These four EAs were applied to an important 
hydropower problem—the hydropower unit dispatch problem. The goal of the 
unit dispatch problem is to select which generation units to operate and their 
output levels to meet generation and ancillary service needs, while using the least 
amount of water. A suite of replicated experiments using these four EAs was 
undertaken on the unit dispatch test problems. These experiments explored the 
influence of initialization approaches, convergence criteria, dimensions of the 
problem, and the role of binding constraints. The aggregate experimental evidence 
indicates these algorithms can reliably solve the unit dispatch problem, within 
acceptable time-frames.  Experimental results suggest for the unit dispatch 
problem, the choice of initialization approach has no effect on solution times. 
Replicated experiments indicate intelligent stopping rules, which monitor 
convergence progress, dominate uninformed approaches. For DE, PSO and 
ABCO, convergence times become longer as the problem size is increased and for 
DE and PSO, when some constraints are binding. For RCGA and ABCO 
convergence speeds may improve in the presence of binding rough zone 
constraints.  A large number of algorithm specific experiments were conducted to 
inform these algorithm performance comparisons and a subset of these are 
described in this report. The reliability of the EA’s examined proved to be 
excellent and their solution speeds are fast enough for use in operational decision-
making.  The hydropower unit dispatch problem is nonlinear, non-convex and 
discontinuous.  These conditions preclude the application of traditional calculus 
based algorithms.  Evolutionary algorithms are more robust under these 
conditions.  They could provide near real-time solutions and guidance for 
everyday operational decisions at Reclamation’s hydropower plants.  Continuing 
development and testing of these heuristic algorithms, leading towards operational 
deployment, is advised. 

Introduction 
Within the last 30 years, a variety of new optimization heuristics have been 
described in the power engineering literature. These heuristic approaches rely on 
innovative search techniques, drawn from biological and physical processes. 
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Although computationally intensive, these methods can solve difficult constrained 
optimization problems, like the unit dispatch problem, quickly and reliably. 

This research describes several of the most promising of these new optimization 
approaches, applies them to example test dispatch problems and systematically 
assesses their performance.  The goal of this effort is to identify algorithms which 
can help guide hydropower unit dispatch decisions and improve efficiency, 
generating more electric power with less water. 

Reclamation plays a highly visible leadership role in the electric power industry. 
The Bureau is the second largest producer of hydroelectric power in the United 
States and, if it were a utility, would rank as the ninth largest electric utility on the 
basis of production capacity.  We operate 58 power plants with an installed 
capacity of 14,809 MW and produce approximately 40 billion kWh of energy 
annually.  As a registered generation and transmission owner-operator, 
Reclamation plays a key role in regional reserve sharing agreements and is a 
member of the Western Electricity Coordinating Council (WECC). 

By statute, Reclamation's electric power must be marketed at the lowest possible 
rates consistent with sound business practice.  The goal of this research project is 
to identify and apply advanced approaches allowing the operation of Reclamation 
hydropower plants in a more efficient manner generating more electricity per 
acre-foot of water released.  This research is fully consistent with Reclamation's 
mandate and reflects our stewardship responsibilities as a water and power 
provider.  Improved efficiency will result in the generation of more electric power 
using less water benefitting water and power users, as well as the American 
taxpayer. 

Overview of Phase 1 Research 
The focus of  Phase 1 of this research effort was to apply selected evolutionary 
algorithms (EAs) to the dynamic constrained hydropower dispatch problem.  In 
Phase 1 of this research project (Harpman 2012), three promising evolutionary 
algorithms were identified from the emerging heuristic optimization literature; the 
real coded genetic algorithm (RCGA), differential evolution (DE) and particle 
swarm optimization (PSO). A relatively extensive suite of replicated experiments 
were conducted to assess the performance characteristics of these three 
algorithms.  These experiments systematically explored the influence of 
initialization approaches, convergence criteria, the dimensions of the problem, the 
role of problem inputs and the effects of binding constraints. The results show the 
convergence behavior of evolutionary algorithms differs from traditional calculus 
based approaches.  Relative to the calculus based approaches, evolutionary 
algorithms exhibit longer solution times—characterized by rapid identification of 
the region containing the optimum, with relatively slow local convergence.  The 
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choice of different initialization approaches appears to have no effect on solution 
times, for the particular problem examined.  Replicated experiments indicate 
convergence times for all three of the EAs examined are longer for higher 
dimension problems.  For DE and PSO, convergence times increase when 
additional constraints are binding.  Input price vectors with greater dynamic 
ranges appear to degrade convergence times for DE, with mixed results for PSO. 
The aggregate experimental evidence indicates these algorithms can reliably solve 
this class of problem, within acceptable time-frames. 

Focus of Phase 2 Research 
The focus of Phase 2 of this research effort was the application of selected 
evolutionary algorithms to the hydropower unit dispatch problem. Phase 2 of this 
research project builds upon the earlier Phase 1 effort but is focused on 
hydropower unit dispatch, a Type 2 optimization problem, which is described 
subsequently. 

The strength of evolutionary algorithms is they are able to successfully solve a 
broad range of problems, including discrete, discontinuous and non-convex 
problems. The hydropower unit dispatch problem is such a problem, and one with 
widespread, practical, everyday management application at Reclamation 
hydropower plants. 

Types of Hydropower Optimization 
Problems 
Five different types of hydropower optimization problems are discussed in the 
literature.  Following the descriptions provided by Curtis, Parker and Scoggins 
(2012), these are reported in Table 1. 

Type 1 optimization is the optimization of one single generating unit.  The real 
power output of the unit is maximized at a given reservoir elevation by 
identifying the release level which produces the most energy per unit of water 
released. 

Type 2 optimization is the focus of this report. The goal of Type 2 optimization is 
to simultaneously identify which units will operate and the output levels of all of 
the selected generator units in the powerhouse in order to meet the required level 
of generation, reserves and ancillary services while using the least amount of 
water. 
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The Type 2 optimization problem is complex and difficult to solve because each 
turbine in the powerhouse may have different performance characteristics. This is 
most evident for different size units and units with different designs and 
manufacturers. Some authors (Curtis, Parker and Scoggins 2012) have reported 
that even among units with the same manufacturer and identical designs, there can 
be small differences in the production process. They point out that differential 
wear, which can result from differences in unit run-times may also give rise to 
subtle differences in unit performance characteristics. Performance differences 
can also result from non-uniform maintenance and repair procedures. 

In recent years, improved professional standards (for example, see International 
Electrotechnical Commission 1999) in tandem with modern design and 
production techniques have resulted in a high degree of uniformity across turbines 
of the same design, produced by the same manufacturer.  Reclamation’s 
experience (Hulse 2013) suggests that turbines of the same design produced by 
the same manufacturer typically have the same performance characteristics, 
within the limits of the unit performance test error, as described in the ASCME 
guidelines (American Society of Mechanical Engineers 2011). 

The specifics of the unit dispatch problem, a Type 2 optimization, are described 
more fully and more formally in subsequent sections of this document. 

Table 1.—Optimization Classification Scheme 

Optimization Problem Definition 

Type 1 Optimization of the output of a single turbine 

Type 2 Optimal joint operation of all of the turbines in the 
powerhouse 

Type 3 Optimal operation of all hydropower stations within a 
river basin. 

Type 4 Optimal operation of the hydropower stations across 
multiple river basins in a geographic region 

Type 5 Optimal coordination of all generating resources (hydro, 
thermal, renewable) within a geographic region. 

Type 3 optimization problems are designed to identify the optimal operation of all 
of the hydropower plants within a river basin.  This problem must necessarily 
consider not only the physical and engineering characteristics of each plant 
individually, but the interlinked hydrologic impacts of each plant on the other 
plants in the system. 

Type 4 optimization problems encompass the joint optimal operation of all of the 
hydropower plants in a geographic region. 
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Finally, Type 5 optimization problems are focused on the coordinated optimal 
operation of all generating resources within the geographic (usually 
interconnected) region of interest. These kinds of optimization problems may or 
may not explicitly characterize the transmission system, emissions targets and 
other constraints pertinent to the operation of the interconnected electric power 
system, as a whole. 

The Type 2 Unit Dispatch Problem 
The unit commitment or unit dispatch problem is a complex 2-step mathematical 
optimization problem.  Solution of this problem requires (a) identification of the 
combination of available hydropower units to operate (or shut down) in a single 
time-step, such as a 1–hour period, and, (b) how to managed the committed 
hydropower units in an optimal manner.  The decision to operate or shut down a 
unit is a binary (0/1) decision, typically with some associated cost and often with 
some minimum time constraint imposed between startup and shutdown decisions. 
Assuming there are n available hydropower units, the unit dispatch problem is of 
size 2n.  This aspect of the problem poses a potentially large and difficult-to-solve 
integer programming effort. Once the optimal units have been committed, the 
economic dispatch problem, described previously in Phase 1 of this project, is 
solved for those units. 

Understanding Type 2 Optimization 

The goal of Type 2 optimization is to simultaneously identify which generator 
units at the plant will operate and the output levels of all the selected generator 
units in order to meet required levels of generation, reserves and ancillary 
services, while using the least amount of water. 

Unit Characteristics 

At the heart of the Type 2 optimization problem is the important insight that each 
generator unit/turbine combination in the powerhouse may be different.  Most 
obviously, the sizes, capacities and designs of some generator units may differ 
from other units at that plant. For example, some units may have a nameplate 
capacity of 50 MW while others are rated for 65 MW.  Similarly, some units may 
be designed to operate most efficiently at different reservoir elevations (e.g. 
higher or lower reservoir levels) than others. In these cases, there are clear 
reasons for the differences in performance characteristics between units.  Figure 1 
illustrates the performance characteristics for 24 units with three different 
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maximum generation capabilities.  Units 1-9 and 22-24 are rated at 143.75 MVA. 
Units 19-21 are rated at 707.8 MVA and Units 22-24 are the largest units, rated at 
825.64 MVA.  As shown, the smaller units achieve their highest efficiency at 
lower output levels. 

Figure 1.—Grand Coulee Unit Performance Characteristics. 

Powerplant and power system operational considerations also play a large role in 
Type 2 optimization.  A short discussion of these other considerations is presented 
below. 

Available Units 

Although there may be 10 generator units at a particular powerplant, it is not 
uncommon for one or more of these units to be offline and therefore unavailable 
for dispatch or use. Units are routinely taken offline and idled for scheduled 
maintenance, unscheduled maintenance, repairs and other reasons.  Depending on 
the particulars of the situation, these offline periods can last a few hours, a few 
days, or a number of months. 

Offline units are unavailable for dispatch.  Any Type 2 optimal dispatch solution 
must account for offline units and dispatch the other available (online) units, to 
meet electrical load in the most efficient fashion. 
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Must Run Units 

In some cases, particular generation units at a powerplant are designated as “must 
run” or always run units.  If the powerplant is in operation, these units are 
dispatched fully or partially.  Must run units are designated for a variety of 
logical, operational and environmental reasons.  For example, one unit may be 
reserved for “station service” to provide electric power for operating the 
powerplant and control equipment at the plant. Alternatively, one unit may be in 
continuous “must run” status in order to provide power system support or 
transmission support.  At other plants, a unit may be designated as a must run unit 
to ensure the minimum downstream flow requirements are met. 

By definition, must run units are always dispatched. A Type 2 optimal dispatch 
solution must account for these continuously operating units and dispatch the 
other available units to meet the remaining electrical load. 

Preferred Dispatch Order 

At many powerplants there are formal and informal preferences for the order in 
which generator units are dispatched.  This preferred dispatch order may extend to 
some or all of the units at the powerhouse. Depending on the plant and the 
powerplant operator on duty, generator units may be dispatched in a particular 
order so as to balance the use and wear across units, to avoid noise or vibration in 
the powerhouse, or for other operator specific reasons which may or may not be 
intuitively obvious. 

At powerplants where a preferred dispatch order is observed, a Type 2 optimal 
dispatch solution must account for and accommodate this preference ordering. 
This additional operating constraint may or may not have an effect on the overall 
efficiency of the optimal solution. 

Spinning Reserve 

Spinning reserves are defined as a designated block of unloaded generating, 
connected to an output bus, synchronized to the electric system, and ready to take 
immediate load. When a generator supplies spinning reserve services, it will 
increase output in response to an outage situation.  When a unit is fully or 
partially designated to spinning reserve, its output level is reduced so it can meet 
the spinning reserve obligation without exceeding the maximum capability of the 
generator. 

Units, or portions of units, designated to meet spinning reserve requirements are 
unavailable for real power dispatch.  Any Type 2 optimal dispatch solution must 
account for units, or portions of units, on spinning reserve and dispatch only the 
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unloaded portion of the unit or other available (online) units, to meet electrical 
load in the most efficient fashion. 

Nonspinning Reserve 

Nonspinning reserves are defined as generating capacity that is unloaded, 
connected to an output bus, and not synchronized to the electricity system. 
Depending on balancing area regulations, these resources must be capable of 
being brought online in 10 minutes if it is offline, and which is capable being 
operated for at least two hours. When a hydropower unit is designated for 
nonspinning reserves it is often dewatered, idle and cannot be dispatched to meet 
load. 

Units designated to meet nonspinning reserve requirements are unavailable for 
power dispatch (they are on reserve).  Any Type 2 optimal dispatch solution must 
account for units on nonspinning reserve and dispatch the other available (online) 
units, to meet electrical load in the most efficient fashion. 

Regulation 

Regulation is the amount of operating reserve capacity required by the control 
area to respond to automatic generation control to ensure the Area Control Error 
(ACE) remains within the performance standards described in North American 
Electricity Reliability Council (NERC) (2011).  ACE is the instantaneous 
difference between a Balancing Authority’s net actual and scheduled interchange, 
taking into account the effects of frequency bias and correction for meter error. 

Units designated for providing regulation down services must operate at 
sufficiently high output levels such that sudden decreases in load will not reduce 
generation below their technical or regulatory minimum output levels.  To provide 
regulation-up services, unit generation levels must be sufficiently low such that a 
power plant can respond to instantaneous increases in grid loads without 
exceeding their output capability. 

Units designated to meet regulation (up and down) requirements are available 
only for limited power dispatch.  Any Type 2 optimal dispatch solution must 
account for these limited operating ranges and dispatch the other available 
(online) units, as necessary, to meet electrical load in the most efficient fashion. 

Condensing/Motoring 

Depending on the design of the plant, hydropower units can be operated as 
synchronous condensers to increase or decrease reactive power on the 
interconnected electricity grid.  In this mode (also referred to as "motoring"), the 
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hydro unit’s breaker switch is closed and no water is released to drive the turbine. 
Air is pumped into the turbine to allow it to spin freely.  Real electric power is 
supplied to the unit and the unit’s generator acts like a motor, rotating the turbine 
shaft and absorbing reactive power from the system.  Depending on the control 
settings, condensing units can also be used for voltage and frequency control in 
the system. 

In general, condensing/motoring units are unavailable for real power dispatch. 
Depending on the market rules however, these units may sometimes be counted 
towards the spinning reserve requirements. Any Type 2 optimal dispatch solution 
must account for motoring units and dispatch the other available (online) units, to 
meet electrical load in the most efficient fashion. 

Prohibited Operating Zones 

Prohibited operating zones are production, output, or operational regions which 
create excessive vibrations of the plant equipment (also known as, ‘rough zones’) 
or output zones which might result in hydraulic cavitation.  Many 
generator/turbine units have rough zones, sometimes more than one.  These 
prohibited operating zones may vary with head, further complicating this 
problem.  Units of different designs and wear-status typically have rough zones in 
different portions of their output surfaces.  Sustained operation of a unit within a 
rough zone is not permitted under normal operating conditions.  It is also 
advisable to change output levels quickly and move through prohibited operating 
zones as rapidly as feasible. 

Prohibited operating zones place additional constraints on the output levels of 
generator/turbine units.  Continuous generation within these zones is not allowed 
under ordinary circumstances. Movement of the set point from below the 
prohibited operation zone to an output level above the prohibited operating zone 
will necessarily require a rapid transition through it. Any Type 2 optimal dispatch 
solution must account for these prohibited operating zones and dispatch the unit in 
a manner which avoids these regions, or else dispatch the other available (online) 
units, to meet electrical load in the most efficient fashion 

Start/Stop Costs 

Hydropower generation units which are brought online from an offline state, or 
taken offline from an online status, incur some additional amount of equipment 
wear.  Additionally, there is some amount of labor and time required to 
implement these status changes.  Although empirical evidence is limited, at least 
conceptually, some costs are incurred for unit start ups and unit stops. Although 
some unit start ups and stops are necessary to the coordinated operation of any 
powerplant, it is advantageous to limit these, to the extent practical. 
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Any Type 2 optimal dispatch solution must account for start up and shut down 
costs, in some fashion.  Note that consideration of this constraint requires a 
dynamic, or period to period, accounting of unit activities.  Ideally, a prudent 
dispatch solution would avoid unnecessary unit cycling while dispatching units in 
the most efficient fashion. 

Minimum Up/Down-Times 

Explicit consideration of minimum up and down times is often related to start and 
stop costs and sometimes engineering concerns.  As applied, for some or all units, 
there is a minimum period of time that a unit can be offline, once it has been shut 
down and a minimum period of time a unit can be run, when it is started up. 
These constraints may be imposed to prevent excessive unit cycling, to enforce 
cooling requirements, reduce unit wear and prevent excessive start and stop costs. 
Where present, a Type 2 optimal dispatch solution must account for these 
minimum run and minimum down time constraints. Note that consideration of 
these constraints requires a dynamic, or period to period, accounting of unit states. 
Ideally, a prudent dispatch solution would satisfy these constraints while 
dispatching all available units in the most efficient fashion. 

Unit Leakage 

When units are offline and the head gate to the unit is closed, there is little or no 
leakage of water through the unit. When units are online and available, but not 
generating, some amount of leakage through the wicket gates can be expected. 
While the amount of leakage is generally small, as a percentage of the total 
release capacity, it can vary to a greater or lesser degree across units depending on 
a variety of factors. 

Generator/turbine units which are either spinning or motoring/condensing will 
typically pass some water through the wicket gates without generating any real 
power. Water which leaks through the wicket gates is effectively unavailable for 
use, or wasted. Depending on the age, condition and wear-status of the available 
units, they may leak differentially to a greater or lesser extent. Although some 
degree of leakage is unavoidable, it is clearly desirable to minimize the amount of 
leakage which takes place. 

Any Type 2 optimal dispatch solution must account for potential leakage.  All 
other factors being the same, units which leak more should be dispatched first and 
not reserved for motoring/condensing operations, while the other available 
(online) units should be dispatched, to meet electrical load in the most efficient 
fashion. 
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Reclamation Generation Units 
As of May 2012, Reclamation owns and operates a total of 57 hydropower plants. 
These range in size from the Lewiston powerplant with an installed capacity of 
0.350 MW to Grand Coulee powerplant with an installed capacity of 6,809 MW. 
Depending on the powerplant, there may be a single generator unit, or there may 
be two or more generator units. Fifteen (26.32%) of the 57 powerplants in the 
Reclamation inventory are single generation unit plants.  Nineteen (33.33%) of 
the 57 powerplants have 2-generation units.  Figure 2 illustrates the percentage of 
Reclamation power plants by number of generation unit. 

Figure 2.—Units at Reclamation Powerplants. 

As shown in this graph, the majority of Reclamation powerplants (50, or 87.72%) 
have four or fewer generation units.  Approximately, 12% of Reclamation’s 
powerplants have more than four generation units.  Among the plants with the 
largest number of generation units are; Glen Canyon (8-units), San Luis (8-units), 
Hoover (19-units) and Grand Coulee (24-units). 

Unit Dispatch Test Problems 
For purposes of this research effort, four unit dispatch test problems were 
constructed. These consisted of two, 2-unit test problems and two, 4-unit test 
problems. These dispatch test problems encompass small and large generator 
units, with and without the presence of prohibited operating zones.  In broad 
terms, these four test problems span the range of generation facilities, and 
operational problems, commonly encountered in the Reclamation hydropower 
system.  
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   Table 2.—Summary of Test Problems 

 Label  Unit Capacity (MW) Efficiency Features 

Test Problem 1 1  63.73781 0.90  

2  153.40532 0.85  

 Test Problem 2 1 63.7378  0.90 Rough zones  

2 153.4053  0.85 Rough zones  

Test Problem 3 1 63.7378  0.90  

2 153.4053  0.85  

3 63.7378  0.90  

4 153.4053  0.85  

 Test Problem 4 

 

1 63.7378  0.90  

2 153.4053  0.85  

3 63.7378  0.90 Rough zones  

4 153.4053  0.85 Rough zones  

 
         

              
    

        
 
 
 

                                                
           

            

Mathematically, these dispatch test problems are relatively simple unit dispatch 
problems with low dimensionality.  More importantly, they can be solved 
successfully using total enumeration, the Excel solver, nonlinear programming 
and other available techniques.  They are small, compact and relatively tractable 
problems.  By design, they facilitate detailed exploration of the efficacy and 
performance of the evolutionary algorithms examined here. 

The characteristics of these four dispatch test problems are summarized in Table 
2. A detailed exposition of these problems can be found in Appendix 6 and the 
specifications for the storage reservoir and critical elevations can be found in 
Appendix 5.  As shown, there are two generator units in Test Problem 1 and there 
are two generator units in Test Problem 2.  In both test problems, there is one 
small generation unit, with a nominal capacity of 64 MW, and a large generation 
unit, with a nominal capacity of 153 MW. 

In Test Problem 1, there are no prohibited operating zones for either generator 
unit.  For Test Problem 2, both the small and the large generation unit have 
prohibited operating zones.  Figure 3 illustrates the plan (top) view schematic 
common to both Test Problem 1 and Test Problem 2. 

1 The maximum occurs at an elevation of 2008.19 and a release of 3000 cfs. 
2 The maximum occurs at an elevation of 2008.19 and a release of 9000 cfs. 
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Figure 3.—Plan View of Test Problems 1 and 2. 

As shown in Table 2, there are four generation units in Test Problem 3 and four 
generation units in Test Problem 4.  In each of these test problems, there are two 
small generation units, with a nominal capacity of 64 MW, and two large 
generation units, with a nominal capacity of 153 MW.  In Test Problem 3, none of 
the four units have prohibited operating zones.  For Test Problem 2, one of the 
small units and one of the large generation units have prohibited operating zones. 
Figure 4 illustrates the plan (top) view schematic common to both Test Problem 3 
and Test Problem 4. 

Figure 4.—Plan View of Test Problems 3 and 4.
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Problem Representativeness 
The unit dispatch model developed in this research project is applied to the 2-unit 
and 4-unit dispatch problems, as described in an earlier section of this document. 
Admittedly, this research application does not encompass the full range of units 
represented at all Reclamation projects. It should be recognized however, on the 
basis of the number of units, the 2-unit test problems characterize 59.65% of 
Reclamation plants and the 4-unit test problems are representative of 87.72% of 
all current Reclamation hydropower plants. The dispatch test problems developed 
for this research project provide an adequate representation of existing 
Reclamation powerplants. 

Problem Limitations 
The 2-unit and 4-unit dispatch problems employed in this research project do not 
characterize all of the potential conditions which must be considered by plant 
operators. The preceding section of this document entitled, “Understanding Type 
2 Optimization,” provided some insight into the complexity of the dispatch 
decision.  Figure 5 summarizes the majority of these concepts and provides a 
useful overview of the factors explicitly characterized in the test problems, and 
those which were not. 

Figure 5.—Test Problem Limitations. 

The unit dispatch test problems developed for this research effort encompass the 
plant conditions shown above the red line in Figure 5. All of the software 
programs described in this document can characterize the number of available 
units, prohibited operating zones, designated motoring/condensing units and 
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reflect unit leakage.  These conditions can be varied by the user and are reflected 
in the optimization results returned by the algorithms. 

Since there were limits on the resources available for this research, there were 
necessarily some trade-offs which had to be made between functionality and the 
research objectives.  Consequently, the unit dispatch problems employed here do 
not characterize all of the possible plant conditions faced by dispatchers.  The 
conditions below the red line in Figure 5 are not characterized in the unit test 
problems used in this research project. The majority of the conditions below the 
red line, including the preferred dispatch order, must run units, spinning reserve, 
non-spinning reserve and regulation would be relatively easy to accommodate in 
the existing test problem framework. The final two conditions; start/stop costs 
and minimum up/down times, would require a more complex problem 
specification which considers the state of each unit in past time periods. 

For simplicity reasons, the efficiency parameter for each generator unit is a scalar 
constant over the range of release and head.  In general however, the efficiency of 
a Francis turbine varies, depending on the head and the release rate.  Furthermore, 
this relationship is unique to the design of each turbine runner and the site where 
it is installed.  A further explanation of this topic can be found in Harpman (2012 
Appendix 4). 

Selected Terms 
Like any branch of science, there are some terms used to describe mathematical 
optimization approaches which are not commonly encountered in other fields.  As 
an aid to understanding the narrative which follows, it will be useful to define 
some of these terms. 

Algorithm 

“A detailed sequence of actions to perform to accomplish some task.  Named after 
an Iranian mathematician, Al-Khawarizmi.  Technically, an algorithm must reach 
a result after a finite number of steps, thus ruling out brute force search methods 
for certain problems, though some might claim that brute force search was also a 
valid (generic) algorithm.  The term is also used loosely for any sequence of 
actions (which may or may not terminate)” (Computer Dictionary Online 2010). 

Heuristic 

“A rule of thumb, simplification, or educated guess that reduces or limits the 
search for solutions in domains that are difficult and poorly understood. Unlike 
(true) algorithms, heuristics do not guarantee optimal, or even feasible, solutions 
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and are often used with no theoretical guarantee” (Computer Dictionary Online 
2010). 

In practice, the term algorithm is often used interchangeably with the term 
heuristic.  However, mathematicians typically reserve their use of the word 
algorithm to describing optimization approaches for which there is a theoretical 
mathematical basis for expecting a favorable result. Typically, mathematicians 
employ the term heuristic to describe any of the non-traditional optimization 
approaches not supported by mathematical theory. 

Objective Function 

The object of mathematical optimization is to minimize or maximize a specified 
mathematical expression.  This expression is known as an objective function. 

Penalty 

Many applied mathematical optimization problems have natural or logical 
constraints on the values which can be considered in the solution.  For example, 
physical (quantity) measurements are typically non-negative. 

One approach to characterizing constraints in a constrained mathematical 
optimization problem is to arithmetically disadvantage, or penalize, solution 
results which violate a constraint. This topic is discussed in much greater detail in 
subsequent sections of this document.  A penalty function is used to compute the 
numerical magnitude of the disadvantage caused by one or more constraint 
violations.  A penalty is the value returned by a penalty function. 

Fitness 

In cases where penalty functions are used to characterize constraint violations, a 
fitness function is maximized or minimized instead of an objective function.  A 
fitness function returns the numerical value of the fitness—defined as the 
objective function value minus the value of the penalties (assuming a 
maximization problem) for constraint violations, if any. 
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Optimization Approaches 

Taxonomy of Optimization Approaches 

For purposes of this document and the discussion which follows, it will prove 
useful to provide some type of taxonomy or classification scheme to illustrate the 
relationships between these two optimization approaches.  Figure 6 provides some 
structure for this discussion. 

As shown in Figure 6, optimization approaches can be divided into traditional 
(calculus based) optimization algorithms and heuristic algorithms.  The latter 
class of optimization methods may also be described as metaheuristics or heuristic 
optimizers, depending on the author and the source. 

The focus of this research is on a sub-set of optimization methods which are 
classified as heuristic algorithms.  Even so, comparison and understanding of 
these methods is facilitated by some familiarity with traditional methods and 
approaches. 

Figure 6.—Taxonomy of Optimization Approaches.
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Traditional Solution Algorithms 

Optimization problems have traditionally been addressed with a variety of 
traditional calculus based methods and throughout the remainder of this 
document, these approaches will be referred to as “traditional” or calculus based 
approaches.  Calculus based optimization approaches are routinely taught to all 
engineers and economists.  Most students of these disciplines will surely have 
fond memories of the many hours they devoted to mastery of this topic! 

Since the time of Sir Isaac Newton (1642-1727), mathematicians, economists and 
engineers have collectively devoted vast amounts of effort to the study of 
optimization, with a particular focus on convex optimization problems with 
constraints.  There are many books devoted to this subject, one of the many 
modern examples being the tome by Boyd and Vandenberghe (2006). 

Numerical solution of convex optimization problems is typified by the Newton-
Raphson approach and its many variants. This approach has been taught to 
engineers and economists since the early 1950’s (for example, see Wood and 
Wollenberg (1996) or Rau (2003)). 

As described in Press et al (1989) and Judd (1999), the Newton-Raphson 
approach has been largely supplanted by some of its recent and more advanced 
variants.  At the present time, two approaches are in the forefront of current 
calculus based optimization technology.  These are the sequential quadratic 
programming (SQP) method, and, the generalized reduced gradient (GRG) 
method. Both of these methods are aptly described in Rau (2003). The SQP 
method is often used in high-end commercially available optimization platforms, 
such as LINGO (www.lindo.com).  The GRG method has found its niche as the 
optimization solver incorporated in all currently shipping versions of Microsoft 
Excel (Fylstra et al 1998).  As such, it may well be the world’s most frequently 
used optimization algorithm.  In any case, it is almost certainly the most widely 
installed optimization package! As bundled with the ubiquitously available Excel 
program, the solver is broadly employed in graduate and undergraduate teaching 
(for example, see Weber 2007). 

Heuristic Optimization Methods 

The focus of this research is on the application of a subset of the heuristic 
optimization methods shown in Figure 6.  Heuristic optimization approaches are 
based on the application of rules and logic which reduce the search space and 
allow for solution of difficult optimization problems.  Generalizing rather broadly, 
we can classify these methods into the three categories shown; evolutionary 
algorithms, other nature based algorithms and logical algorithms. 
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Evolutionary algorithms explicitly characterize crossover, mutation and selection 
operators (Engelbrecht 2005). As might be expected by their name, evolutionary 
algorithms are based on the concept of biological evolution.  These approaches 
are based on the improvement of an artificial population of individuals over a 
series of generations or iterations.  Each individual carries a solution to the 
optimization problem.  At each generation, the most fit individuals in the 
population reproduce and their offspring survive into the next generation, the less 
fit individuals die and their inferior genes are lost. The fitness of the population 
and the quality of the solutions found, improve over time.  Genetic algorithms, 
differential evolution and particle swarm optimization fall into this category of 
algorithms. 

There are an amazing variety of optimization heuristics related to living 
organisms, their behavior or some other natural physical phenomenon.  Among 
these are ant colony optimization, bee optimization, firefly optimization and a 
host of others.  As might be surmised, some of these algorithms are predicated on 
the collective food location strategies typified by the species. 

For purposes of this document, we will classify these remaining approaches as 
logical heuristic search algorithms.  While these may be very different from one 
another in search strategy, they are based on logical insights, experience and in-
depth knowledge of one or more types of optimization problems.  As shown in 
Figure 6, this category includes such well-known heuristics as Tabu search and 
Extremal optimization.  It also includes some less well known but quite effective 
algorithms such as the Substitution-based Non-linear Approximation Procedure 
(SNAP) algorithm developed by Veselka, Schoepfle and Mahalik (2003) 

Comparison of Approaches 

Much of the research effort described in this report is focused on the application 
of evolutionary algorithms to a common hydropower optimization problem.  A 
comparison of these two classes of algorithms and their respective suitability to 
this problem will provide both some background and rationale.  Table 3 compares 
a number of pertinent characteristics of these two types of approaches. 

The hydropower problems examined here are inherently nonlinear with both 
nonlinear and linear constraints. Both traditional and evolutionary algorithms can 
be applied to these types of problems.  Very fast and incredibly reliable traditional 
algorithms are available for solving problems with linear objective functions and 
constraints.  However, traditional algorithms are typically less efficient when 
applied to nonlinear objectives and nonlinear constraints. They typically require 
longer solution times and can fail to identify a solution more frequently in this 
setting. 
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Table 3.—Traditional and Evolutionary Algorithms
	

Characteristic Traditional Algorithms Evolutionary Algorithms 

Problem formulation Linear or nonlinear Linear or nonlinear 

Mathematical 
requirements 

Smooth, continuous and 
twice differentiable 

Can be piecewise, 
discontinuous and non-
differentiable 

Allowable constraints Equality, inequality, linear 
or non-linear. 

Equality, inequality, linear or 
nonlinear. 

Mathematical 
requirements 

Calculus, linear and matrix 
algebra operations 

Primitive mathematical 
operators only (add, subtract, 
multiply, divide) 

Function return Single solution Multiple solutions 

Nature of outcome Deterministic Stochastic 

Optimal point Extremal point closest to 
starting position usually 
identified. This may or may 
not be the global optima. 

Extremal point within search 
range usually identified. This 
is more likely to be the global 
optima. 

Memory requirements Extensive Modest 

Convergence 
characteristics 

Slow large-scale search 
Fast local convergence 

Fast large-scale search 
Slow local convergence 

Solution time Problem dependent Often lengthy 

Code implementation Complex (very) Unsophisticated 

Many commonly encountered hydropower problems are nonlinear, nonconvex, 
and have discontinuities.  This includes the dynamic economic dispatch problem 
and the unit dispatch problem examined here.  Perhaps the chief strength of 
evolutionary programs is their applicability to these types of real-world 
hydropower problems, a factor which largely motivated this research effort.  The 
mathematical requirements for applying traditional optimization algorithms are 
rather restrictive.  Typically, traditional algorithms can only be employed when 
the objective function and the constraints are smooth, continuous and twice 
differentiable.  In contrast, evolutionary algorithms can solve a much wider range 
of problems including those which are discontinuous, piecewise, are not convex 
and which cannot be differentiated. 

Both traditional and evolutionary algorithms can solve constrained optimization 
problems with various types of constraints including equality, inequality, linear 
and nonlinear constraints.  Traditional algorithms are less well suited to solving 
optimization problems with nonlinear constraints. The solution of problems with 
one or more equality constraints can be problematic for evolutionary algorithms. 

The mathematical requirements for implementing evolutionary algorithms are far 
less onerous than they are for traditional (calculus based) algorithms.  In both 
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philosophy and practice, evolutionary algorithms are not based on calculus and do 
not use calculus constructions for obtaining a solution.  In fact, some authors 
consider this to be their greatest strength! Evolutionary algorithms use only 
primitive mathematical operators such as addition, subtraction, multiplication and 
division.  Traditional algorithms are, of course, founded in calculus concepts.  As 
a result, they use not only gradient vectors (vectors of first partial derivatives) and 
hessian matrices (matrices of second partial derivatives), but also have advanced 
linear algebra requirements. These advanced mathematical constructs are error 
prone to derive and code, difficult to implement numerically and require an 
extremely high degree of knowledge and skill on the part of the researcher.  Judd, 
a master of understatement, writes “Many readers could write acceptable 
unconstrained optimization code, but it is much more difficult to write good, 
stable, reliable code for constrained optimization (Judd 1999, page 142) 

Traditional (calculus based) optimization algorithms return one single solution.  It 
is the solution to the problem, as every economics and engineering student is 
acutely aware.  A fundamental difference between traditional and evolutionary 
algorithms is that evolutionary algorithms return a population of solutions.  This 
difference in solution paradigm is both unfamiliar and potentially confusing. 

To expand upon this concept, we must recall that evolutionary algorithms 
characterize a population of individuals.  This population is of say size, np, which 
could consist of from 5 to 100 individuals or more.  Fundamentally, each of these 
np individuals stores a solution (in some cases, more than one).  The stored 
solution consists of not only the optimal function value, but the vector of values 
which produces it.  As the evolutionary process proceeds, each of these np 
solutions evolves and becomes better, or more “fit.”  When the evolutionary 
process terminates, the result is np, not necessarily unique, individual solutions--
not one single solution.  As a practical matter, the analyst will often choose to 
report the best of these np individual solutions as the solution.  Since evolutionary 
algorithms are probabilistic in nature, each new run will produce slightly different 
results (in contrast with a traditional algorithm which produces identically the 
same result for a given starting condition).  In the case of evolutionary algorithms, 
it is customary to undertake multiple runs and report the mean and other 
descriptive statistics for the outcomes. 

Many real-world optimization problems have more than one optimal or extremal 
point. At an extremum, the first order necessary conditions (FOCs) for a 
minimum or maximum are satisfied.  In the case of a traditional calculus based 
algorithm, the specific extrema identified by the algorithm depends primarily on 
the starting conditions specified by the analyst. These types of functions are the 
bane of researchers everywhere!  In the absence of detailed knowledge about the 
optimal surface, the usual procedure is to restart the traditional algorithm at many 
different points in the solution space and search for the global optimum point. 
Problems which exhibit multiple local optima can often be solved by these 
calculus based methods.  However, there is no theoretical or practical way to 
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guarantee the solution identified by the researcher is the global solution to the 
problem. 

Evolutionary algorithms are sometimes described as global optimizers owing to 
their well-documented ability to identify the global optima within the given 
search space.  Notwithstanding the published glowing reports, an equal body of 
published evidence suggests this behavior is not universally observed. 
Furthermore, it cannot be proved theoretically that they can be relied upon to 
identify the global best solution.  It is most certainly true that relative to 
traditional algorithms, evolutionary programs carry more solutions through the 
iteration process and have much greater exploratory ability.  These two 
characteristics enable evolutionary algorithms to more exhaustively traverse the 
solution space.  Consequently, they are much more likely than traditional 
algorithms to identify the global optima. 

Traditional optimization algorithms make heavy use of vectors, matrices and 
linear algebra operations, which themselves exact a huge computer memory 
overhead.  Consequently, traditional optimization algorithms require extensive 
amounts of computer memory, especially for the solution of sizable problems.  As 
little as ten years ago the practical usage of traditional optimization algorithms 
was restricted by the amount of physical and virtual memory addressable by 
existing microcomputers. In contrast, evolutionary algorithms do not make use of 
vectors, matrices or other advanced mathematical structures or operators. Their 
memory requirements are quite modest for similar size problems. 

In cases where they can be applied, traditional calculus based optimization 
algorithms are known for their rapid converge properties.  This is especially true 
in the case of convex functions with linear constraints. Experiments show that for 
traditional optimization algorithms, the initial phases of search are quite slow. 
Once they have identified the region where the optima resides, local convergence 
to the final solution is often very fast. Evolutionary algorithms on the other hand, 
exhibit behavior which is very much the opposite. Experiments on evolutionary 
algorithms demonstrate the initial search phase is very fast—the algorithms 
quickly and efficiently locate the region of the optima.  However, the local 
convergence of these algorithms is slow, in some cases, painfully so.  Typically, 
large amounts of time are required for the population to converge on an optimal 
point, after the region where it is located has been isolated. 

The computational resources required by traditional calculus based algorithms 
and evolutionary algorithms differ profoundly.  Not surprisingly, the time 
required to achieve convergence is vastly different.  Traditional algorithms 
require large amounts of memory but typically require less than 100 major 
iterations to converge to a solution.  Evolutionary algorithms often require 
thousands or tens of thousands of iterations to converge to a solution.  While it is 
true that evolutionary algorithms utilize only primitive mathematical operations— 
it is no understatement to say they do so intensively!  Prior to the advent of 
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microcomputers, the lack of sufficient computing power and sheer cost of 
computer resources precluded the use of evolutionary algorithms for civilian 
purposes. 

One of the advantages of evolutionary algorithms is their ease of implementation. 
Unlike traditional algorithms, effective cutting-edge evolutionary algorithms are 
routinely developed by researchers and hobbyists.  As of December 2010, a 
number of toolboxes and working computer codes are available.  Even so, many 
researchers with limited resources, develop research grade evolutionary 
algorithms using high level computer languages such as C++, C, Fortran, Java, 
Visual Basic and Delphi.  This is rarely the case for traditional calculus based 
algorithms. 

Heuristics and Microcomputers 
Heuristic algorithms are computationally intensive and scientific advances in 
heuristics are necessarily related to the nearly unimaginable innovations in 
computer technology made within the last thirty years.  Arguably, there are two 
fundamental aspects of this evolution—vast improvements in computational 
speed, and the widespread availability of microcomputers. 

Although this fact is often overlooked by the young, computers are a relatively 
recent invention.  Depending on the source, the first fully programmable 
computer was debuted in the 1940s.  These early computers were large 
centralized hardware installations which we now describe as “mainframe” 
computer architectures. Relative to the current norms, they were incredibly 
expensive, slow and ponderous. Access to the then existing computational 
resources was rationed and limited to a few elite civilian researchers, and 
members of the defense establishment.  Experiments using unproven technologies 
or computationally intensive processes were exceedingly rare. 

The advent of microcomputers changed this paradigm.  The Apple II personal 
computer was introduced in 1977 and the International Business Machines (IBM) 
company marketed their first computer in 1981. Microcomputers were designed 
to be used independently of institutional controls and shared usage constraints. 
They could be purchased relatively cheaply by individual researchers, and 
perhaps most importantly-- were consistently and conveniently available for use. 
Even the early microcomputers were technically and numerically capable tools. 
As further technological innovations were made, hardware costs (memory and 
storage) fell dramatically and computational speeds increased.  These 
characteristics made it possible for established mainstream researchers, as well as 
hobbyists and researchers working at the fringes of established theory and 
practice, to purchase microcomputers and to experiment with their ideas freely 
and at little cost. 
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Modern researchers often take for granted the massive computational power at 
their disposal.  Since this is particularly true in the case of younger researchers, a 
brief divergence will provide a useful point of reference.  The pace of hardware 
and speed improvements since the appearance of personal computers has been 
dizzying.  For example, the Apollo 11 mission in 1969, which successfully landed 
men on the moon, used an onboard computer which had eight times less memory 
and ran at a much lower speed than the IBM XT personal computer released in 
1981 (Robertson 2009). The basic configuration of a 1981 IBM XT computer had 
16 kilobytes (0.000016 gigabytes) of random access memory (RAM) and no hard 
disk. The 1983 IBM XT computer added 10 megabytes (0.010 gigabytes) of hard 
drive storage and also ran at a central processor unit (CPU) clock speed of 4.077 
megahertz (0.004077 gigahertz) (for detailed historical reference, see 
http://ptgmedia.pearsoncmg.com/imprint_downloads/informit/que/urpc18/Original 
PCReference.pdf). By way of a modern comparison, the laptop used for writing 
this document operates at a CPU speed of 2.66 gigahertz, a 652.4 fold clock speed 
increase relative to the 1981 IBM XT. This medium-price range laptop also has 
an addressable memory space of 4 gigabytes, over 250,000 times larger than the 
1981 IBM XT, and hard disk storage of 150 gigabytes, which is 15,000 times 
more disk storage space. 

The birth of heuristic optimization algorithms is inextricably tied to the rise of the 
microcomputer.  Most certainly, the spread of microcomputers and their 
computational capability provided the essential tools for heuristic algorithm 
development.  Conceptual approaches which had here-to-for been theoretical 
constructions, could be coded and tested. And they were.  Not surprisingly, the 
description of many heuristic optimization algorithms dates back to this time. 
Examples include the development of genetic algorithms (1977), the description 
of particle swarm optimization (1995), simulated annealing (1983) and 
differential evolution (1995). 

The cost of computer hardware, computer software and computer time no longer 
place an upper limit on the scale or scope of research agendas.  The relaxing of 
these constraints has unleashed many different threads of research on heuristic 
optimization algorithms.  Attitudes about computer resources used in research 
have also changed.  Computational cost is now primarily a question of researcher 
patience.  It is of little consequence to many researchers if their personal computer 
runs ten seconds, ten minutes or ten hours to achieve a solution.  Improvements in 
the available computational tools, their low cost and near-universal availability 
have given rise to golden age of heuristic optimization research! 

EAs in the Wild—An Update 
Evolutionary algorithms (EAs) belong to a larger class of algorithms best 
described as being inspired by natural phenomenon, particularly the behavior of 
different organisms.  These are often called nature based, nature inspired, or in 
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some cases, biological algorithms.  The universe of nature inspired algorithms is 
large and creative.  Nature inspired algorithms span the realm from bacteria (Kim, 
Abraham and Cho 2007), to fireflies (Yang 2009), water drops (Shah-Hosseini 
2009), ants (Dorigo and Stutzle 2004), beyond the horizon scanning (Chand and 
Sugianto 2008) and beyond.  Newly described algorithms appear in the literature 
on a regular basis.  A notable new entry is the Imperialist Competition Algorithm, 
described by an Iranian research group (Rabiei, Soroudi and Mohammadi 2011). 
A selection of the more common and better documented nature inspired 
algorithms is shown in Table 4. 

Table 4.—Selected Nature-Inspired Optimization Algorithms 

Algorithm References 

Ant colony optimization (ACO) Dorigo and Stutzle (2004) 

Artificial immune system optimization Cutello and Nicosia (2002) 

Bacterial foraging optimization Kim, Abraham and Cho (2007) 

Bee optimization Karaboga and Bosturk (2007); 
Pham et al (2006) 

Cuckoo algorithm Yang and Deb (2009, 2010) 

Differential evolution (DE) Storn and Price (1995, 1997) 

Firefly optimization Yang (2010) 

Fish optimization Huang and Zhou (2008) 

Genetic algorithms (GA) Haupt and Haupt (2004) 

Horizon scan Chand and Sugianto (2008) 

Particle swarm optimization (PSO) Eberhart and Kennedy (1995); 
Kennedy and Eberhart (2001) 

Water drop optimization Shah-Hosseini (2009) 

Simulated annealing Kirkpatrick, Gelatt, and Vecchi (1983) 

The evolutionary algorithms, including genetic algorithms, particle swarm 
optimization, artificial bee colony optimization and differential evolution are a 
sub-category of the nature inspired optimization algorithms.  Evolutionary 
algorithms and their characteristics are the focus of this research and are discussed 
in greater detail in subsequent sections of this document. 

Research on nature inspired algorithms is ongoing and active.  There have been 
several evaluations and performance comparisons of nature inspired algorithms. 
These have typically focused on the less-esoteric members of this algorithm class. 
The most expansive of these evaluations is found in the book by Wahde (2008). 
Readily obtainable studies by Potter et al (2009) and Mezura-Montes and Lopez-
Ramirez (2007) are also very useful contributions to this line of research. 

25 



 

 
 

 

 

      
        

       
         

         
      

          
        

          
       

       
        

        
         

   

              
           

            
  

       
          

         
              

        
         

         
         

            
  

     
       

      
      

         
       

Related Algorithms 

Hybrid Algorithms 

Hybrid evolutionary algorithms are frequently and routinely encountered in the 
applied literature.  As distinct from memetic algorithms, which combine 
evolutionary algorithms and traditional (calculus based) algorithms, hybrid 
algorithms are constructed from two or more evolutionary algorithms.  The 
resultant hybrid algorithm is often described as being (potentially) superior to 
either parent, especially in certain specific problem domains. 

Hybrid combinations of nearly every evolutionary algorithm have been described. 
There are a plethora of hybrid combinations for PSO, DE, ACO and GA’s and 
there are also hybrid combinations of other less well-known algorithms such as 
bee algorithms.  Engelbrecht (2005) reviews several hybrid PSO algorithms 
including GA based PSO, DE based PSO (also see Liu, Cai and Wang (2008)) 
and ACO based PSO. Banks, Vincent and Anyakoha (2008) review about 25 
different hybrids and Neri and Tirronen (2010) cite about 30 more.  A quick 
electronic perusal of the recent literature reveals a remarkable number of hybrid 
combinations and variants thereof. 

At least some part of this activity may be driven by the need for researchers to 
differentiate their publication products. Even so, based on the existing number of 
different hybrids, this appears to be an incredibly fertile topical area for future 
research. 

Memetic Algorithms 

Memetic algorithms harness the global search characteristics of evolutionary 
algorithms with the fast local search properties of traditional (calculus based) 
optimization methods.  Evolutionary algorithms such as PSO, DE and RCGA are 
able to rapidly and efficiently locate the neighborhood of the global optima, or a 
set of candidate optima.  Typically however, their local convergence properties 
are rather slow. Evolutionary algorithms spend a disproportionate amount of time 
achieving convergence, after the neighborhood of the optima has been identified. 
Memetic algorithms utilize evolutionary algorithms to identify the neighborhood 
of an optimal point and then pass control of the optimization process to a 
traditional algorithm. 

Engelbrecht (2005) reviews several PSO based memetic algorithms including hill-
climbing PSO, stochastic local search PSO and gradient based  PSO approaches. 
Additionally, there are a number of relatively comprehensive studies of memetic 
approaches.  Particularly revealing are studies of GA based memetic algorithms 
(Li, Ong, Le and Gob 2008), DE based memetic algorithms (Neri and Tirronen 
2010) and a comparison of different evolutionary based approaches (Nguyen, Ong 
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and Krasnogor 2007). Based on the available evidence, this two-step approach is 
quite efficient for continuous, differentiable functions and has the potential to 
stimulate many related threads of research. 

EA Selection Process 

Algorithm Selection 

The selection of specific algorithms for this research was informed by the existing 
professional published and grey literature, applications to similar problems, 
performance reports and several practical considerations.  As described in Table 
4, the universe of evolutionary algorithms described in the literature is diverse and 
growing at a very rapid pace.  Potentially, a number of different evolutionary 
algorithms could be applied to hydropower dynamic economic dispatch and unit 
dispatch problems.  As with any research effort, this one was constrained by the 
resources available; primarily funding and researcher time.  These and other 
practical constraints dictated, to some extent, the range and number of algorithms 
which could be explored. 

Candidate Selection 

An initial preliminary literature review was undertaken to identify candidate 
evolutionary algorithms for use in this research.  The initial literature exploration 
was followed by a relatively extensive review of the power engineering literature 
with a focus on identifying intersections between the candidate algorithms and 
previous applications to electric power system problems.  Subsequently, a more 
intensive review of the recent literature pertinent to specific candidate algorithms 
was conducted. 

The literature review process resulted in identification of five candidate 
algorithms.  These algorithms were; particle swarm optimization (PSO), genetic 
algorithms (GA), differential evolution (DE), ant colony optimization (ACO) and 
the bees algorithm (BA). 

Selection Criteria 

Selection of evolutionary algorithms for this research project required some 
artistry and judgment. One factor which weighed heavily in the selection process 
was the depth and breadth of previous applications. The widespread use of a 
particular algorithm and the number of examples where it has been applied to a 
particular class of optimization problem provides some evidence of the 
algorithm’s efficacy and potential for application in other arenas.  For example, 
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both GA and PSO have been very extensively applied to an amazing variety of 
problem types.  In contrast, the literature on the dragon-fly algorithm consists of a 
small handful of specific applications, the bulk of which are by the same author. 
With limited investigational resources to devote, the decision to eliminate the 
latter from consideration was rather straightforward 

The hydropower dynamic economic dispatch problem and the unit dispatch 
problem are both examples of constrained optimization problems.  For this 
reason, a substantial part of the decision process was focused on evolutionary 
algorithms which had been applied to the general class of constrained 
optimization problems.  Although many of the evolutionary algorithms listed in 
Table 4 could potentially be modified, in some way, to accommodate constraints, 
it seemed prudent to limit the search to algorithms for which published examples 
existed.  This eliminated some relatively promising algorithms from the subset of 
algorithms retained for further investigation.  The artificial bee colony 
optimization (ABCO) algorithm, for example, is a new and seemingly quite 
efficient evolutionary algorithm.  During Phase 1 of this research effort, there 
were no known examples of the ABCO algorithm applied to constrained 
optimization problems.  Consequently, the ABCO algorithm was not selected for 
study in Phase 1.  Subsequently however, several applications of the ABCO 
algorithm to constrained optimization problems have emerged and appear quite 
promising.  As a result, this algorithm was considered for  investigation in this 
Phase 2 research effort. 

Finally, the choice of evolutionary algorithms was further limited to those 
algorithms designed for the continuous real number domain.  Although many 
applied problems can be specified in discrete forms (in fact, all continuous 
problems can be re-specified as discrete approximations), the most natural and 
appealing choice for solving a continuous real-valued problem is to use an 
algorithm which operates in the continuous real-valued domain.  Ant colony 
optimization (ACO) is certainly a promising candidate algorithm, but is primarily 
useful in the discrete domain.  For this reason, ACO was eliminated from further 
consideration. 

Algorithms Selected 

Based on the multiphase literature review, previous application to constrained 
optimization problems and limiting the choices to continuous real-valued 
algorithms resulted in a relatively small subset of evolutionary algorithms which 
were retained for detailed investigation.  This subset includes; RCGA, DE, PSO 
and ABCO. A short description of each of these algorithms follows while the 
details of these four algorithms are described more fully in the Phase 1 Report 
(Harpman 2012, Appendices 7, 8, 9 and 10) and in Appendix 1 of this report. 
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Real Coded Genetic Algorithm (RCGA) 
Genetic algorithms were the first of the evolutionary algorithms to be described in 
the literature. They use techniques inspired by evolutionary biology including 
inheritance, mutation, selection, and crossover. This research focuses on the less-
studied real coded genetic algorithm which is faster and more naturally applied to 
the dynamic economic dispatch and the unit dispatch problem, than the binary 
variant. 

Genetic algorithms are based on virtual populations which are termed individuals 
(or phenotypes).  For each generation or iteration, the fitness of every individual 
in the population is evaluated and the most fit individuals are selected and 
modified (recombined and possibly randomly mutated) to form a new population. 
The new population survives into the next generation or iteration of the algorithm. 
The algorithm terminates when a satisfactory fitness level has been achieved or 
the maximum number of iterations has occurred. Appendix 8 in Harpman (2012) 
contains a complete description of RCGA. 

Differential Evolution (DE) 
Differential evolution (DE) was jointly developed by Storn and Price (1995, 
1997) and is one of the more recently described global heuristic optimization 
methods.  In many respects, it resembles a simplified form of genetic algorithm, 
albeit with several distinct and highly desirable performance characteristics. 

The DE approach is based on a virtual population of np-independent individuals. 
During each generation, these individuals reproduce and undergo selection. Only 
the fittest individuals in the population survive to reproduce in the next 
generation.  Over successive generations, the population becomes increasingly fit 
—thereby identifying the optimum (minimum or maximum) of a function.  DE is 
described in considerably more detail in Harpman (2012, Appendix 9). 

Particle Swarm Optimization (PSO) 
PSO is a global heuristic optimization method. It was invented by Kennedy and 
Eberhart (1995) who developed the concept by observing the behavior of flocking 
birds.  PSO is classified as a stochastic, population-based evolutionary computer 
algorithm for problem solving. 

PSO utilizes np-independent virtual particles, which "fly" through the search 
domain, have a memory and are able to communicate with other members of their 
"swarm." Each particle has only one purpose—to identify the optimum (minimum 
or maximum) of a function within the feasible search space.  PSO is described in 
more detail in Appendix 10 of the Phase 1 Report (Harpman 2012). 
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Artificial Bee Colony Optimization (ABCO) 
The artificial bee colony optimization (ABCO) algorithm is among the most 
recently (circa 2001) described algorithms to appear in the literature. ABCO is an 
optimization approach which is based on the collective behaviour of a hive of 
honey bees, searching for food. ABCO utilizes employed bees and unemployed 
bees, the latter composed of onlooker bees and scouts, to locate the best food 
sources in the search space, thereby identifying the optima of a function. 

Although there are a number of bee related algorithms, many of these are for 
discrete problem types.  Karaboga et al (2012) reported a useful application of 
what he terms the artificial bee colony optimization (ABCO) algorithm to 
constrained optimization problems.  He and his disciples followed with a series of 
applied applications. A review and assessment by Mezura-Montes and Cetina 
Dominguez (2012), suggests the artificial bee colony optimization (ABCO) 
algorithm is the most promising bee algorithm for this research application. The 
ABCO algorithm and its application to the unit dispatch problem are described in 
further detail in Appendix 1. 

Initialization 
The first step in all of the heuristic optimization algorithms is to identify the 
starting positions of a specified number (np) of particles or individuals in the d-
dimensional search space.  This process is termed, “initialization.” 

Purpose and Implications 

A large number of empirical studies conclude the choice of initialization strategy 
and its properties can profoundly influence the outcome of a heuristic optimizer. 
The successful identification of the global optima is dependent on the proximity 
of the initial points. To the extent an initialization approach does not adequately 
cover a particular region in the search space, and this region contains the global 
optima, the algorithm may fail to identify the global optima.  Or, if the chosen 
initialization method places a number of particles in the region of the search space 
hosting a local optima, the algorithm may become trapped and converge on the 
local, rather than the global optima.  Second, the number of iterations, the 
computational effort required and the convergence time required are related to the 
proximity of the initialized points to the optima.  Finally, to the extent the 
initialization process is stochastic, the point of algorithm convergence, local 
versus global extrema and the precision of convergence will also vary. 
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Random 

The vast majority of applied work employs the uniform random distribution to 
initially locate points in the search space. The upper left plot shown in Figure 7 
illustrates a random initialization of np=250 points in 2-dimensional bounded [1, 
1] space. 

Inspection of the upper left-hand plot in Figure 7 suggest the points are 
considerably more numerous in some regions of the search area than in other 
regions.  This is typical of random initialization methods, which often result in a 
non-systematic location of the initialized points within the bounded area.  Clerc 
(2008) concisely describes this phenomenon in the first section title of a widely 
cited paper as, “Uniform Random Distributions: Easy, but Bad.” 

One frequent contributor to poor random initialization performance is failure to 
employ a high quality random number generator (RNG).  Random sequences 
produced by an RNG are an important component of this research.  As described 
in the Phase 1 Report (Harpman 2012, pages 24-27 and Appendices 12 and 13), 
considerable effort was devoted to identifying and implementing an appropriate 
RNG for use in this research project. 

After carefully considering the available options, a well-proven, if not state-of-
the-art RNG was adopted for use in this research project. All of the algorithms 
developed during this research effort employ a Delphi coded implementation of 
the Mersenne Twister RNG (Matsumoto and Nishimura 1998) developed by 
David Butler and obtained from the SourceForge Library, 
http://fundementals.sourceforge.net/units.html.  This algorithm is also known by 
its Association for Computational Machinery (ACM) identification number as 
algorithm MT19937. 

Sequences 

A number of researchers have proposed the use of low discrepancy sequences for 
initialization purposes. Low discrepancy sequences are also called quasi-random 
or sub-random sequences.  The points in these sequences are said to be more 
systematically located in the search space, with fewer gaps and more equal 
spacing between points.  Low discrepancy sequences in the EA literature include 
the Sobol (Pant, Thangaraj, Singh and Abraham 2008), Van der Corput (Pant, 
Thangaraj and Abraham 2009) and Halton (Uy, Hoai, McKay and Tuan 2007) 
sequences, to name but a few. 

This research thread is based on the mathematical properties of low discrepancy 
sequences which allow them to more exhaustively and systematically span the d-
dimensional search space.  While these properties can be statistically 
demonstrated, the visual approach provides much the same intuition.  Figure 7 
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shows plots of the first 250 points in 2-dimensions over the range (0,1) generated 
using the Mersenne Twister RNG (described further in Harpman (2012 Appendix 
12), the Neiderreiter sequence, the Weyl sequence and the Haber sequence. 

Figure 7.—First  250 Points Generated  by Four RNG  Methods.  

One component of this research effort was to investigate the potentials advantages 
of employing some of these low discrepancy sequences.  As part of that effort, 
computer codes for the Neiderreiter, Weyl, Haber, Halton and Torus sequences 
were developed.  This code was based on MatLab code from the EconToolbox 
which accompanies Miranda and Fackler (2006). The prime numbers utilized in 
coding these sequences were drawn from Caldwell (2009). 

Other Methods 

Several recent efforts have utilized other logical and mathematical approaches for 
initialization.  A selection of these approaches include the simplex method 
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(Parsopoulos and Vrahatis 2002), quadratic interpolation (Pant, Singh and 
Abraham 2009), tessellations (Richards and Ventura  2004) and the opposition 
method (Rahnamayan, Tizhoosh and Salama 2008, Omran 2009). 

The opposition method was originally described by Rahnamayan, Tizhoosh and 
Salama (2008) and is employed for initialization purposes by Omran (2009), who 
uses the term opposition based learning (OBL).  The OBL procedure improves the 
starting fitness of the initialized points. 

The OBL procedure results in a total population of 2*np individuals, or particles. 
The fitness of these 2*np particles are assessed and the particles are sorted by 
their fitness.  The np most fit particles are retained and their positions are used to 
initialize or start the heuristic optimizer.  Like the other approaches described 
here, the OBL method entails some additional implementation complexity and 
computational burden. 

Previous research has focused on the application of different initialization 
methods to a suite of test problems.  Their potential efficacy when applied to the 
solution of the hydropower problems examined here is unknown.  Subsequent 
sections of this document will report the results of experiments which explore the 
use of several of these initialization techniques. 

Constraints and Constraint Handling 

Types of Constraints 

Constraints separate the solution space into feasible and infeasible spaces.  The 
resulting feasible solution space is generally limited and can be discontinuous, 
even when the optimization problem is not.  Constraint equations can be linear or 
nonlinear in nature. In general, there are three classes of constraint equations. 
These broad classes are; boundary constraints, equality constraints and inequality 
constraints. 

Boundary constraints serve to define the borders of the solution space.  Boundary 
constraints commonly take the form of simple upper or lower bounds on the 
independent variables.  These are called “box” constraints.  However, simple 
bounds are not the only types of boundary constraints.  For example, the 
circumference of a hypersphere (a sphere in multi-dimensional space) is also a 
boundary constraint.  An example of a simple lower bound constraint is shown in 
equation (1). 

(1) xi  c 
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Equality constraints specify that a function of the independent variables is equal 
to a scalar constant. For example the amount of electricity generated (supplied) at 
a given instant must be equal to the amount of electricity demanded at that time. 
An example of an equality constraint is shown in equation (2). 

(2) x1  x2  x3  k 

Inequality constraints specify that a function of the independent variables must be 
greater than or equal to, or less than or equal to, a given scalar constant.  For 
example, the contents of a reservoir must be less than or equal to the storage 
capacity of the reservoir.  A simple example of an inequality constraint is shown 
in equation (3). 

(3) vt  f (x) 

Constraint Handling 

Research on the incorporation of constraints in evolutionary programming 
methods and the solution of constrained optimization problems with evolutionary 
methods is rather voluminous.  Carlos Coello Coello published a widely cited 
synopsis of this work (Coello Coello 2002) and maintains an online annotated 
bibliography summarizing this ever-expanding body of research 
(http://www.cs.cinvestav.mx/~constraint/index.html).  As of February 2012, this 
bibliography exceeded 115 pages in length. 

Generalizing rather broadly from the literature, constraint handling techniques can 
be classified into six categories.  These are problem reformulation, rejection of 
infeasible solutions, penalty approaches, feasibility preserving methods, repair 
methods and mixed approaches. The Phase 1 Report (Harpman 2012) reviewed 
these constraint handling technologies in some detail and this discussion is not 
repeated here. 

This research application, in common with most applications of evolutionary 
algorithms, employs a combination of all of the constraint handling methods 
described in Harpman (2012). This is referred to as a “mixed” constraint handling 
approach. The algorithms tested here employ penalty functions, repair methods 
and reject some types of infeasible solutions.  As described in Appendix 8, a 
novel triangular penalty approach was developed to avoid operations inside of 
prohibited operating or rough zones. 

Fitness Comparisons with Constraints 

Pair wise comparison of two solutions to identify which is the most fit is 
relatively straightforward for unconstrained optimization problems.  In the case of 
constrained optimization problems, such comparisons are made considerably 
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more complex because of the potentially confounding influence of the penalty 
function.  To illustrate this problem more fully, first recall that when applied to a 
maximization problem, fitness (F) is often defined as the sum of the objective 
function value (f(x) minus the infeasibility penalty (P), if any. 

(4) F=f(x) - P. 

It may also be useful for the discussion which follows to recall that for 
constrained maximization problems, an infeasible solution is typically one in 
which one or more variables exceed their upper bound restrictions.  By definition, 
the objective function value in these cases is higher than it would be if the 
solution were feasible. 

Typically, the analyst may spend considerable time understanding the nuances of 
their particular optimization problem and judiciously selecting the values of the 
penalty function parameters. This systematic approach will help the analyst to 
properly scale the penalty function value in relation to the objective function 
values.  Even so, identification of the “most fit” solution in a pair wise 
comparison remains problematic.  The operative question in such cases being--
does the (negative) value of the penalty function outweigh the objective function 
value? What if the penalty is rather small compared to the value of the objective 
function?  In recognition of this logical and mathematical dilemma, most 
applications of evolutionary algorithms utilize an oft-cited work on this subject by 
Deb (2000). 

Following Deb (2000), for any pair wise comparison of solutions, there are three 
possible cases.  These are; (1) both solutions are feasible (the penalty is zero), (2) 
one solution is feasible (the penalty is zero) and the other solution is not feasible 
(the penalty is nonzero), and, (3) both solutions are not feasible (the penalties are 
both nonzero).  Deb (2000) devised a comparison scheme for selecting the most-
fit solution under each of these cases.  This scheme is described in the bulleted list 
which follows. 

	 If both solutions are feasible, select the solution with the greatest fitness. 
Owing to the fact the penalty is zero for both solutions; this is equivalent 
to selecting the solution with the highest value of the objective function. 

	 If one solution is feasible and the other solution is not feasible, then select 
the feasible solution without regard to its fitness value.  It is useful to note 
that under this criteria, the value of the objective function is not a factor in 
the decision process. 

	 If both solutions are infeasible, select the solution which has the lowest 
value of the penalty function (the most feasible solution).  Once again, the 
value of the objective function does not play a role in this decision. 

The selection scheme devised by Deb is straightforward and readily implemented 
in code. It has found wide-spread application and acceptance in evolutionary 
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algorithms.  Although it is not entirely foolproof, it is often used and (very) often 
cited. 

Performance Measures 

Algorithm Performance Metrics 

Ascertaining the success of an evolutionary algorithm in identifying the solution 
to an optimization problem can be a rather subjective undertaking.  Furthermore, 
discerning real, rather than apparent, differences between two evolutionary 
algorithms can be especially problematic.  These difficulties arise for two 
disparate reasons: (1) the characteristics of real-life optimization problems, and, 
(2) the nature of evolutionary algorithms.  Some further explanation will help to 
put both of these subjects in perspective. 

Practical Optimization Problems 

Most readers of this document are familiar with solving textbook example 
optimization problems.  The majority of these problems are convex, and each has 
a single known optimal solution.  Generally, the objective is to find the optima of 
such problems, typically with a traditional, calculus based approach.  Identifying 
the minimum or maximum point is often undertaken analytically, for relatively 
simple textbook problems.  More complex problems are attacked with a variety of 
numeric methods, such as the Newton Raphson described in Harpman (2012 
Appendix 6).  For numeric methods, the goal is to efficiently and reliably identify 
the optimal point to within some acceptable level of numeric precision. 

In contrast to textbook optimization problems, many practical optimization 
problems have unknown optimal points.  [If their solutions were known, there 
would be no need for algorithms to solve them].  To state the obvious point, there 
is no way to know when the optima has been found. Complex, ill-behaved 
problems with multiple local optima are relatively common in applied efforts. 
Algorithms may converge on a particular local optima, or may converge on a 
different local optima when started from varying initial positions.  This gives rise 
to a further complexity—identifying which, if any, of the identified local optima 
is the maxima or minima of the function. 

Nature of Evolutionary Algorithms 

The inherent nature of evolutionary algorithms can obscure the attainment of the 
optima and certainly makes it much more difficult to discern between two 
competing candidate algorithms.  First, unlike calculus based solution approaches, 
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evolutionary algorithms carry multiple solutions throughout the iteration process. 
For example, EA’s carry one solution with each member of the population.  In the 
population, some of these solutions are inferior solutions and one of them is the 
“best” solution.  Furthermore, these solutions vary with each application of the 
algorithm.  For any given algorithm trial, the np solutions are randomly initialized 
within the search space.  By random chance, some of the initialized solutions may 
land in the feasible solution region, or perhaps not.  The specific initialization 
process and the initialization itself give rise to varying degrees of progress 
towards a solution.  Likewise the stochastic nature of the solution algorithm, as 
manifested at each generation or iteration, has an influence on the algorithms rate 
of progress towards identification of the optima.  For one trial, a series of 
fortuitously generated random values may result in a rapid convergence on the 
optima.  For a different trial, a series of unfortunately generated random values 
may result in a failure to converge, a premature convergence, spurious 
convergence or a lengthy convergence to the optima.  Consequently, evolutionary 
algorithms may return different solutions for multiple independent trials, even 
when applied to the same problem.  Clearly, the convergence behavior of an 
evolutionary algorithm will vary with each trial or experiment. 

Multiple Trial Approach 

Owing to the complexities of most practical optimization problems and the 
inherent characteristics of evolutionary algorithms, a multiple or replicated trial 
approach is typically employed to gauge their success and compare efficacy 
between two candidate algorithms.  A trial is one independent application of the 
algorithm to a specific problem.  Typically a pre-set number of trials, for example 
50 replications, are carried out on the same problem and selected measures of 
success are extracted for each of the trials.  At each trial, a new initialization of 
the population occurs and a new random sequence is generated. In aggregate, the 
resultant measures of success then serve as a more appropriate and informative 
gauge of algorithm success.  Formal statistical analysis of replicated success 
measures, compared across candidate algorithms, allows for reasoned selection of 
more effective algorithms. 

Common Measures of Performance 

Although there are many possible performance metrics, four measures are most 
commonly encountered in the literature.  These are accuracy, reliability, 
robustness and efficiency.  Other metrics including diversity and coherence are 
discussed in texts but seldom encountered in the professional literature. 

Accuracy 
As might be expected, solution accuracy is of paramount importance in assessing 
algorithm performance.  In the case of functions with a known global best 
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solution, accuracy is assessed as the difference between the best solution achieved 
by the algorithm and the known global best solution, at a particular number of 
iterations.  For functions with unknown global optima, accuracy is the fitness of 
the global best solution attained by the algorithm over a given number of 
iterations. 

If the accuracy of two different evolutionary algorithms is being compared, the 
usual practice is to compare this metric for the same number of function 
evaluations (FE’s) rather than iterations.  This is said to provide a better basis for 
comparison since some algorithms may require more per-iteration function 
evaluations than others, thus being more computationally intensive and, in the 
process, obtaining more information about the search space. 

When the derivative of the function can be computed, derivative information can 
be used to assess the quality of the solution achieved. If the derivative can be 
computed, it ought to be zero, or very near to zero, at the optimal point identified 
by the algorithm.  Of course, the derivative will be zero at any stationary point, 
including both global and local optima.  For this reason derivative information is 
not entirely informative. 

Reliability 
Algorithm reliability is of great importance both to researchers and practitioners. 
The greater the certainty that an algorithm will (a) converge, and, (b) converge on 
the global optima—the more the more useful the algorithm is.  For evolutionary 
algorithms, reliability may be assessed by measuring the percent of solutions 
which fall within an acceptable tolerance of the known global optima, for a given 
number of iterations.  Or, when prior knowledge of the function is unavailable, as 
the percent of solutions which converge to a specified tolerance for some 
specified number of iterations.  This metric is especially applicable to highly 
complex functions for which convergence is less common and somewhat less 
informative for better behaved functions for which convergence is routine. 

Robustness 
Robustness is a term used to describe the variance around a particular 
performance criteria.  The variance around a success metric is a measure of 
dispersion.  The smaller the variance over some given number of iterations, the 
more robust or stable the algorithm is judged to be. 

Efficiency 
Efficiency is a measure of the resource cost or effort incurred to achieve a 
solution with a desired level of accuracy.  Efficiency is typically measured in 
terms of the number of iterations (or generations) required by the algorithm, the 
central processor time (CPU) time required, or the number of function evaluations 
(FE’s) required to achieve a solution. 
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In the context of evolutionary algorithms, efficiency is a particularly relevant 
performance metric and is especially telling relative to traditional optimization 
approaches.  Evolutionary algorithms are known for being computationally 
intensive and requiring relatively long computational efforts to achieve solutions. 
For functions which can be solved with traditional calculus based approaches, 
traditional solution approaches can usually find the solution much faster than 
evolutionary algorithms. 

Algorithm Stopping Criteria 

Introduction 

The preponderance of numerical optimization algorithms are based on some sort 
of iterative or repetitive procedure. An important aspect of these algorithms is the 
design of intelligent convergence or stopping rules. These rules detect when the 
routines have converged on a solution, and then halt the iterative process. 

The Trade-Off 

The design of stopping rules necessarily requires an explicit trade-off between 
computational cost (a function of the number of iterations and hence, time) and 
solution accuracy.  At best, numerical optimization algorithms can provide an 
approximation of the true solution vector, not the exact solution.  In general, the 
numerical accuracy of the solution vector is improved with each succeeding 
iteration.  Theoretically, a numerical algorithm can identify the exact solution in 
an infinite number of iterations.  In more technical terms, these algorithms can be 
shown to achieve the true solution only asymptotically.  Luckily, most research 
requirements can be satisfied by an answer that is “close enough” to the true 
solution and is available in a finite timeframe.  Two interlinked questions emerge. 
How close is “close enough,” and, what is an acceptable computational cost? 

In many optimization applications, the scale and nature of the problem will 
suggest an appropriate level of accuracy.  In many financial applications, for 
example, an absolute accuracy of $1.00 (the nearest dollar) or $0.01 (the nearest 
cent) is more than sufficient. In other cases, accuracy requirements are less clear 
cut.  Almost all numerical methods texts include a discussion of this subject. 
Interestingly enough, the specifics of computer hardware and software design 
limit the number of significant digits of accuracy which can be achieved.  This 
places an upper bound on the how close is “close enough” question.  Press, et al 
(1999) and Judge (1998), among others, have useful discussions of these 
limitations on numeric accuracy.  Press, et al (1999) has an especially useful 
discussion of this topic and the roles that data type, word length and register size 
play.  As a rule of thumb, both Press, et al (1999) and Judge (1998) admonish the 
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researcher not to specify an accuracy level greater than the square root of the 
machine accuracy.  For most computers with a 32-bit word length, machine 
accuracy is around 3×10-8. This suggests that a tolerance level (δ, ε) of around 
1.7320×10-4 is about the best that can reasonably be expected. 

In the early days of computer assisted research, computational cost was a much 
more important consideration than it is today.  At the dawn of the computer age, 
research teams were quite literally charged for each millisecond of computer time 
they used.  Because computer hardware was both expensive and rare, researchers 
paid for, or were allocated, a computer budget.  Other researchers depended on 
the same hardware and research researchers dared not exceed their computer 
budgets, or severe sanctions were levied. 

In modern times, the widespread availability of microcomputers, their speed and 
their relatively low cost, combine to make computational cost a less-important 
consideration.  Computational cost is now primarily a question of researcher 
patience, rather than a funding issue.  To most researchers, it is unimportant if the 
computer runs ten seconds, ten minutes or ten hours to reach a solution (as long as 
it does so). If long run-times are anticipated, it may prove convenient to schedule 
an overnight computer run. Some routine mathematical simulations are expected 
to take several hours, to a day or more to complete. A decade ago, computational 
costs of this magnitude were an unimaginable research luxury! 

Calculus Based Criteria 

Typically, convergence criteria for calculus based optimization algorithms are 
based on the first order conditions for an extrema—which require the first 
derivative to be equal to zero. In the multivariate optimization context, the first 
order conditions require the gradient vector to equal zero. As a practical matter, 
the norm of the gradient vector is evaluated to detect when this has occurred. 

Judd (1999, p. 104) provides a concise and straightforward explanation of a two-
fold stopping criteria or rule.  First, a test is applied to identify whether or not the 
solution vector is changing significantly between iterations.  Second, a test is 
applied to identify whether or not the first order conditions are met. This 
combined approach is shown in equations (5) and (6). 

(5)   (1  )xn1  xn xn 

Where: n = iteration number 
x = solution vector 
ε = convergence criteria 
║m║ = norm of the vector m. 
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Equation (5) compares the norm of the difference between solution vectors at two 
different iterations with epsilon (ε) times one plus the norm of the solution vector 
from the last iteration.  This part of the stopping rule identifies whether or not the 
solution vectors achieved at two different iterations are the same, or 
approximately so. The formulation guards against division by zero and allows for 
the researcher to set some desired level of ε for detecting when this has occurred. 

If the first part of the convergence test is satisfied, the next step is to see if the 
solution vector at iteration (n) satisfies the first order conditions for an optimum. 
As might be expected, this test focuses on whether the gradient vector is zero, or 
approximately so. This part of the stopping rule is described by equation (6). 

f (xn )   (1  f (xn ) )(6) 

Where: n = iteration number 
x = solution vector 
f (x)  gradient of the function 
δ = convergence criteria. 
║m║ = norm of the vector m. 
|f(x)| = absolute value of the solution. 

Again, this well-devised formulation guards against the possibility f(x)≈0 and a 
possible division by zero. 

If both parts of the converge test (equations 5 and 6) are satisfied, the solution 
vector has converged to an approximate optimal point. If the solution vector 
(equation 5) has converged, but the first order conditions are not met (equation 6), 
the solution has converged, but not near an optima. 

Convergence tolerances, epsilon (ε) and gamma (δ) are used to test when this rule 
is satisfied.  These tolerances are set by the analyst. Both of these control 
parameters are commonly encountered in optimization routines and, as discussed 
in Judd (1999), Press et al (1998) and elsewhere, are limited by the ability of the 
computer platform to characterize real numbers. 

Criteria for Evolutionary Algorithms 

The stopping criteria employed for traditional calculus based optimization 
procedures are not applicable to evolutionary algorithms.  There are two reasons 
for this.  First, evolutionary algorithms are multiple solution methods; they carry a 
number of solutions throughout the iterative computation process. In the case of 
particle swarm optimization (PSO), for example, each member of the swarm 
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stores its (own) personal best solution.  If the swarm size is n=40, forty solutions 
are maintained and iteratively improved during the lifespan of the swarm.  In 
contrast, calculus based optimization algorithms carry only a single solution 
throughout the computation process. 

Secondly, the stopping or convergence criteria for traditional calculus based 
optimization approaches, not surprisingly, rely on calculus concepts (e.g. 
derivatives, gradients, hessians, etc). Evolutionary algorithms require only 
primitive mathematical structures, do not need and generally eschew advanced 
mathematical constructs, such as derivatives.  In fact, their derivative-free nature 
is often touted as one of the advantages of these algorithms.  Furthermore, 
evolutionary algorithms are often applied in situations where the underlying 
functions are discontinuous and ill-behaved.  In these cases derivatives for the 
underlying functions either cannot be analytically derived, or simply don’t exist. 
This makes it impossible to apply the stopping rules used in traditional calculus 
based optimization approaches. 

An ideal stopping rule for evolutionary algorithms represents an acceptable trade-
off between computational efficiency and the probability of detecting 
convergence on the true optima.  At the same time, such a rule should minimize 
the likelihood of prematurely halting the iterations before the optimal point is 
identified to an acceptable level of precision. 

The preponderance of published articles found in the evolutionary algorithm 
literature employ the maximum number of iterations as a stopping rule.  Using 
this approach, the algorithm proceeds until a pre-set maximum number of 
iterations have been completed-- then it halts.  The “best” solution from the 
population of solutions is identified and then reported. The primary advantage of 
this approach is it is simple to implement. This stopping rule is frequently used to 
compare the behavior of alternative parameter settings and algorithm variants. 
The disadvantage is profound—the preset maximum number of iterations may or 
may not correspond to the number of iterations required for algorithm 
convergence.  For example, if the maximum number of iterations is set at 1000 
and convergence is achieved at 10 iterations, there are 990 unnecessary iterations. 
Conversely, if convergence does not occur until 5,500 iterations, the results 
returned for 1000 iterations will not reflect the optimal solution to the problem. 
Since evolutionary algorithms are stochastic, their rates of convergence vary in a 
probabilistic manner.  As applied to a given problem, one trial may converge in 
50 iterations and another trial in 120 iterations.  Without prior knowledge of the 
problem’s convergence behavior, there is no known technique for effectively 
setting the maximum number of iterations.  All of these factors argue against the 
application of this stopping rule—except for comparative purposes. 

Figure 8 illustrates the convergence behavior for the 24-hour dynamic economic 
dispatch problem solved using differential evolution (DE). This plot shows the 
mean fitness by iteration for 50 trials. This is a maximization problem and the 
fitness improves as the number of iterations increases. The green error bars 
illustrate the variance around the mean solution. As shown, large improvements in 
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fitness are made initially with the majority of the improvements occurring in the 
first 50 iterations.  Fitness improvements thereafter are made only slowly and at 
extensive computational cost, relative to the accuracy obtained. 

Figure 8.—Convergence Behavior with DE (ntrials=50). 

As the number of iterations increases, the estimated solution asymptotically 
approaches the true solution.  For this particular 50 trial experiment, the mean 
solution at 1,000 iterations is $127,079.25 and at 5,000 iterations, it is 
$127,097.14. This represents an improvement of about $17.89 (0.14%) at a cost 
of 4,000 additional iterations, which represents a 400% increase in computational 
cost. 

The subject of stopping rules is not well addressed by the available texts on 
evolutionary programming such as Engelbrecht (2005), Kennedy and Eberhart 
(2001).  However some of the more recent research efforts have focused on this 
topic, for example Zielinski et al (2006), Zielinski and Laur (2007) and Zielinski 
and Laur (2008). The potential efficacy of the suggested approaches when 
applied to the solution of the hydropower problems examined here is unknown. 
Consequently, a non-trivial amount of effort was devoted to this subject as part of 
this research effort. Subsequent sections of this document will report the results 
of experiments which explore the use of several different stopping or convergence 
approaches. 

Parameters, Tuning, and Variants 
This section of the document describes the choice of parameter values and 
selection of the subset of algorithm variants examined in this research effort. The 
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simple descriptor, “variants” is used to denote these algorithm variants throughout 
the remainder of this discussion.  Considered in aggregate, these two subjects 
constitute a substantial portion of the literature devoted to evolutionary 
algorithms.  As this is primarily an applied research effort, a less extensive and 
less systematic approach was employed. 

Evolutionary algorithms have a relatively large number of parameters and 
approach variants. For example, the size of the population (np) is a user 
controllable parameter in all of the approaches examined here but each of these 
algorithms has additional parameters, some of which may interact with each 
other. Similarly, each of the evolutionary algorithms examined here includes user 
selectable algorithm variations, such as the neighborhood or global optimization 
strategies in PSO and the wide range of mutation strategies in DE.  Selection of 
the appropriate value for these parameters and as well as choosing the particular 
logic, strategy and operational variants are specific to the logic of each 
evolutionary algorithm.  Conclusions about the effects of parameter setting are 
mixed.  Some researchers report effective applications of these algorithms are 
quite sensitive to parameter choice while others have suggested their efficacy is 
largely insensitive to the specific combination of parameter values chosen.  Other 
researchers have reported that parameter choice is problem specific.  On the topic 
of algorithm variants, the available evidence is also less than clear.  The literature 
abounds with newly described variations for each of these evolutionary 
algorithms.  Seemingly without exception, each of these variants is stated to 
dominate the other variants described in the previous literature. 

Population Size 

All evolutionary algorithms are multiple solution processes.  The number of 
solutions, or population size, influences the performance of these algorithms and 
their successful application.  There is an explicit tradeoff between the size of the 
population, the number of iterations required to achieve convergence and the 
computational effort. Many authors use the number of objective function 
evaluations (NFE’s) as a measure of computational effort.  For the PSO 
algorithm, for instance, the NFE’s required for each generation is given by the 
size of the population (np) times the number of iterations (iter) or, NFE = np*iter 
(disregarding initialization).  For a problem of any given dimensionality (dim), 
the larger the population size, the more likely that one or more of the individuals 
in the population will be initialized to the vicinity of the global optima in the 
search space.  All else being the same, a larger population might then be expected 
to require a smaller number of iterations to achieve convergence, converge more 
rapidly and converge on the global (rather than local) optima.  The drawback to 
large population sizes is that each member of the population must be evaluated at 
each generation.  For a complex objective function, with a larger number of 
dimensions, this can greatly increase the computational effort, requiring 
significantly longer solution times. 
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RCGA Parameters 

The basic RCGA algorithm described in Harpman (2012, Appendix 8) has two 
parameters in addition to population size (np).  These are the reproduction 
probability parameter, also known as the crossover rate (χ) and the mutation rate 
parameter (μ). The parameter values used in this research project are shown in 
Table 5. 

As alluded to in Harpman (2012, Appendix 8), there are an amazing variety of 
reproductive variations in the realm of basic real coded genetic algorithm.  The 
RCGA algorithm used here was restricted to the subset of possibilities wherein 
two parents produce either one or two offspring.  Following implementation of 
one of the parent selection approaches, the reproduction probability parameter (χ) 
controls the likelihood the two selected parents will successfully reproduce. 
Typically, this parameter is chosen in the range of 0.50 to 1.00. A number of 
authors suggest setting this parameter from 0.90 to 0.95. Low values of the 
reproductive probability parameter or crossover rate (χ) effectively limit the 
genetic diversity in the population from one generation to the next.  At the 
extreme, this can diminish the searching capabilities of population leading to a 
much more rapid and potentially premature convergence.  The mutation rate 
probability parameter (μ) controls the rate of spontaneous genetic mutation in the 
offspring.  Note that random mutations can be fitness enhancing or fitness 
degrading.  This parameter controls the actions of any one of the various mutation 
schemes which may be employed in the RCGA.  While the specifics of these 
mutation approaches differ in their details, high values of this parameter result in 
larger injections of genetic diversity in the population, increasing search behavior 
in the population.  For complex or multimodal problems this can lead to a higher 
probability the global optima will be identified, naturally at the expense of 
convergence speed.  For convex problems, this additional genetic diversity is 
primarily manifested as increased solution time and expense.  A relatively lengthy 
review of studies on the effects of np, χ and μ on RCGA performance can be 
found in Haupt and Haupt (2004). 

Table 5.—RCGA Parameter Summary 

Name Abbreviation Range Setting Used 

Population size np 10 – 2*dim 50 

Reproductive probability χ 0.50 – 1.00 0.90 

Mutation probability μ 0.01 – 0.50 0.02 
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DE Parameters 

The basic DE algorithm described in Harpman (2012, Appendix 9) has two 
parameters in addition to population size (np).  These are the parent scale 
parameter (F) and the crossover (CR) parameter. The parameter values used in 
this research project are shown in Table 6. 

In the DE algorithm, the offspring or donor vector is constructed from three 
randomly chosen members of the population scaled by the parameter F. This 
parameter controls the importance of the parent traits, relative to those of the 
offspring.  High values of F diminish the searching capabilities of population 
leading to a much more rapid convergence.  This can lead to a higher probability 
of spurious convergence, or convergence at the location of a local optimum. 
Typically, this parameter is chosen in the range from 0.10 to 1.0. The crossover 
parameter (CR) controls the probability of crossover. If a randomly generated 
value exceeds the CR value, the parental trait is passed to the donor individual; 
otherwise the offspring trait is maintained.  Greater values of the CR parameter 
have the effect of favoring offspring traits in the population, over succeeding 
generations.  Relatively high CR values increase the range of search behavior in 
the population.  For complex or multimodal problems this can lead to a higher 
probability the global optima will be identified, albeit at the expense of 
convergence speed.  The CR parameter is typically chosen in the range from 0.10 
to 1.0. 

Table 6.—DE Parameter Summary 

Name Abbreviation Range Setting Used 

Population size np dim – 3*dim 50 

Population scale parameter F 0.10 – 1.00 0.80 

Crossover parameter CR 0.10 – 1.00 0.30 

PSO Parameters 

The basic PSO algorithm described in Harpman (2012, Appendix 10) has two 
parameters in addition to population size (np).  These are the cognitive weight 
parameter (c1) and the social weight (c2) parameter. The parameter values used in 
this research project are shown in Table 7. 

The cognitive weight (c1) parameter in the PSO algorithm controls the weight or 
importance of personal best information found by the individual particle itself, 
relative to the other members of the swarm.  If the value of this parameter is 
relatively high, more weight or memory is accorded to locations in the search 
space that the individual particle has personally visited and less weight is given to 
information provided by the other members of the swarm.  As a result, relatively 
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high c1 values increase the searching behavior of the particle.  For complex or 
multimodal problems this can lead to a higher probability that the global optima 
will be identified, albeit at the expense of convergence speed.  The social weight 
(c2) parameter in the PSO algorithm controls the weight or importance of social 
information found by the individual particle itself, relative to the other members 
of the swarm.  The specifics depend on whether the neighborhood or global 
optimization strategy is employed.  If the value of this parameter is relatively 
high, more weight or memory is accorded to locations in the search space which 
have been visited (collectively) by other members of the swarm and less weight is 
given to the particle’s own personal best information. As a result, relatively high 
c2 values reduce the searching behavior of the particle, leading to a much more 
rapid convergence.  For complex or multimodal problems this can lead to a higher 
probability of spurious convergence, or convergence at the location of a local 
optimum.  For convex problems with a single optima, rapid converge is a 
desirable characteristic. 

Table 7.—PSO Parameter Summary 

Name Abbreviation Range Setting Used 

Population size np 20 – 50, dim 50 

Cognitive weight1 c1 1.0 – 4.0 2.80 

Social weight1 c2 1.0 – 4.0 1.50 

1 The Clerc (2006) constriction factor, used in this effort, requires c1 + c2 ≥ 4.0. 

ABCO Parameters 

The constrained artificial bee colony (ABC) optimization algorithm (Karaboga 
and Akay 2011), the basics of which are described in Appendix 1, has three 
parameters in addition to population size (np), which corresponds to the number 
of employed or worker bees.  As illustrated in Table 8 these are the limit 
parameter (Limit), the scout production period (SPP) parameter and finally the 
modification or perturbation rate (MR) parameter. As described in Karaboga and 
Akay (2011), the value of two of these additional parameters are based on the 
number of variables in the problem (dim) and the number of employed bees (np) 
used for solution of the problem. 

The modification rate (MR) parameter controls the generation of new solutions by 
employed bees.  During each iteration, an employed bee undertakes a localized 
search for new and improved solutions. Potential local solutions are generated in 
the following fashion. A uniformly distributed random real number (Rj) is first 
generated. If the value of Rj is greater than or equal to MR, a new value of the 
variable for dimension j is generated (see Appendix 1 equation 12) and substituted 
into the solution vector. If the value of Rj is less than MR, the current variable 
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value for that dimension is retained in the solution vector. For the constrained 
ABCO algorithm, at least one variable in the new solution vector is always 
changed.  The fitness of this new solution vector is then compared to the current 
solution using Deb’s method (2000) which was described previously.  The 
solution with superior fitness is then retained by the employed bee. 

Table 8.—ABCO Parameter Summary 

Name Abbreviation Range Setting Used 

Number of employed 
bees3 

np 10 – 50, dim 50 

Modification or 
perturbation rate 

MR 0.40 – 1.00 0.80 

Maximum number of 
iterations allowed 
without fitness 
improvement 

Limit various 5 

Scout Production 
Period 

SPP various 10 

As the value of the MR parameter is increased, there is a higher probability that 
one or more values of the original solution vector will be replaced by new values. 
Conversely, the lower the value of the MR parameter, the lower the probability 
the value of any particular value in the original solution vector will be replaced by 
a new value.  Higher values of MR result in more searching of the solution space 
and slower convergence characteristics, and vice versa. 

The limit parameter (Limit) in the ABC algorithm controls the length of time an 
employed bee’s solution can maintain a solution which is not improving. The 
greater the value of the Limit parameter, the longer (in terms of the number of 
iterations) a solution which is not improving will be retained by the employed 
bee. For complex or multimodal problems this can lead to a higher probability of 
spurious convergence, or convergence at the location of a local optimum.  For a 
convex problem with a single optima, rapid convergence is a desirable 
characteristic.  When a solution fails to improve by the time the value of the Limit 
parameter is reached, the employed bee abandons the solution, becomes a scout 
bee and is randomly assigned a new solution. Smaller values of the limit 
parameter enhance exploration of the search space and increase the probability 
that superior solutions will be identified. 

3 Karaboga and Akay (2011) first set the bee colony size (CS). They then set the number of 
employed bees (np) to ½ CS and the number of onlooker bees to ½ CS. The same approach is 
followed here. For this reason, a setting of np=20 implies a CS=40. 

48 



 

 
 

             
         
           

          
          

      

  

     
          

        
         

       
     

     

          
         

            
        

        
     

      

 

        
    

        
        
      

     
  

         
        

        
        

       
    

      
     

      
            

The scout production period (SPP) parameter controls the period of time (in terms 
of the number of iterations) when artificial scout bees will be produced.  During 
the SPP period, scouts may be randomly produced whether a non-improving 
solution equals or exceeds the limit parameter, or not. The scout production 
process is a diversity enhancing mechanism that allows new and potentially 
infeasible areas of the search space to be explored. 

Variant Selection 

Disregarding hybrid approaches (which are discussed elsewhere in this document) 
a wide range of variations on the basic evolutionary algorithms have been 
described, and are in use.  To reiterate, the term “variants” is used in this 
document as a general descriptor for these.  The number of variants seems to be 
roughly proportional to the elapsed time since the algorithm was first described 
and seems limited only by aggregate researcher creativity and the need to 
differentiate research products for publication. 

This effort benefited from a relatively extensive search of the pertinent literature 
completed previously (S&T Scoping Project ID Number 5992). This component 
of the study allowed for the admittedly subjective identification of the mainstream 
algorithm variants.  One editorial aside-- several of these algorithm variants are 
considerably more complex than the underlying algorithms themselves.  Some of 
the mainstream and potentially useful variants are described subsequently and 
were implemented for this research effort. 

RCGA Variants 

As a class, the RCGA and GA’s exhibit the greatest range of variants on the basic 
algorithm.  Disregarding the hybrid approaches (discussed elsewhere), there are 
an astonishing number of parent selection approaches, population survival 
methods, mutation rules and crossover approaches, some of which are amazingly 
incredibly complex and computationally intensive.  Haupt and Haupt (2004), 
Michelwicz (1996, 2010) and Peltokangas and Sorsa (2008) provide a relatively 
extensive sampling of these variants. 

Parent selection in the RCGA is the method by which two parents are selected 
from the population for potential reproduction.  Three parent selection methods 
were selected from the literature for use in this research effort. They are the 
random parent selection method (Random2), the four person tournament method 
(Tournament4) and the two person tournament approach (Tournament2).  Under 
the Random2 method, one individual is selected systematically from the 
population as a whole and a second (different) individual is selected randomly 
from the population.  The two selected individuals are then available for potential 
reproduction (crossover and mutation).  The Tournament4 approach selects four 
different individuals from the population as a whole. Two of these individuals 
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then compete and the one with the greater fitness becomes a finalist. The two 
other individuals then compete and the one with the greater fitness enters the 
finals.  The two finalists then compete, and the one with the greater fitness wins 
and is available for potential reproduction.  The Tournement2 approach selects 
two different individuals from the population as a whole.  These individuals then 
compete and the one with the greater fitness becomes a potential parent. 

Crossover is the mechanism by which two potential parents exchange genetic 
material to create one or more offspring.  Crossover in the RCGA context differs 
considerably from the binary GA case and numerous approaches have been 
developed to simulate this process.  In the context of RCGA, the arithmetic 
crossover (Arithmetic) approach (Michalewicz 1996), the Laplace crossover 
(Laplace) approach (Deep and Thakur 2007), the linear crossover (Linear) 
approach (Wright 1991) and the heuristic crossover (Heuristic) approach 
(Michalewicz 1996) were implemented for this research effort. The Laplace 
crossover approach is described in detail in Harpman (2012, Appendix 8).  The 
linear (Linear) crossover approach produces three offspring using an extrapolation 
approach.  An extrapolation weight, often 0.50, is employed.  Any variable 
straying outside the feasible search domain is either censored or the solution is 
discarded-- the two offspring with the greatest fitness are retained.  The uniform 
arithmetic (Arithmetic) crossover approach is often attributed to Michelwicz 
(1996). This approach uses a randomly generated value (0, 1) to form a set of 
weights (α, 1-α) which are then used to create a linear combination of the parent 
genes.  A variant of this approach utilizes a different random value (and hence 
weight) for each choice variable represented in the parent genetic material.  The 
heuristic crossover approach (Heuristic) was also developed by Michaelwicz 
(1996) primarily for use in constrained optimization problems.  The heuristic 
approach generates a possible offspring from a randomly weighted differencing of 
the parent’s genetic material, added to the superior parent’s existing genetic 
material.  If the offspring lies outside of the feasible domain, a new random 
weight is generated until a feasible solution is obtained. 

Mutation helps to ensure genetic diversity is maintained in the population and 
some of the mutation variants described in the literature are quite ingenious.  For 
purposes of this research effort three mutation approaches were selected and 
implemented. These approaches include the Gaussian mutation approach 
(Gaussian), the nonuniform mutation (Michalewicz 1996) approach 
(Nonuniform), and the uniform mutation (Uniform) approach (Michalewicz 
1996). The nonuniform mutation approach is described in Harpman (2012, 
Appendix 8) and is not further described here.  Under the Gaussian approach, a 
normally distributed random variable is added to the gene selected for mutation. 
This approach is relatively simple and effective in many applications although it 
does require the variance of the distribution to be specified, in some manner. 
Under the Uniform approach, genes have an equal probability of mutation.  A 
gene selected for mutation is replaced with a uniform random value generated 
within the feasible search domain.  This approach has two advantages.  First, it is 
relatively easy to implement. Second, it executes rapidly. 
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Survival or recruitment, sometimes also known as replacement, is the process of 
determining which individuals from the offspring population and the parent 
population will survive into the next generation.  There are a wide variety of 
recruitment approaches, which have evolved over time (see Reeves 2010 p. 71 for 
a summary).  For purposes of this research effort, three survival approaches were 
selected from the literature and implemented in code. These are the traditional 
(Traditional) approach, the Elite_1 approach (Bucknall 2002) and a more general 
characterization of the elite approach, the elite np (Elite_NP) approach. 

The traditional approach to recruitment is fairly straightforward—only the 
offspring survive into subsequent generations.  While easily implemented in code, 
there is a distinctive logic flaw inherent with this approach. In the traditional 
approach there is a probability the individual with the highest fitness will be 
eliminated from the gene pool, slowing the evolutionary process and the search 
for an optima. 

The Elite_1 approach preserves the genetic material from the fittest individual in 
the gene pool from one generation to the next. In the Elite_1 recruitment 
approach, the parents are ranked from highest fitness to lowest fitness and the 
offspring are ranked from highest fitness to lowest.  The parent individual with 
the highest fitness (the Elite_1) replaces the lowest ranked offspring, provided it 
is of superior fitness.  The remaining offspring and the Elite_1 individual, survive 
into the next generation. 

There are many potential variations on the elitism approach.  Conceptually, the 
retained elite fraction could vary all the way up to NP (here assuming a constant 
population size is maintained).  For purposes of this project, the Elite_NP 
approach was employed.  Under this approach all of the parent and offspring 
individuals are pooled and then sorted by fitness. The most-fit NP individuals 
from the pool are then retained and survive into the next generation, the less fit 
individuals are removed from the gene pool.  This approach greatly increases 
convergence speed, often dramatically.  Unfortunately, the genetic diversity of the 
population diminishes as well and the likelihood of spurious convergence, or 
convergence at a local optimal point, increases. 

DE Variants 

Like the other evolutionary algorithms explored here, there are a number of 
variants on the basic DE algorithm.  Disregarding the hybrid approaches 
(discussed elsewhere), there are a large number of mutation rules and crossover 
approaches, some of which are amazingly ingenious.  Many of these build upon 
the seminal DE paper (Price and Storn 1995, 1997) which described 23 crossover 
and mutation combinations.  Over time, a shorthand approach for describing and 
categorizing the more mundane of these variants has evolved.  The notation 
DE/x/y/z is often used for this purpose. In this notation, x is used to specify the 
vector to be mutated which can be “Rand” (a randomly chosen member of the 
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population) or “Best” (the member of the population with the current best fitness), 
y represents the number of difference vectors used, and, z denotes the type of 
crossover scheme employed.  The most common crossover variant is the “Bin” or 
binary crossover approach. 

For purposes of this research effort, six different crossover and mutation 
approaches were selected. These include the originally described 
DE/RAND/1/BIN and the DE/BEST/1/BIN approaches, but also include some of 
the more promising and exotic approaches such as the random scale factor 
(DERANDSF) approach, the trigonometric (TRIGON) approach, the time varying 
scale factor approach (DETVSF) and the self adaptive (SELFADAPT) approach 
(Brest et al 2006 version).  These variants were sufficiently represented in the 
mainstream literature to warrant further investigation. 

PSO Variants 

Many examples of PSO variants can be found in the literature, the majority of 
which are reviewed in Valle et al (2008).  Disregarding hybrid approaches 
(discussed elsewhere in this document) the two enduring variants appear to be the 
application of global or neighborhood optimization strategies.  In the global 
optimization strategy, crossover is a linear combination of the best fitness value 
found by any of the members of the swarm (globally) and a particle’s personal 
best fitness.  This optimization approach results in faster convergence but also 
decreases searching behavior and increases the likelihood of spurious 
convergence or identification of a local, rather than global, optimal point. This 
optimization strategy should be distinguished from the neighborhood (or local) 
optimization strategy.  In the neighborhood optimization strategy, crossover is a 
linear combination of the best fitness location identified by any of the members of 
a particle’s neighborhood and the particle’s own personal best fitness value. 
Figure 9 illustrates a globally connected swarm of np=8 (Panel A) and an np=8 
swarm with a 3-member neighborhood structure or topology (Panel B). 
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Figure 9.—Globally connected (A) and 3-neighbor (B) swarms. 

The use of a neighborhood structure serves to limit the information about the 
search space available to any single member of the swarm. Neighborhoods can, 
and are, constructed in a variety of shapes or topologies and follow an amazingly 
creative set of behavioral rules (see Kennedy and Mendes (2002) for some of the 
details).  For purposes of this research, a star-type neighborhood topology, limited 
to five total members (including the particle itself) was employed.  These 5-
member neighborhoods limit the overlap or interconnection in the swarm. With 
each succeeding generation, information about the location of potential optima 
effuses from neighbor to neighbor, and from neighborhood to neighborhood 
within the swarm.  This approach results in enhanced searching behavior, slower 
convergence times, and it reduces the probability of spurious convergence and 
convergence on local optima within the search space. The 5-member star-type 
neighborhood configuration proved to be relatively straightforward to implement 
in code and highly effective in application. 

Following the literature review component of this research effort, Clerc’s 
constriction coefficient (2006) was selected for use in the PSO algorithm.  This 
PSO variant is described more completely in Harpman (2012, Appendix 10). 

ABCO Variants 

The basic artificial bee colony (ABC) optimization algorithm described in 
Appendix 1 of this document is relatively new.  While some variants on the 
continuous algorithm have been reported in the literature, the number and 
complexities of these are few, relative to more mature evolutionary algorithms. 
The majority of these variants are reviewed in Karaboga et al (2012), Kauer and 
Goval (2011) and Teodorivic, Davidovic and Selmic (2011). Some potentially 
useful variants are also described in Subotic (2012), Alzaqebah and Abdullah 
(2011) and Tuba, Bacanin and Stanarevic (2012). 
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Disregarding hybrid approaches (such as Abraham, Jatoth and Rajasekhar 2012) 
we focus the discussion on four modifications proposed by Mezura-Montes and 
Cetina-Dominguez (2012). In their paper, Mezura-Montes and Cetina-Dominguez 
(2012) introduce and test four variants of the constrained ABCO algorithm.  They 
propose modifications to the selection mechanism, the scout bee operator and the 
behavior of the algorithm in the presence of equality and boundary constraints. 
Three out of four of these variants were implemented and used in this research 
project. The ABCO results reported later in this document reflect the 
performance improvements, if any, afforded by these variants. 

In the basic ABCO algorithm described in Appendix 1 information is shared 
between the employed bees and the onlooker (unemployed) bees by a waggle 
dance.  This mechanism is emulated by a fitness proportional sharing mechanism 
as shown in Appendix 1 equation (14). Mezura-Montes and Cetina-Dominguez 
(2012) modify this approach by using tournament selection, which is also used in 
the Real Coded Genetic Algorithm (RCGA).  Under the tournament2 approach, 
two different individuals are randomly selected from the population as a whole. 
These individuals then compete and the one with the greater fitness wins, or is 
selected. Again, the individual with greater fitness is identified by following 
Deb’s rules (Deb 2000), which were described previously in this document. 

In constrained optimization problems, equality constraints present a special 
challenge to obtaining a successful solution.  In the original ABCO algorithm, 
equality constraints are rewritten as inequality constraints which are satisfied to a 
specified violation tolerance level (vtol) which is statically set. Mezura-Montes 
and Cetina-Dominguez (2012) introduce a mechanism for dynamically varying 
the violation tolerance level for satisfying equality constraints.  They introduce 
the use of a dynamic feasibility tolerance parameter which is shown in equation 
(7). 

 (g)(7)   (g 1)  
dec 

Where: ε = value of the tolerance level 
g = iteration number 
dec = fixed rate of decrease (dec>1.00) 

As illustrated in equation (7), using this dynamically varying tolerance level, the 
initial iterations have a relatively large feasible region which satisfies the equality 
constraint.  As the iterative process proceeds, the feasible region diminishes, 
shrinking around the true equality feasible region. This dynamic mechanism is 
said to admit more potentially optimal solutions and facilitate a relatively more 
rapid convergence on the true constrained optimum. 
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As described elsewhere in this document and in Harpman (2012), a mixed penalty 
and repair system was developed to enforce equality and inequality constraints. 
The total release volume constraint is characterized as an equality constraint. A 
relatively sophisticated release volume repair function was implemented and is 
used in all of the other EAs examined here. To leverage this existing work and 
ensure comparability between the algorithms, this volume repair function (and the 
remaining system of penalty functions) is also employed for the ABCO algorithm 
explored in this research effort. 

The scout bees explore the search space and identify new, potentially feasible and 
improved solutions.  Employed bee solutions which do not improve in a pre-set 
number of iterations are replaced by scout bee solutions.  The scout bees use a 
random mechanism to identify new solutions.  In constrained optimization 
problems the feasible region may be relatively small and many of these randomly 
generated solutions may be outside of the feasible region.  Mezura-Montes and 
Cetina-Dominguez (2012) modify this approach in a complex but potentially 
more information efficient manner.  They introduce the “smart flight operator” 
represented in equation (8). 

(8) vi , j  xi, j  rand (xk , j  xi , j )  (1 rand )*(xB, j  xi , j ) 

where: vi,j = new solution vector 
rand = uniform random value (0≤rand≤1) 
xi,g = current solution vector

 xk,j = randomly chosen vector
 xB,j = global best solution vector 

Equation (8) linearly combines information about the solution to be replaced, the 
location of a new randomly chosen solution value and the value of the global best 
solution.  This approach is very similar to that used in particle swarm optimization 
(PSO). The authors maintain it may lead to a feasible solution or at least, an 
infeasible solution closer to the feasible region. This smart flight operator was 
implemented, tested and incorporated into the ABCO algorithm used in this 
research project. 

Lastly, Mezura-Montes and Cetina-Dominguez (2012) introduce a different 
method for handling boundary constraint violations.  In the basic ABCO 
algorithm described in Appendix 1 both the scout bees and the employed bees 
may generate solutions outside of the feasible range. Should this occur, values 
outside of the allowed feasible range are reset to either their upper limit (Uj) or 
their lower limit (Lj), as appropriate.  Mezura-Montes and Cetina-Dominguez 
(2012) modify this simple procedure by using a similar, but more informed 
transformation technique represented by equation (9). 
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where: vi,j = solution vector
 Uj = upper bound of variable j 
Lj = lower bound of variable j 

Using this approach, if the randomly generated solution is less than the lower 
bound value, it is reset to 2*L minus the solution. If the randomly generated 
solution exceeds the upper permissible value, it is reset to 2*U minus the solution. 
Lastly, if the randomly generated solution is within feasible bounds, it is not 
transformed. 

The boundary constraint handling method described by Mezura-Montes and 
Cetina-Dominguez (2012) was implemented, tested and incorporated into the 
ABCO algorithm used in this research.  One incremental improvement was made 
to their approach.  The approach described by the authors does not necessarily 
generate a value in the feasible domain.  As a failsafe mechanism the approach 
used by Mezura-Montes and Cetina-Dominguez (2012) was augmented with 
traditional boundary constraint enforcement code. If a solution outside the 
feasible search space is generated by equation (9), it is reset to either the upper or 
lower boundary of the space. 

Mezura-Montes and Cetina-Dominguez (2012) report the four variant 
modifications discussed here result in enhanced performance, relative to the 
original ABCO algorithm.  They state this is particularly evident in constrained 
problems with equality constraints characterized by small feasible solution 
regions.  Three out of four of these suggested modifications were incorporated 
into this effort. 

Development Process 
This research project required an extensive behind the scenes software 
development effort.  For the most part, the evolutionary algorithms examined in 
this research effort are rather new and certainly not commercially available.  A 
relatively large-scale and time consuming development effort was required to 
make them operational. 
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Development Platform 

The Embarcadero Rapid Application Development (RAD) Studio XE2, an object 
oriented rapid application development (RAD) environment was employed for 
coding the majority of programs used in the Phase 2 research project.  Phase 1 of 
this project and the early stages of Phase 2 utilized the Borland Developer Studio 
(BDS) 2006 platform.  The change in software development tools from BDS 2006 
to RAD XE2 was necessitated by Reclamation’s move to a new operating system. 

In January 2013, the Bureau of Reclamation officially migrated to the Microsoft 
Windows 7 operating system. Initial indications from Embarcadero (which has 
now absorbed the original manufacturer, Borland Inc.) and third party users (see, 
for example http://www.drbob42.com/examines/examin84.htm) were that Borland 
Delphi Studio 2006 could successfully be deployed on the Windows 7 operating 
system.  Although in general this may have been true, apparently this outcome did 
not extend to secure, managed systems.  Four attempts were made to install 
Borland Developer Studio 2006 on the Department of the Interior’s variant of the 
secure Windows 7 operating system.  All of these efforts proved to be incredibly 
time-consuming-- and entirely unsuccessful. 

The Embarcadero Rapid Application Development (RAD) Studio XE2, a newer 
incarnation of this development tool, was purchased and successfully installed on 
the Windows 7 operating system. Additional time was devoted to identifying a 
third-party visual component for sizing and scaling application screens in this new 
environment. 

The Embarcadero RAD Studio XE2 development environment is designed for use 
on Microsoft Windows 32 bit and 64 bit operating systems, such as Windows 7 
and Windows 8. Although the development environment has web, web 
application, C, C++ and Apple OS X capabilities, the Delphi language (for 
Windows) was used throughout this project. Delphi is an object oriented language 
which evolved from the Turbo PASCAL language, popular in the early 1980’s. 

The Embarcadero RAD Studio XE2 compiler produces native Windows 32 bit 
and 64 bit executable code. This environment eases the development of Windows 
based graphical user interfaces while allowing full code control.  Of particular 
advantage for this project, the development environment includes visual 
component libraries (VCLs) for advanced graphics and database integration. 
These VCLs along with others for printer and device control, disk file operations 
and interfacing with the windows environment are implemented with “drag and 
drop” functionality in a fully visual integrated development environment. This 
greatly streamlines the development of Windows based applications allowing the 
researcher/developer to devote their resources to code development. The 
integrated graphics capabilities were a major consideration in the decision to 
deploy this platform. 

Other development platforms were reviewed for possible use in this project. 
These platforms included MATLAB (www.mathworks.com), a commercially 
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available package widely used in engineering applications, the open source 
European equivalent, SCILAB (www.scilab.org) and the open source general 
purpose statistical package, R (www.r-project.org). However, none of these 
platforms appeared to offer the ease of development, stability and integrated 
graphics capabilities required for this effort. 

Three Stages of Development 

Following the selection of candidate algorithms, a three stage development 
process was undertaken.  First, the algorithm was coded and tested on three 
unconstrained test problems.  Second, the algorithm was coded and tested on the 
hydropower unit dispatch problem.  Third, a testing environment was developed 
for each algorithm. 

Stage 1—Development with Test Problems. 
Working from pseudo-code, flow charts, verbal descriptions in journal articles, 
code snippets and in some rare cases, translating from purportedly functional C 
source code, the selected algorithms were coded in Delphi, debugged and brought 
to an operating state. The three unconstrained three dimensional (3-D) test 
problems described in Appendix 4 were used during this stage to debug, and more 
importantly, test the functioning and solution behavior of the coded algorithms. 

A graphical user interface (GUI) was developed for each application.  These 
GUI’s (naturally) share a number of common features and functionality.  Shared 
features include a tabbed page for selecting an initialization strategy, a tabbed 
page for selecting a convergence strategy and convergence tolerance and a tabbed 
page for controlling visualization. 

Each GUI also has an Algorithm tabbed page which is customized for each 
algorithm.  This customized tabbed page allows for easy user control of 
parameters specific to the algorithm and allows different variations of each 
algorithm to be selected. For example, the Algorithm tabbed page for the DE 
algorithm allows the user to select from a list of Mutation strategies, select the 
number of individuals in the population (np), set the value of the scale parameter 
(F) and select the value of the crossover (CR) parameter. In contrast, the RCGEN 
algorithm tabbed page allows the user to set the number of individuals in the 
population (np), select a parent selection strategy, select a crossover approach, 
select a mutation strategy and select a recruitment approach. 

All of the applications share a common output GUI configuration, shown in 
Figure 10. Each application has a numerical output window and a graphical 
output window. The latter allows for real-time visualization of solution progress, 
a feature which has proven to be invaluable. 

The behavior of the algorithms using different parameter settings and optional 
variants was observed both numerically and visually by judicious application of 
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the integrated graphics capability.  Figure 10 illustrates the graphical output 
screen of the RCGA program at iteration 6 during a solution of the Alpine 
function.  This figure shows the plan view of this relatively complex function (see 
Appendix 4 for further details about this and other test functions).  In the figure, 
the blue diamonds illustrate the (x,y) locations for each of the np=40 individuals 
in the population.  The single red diamond located in the upper right-hand 
quadrant indicates the location of the optimal solution in the bounded search 
space. 

Figure 10.—RCGEN Program Solving 
the Alpine Function. 

The integrated graphics allows the researcher to observe the solution behavior in 
real-time while simultaneously monitoring the algorithm’s numerical progress 
toward a solution.  Progress metrics are written to the status bar at the bottom of 
graphics window. As reported in the status bar, shown in Figure 10, this plot is 
for the sixth iteration, the most fit individual in the population has a fitness (Fit) 
of 7.786E+000, the standard deviation (SD) of population fitness is 2.225E+000 
and the visual delay (Del) is set to 100 milliseconds. 

Implementation of these evolutionary algorithms involved overcoming a number 
of technical travails.  This included selecting and developing a random 
(pseudorandom) generator, the use of low discrepancy sequences, the 
development of appropriate convergence or stopping criteria and the development 
and application of constraint and constraint handling methods. 
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Stage 2—Unit Dispatch Problem 
Working from the code base developed in Stage 1 of the development process, the 
evolutionary algorithms were adapted for solution of the hydropower unit 
dispatch problem.  The four test unit dispatch problems described in Appendix 6 
were used during this stage to debug and complete initial tests on the coded 
algorithms.  The unit dispatch problem is a piecewise, discontinuous constrained 
optimization problem and accommodating this problem required a further and 
rather extensive coding effort in its own right. 

The graphical user interface (GUI) developed in Stage 1 of the development effort 
was modified to accommodate the four unit dispatch test problems.  Added GUI 
features included a tabbed page for selecting one of the four test unit dispatch 
problems, a tabbed page for designating which, if any, of the generation units 
would be devoted to condensing and a page to indicate the amount of water 
scheduled for release.  Additionally, a tabbed page was added to allow for more 
detailed monitoring of the numeric progress towards a solution. 

All of the common output GUI’s were modified to better suit the unit dispatch 
problem.  The graphical output for this application was modified, as shown in 
Figure 11, to illustrate the minimum and maximum release constraints and display 
the optimal hourly pattern of generation and release, unit by unit. This visual 
output screen is particularly useful because it illustrates which units are 
condensing, if any, and the location of rough zones for each unit, if any.  The 
numerical output window was revised to show the hourly details of the optimal 
solution for this problem.  An additional numeric output window was added to 
record selected intermediate output metrics for each iteration (or generation) as 
the algorithm evolved towards a solution.  This proved to be an invaluable 
debugging aid.  Figure 11  illustrates the graphical output for a default solution of 
the 4-unit dispatch problem with rough zones 
. 
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Figure 11.—HDDE Solution to Test Problem 4. 

Stage 3—Testing Environment 
The purpose of Stage 3—development of a testing environment, was to construct 
a framework for the unattended replication of experiments while saving success 
metrics, performance measures, numerical outcomes and other summary data for 
subsequent statistical analysis.  As described previously in this document, 
evolutionary algorithms are stochastic in nature. For any given set of starting 
values, an algorithm may achieve a different, slightly different, or vastly different 
solution.  Or, it may fail altogether. This range of potential outcomes arises 
because of (a) the initialization approach employed, (b) the random underpinnings 
of their solution behaviors, and (c) the approach implemented to detect 
convergence on a solution.  Consequently, a single successful solution, while 
indicative, is by no means conclusive evidence of the successful application of 
one of these algorithms.  In the context of evolutionary algorithms, replicated 
trials followed by statistical analysis are required to support even minimal 
conclusions about their suitability for a specific class of problem. 

Stage 3 development required using the code base developed in Stage 2 of the 
development process, and adding additional code to allow for repeatedly running 
the algorithm and recording salient success and performance measures for each 
run.  Relative to the development effort expended in the first two stages of 
development, this was readily accomplished requiring only minor modifications 
to both the input and output GUI’s and limited (additional) code development. 
The testing environment developed in this, the final Stage of the development 
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effort, was utilized to produce the replicated experimental results described 
subsequently in this document. 

Figure 12.—Test Environment XE2 Graphical Output. 

Selected Experiments 
Given the number of parameters, options, algorithm variants, input vectors and 
problem features described in this report, a very large number of experiments 
could be undertaken.  While a comprehensive effort would surely be a valuable 
contribution to the state of scientific knowledge, resource limitations dictated that 
only selected experiments be completed and reported in this document. The 
experiments which are described here were selected primarily to provide insights 
about the applicability of EA’s to the unit dispatch problem, their performance 
and the factors which might influence this decision. 

Box and Whisker plots are used to graphically display the results of many 
replicated experiments undertaken for this project. These plots summarize the 
relevant statistical details of replicated experiments and facilitate comparisons 
across treatments.  Box and Whisker plots show the mean, median (50th 

percentile), interquartile range (25th to 75th percentile) and extent of the empirical 
distribution which lies between the 5th and the 95th percentile.  A useful review of 
Box and Whisker plots can be found in Appendix 9. With a nod towards 
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readability, the detailed numerical results of many of the experiments are reported 
in the Appendices. 

Initialization Approaches 

Review of the pertinent literature revealed a number of efforts which reported 
systematic differences in EA performance resulting from initialization method. 
The literature on this topic was both extensive and conclusive—the use of the 
uniform random approach for initialization was judged to be inferior to other 
approaches.  Based on this body of literature, considerable researcher effort was 
allocated to developing, testing and applying promising alternative initialization 
approaches to the hydropower problems examined in this research effort. This 
required the testing and development of four low discrepancy sequences including 
the Niederieter, the Habor, the Weyl/Torus and the Halton (see Harpman 2012 
Appendix 13 for additional explanation) as well as the opposition based learning 
(OBL) method. 

After coding and validating the functioning of these different initialization 
approaches, a systematic set of performance experiments was undertaken.  For 
purposes of the replicated initialization experiments described here, 50 trials were 
undertaken on test problem 4, the 4-unit dispatch problem. The summary 
characteristics of test problem 4 can be found in Table 15 and are further 
described in Appendix 6.  To ensure a valid comparison across algorithms, the 
population (swarm) size was set at 50 individuals for all of the evolutionary 
algorithms (np=50).  It should be noted the performance of some of the EA’s, 
such as PSO and RCGA may be disadvantaged by setting the population size to 
this level for this comparatively small dimension problem.  A common stopping 
rule, the Elite_SD rule ( with tol=1.0e-04), was employed for all of the replicated 
experiments carried out on initialization approaches. 
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Figure 13.—ABCO Initialization Approaches. 

The results for the ABCO algorithm are shown in both Figure 13 and Table 9. 
These outcomes are both unremarkable and unexpected.  For the unit dispatch 
problem, there appears to be no discernible difference between the uniform 
random initialization approach and any of the other approaches.  While this result 
appears to contradict the results reported in many earlier studies, none of the 
preceding studies focused on this particular type of constrained optimization 
problem. 

Table 9.—ABCO Initialization Results 

Uniform Neider Weyl/Torus Haber Halton OBL 
mean 277.1 275.7 277.9 277.3 275.6 276.3 
std. dev 35.4 33.0 34.9 33.1 33.3 31.9 
minimum 217.0 212.0 202.0 198.0 216.0 227.0 
05th perc 228.4 238.9 227.0 231.0 217.4 237.5 
25th perc 249.0 249.8 255.3 252.5 255.3 254.0 
median 273.5 271.0 274.0 274.5 277.5 271.0 
75th perc 303.0 293.5 306.8 300.8 294.0 289.8 
95th perc 338.1 341.1 333.1 342.2 315.7 340.4 
maximum 359.0 362.0 355.0 353.0 380.0 363.0 
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The results for the DE, PSO and RCGA algorithms are very similar to those 
shown in Figure 13 and Table 9.  The detailed experimental results for these 
algorithms are reported in Appendix 10. 

Convergence Behavior 

The unit dispatch problem described earlier in the text and discussed more fully in 
Appendix 6 is a piece-wise discontinuous constrained optimization problem.  This 
problem was strategically constructed expressly to facilitate comparisons between 
algorithms and to facilitate the other experiments described here.  For purposes of 
the replicated performance experiment described here, 50 trials were undertaken 
on problem 4, the 4-unit dispatch test problem.  To facilitate comparisons, the 
population (swarm) size was set at 50 individuals (np=50) for all of the 
evolutionary algorithms.  Certain EA’s, such as PSO and RCGA may be 
disadvantaged by setting the population size to this level for this comparatively 
small problem.  The Elite_SD stopping rule with the elite fraction set to 0.90 was 
employed for all of the evolutionary algorithms with the convergence tolerance 
set at 1.0e-04. The parameter settings chosen produce a water release of 10,000 
af (to two decimal digits of precision) for all the evolutionary algorithms, again 
facilitating this performance comparison. 

Figure 14 compares the convergence behavior of all of the EA’s for the first 50 
iterations.  As shown in this plot, the EA’s are able to very quickly identify the 
region containing the optimum point, illustrating their relative strength in global 
search.  However, all four of the EA’s require a number of additional iterations to 
converge on the optimal point, illustrating their relatively poor local search 
capabilities. 

Figure 14.—EA Convergence Behavior 
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As shown in Figure 14, the PSO algorithm reaches the vicinity of the optimum 
more rapidly than the other three algorithms.  The DE and the RCGA algorithms 
have similar convergence characteristics and the ABCO algorithm exhibits a more 
gradual approach to the optimum.  After locating the approximate region of the 
optimal point, all four algorithms slowly converge on the optimum. 

Table 10 summarizes the convergence results for each of these algorithms for the 
SD_Elite stopping rule.  Over the 50 trials, the EA’s are able to identify 
essentially the same mean solution for dispatch test problem 4.  For this problem, 
the DE algorithm is the most efficient, the PSO and the ABCO algorithms are 
very similar and the RCGA algorithm is considerably slower. 

Table 10.—Convergence Performance 

Algorithm Mean Number 
of Iterations 

Mean CPU 
time (msec) 

DE 287 32.9 

PSO 207 67.1 

RCGA 2526 207.1 

ABCO 274 64.78 

Stopping Rules 

Consistent with the philosophy of evolutionary programs, a convergence or 
stopping rule should utilize the fitness information available for each iteration, be 
simple and effective.  In keeping with this theme, one approach is to use the 
population mean and standard deviation for detecting convergence. 
Operationally, the mean and/or standard deviation of the solutions found by all of 
the individuals in the swarm or population are calculated for each iteration.  When 
these metrics change by less than a pre-set tolerance, or fall within an acceptable 
tolerance, the algorithm has converged on a solution.  The advantage of this 
method is that it is relatively easy to implement, is problem and scale invariant 
and is brutally effective.  Arguably, this approach may be overly conservative and 
computationally inefficient often requiring an extensive number of iterations for 
all of the members of a swarm or population to converge on the optimal point. 

Zielinski et al (2006), Zielinski and Laur (2007) and Zielinski and Laur (2008) 
explore the subject of convergence rules for particle swarm optimization (PSO) 
and differential evolution (DE). They examine single objective problems with 
different dimensions using varying population sizes.  In aggregate, the authors 
systematically explored the performance of a suite of approaches, some of which 
were quite esoteric.  They recommend two methods for use with PSO and two 
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methods for use with DE. They suggest a variant of the standard deviation 
approach be examined more fully in future research efforts. 

Motivated by the work of Zielinski and Laur (2008), two additional convergence 
criteria were developed and investigated in this research effort. These were the 
elite mean (Elite_Mean) and elite standard deviation (Elite_SD) approaches. 
These two approaches are based on the observation that one or more members of 
the swarm or population will identify the optimal point well before the other 
members of their cohort. We will call the portion of the population which 
converges rapidly, the “elites.”  At each iteration, uninformed members of the 
cohort will continue to search in the solution space, sometimes far from the 
optimal point. It can, and often does, require many additional iterations for all of 
the members of a swarm or population to converge on the optimal point, 
previously discovered by a few individuals.  Observations made in the early 
phases of this project suggest that a disproportionately large number of iterations 
are required to produce convergence in the last decile of the swarm or population. 

The elite mean and elite standard deviation stopping rules are based on the 
empirical observation that a subset of particles (the elites) converge very rapidly 
and a subset of the remaining individuals converge extremely slowly.  To take 
advantage of this, calculation of the elite mean and elite standard deviation 
convergence metrics are based solely on the behavior of the elite or best 
performing particles.  The behavior of the lower performing individuals, which 
potentially could take many more iterations to converge, is ignored. 

Identification of the elite members of the swarm or population is, of course, 
somewhat problematic for the purposes described.  Since we do not know a priori 
the optima for a given problem, we cannot know with certainty if say, the two 
most fit particles in iteration number 561 have converged on the solution, or not. 
If the elite proportion of the population were defined as the most-fit 5%, the 
potential for spurious convergence may be quite high.  Alternatively, defining the 
elite proportion of the swarm as the most-fit 99% may result in significant and 
unwarranted computational cost. This choice represents a fundamental analysis 
trade-off which is to some extent arbitrary, but is surely problem dependent. 

During this research some exploration of this trade-off was undertaken.  This 
exploration could not be described as either comprehensive or conclusive. 
However, it was sufficiently extensive to make some inferences about the 
application of these stopping rules to the types of problems examined here.  After 
some experimentation, the elite proportion of the population was defined as the 
most fit 90% of the population or swarm.  By definition, the individuals classified 
as elites varied dynamically from one iteration to the next. Using this definition 
for the elites resulted in excellent computational performance with very little 
likelihood for spurious or premature convergence.  These stopping rules are 
relatively easy to implement, do not add extensive computational overhead and 
proved to be very effective for the types of optimization problems we examined. 
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For purposes of the replicated stopping rule experiments, 50 trials were 
undertaken on problem 4, the 4-unit test problem with rough zones (described in 
further in Appendix 6). To ensure a valid comparison of the different stopping 
rules, the population (swarm) size was set at 50 individuals for all of the 
evolutionary algorithms (np=50).  It should be noted that some of the EA’s, such 
as PSO and RCGA may be disadvantaged by setting the population size to this 
level for this comparatively small problem.  For applicable “elite” approaches, the 
elite fraction was set to 0.90. In all cases the convergence tolerance (ctol) was set 
at 1.0e-04. 

Figure 15 shown below compares the performance of four different stopping rules 
applied to solution of the same problem.  It compares the mean central processing 
unit (CPU) time, measured in milliseconds (msec), required for convergence over 
50 trials between the maximum iteration approach (maximum iterations = 5000), 
the population standard deviation (Pop_SD) approach, the elite standard deviation 
(Elite_SD) approach and the elite mean (Elite_Mean) approach. 

Figure 15.—Results of Stopping Rule Experiments. 

As shown in this figure, there is a large difference between the mean 
computational time required to achieve convergence, when convergence is 
specified as completing 5000 iterations, and the CPU time required by the three 
stopping rules which intelligently monitor the progress of the calculation metrics 
(Pop_SD, Elite_Mean and Elite_SD).  Although not reported here, the mean 
precision of the solutions at convergence is very similar.  Over the course of 
repeated calculations and when the dimensionality of the problem increases, the 
reduced time necessary to achieve convergence is a substantial advantage to the 
researcher. There are discernable differences between the CPU time required for 
convergence when Pop_SD, Elite_Mean and Elite_SD convergence criteria are 
employed.  Potentially, there may be computational advantages to the use of the 
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Elite_Mean approach, however no statistical analysis was undertaken to explore 
this possibility further. 

Problem Size 

In Phase 1 of this research project, an increase in solution times was observed as 
the size of the constrained optimization problem increased.  Similar increases in 
the solution times are the norm for calculus based optimization approaches.  A 
systematic investigation of this (apparent) performance degradation seemed 
warranted. 

A priori, the influence of increasing the dimensionality of the optimization 
problem seemed relatively easy to foresee.  Increases in the problem size are 
expected to increase the number of unknown variables, the size of the storage 
vectors needed, the time to manipulate those vectors and the computational cost 
of evaluating the fitness function. 

For purposes of the replicated stopping rule experiments, 50 trials were conducted 
on dispatch test problem 1, the 2-unit problem with no rough zones, and problem 
3, the 4-unit problem with no rough zones.  For these experiments, the population 
size (np) was set to 50 and the Elite_SD stopping rule was employed with the elite 
fraction set to 0.90. In all cases the convergence tolerance (ctol) was set at 1.0e-
04. 

The detailed results of this experiment are reported in tabular form in Appendix 
12. Figure 16 shown below summarizes the results of this experiment. This 
figure compares the mean central processing unit (CPU) time, measured in 
milliseconds (msec), required for convergence over the 50 trials. 

Figure 16.—Results of Problem Size Experiment.
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As shown in Figure 16, there is generally a substantial increase in convergence 
times, across all of the EA’s, when the size (dimensions) of the problems are 
increased from 2 to 4 units (a 2-fold increase in dimension).  For most of the 
EA’s, the associated increase in convergence time is much greater than 
proportional to the increase in problem size.  For the RCGA algorithm, the results 
are less clear, although the variance of the convergence time increases greatly. 

Rough Zone Constraints 

During the development process, an increase in solution times was observed when 
there were binding constraints (other than the total release constraint, which is 
always binding).  This was not necessarily expected by the research team since 
calculus based optimization approaches do not, apparently at least, suffer as much 
from this phenomenon.  A systematic investigation of this (apparent) performance 
degradation seemed warranted. 

As described earlier in this report, a mixed system of penalty functions and repair 
methods was employed for all of the EA’s examined in this project. Some of the 
repair approaches are quite involved.  More frequent and intensive calls to these 
penalty and repair subroutines are likely to result in longer solution times. 

The potential effects of a binding rough zone constraint was systematically 
explored.  Based on the results of previous experiments, it was thought there 
could be an interaction effect between the binding constraints although this 
possibility was not formally explored. 

For purposes of the constraint experiments, 50 trials were conducted using 
dispatch test problems 1 and 2.  Test problem 1 is a 2-unit problem with no rough 
zones.  Test problem 2 is a 2-unit problem with rough zones.  The plant release 
(Q) was set to 7500 cfs.  In the absence of rough zones, the optimal release is 
3,000 cfs in unit 1 and 4,500 cfs in unit 2. The optimal release from unit 2, 
without considering rough zones, is within the range of the rough zone for this 
unit for test problem 2, which ranges from 4000 to 5000 cfs.  Thus for test 
problem 2, the rough zone constraint is binding.  For these experiments, the 
population size (np) was set at 50 for all of the algorithms as shown in Tables 5 
through 8 found earlier in the text. The Elite_SD stopping rule was employed 
with the elite fraction set to 0.90. In all experiments the convergence tolerance 
(ctol) was set at 1.0e-04. 

The detailed results of these experiments are reported in tabular form in Appendix 
13. Figure 17 neatly summarizes the results of these experiments, using Box and 
Whisker plots. This figure compares the mean central processing unit (CPU) 
time, measured in milliseconds, required for convergence over the 50 trials. 
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Figure 17.—Convergence  with Rough Zone Constraint  

As shown in Figure 17, when the maximum release constraint is set to 7,500 cfs 
(binding), there are some differences in convergence times for all of the EA’s 
examined.  Relative to problem 1 (when the rough zone constraint is not binding), 
the convergence times for DE and PSO increase.  For the ABCO algorithm, the 
mean convergence times are similar in both instances although the dispersion of 
the observation increases considerably. While for RCGA, the convergence time 
appears to decrease, relative to the nonbinding rough zone constraint case. Some 
degradation of the solution quality was apparent, particularly for the RCGA 
algorithm (See Appendix 13). 

To reiterate, the results obtained in these and preceding experiments are relatively 
voluminous.  These experimental results include not only the results described 
previously, but additional metrics of solution quality and dispersion.  Further 
results from the release constraint experiments can be found in Appendix 13. 

PSO Parameter Values 

One of the more vexing aspects of working with EA’s is the number of control 
parameters involved and identifying the values of these parameters which should 
be employed.  While the literature provides a rich trove of advice on this topic, 
there is general agreement that parameter choice is problem specific. 

The particle swarm optimization (PSO) algorithm has a relatively small set of 
parameters consisting of the cognitive weight parameter (c1) and the social 
weight parameter (c2).  Both anecdotal and published empirical evidence suggest 
the solution success and performance can be quite sensitive to these parameters, 
depending on the specific problem it is applied to. The unit dispatch problem 
seems to be an example of such a problem. 
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Application of  PSO to the unit dispatch problem, using the same parameter 
settings employed in Phase 1 of this project, produced unsatisfactory results. 
Following on this initial experience, a number of experiments were carried out 
including the systematic investigation of the social weight (c2) parameter. Figure 
18 shown below illustrates the results of one series of replicated experiments 
designed to understand the effect of the c2 parameter on the performance of this 
algorithm. 

As shown in Figure 18, the value of the c2 parameter used in Phase 1 of this 
research project (c2=1.30) and applied to the dynamic constrained economic 
dispatch problem, produces inferior results when employed on the unit dispatch 
problem.  Based on this and other experiments carried out with the PSO 
algorithm, a c2 value of 1.50 was used for all Phase 2 experiments. 

Figure 18.—PSO Parameter c2 Value Experiments 

DE Mutation Strategies 

There are a wide variety of available mutation strategies for the DE algorithm. 
The number of these seems to increase on a monthly basis, as do the related 
publications on this topic.  While the peer reviewed literature describes many of 
these innovations, reports from applied studies seem to provide a better indicator 
of their efficacy. 

For purposes of this research project, a subset of the known DE mutation 
strategies were implemented and investigated. The strategies investigated were 
the DE/Best/1, DE/Rand/1, DE/Best/2 and DE/Rand/2 strategies originally 
described in Price and Storn (1995), the trigonometric (Trigon) strategy (Fan and 
Lampinen 2003), the random scale factor (RandSF) and the time varying scale 
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factor (Detvsf) approaches of Das, Abraham and Konar (2008), and the self-
adaptive (SelfAdapt) strategy of Brest et al (2006).  These mutation strategies 
were selected based on their ease of implementation and a cursory assessment of 
how widely they were employed in applied studies. 

Early experience with the application of DE to the unit dispatch problem indicated 
there were differences in performance between these mutation strategies. 
Following on this initial experience, a number of more systematic experiments 
were undertaken.  Figure 19 shown below illustrates the results of replicated 
experiments designed to understand the effect of these mutation strategies on the 
performance of this algorithm. 

Figure 19.—Results of Mutation Strategy Experiments. 

As shown in Figure 19, when applied to the unit dispatch problem the 
trigonometric (Trigon) mutation strategy is inferior to the others. The DE/Rand/1 
and SelfAdapt strategies result in the best performance, followed by the 
DE/Best/1 the RandSF mutation strategies. The Detvsf , DE/Best/2 and 
DE/Rand/2 approaches appear to have similar performance characteristics. Based 
on this set of experiments with the DE algorithm, intuition about the approach 
mechanisms and a dose of professional judgment, the SelfAdapt mutation strategy 
(Brest et al 2006) was employed for all Phase 2 experiments. 
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Conclusions 
Four promising evolutionary algorithms (EA’s) were identified from the emerging 
heuristic optimization literature; the real coded genetic algorithm (RCGA), 
differential evolution (DE), particle swarm optimization (PSO) and the artificial 
bee colony optimization (ABCO) algorithm.  These algorithms were applied to an 
important hydropower problem, the unit dispatch problem, which must be solved 
on a daily basis by power plant operators.  A relatively extensive suite of 
replicated experiments was conducted to assess their performance characteristics. 
These experiments systematically explored the influence of initialization 
approaches, convergence criteria, dimensions of the problem and the effects of 
binding rough zone constraints. The aggregate experimental evidence indicates 
these algorithms can reliably solve the unit dispatch problem, within acceptable 
time-frames.  Replicated experiments suggest different initialization approaches 
have no effect on solution times, for the problems examined. Stopping rule 
experiments indicate all of the rules which intelligently monitor convergence are 
superior to uninformed approaches. Replicated experiments indicate for DE, PSO 
and ABCO, convergence time increases for higher dimension problems. For the 
DE and PSO algorithms replicated experiments show convergence times increase 
when rough zone constraints are binding.  For RCGA and ABCO, convergence 
times may decrease when rough zone constraints are binding.  Many algorithm 
specific experiments were undertaken to inform this research effort. The results of 
a subset of these are also reported. Like the unit dispatch problem, many applied 
hydropower optimization problems are nonlinear, non-convex and discontinuous. 
These characteristics preclude the application of traditional calculus-based 
algorithms.  In contrast, evolutionary algorithms are readily applied to this class 
of problem.  They could provide near real-time solutions and guidance for 
everyday operational decisions at Reclamation’s hydropower plants. 

Future Directions 
In aggregate, the replicated experimental results described here indicate the four 
selected evolutionary algorithms; PSO, RCGA, DE and ABCO are able to 
accurately and reliably solve the four unit dispatch test problems investigated.  As 
described in this document, the dimensions of test problems (up to four units) are 
representative of 87.72 percent of the power plants owned by the Bureau of 
Reclamation. Some of the larger Reclamation power plants, including Glen 
Canyon (8-units), San Luis (8-units), Hoover (19-units) and Grand Coulee (24-
units) are uniquely important components of the interconnected power system. 
For this reason, it may be advisable to assess the performance of these algorithms 
on problems with a greater number of generator units. The test problems 
examined here were limited to a subset of the operational constraints faced by 
operators in real-life.  To more fully assess these algorithms, they should be 
employed on problems which reflect the full spectrum of constraints, including 
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consideration of the preferred dispatch order, must run units, spinning reserve, 
non-spinning reserve, regulation, start/stop costs and minimum up/down times. 

Collaborators 
Members of the collaborative research team played a pivotal role in the success of 
this research project. Their generous and invaluable technical contributions to 
this effort are gratefully acknowledged.  The research team for this project was 
comprised of the following individuals. 

Dr. Craig A. Bond, Full Economist
	
Rand Corporation, Inc.
	
1200 S. Hayes St, w7304
	
Arlington, VA  22202 

(703) 413-1100 x5319 
cbond@rand.org 

Dr. Darrell G. Fontane, Professor
	
Department of Civil Engineering 

Colorado State University
	
Ft. Collins, Colorado 80523
	
(970) 491-5247 
fontane@engr.colostate.edu
	
Darrell.Fontane@ColoState.Edu
	

Dr. John B. Loomis, Professor 

Department of Agricultural and Resource Economics
	
Colorado State University
	
Ft. Collins, Colorado 80523
	
(970) 491-2485 
John.Loomis@colostate.edu 

Mr. Thomas D. Veselka, Senior Power Engineer
	
DIS Division
	
Argonne National Laboratory
	
Argonne, Illinois 60439
	
(630) 252-3449 
tdveselka@anl.gov 

75 

mailto:tdveselka@anl.gov
mailto:John.Loomis@colostate.edu
mailto:Darrell.Fontane@ColoState.Edu
mailto:fontane@engr.colostate.edu
mailto:cbond@rand.org


 

 
 

 
        

    
       

 
         

   
     

 
         

      
    

 
           

      
    
       

 
       

      
  

     
 

     
       

         
 

       
  

     
 

     
       

 
    

 
          

       
     

        
        

 
        

      
      

Literature Cited 
Abookazemi, Kaveh, Mohd W. Mustafa and Hussein Ahmed. “Structured Genetic 

Algorithm Technique for Unit Commitment Problem.” International Journal 
of Recent Trends in Engineering Vol. 1 No. 3 (May 2009):135-139. 

Abraham, Ajith, Ravi Kumar Jatoth and A. Rajasekhar. “Hybrid Differential 
Artificial Bee Colony Algorithm.” Journal of Computational and 
Theoretical Nanoscience Vol 9 No. 2 (February 2012):1-9. 

Akay, Bahriye and Dervis Karaboga. “Artificial Bee Colony Algorithm for Large-
Scale Problems and Engineering Design Optimization.” Journal of 
Intelligent Manufacturing, In Press, doi:10.1007/s10845-010-0393-4 

Ali, Musrrat, Millie Pant and Ajith Abraham. “A Hybrid Ant Colony Differential 
Evolution and its Application to Water Resource Problems.” proceedings of 
the Nature & Biologically Inspired Computing NaBIC 2009 World 
Congress. Coimbatore, India.  9-11 December. 2009 pages 1133 – 1138. 

Alzaqebah, Malek and Salwani Abdullah. “Comparison on the Selection 
Strategies in the Artificial Bee Colony Algorithm for Examination 
Timetabling Problems.” International Journal of Soft Computing and 
Engineering (IJSCE) Vol 1 No. 5 (September 2011): 158-163. 

American Society of Mechanical Engineers. Hydraulic Turbines and Pump-
Turbines Performance Test Codes. ASME PTC 18-2011. American Society 
of Mechanical Engineers, Three Park Avenue . New York, NY. 2011. 

Ao, Youyun and Hongqin Chi.  “Dynamic Differential Evolution for Constrained 
Real-Parameter Optimization.” Journal of Advances in Information 
Technology Vol.1 No. 1. (February 2010):43-51. 

Bacanin, Nebojsa, Milan Tuba and Ivona Brajevic. “Performance of Object-
Oriented Software System for Improved Artificial Bee Colony 
Optimization.” International Journal of Mathematics and Computers in 
Simulation Vol 5 No. 2 (2011):154-162. 

Baloi, Cristian A., John A. Belward, and Michael Bulmer, M. “Genetic Unit 
Commitment Model In A Deregulated Power Energy Environment.” In, 
Proceedings of International Congress On Modelling And Simulation 
(MODSIM 2003). International Congress on Modelling & Simulation 
(MODSIM 2003), Townsville, Australia, (1078-1083). 14-17 July 2003. 

Banacos, Peter C. “Box and Whisker Plots for Local Climate Datasets: 
Interpretation and Creation Using Excel 2007/2010.” Eastern Regional 
Technical Attachment No. 2011-01. National Oceanographic and 

76 



 

 
 

    
         

   
     

 
         

        
       

 
         

      
   

      
 

        
    

         
     

 
      

     
 

        
  
  

       
   

 
        

   
      

 
         

       
 

       
 

 
 

        
    

          
      

 

Atmospheric Administration (NOAA)/National Weather Forecast Service 
(NWS). Weather Forecast Office.  South Burlington, Vermont. January 
2011. 20 pages.  obtained from: www.erh.noaa.gov/er/hq/ssd/erps/ta/ta2011-
01.pdf.  Accessed on 2/20/2012. 

Banks, Alec, Jonathan Vincent and Chukwudi Anyakoha.  “A Review of Particle 
Swarm Optimization.  Part I: Background and Development. Natural 
Computing Vol 6 No. 4 (December 2007): 467-484. 

Banks, Alec, Jonathan Vincent and Chukwudi Anyakoha.  “A Review of Particle 
Swarm Optimization.  Part II: Hydridization, Combinatorial, Multicriteria 
and Constrained Optimization, and Indicative Applications.” Natural 
Computing Vol 7 No. 1 (March 2008): 467-484. 

Blum, Christian and Xiaodong Li. “Swarm Intelligence in Optimization.” Chapter 
2 in, Swarm Intelligence—Introduction and Applications.  Christian Blum 
and Daniel Merkle (Eds). Natural Computing Series. Leiden Center for 
Natural Computing. Springer-Verlag, Berlin. 2008. 

Blum, Christian. “Ant Colony Optimization: Introduction and Recent Trends.” 
Physics of Life Reviews Vol 2 No. 4 (December 2005):353-373. 

Blackwell, Tim Jurgen Branke and Xiaodong Li. “Particle Swarms for Dynamic 
Optimization Problems.” In, Swarm Intelligence—Introduction and 
Applications. Springer Natural Computing Series.  Leiden Center for 
Natural Computing.  Christian Blum and Daniel Merkle, Editors.  Springer-
Verlang: Berlin, Germany.  2008. 

Bouzeboudja, Hamid, Abdelkader Chaker, Ahmed Allall, and Bukhta Naama. 
“Economic Dispatch Solution Using A Real-Coded Genetic Algorithm.” 
Acta Electrotechnica et Informatica Vol. 5 No. 4 (2005):1-5. 

Boyang Li, Yew-Soon Ong, Minh Nghia Le, Chi Keong Goh: Memetic Gradient 
Search.  IEEE Congress on Evolutionary Computation 2008: 2894-2901. 

Boyd, Stephen and Lieven Vandenberghe. Convex Optimization. New York 
City, New York: Cambridge University Press.  2004. (revised 2006).  730 
pages. 

Bratton, Don and Tim Blackwell.  “A Simplified Recombinant PSO.” In, Swarm 
Intelligence—Introduction and Applications. Springer Natural Computing 
Series.  Leiden Center for Natural Computing.  Christian Blum and Daniel 
Merkle, Editors. Springer-Verlang: Berlin, Germany.  2008. 

77 

www.erh.noaa.gov/er/hq/ssd/erps/ta/ta2011-01.pdf


 

 
 

       
     

     
 

       
    

      
       

  
 

     
  

 
         

   
 

     
       

  
 

        
         

 
        

      
  

 
        

   
     

 
       

     
    

 
 

        
       

      
 

 
      

       
   

  
 

Brajevic, Ivona and Milan Tuba. “An Upgraded Artificial Bee Colony (ABC) 
Algorithm for Constrained Optimization Problems.” Journal of Intelligent 
Manufacturing Vol 24 No. 4 (August 2013):729-740. 

Brest, Jamez, Viljem Zumer and Mirjam Sepesy Maucec.  “Self-Adaptive 
Differential Evolution Algorithm in Constrained Real-Parameter 
Optimization.”  Pages 919-926 in, Proceedings of the 2006 IEEE Congress 
on Evolutionary Computation.  Vancouver, British Columbia, Canada.  July 
16-21, 2006. 

Bucknall, Julian.  “Ant Colony Optimizations.” The Delphi Magazine Issue 136 
(December 2006):17-22. 

Bucknall, Julian.  “Round & Round—How Random are Your Numbers?” The 
Delphi Magazine Issue 33 (May 1988):18-25. 

Caldwell, Chris.  “The Prime Pages—Prime Number Research, Records and 
Resources.”  University of Tennessee. http://primes.utm.edu .  Last accessed 
on 12/17/2009. 

Carlisle, Anthony and Gerry Dozier.  “An Off-The-Shelf PSO.” Proceedings of 
the Workshop on Particle Swarm Optimization.  Indianapolis, IN.  2001. 

Chakraborty, Uday K (Editor), Advances in Differential Evolution. Studies in 
Computational Intelligence, Volume 143. Springer-Verlang: Belin, 
Germany.  2008. 

Chand, Pramesh and Ly Fie Sugianto. “Horizon-Scan: In Search For Consistent 
Outcomes.” International Journal of Computational Intelligence Research 
Vol.4, No.3 (2008), pp. 256–272. 

Chandrum, K., N. Subrahmanyam and M. Sydulu.  “Brent Method for Dynamic 
Economic Dispatch with Transmission Losses.” Iranian Journal of 
Electrical and Computer Engineering Vol. 8 No. 1 (Winter-Spring 2009):16-
22, 

Coelho, Leandro do Santos and Viviana C. Mariani. “Improved Differential 
Algorithms for Handling Economic Dispatch Optimization with Generator 
Constraints.” Energy Conversion and Management. Vol. 48 No. 5 (May 
2007):1631-1639. 

Coello Coello, Carlos A.  “Theoretical and Numerical Constraint-Handling 
Techniques Used With Evolutionary Algorithms: A Survey of the State Of 
the Art.” Computer Methods in Applied Mechanics and Engineering 191 No. 
11-12 (January 2002): 1245-1287. 

78 

http:http://primes.utm.edu


 

 
 

        
      

 
 

      
     

    
 

      
    

      
 

    
  

 
     

    
     

 
 

      
   

         
      

 
        

        
  

 
       

 
      

 
 

         
      

  
         

        
 

       
       

      
 

Computer Dictionary Online.  Web based dictionary of computer terms.  Located 
at: www.computer-dictionary-online.org  Last accessed on 28 September 
2010. 

Clerc, Maurice.  “Initializations for Particle Swarm Optimization.”  Unpublished 
manuscript.  24 December 2008. Available from: 
http://clerc.maurice.free.fr/pso/.  Last accessed on 12/31/2009. 

Clerc, Maurice.  “Confinements and Biases in Particle Swarm Optimization.” 
Unpublished manuscript.  12 March 2006.  Available from: 
http://clerc.maurice.free.fr/pso/ . Last accessed on 01/04/2010. 

Clerc, Maurice. Particle Swarm Optimization. London, England: ISTE 
Publishing Company.  2006. 

Clerc, Maurice and James Kennedy.  “The Particle Swarm—Explosion, Stability 
and Convergence in a Multidimensional Complex Space.” IEEE 
Transactions on Evolutionary Computation Vol 6 No. 1 (February 2002): 
58-73. 

Cutello, Vincenzo and Giuseppe Nicosia "An Immunological Approach to 
Combinatorial Optimization Problems" in, Lecture Notes in Computer 
Science, Vol. 2527. Proceedings of the 8th Ibero-American Conference on 
AI: Advances in Artificial Intelligence.  2002 pp. 361–370. 

Curtis, Michael, Jonas Parker and Parker Scoggins. “Optimizing Operations of 
Multi-Unit Powerhouses:  A New Method.” Hydro Review Vol 31 No. 5 
(July 2012):1-8 

Damousis, Ionnis G., Anastasios G. Bakirzis and Petros S. Dokopoulos. 
“Network-Constrained Economic Dispatch Using Real-Coded Genetic 
Algorithm.” IEEE Transactions on Power Systems Vol. 18 No. 1 (February 
2003): 198-205. 

Das, Swagatam, Ajith Abraham and Amit Konar. “Particle Swarm Optimization 
and Differential Evolution Algorithms: Technical Analysis, Applications and 
Hybridization Perspectives.” Advances of Computational Intelligence in 
Industrial Systems Vol. 116.  Ying Liu et al. (Eds.), Studies in 
Computational Intelligence, Springer Verlag, Germany, 2008.  pp. 1–38. 

Davidovic, Tatjana, Milica Selmic, Dusan Teodorovic, Dusan Ramljak: “Bee 
Colony Optimization For Scheduling Independent Tasks To Identical 
Processors.”. Journal of Heuristics Vol 18 No. 4 (August 2012):549-569. 

79 

http://clerc.maurice.free.fr/pso
http://clerc.maurice.free.fr/pso
www.computer-dictionary-online.org


 

 
 

        
  

    
 

           
     

  
 

        
    

     
 

       
   

 
          

       
        

 
      

    
  

 
  

     
       

 
  

    
    

 
    

       
 

      
  

     
 

       
     

      
 

        
         

     
 

Deb, Kalyanmoy.  “An Efficient Constraint Handling Method for Genetic 
Algorithms.” Computer Methods in Applied Mechanics and Engineering 
Vol. 186  No. (2-4) (June 2000): 311-338. 

Deep, Kusum and Manoj Thakur.  “A New Crossover Operator for Real Coded 
Genetic Algorithms.” Applied Mathematics and Computation Vol. 188 No. 
1 (May 2007):895-911. 

De Jong, Kenneth A.  “Analysis of the Behavior of a Class of Genetic Adaptive 
Systems.”  Unpublished Ph.D. Dissertation.  Computer and Information 
Sciences.  University of Michigan, Ann Arbor. 1975. 

Dorigo, Marco and Thomas Stutzle. Ant Colony Optimization: MIT Press, Inc. 
July 2004.  319 pages. 

Eberhart, Russell C. and James Kennedy. “A New Optimizer Using Particle 
Swarm Theory.”  Proceedings of the Sixth International Symposium on 
Micro Machine and Human Science, Nagoya, Japan, October 1995; 39-43. 

Edwards, Brian K. The Economics of Hydroelectric Power.  New Horizons in 
Environmental Economics.  Northampton, Massachusetts: Edward Elgar 
Publishing Inc.  2003. 

Edwards, Brian K., Silvio J. Flaim, and Richard E. Howitt.  “Optimal Provision of 
Hydroelectric Power Under Environmental and Regulatory Constraints.” 
Land Economics. Vol 75 No. 2 (May 1999):267-283. 

Edwards, Brian K., Richard E. Howitt, and Silvio J. Flaim.  “Fuel, Crop, and 
Water Substitution in Irrigated Agriculture.” Resource and Energy 
Economics 18 No. 3 (October 1996):311-331. 

Engelbrecht, Andries P. Fundamentals of Computational Swarm Intelligence. 
Hoboken, New Jersey: John Wiley & Sons, Ltd.  2005. 

Farmani, Raziyeh and Jonathan A. Wright.  “Self-Adaptive Fitness Formulation 
for Constrained Optimization.” IEEE Transactions on Evolutionary 
Computation Vol. 7 No. 5 (October 2003):445-455. 

Feoktistov, Vitaliy. Differential Evolution—In Search of Solutions Volume 5 in 
Optimization and its Applications Series.  Panos M. Pardalos, Managing 
Editor. Springer, New York, NY.  2006. 

Forsund, Finn R. Hydropower Economics International Series in Operations 
Research and Management Science.  Frederic S. Hillier, Series Editor.  New 
York, NY. Springer.  2010. 

80 



 

 
 

          
    

      
 

   
       

 
 

      
       

 
 

        
     

 
   

      
  

 
        

   
         

      
 

  

 
 

         
       

    
  

 
     

        
       

 
       

      
    

 
          

         
 

      
      

Finardi, Erlon C. and Edson Luiz da Silva. “Solving the Hydro Unit Commitment 
Problem via Dual Decomposition and Sequential Quadratic Programming.” 
IEEE Transactions On Power Systems, Vol. 21 No. 2 (May 2006):835-844. 

Fylstra, Daniel, Leon Lasdon, John Watson and Allen Warren.  “Design and Use 
of the Microsoft Excel Solver.” Interfaces 28 No. 5 (September-October) 
1998:29-55. 

General Electric Energy Corporation. Western Wind And Solar Integration Study 
Prepared for the National Renewable Energy Laboragory.  GE Energy. 
Schenectady, NY.  May 2010.  536 pages. 

General Electric Energy Corporation. MAPSTM Multi-Area Production Simulation 
Model Product Description.  GE Energy. Schenectady, NY.  March 2008.  33 
pages. 

Goldberg, David E. Genetic Algorithms in Search Optimization, and Machine 
Learning.  Reading, Massachusetts: Addison-Wesley Professional Inc.  1989 
(reissued).  432 pages. 

Gong, Wenyin, Alvaro Fialho and Zhihua Cai.  “Adaptive Strategy Selection in 
Differential Evolution.” Proceedings of the Genetic and Evolutionary 
Computation Conference (GECCO) 2010. July 7-11, 2010. Portland, 
Oregon. ACM Press, Inc.  2010. 

Haddad, Omid. Bozorg. Abbas Afshar and Miguel A. Marino. “Optimization of Non-
Convex Water Resource Problems by Honey-Bee Mating Optimization 
(HBMO) Algorithm.” Engineering Computations Vol. 26 No. 3 (2009):267-280. 

Haddad, Omid Bozorg, Abbas Afshar and Miguel A. Marino. “Honey-Bee Mating 
Optimization (HBMO) Algorithm: A New Heuristic Approach for Water 
Resources Optimization.” Water Resources Management Vol 20 No. 5 
(October 2006):661-680. 

Harpman, David A. Advanced Algorithms for Hydropower Dispatch (Phase 1) 
Technical Report S&T-2011-486. U.S. Bureau of Reclamation, Technical 
Service Center, Denver, Colorado. March 2012. 136 pages. 

Harpman, David A.  "Assessing the Short-Run Economic Cost of Environmental 
Constraints on Hydropower Operations at Glen Canyon Dam." Land 
Economics 75 No. 3 (August 1999):390-401. 

Haupt, Randy L. and Sue Ellen Haupt. Practical Genetic Algorithms. 2nd Edition. 
John Wiley and Son, Inc, New York, N.Y.  2004. 192 pages. 

Helwig, Sabine and Rolf Wanka.  “Particle Swarm Optimization in High-
Dimensional Bounded Search Spaces.” Proceedings of the 2007 IEEE 

81 



 

 
 

       
 

 
         

      
     

 
 

     
     

 
        

       
      

     
 

        
     

       
 

       
        

     
       

 
   

  
     

       
 

      
        

    
  

 
    

      
 

      
    

   
  

 
        

      
    

Swarm Intelligence Symposium.  1-5 April 2007  Honolulu, HI, Pages 198-
205. 

Hemamalini, S. and Sishaj P. Simon. “Dynamic Economic Dispatch Using 
Artificial Bee Colony Algorithm for Units with Valve-Point Effect.” 
European Transactions on Electrical Power Vo. 21 No. 1 (January 
2011):70-81. 

Holland, John H. Adaption in Natural and Artificial Systems.  Ann Arbor: 
University of Michigan Press.  1975. 

Hu, Xiaohui and Russell Eberhart.  “Solving Constrained Nonlinear Optimization 
Problems with Particle Swarm Optimization.” Pages 203-206 in, Proceedings 
of the 6th World Multiconference on Systemics, Cybernetics and Informatics 
(SCI 2002), Orlando, USA.  2002. 

Huang, Hua-Juan and Yong-Quan Zhou.  “Hybrid Artificial Fish Swarm 
Algorithm For Global Optimization Problems” Journal of Computer 
Applications. Vol. 28, no. 12 (December 2008): 3062-3064. 

Hulse, David O.  Manager, Mechanical Equipment Group 86-68420. Reclamation 
Technical Service Center.  Denver, Colorado. Personal communication with 
David A. Harpman, Natural Resource Economist. Economics, Planning and 
Technical Communications Group 86-68270. September 30, 2013. 

International Electrotechnical Commission. International Standard for Hydraulic 
Turbines, Storage Pumps and Pump-Turbines – Model Acceptance Tests 
CEI/IEC 60193:1999 2nd Edition.  International Electrotechnical 
Commission 3, rue de Varembé Geneva, Switzerland. 1999. 

Jeyakumar, D.N., T. Jayabarathi and T. Raghunathan. “Particle Swarm 
Optimization for Various Types of Economic Dispatch Problems.” 
International Journal of Electrical Power and Energy Systems Vol. 28 No. 1 
(January 2006):36-42. 

Judd, Kenneth L. Numerical Methods in Economics. Second Printing.  
Cambridge, Massachusetts: MIT Press. 1999. 

Karaboga, Dervis, Beyza Gorkemli, Celal Ozturk and Nurhan Karaboga. “A 
Comprehensive Survey: Artificial Bee Colony (ABC) Algorithm and 
Applications” Artificial Intelligence Review published online DOI: 
10.1007/s10462-012-9328-0 March 2012  

Karaboga, Dervis and Bahriye Akay, “A Modified Artificial Bee Colony (ABC) 
Algorithm for Constrained Optimization Problems.” Applied Soft Computing 
Vol 11 No. 3 (April 2011):3021-3031. 

82 



 

 
 

 
       

    
  

 
          

     
  

 
         

     
    

         
 

         
     
  

 
        

      
     

 
       

     

        
 

 
        

    
      

 
         

   
     

 
      

        
            

  
 

        
     

 

Karaboga, Dervis and Bahriye Basturk. “A Comparative Study of Artificial Bee 
Colony Algorithm.” Applied Mathematics and Computation Vol 214 No. 1 
(August 2009):108-112. 

Karaboga, Dervis and Bahriye Akay “ ASurvey: Algorithms Simulating Bee 
Swarm Intelligence.” Artificial Intelligence Review  Vol 31, Issue 1-4 (June 
2009): 61-85 

Karaboga, Dervis. and Bahriye. Akay. "Artificial Bee Colony (ABC), Harmony 
Search And Bees Algorithms On Numerical Optimization." Proceedings of 
Innovative Production Machines and Systems Virtual Conference, IPROMS. 
2009. July 6 to July 17, 2009. Cardiff, United Kingdom. 

Karaboga, Dervis and Bahriye Akay “ A Comparative Study of Artificial Bee 
Colony Algorithm.” Applied Mathematics and Computation  Vol 214, No. 1 
(August 2009): 108-132 

Karaboga, Dervis and Bahriye Basturk.  “A Powerful and Efficient Algorithm for 
Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm.” 
Journal of Global Optimization 39 No. 3 (November 2007):459-471. 

Karaboga, Dervis and Bahriye Basturk. “Artificial Bee Colony (ABC) 
Optimization Algorithm for Solving Constrained Optimization Problems.” 
Advances in Soft Computing: Foundations of Fuzzy Logic and Soft 
Computing. Lecture Notes in Computer Science Vol: 4529, pp: 789-798, 
Springer- Verlag, 2007. 

Karaboga, Dervis.  “An Idea Based On Honey Bee Swarm For Numerical 
Optimization.” Technical Report-Tr06, Computer Engineering Department, 
Erciyes University. Kayseri, Turkey. October 2005. 

Kaur, Arvinder * and Shivangi Goyal. “A Survey on the Applications of Bee 
Colony Optimization Techniques.” International Journal on Computer 
Science and Engineering Vol 3 No. 8 (August 2011):3037-3045. 

Kennedy, James and Rui Mendes.  “Population Structure and Particle Swarm 
Performance.”  Evolutionary Computation, 2002. CEC '02.  Proceedings of 
the 2002 Congress.  Honolulu, HI , USA. 12 May 2002 - 17 May 2002. 
pages 1671 – 1676. 

Kennedy, James and Russell C. Eberhart. Swarm Intelligence.  San Francisco, 
CA: Morgan Kaufmann Academic Press, 2001. 

83 



 

 
 

          
        

     
 

          
       

 
        

         
     

 
     

        
 

        
   

       
 

        
    

       
          

 
        

     
        

     
 

     
         

 
 

        
     

      
 

      
   

      
 

     
     

     
     

    
 

Kim, Dong Hwa, Ajith Abraham and Jae Hoon Cho. “A Hybrid Genetic 
Algorithm and Bacterial Foraging Approach for Global Optimization.” 
Information Sciences Vol 177 No. 18 (September 2007): 3918–3937. 

Kirkpatrick, Scott, Charles D. Gelatt, M. P. Vecchi. “Optimization by Simulated 
Annealing” Science, New Series, Vol. 220 No. 4598 (May 1983): 671-680. 

Klimasauskas, Casimir C.  “Not Knowing Your Random Number Generator 
Could be Costly: Random Generators-- Why They are Important.” Personal 
Computer Artificial Intelligence Vol 16 No. 3 (May/June 2002):52-59. 

Knuth, Donald E. The Art of Computer Programming: Seminumerical Algorithms 
Vol 2.  3rd Edition.  Massachusetts: Addison-Wesley Press, Inc.  2002. 

Kumar, Awadhesh.  “Dynamic Economic Dispatch Using Particle Swarm 
Optimization.”  Unpublished Masters Thesis.  Electrical and Instrumentation 
Engineering Department, Thapar University, Patiala.  June 2009. 

Lee, Kwang Y. and Jong-Bac Park.  “Application of Particle Swarm Optimization 
to Economic Dispatch Problem: Advantages and Disadvantages.” in, 
proceedings of the Power Systems Conference and Exposition, 2006. 
Atlanta, GA.  Oct. 29 - Nov. 1 2006.  pages 188 – 192. 

Li, Boyang, Yew-Soon Ong, Minh Nghia Lee and Chi Keong Goh.  “Memetic 
Gradient Search.” Evolutionary Computation 2008. Proceedings of the 2008 
IEEE World Congress on Computational Intelligence.  Hong Kong, China. 
June 1-6, 2008. pages 2894 – 2901. 

LINDO Systems. “Electrical Generation Unit Commitment Planning.” 
Application Survey Paper.  LINDO Systems, Inc. Chicago, Illinois. June 
2003. 

Liu, Hui, Zixing Cai and Yong Wang.  “Hybridizing Particle Swarm Optimization 
with Differential Evolution for Constrained Numerical and Engineering 
Optimization.” Applied Soft Computing Vol 10 No. 2 (March 2010):629-640. 

Lucic, Panta and Dusan Teodorovic. “Computing with Bees: Attacking Complex 
Transportation Engineering Problems.” International Journal of Artificial 
Intelligence Tools Vol 12 No 3 (September 2003):375-394. 

Ma, Xin and Young Liu. “Economic Dispatch Considering Ancillary Service 
Based on Revised Particle Swarm Optimization Algorithm.” in, Proceedings 
of the 6th International Conference on Advanced Intelligent Computing 
Theories And Applications: Intelligent Computing  Changsha, China, August 
18-21, 2010. Pages 175-184. 

84 



 

 
 

      
     

  
     

 
         

    
    

 
 

     
      

     
     

  
 

  
      
     

        
 

 
   

     
        

      
 

        
    

         
       

 
   

        
 

      
      

 
        

         
     

 
       

      
 

Matsumoto, Makoto and Takuji Nishimura.  “Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudorandom Number Generator.” 
Association for Computing Machinery (ACM) Transactions on Modeling and 
Computer Simulations Vol 8 No. 1 (January 1998):3-30. 

Mezura-Montes, Efren, and Omar Cetina-Domınguez. "Empirical Analysis of a 
Modified Artificial Bee Colony for Constrained Numerical Optimization." 
Applied Mathematics and Computation Vol 22 No. 15 (July 2012): 10943– 
10973. 

Mezura-Montes, Efren, and Omar Cetina-Domınguez. "Exploring Promising 
Regions Of The Search Space With The Scout Bee In The Artificial Bee 
Colony For Constrained Optimization." In Proceedings of the Artificial 
Neural Networks in Enginnering Conference (ANNIE’2009), vol. 19, pp. 
253-260. 2009. 

Mezura-Montes, Efren and Jorge Isacc Flores-Mendoza.  “Improved Particle 
Swarm Optimization in Constrained Numerical Search Spaces.” in Raymond 
Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pages: 299-
332, Springer-Verlag, Studies in Computational Intelligence Series Vol. 193, 
2009. 

Mezura-Montes, Efren and Blanca Cecilia Lopez-Ramirez.  “Comparing Bio-
Inspired Algorithms in Constrained Optimization Problems.” Pages 662-669 
in, Proceedings of the IEEE Congress on Evolutionary Computation, CEC 
2007, 25-28 September 2007, Singapore.  2007 

Mezura-Montes, Efren, Jesus Velazquez-Reyes and Carlos A. Coello Coello. 
“Modified Differential Evolution for Contrained Optimization”  Pages 25-32 
in, Proceedings of the 2006 IEEE Congress on Evolutionary Computation. 
Vancouver, British Columbia, Canada.  July 16-21, 2006. 

Michalewicz, Zbigniew. Genetic Algorithms + Data Structures = Evolution 
Programs. 3rd Ed.  Springer.  1996.  387 pages. 

Michalewicz, Zbigniew and David B. Fogel. How to Solve it: Modern Heuristics. 
2nd Ed. Springer.  2010.  554 pages. 

Mishra, S.K.  “Global Optimization by Differential Evolution and Particle Swarm 
Methods Evaluation on Some Benchmark Functions.” MPRA Paper No. 
1005, posted 07 November 2007. http://mpra.ub.uni-muenchen.de/1005. 

Miranda, Mario J. and Paul L. Fackler. Applied Computational Economics and 
Finance.  Cambridge, Massachusetts: MIT Press. 2006. 

85 

http://mpra.ub.uni-muenchen.de/1005


 

 
 

      
  

     
       
         
   

 
        

     
         
    

 
       

           
    

      
 

   
 

      
      

 
       

       
  

 
            

        
 

 
      

    
     

 
      

     
         

      
 

       
      

      
       

 

Miranda, Vladimiro. “Operational Planning: Unit Commitment and Economic 
Dispatch.” Chapter 12 in, Tutorial on Modern Heuristic Optimization 
Techniques with Applications to Power Systems.  IEEE Power Engineering 
Society 02TP160. Edited by Kwang Y. Lee and Mohamed A. El-Sharkawi. 
Institute of Electrical and Electronics Engineers (IEEE), Power Engineering 
Society. pages 130-137. 

Monson, Christopher K. and Kevin D. Seppi.  “Linear Equality Constraints and 
Homomorphous Mappings in PSO.” in, Proceedings of the 2005 IEEE World 
Congress on Evolutionary Computation, Vol. 1 pages 73-80. Edinburgh, 
Scotland.  September 5, 2005. 

Moussa, Abd-El Moneim, Mahmoud A. El-Gammal, Amr Y. Abou-Ghazala and 
Amani I. Attia. “A Novel Approach for Unit Commitment Problem via an 
Effective Modified Particle Swarm Optimization Technique.” European 
Journal of Scientific Research Vol. 48 No. 4 (January 2011):546-558. 
http://conference.iproms.org/forums/iproms_2006/optimisation_techniques 
Last accessed on 12/29/2009. 

Nelder, John A. and Roger Mead.  “A Simplex Method for Function 
Minimization” Computer Journal 7 No. 4 (January 1965):308-313. 

Neri, Ferrante and Ville Tirronen.  “Recent Advances in Differential Evolution: A 
Survey and Experimental Analysis.” Artificial Intelligence Review 33 Nos. 
1-2 (February 2010): 61-106. 

Nguyen, Q. H., Yew-Soon Ong, Natalio Krasnogor. “A Study on the Design 
Issues of Memetic Algorithm.” IEEE Congress on Evolutionary 
Computation 2007: 2390-2397 

Noman, Nasimul and Htoshi Iba.  “Accelerating Differential Evolution Using 
Adaptive Local Search.” IEEE Transactions on Evolutionary Computation 
Vol. 12 No. 1 (February 2008):107-125. 

North American Electricity Reliability Council (NERC). Balancing and 
Frequency Control. A Technical Document Prepared by the NERC 
Resources Subcommittee. January 26, 2011. NERC.  Princeton, N.J. 
Obtained from: www.nerc.com/docs   Accessed on 25 March 2013. 

Omran, Mahamed G.H. “Using Opposition-based Learning with Particle Swarm 
Optimization and Barebones Differential Evolution.” Chapter 23 in, Particle 
Swarm Optimization.  Edited by Aleksandar Lazinica.  Vienna, Austria: 
INTECH- Education and Publishing.  January 2009. 476 pages. 

86 

www.nerc.com/docs
http://conference.iproms.org/forums/iproms_2006/optimisation_techniques


 

 
 

       
    

   
 

       
   

  
 

        
       

         
     

 
         

       
       

      
 

        
      

      
 

       
       

      
      

 
          

    
     

 
 

      
    
        

        
 

 
  

  
  

 
 
 

  
 

Omran, Mahamed G.H., Andries P. Engelbrecht and Ayed Salman.  “Bare Bones 
Differential Evolution.” European Journal of Operations Research Vol 196 
No. 1 (July 2009):128-139. 

Paquet, Ulrich and Andries P. Engelbrecht.  “Particle Swarms for Linearly 
Constrained Optimization.” Fundamenta Informaticae Vol. 76 No. 1-2 
(March 2007):147-170. 

Paquet, Ulrich and Andries P. Engelbrecht.  “A New Particle Swarm Optimiser 
for Linearly Constrained Optimization.” in, proceedings of the 2003 IEEE 
World Congress on Evolutionary Computation Vol. 1 pages 227-233. 
Canberra, Australia.  December 8-13, 2003. 

Pant, Millie, Radha Thangaraj, Ved Pal Singh and Alith Abraham.  “Particle 
Swarm Optimization Using Sobol Mutation.”  Pages 367 to 372 in, The 
Proceedings of the 2008 First International Conference on Emerging Trends 
in Engineering and Technology.  Nagpur, India.  16-18 July 2008. 

Pant, Millie, Radha Thangaraj and Alith Abraham.  “Low Discrepancy Initialized 
Particle Swarm Optimization for Solving Constrained Optimization 
Problems.” Fundamenta Informaticae 95 No. 4 (December 2009):1-21. 

Pant, Millie, Ved Pal Singh and Alith Abraham.  “Differential Evolution using 
Quadratic Interpolation for Initializing the Population.” Pages 375 to 380 in, 
Proceedings of the 2009 Advance Computing Conference,  IACC 2009. 
IEEE International. Delhi, India.  6-7 March 2009. 

Park, Stephen K. and Keith W. Miller, "Random Number Generators: Good Ones 
Are Hard to Find." Communications of the Association for Computing 
Machinery (ACM), Vol. 31 No. 10 (October 1988): 1192-1201. 

Parsopoulos, Konstantinos E, and Michel N. Vrahatis.  “Initializing the Particle 
Swarm Optimizer Using the Nonlinear Simplex Method” In, Advances in 
Intelligent Systems, Fuzzy Systems, Evolutionary Computation.  The Artificial 
Intelligence Series.  Edited by A. Grmela and N.E. Mastorakis.  World 
Scientific and Engineering Academy and Society (WSEAS) Press: Interlaken, 
Switzerland.  2002. 

Pedersen, Magnus Erik Hvass.  “Tuning & Simplifying Heuristical Optimization.” 
Unpublished Ph.D. Thesis.  School of Engineering Sciences, Computational 
Engineering and Design Group.  University of Southampton.  England. January 
2010. 

Peltokangas Riikka and Aki Sorsa.  “Real-coded Genetic Algorithms and Nonlinear 
Parameter Identification.” Report A No. 48.  Control Engineering Laboratory, 
University of Oulu.  April 2008. 

87 



 

 
 

 
     

       
  

   
 

          
 

 
       

    
   

      
     

 
     

   
       

 
         

    
    

 
          

   
 

           
  

     
 

        
    

      
 

      
      

      
           

  
 

       
       

    
 

Pham, D.T., A. Ghanbarzadeh, E. Koc., S. Otri, S. Rahim and M. Zaidi.  “The 
Bees Algorithm—A Novel Tool for Complex Optimization Problems.” 
Innovative Production Machines and Systems 2006 Virtual Conference.  July 
2006. Available from: 
http://conference.iproms.org/forums/iproms_2006/optimisation_techniques. 
Last accessed on 12/29/2009. 

Pomeroy, Paul.  “An Introduction to Particle Swarm Optimization.” March 2003. 
Online article accessed at: www.adaptiveview.com/articles. 

Potter, Walter D., Eric Drucker, Pete Bettinger, Frederick Maier, Max Martin, D. 
Luper, M. Watkinson, G. Handy, C. Hayes.  “Diagnosis, Configuration, 
Planning, and Pathfinding: Experiments in Nature-Inspired Optimization.” 
in, Natural Intelligence for Scheduling, Planning and Packing Problems. 
Studies in Computational Intelligence. Vol. 250. Berlin, Germany: Springer 
Verlag.  2009.  pages 267-294. 

Pourakbari-Kasmaei, Mahdi, Masoud Rashidi-Nejad and Amir Abdollahi. “A 
Novel Unit Commitment Technique Considering Prohibited Operating 
Zones.” Journal of Applied Sciences Vol. 9 No. 16 (2009):2962-2968. 

Press, William H., Brian P. Flannery, Saul A. Teukolsky and William T. 
Vetterling. Numerical Recipes in Pascal—The Art of Scientific Computing. 
New York: Cambridge University Press.  1989. 

Price, Kenneth V. and Rainer M. Storn. "Differential Evolution" Dr. Dobb's 
Journal Issue 264 (April 1997):18-24 and 78. 

Price, Kenneth V., Rainer M. Storn and Jouni A. Lampinen. Differential 
Evolution - A Practical Approach to Global Optimization. Springer-
Verlang: Belin, Germany.  2005.  538 pages. 

Puri, Vinod. “Unit Commitment Using Particle Swarm Optimization.” 
Unpublished Thesis. Electrical and Instrumentation Engineering Department, 
Thapar University. Patiala, India.  July 2009. 

Rabiei, Abbas, Alireza Soroudi and Behnam Mohammadi. “Imperialist 
Competition Algorithm for Solving Non-convex Dynamic Economic Power 
Dispatch.” 11-E-PSS-1921. Proceedings of the 26th International Power 
System Conference.  31 October to 2 November 2011. Tehran, Iran. 2011. 
Pages 1-8. 

Rahnamayan, Shahryar and G. Gary Wang.  “Solving Large Scale Optimization 
Problems by Opposition-Based Differential Evolution (ODE).  “WSEAS 
Transactions on Computers 10 Vol. 7 (October 2008):1792-1804. 

88 

www.adaptiveview.com/articles
http://conference.iproms.org/forums/iproms_2006/optimisation_techniques


 

 
 

       
    

         
       

 
     

       
 

   
 

        
     

   
          
      

 
        

    
         

 
 

      
     

      
      

 
        

    
   

 
       
        

 
  

     
      

 
       

 
       

 
         

     
   

 
 

Rahnamayan, Shahryar, Hamid R. Tizhoosh and Magdy M.A. Salama. 
“Opposition-Based Differential Evolution.” Chapter 6 in, Advances in 
Differential Evolution. Studies in Computational Intelligence, Volume 143. 
Edited by Uday K. Chakraborty.  Springer-Verlang: Belin, Germany.  2008. 

Rajan, C.Christober Asir. “Genetic Algorithm Based Simulated Annealing 
Method for Solving Unit Commitment Problem in Utility System.” 
International J. of Recent Trends in Engineering and Technology, Vol. 3, 
No. 4 (May 2010):96-100. 

Rajkumar, N. Timo Vekara and Jarmo T. Alander.  “A Review of Genetic 
Algorithms in Power Engineering.” in, AI and Machine Consciousness— 
Proceedings of the 13th Finish Artificial Intelligence Conference. Tapani 
Raiko, Penti Haikonen and Jaakko Vayrynen, editors. Esppo, Finland. 
August 20-22, 2008. pages 15-32. 

Reeves, Collin R.  “Genetic Algorithms.”  Chapter 3 in, Handbook of 
Metaheuristics 2nd Edition. edited by Michel Gendreau and Jean-Yves 
Potvin.  Springer Business and Science: New York City, NY. 2010.  650 
pages. 

Rau, Narayan S. Optimization Principles—Practical Applications to the 
Operation and Markets of the Electric Power Industry.  IEEE Press Series on 
Power Engineering.  P.M. Anderson, Series Editor.  New York, New York: 
John Wiley and Sons.  2003. 339 pages. 

Richards, Mark and Dan Ventura. “Choosing a Starting Configuration for 
Particle Swarm Optimization.” pages 2309–2312 in, Proceedings of the Joint 
Conference on Neural Networks.  July 2004. 

Robertson, Grant.  “How Powerful was the Apollo 11 Computer?” Download 
Squad. Weblogs, Inc.  RSS Feed.  July 20, 2009 at 8:30 pm. 

Saxena, D., Sri N. Singh and K. S. Verma. “Application of Computational 
Intelligence in Emerging Power Systems.” International Journal of 
Engineering, Science and Technology Vol. 2 No. 3 (May 2010):1-7. 

Shah-Hosseini, Hamedi, “The Intelligent Water Drops Algorithm: A Nature-
Inspired Swarm-Based Optimization Algorithm.” International Journal of 
Bio-Inspired Computation, Vol. 1, Nos. 1 and 2 (January 2009):71-79. 

Sharma, Tarun Kumar, Millie Pant and V.P. Singh. “Adaptive Bee Colony in an 
Artificial Bee Colony for Solving Engineering Design Problems.” Advances 
in Computational Mathematics and its Applications (ACMA) Vol 1 No. 4 
(2012):213-221.-

89 



 

 
 

      
      

   
 

 
             

    
     

 
       

       
    

 
 

           
      

     
 

        
    

  
       

      
    

 
      

    
  

  
 

       
     

        
      

 
        

       
          

 
        

  
       

  
 

Sharma, Nidhi, Kalpana Jain and Manjaree Pandit. “Artificial Bee Colony 
Optimization for Static Economic Dispatch.” International Journal of 
Advanced Computational Methods and Applications Vol 1 No. 1 (2011):16-
25. 

Simon, Sishaj P., Narayana P. Padhy and R. S. Anand.  “An Ant Colony System 
Approach for the Unit Commitment Problem.” International Journal of 
Electrical Power Energy Systems Vol. 28 No. 5 (June 2006): 315-323 

Simopoulos, Dimitris N. Stavroula D. Kavatza and Costas D. Voumas.  “An 
Enhanced Peak Shaving Method for Short Term Hydrothermal Scheduling.” 
Energy Conversion and Management Vol. 40 No. 1 (November 2007): 2018-
3024. 

Siu, Thomas K., Garth A. Nash and Ziad K. Shawwash. “A Practical Hydro, 
Dynamic Unit Commitment and Loading Model.” IEEE Transactions on 
Power Systems Vol. 16 No. 2 (May 2001): 301-306. 

Socha, Krzysztof and Marco Dorigo. “Ant Colony Optimization for Continuous 
Domains.” European Journal of Operational Research Vo. 185 No. 2 
(March 2008): 1155-1173. 

Sriyanyong, Pichet, Yan-Hong. Song and Paul J. Turner. “Particle Swarm 
Optimization for Operational Planning: Unit Commitment and Economic 
Dispatch.” Studies in Computational Intelligence Vol. 49 (2007):313-347. 

Stanarevic, Nadezda, Milan Tuba and Nebojsa Bacanin. “Modified Artificial Bee 
Colony Algorithm for Constrained Problems Optimization.” International 
Journal of Mathematical Models and Methods in Applied Sciences Vol. 5 
No. 3 (2011):644-651. 

Staschus, Konstantin, Andrew M. Bell, and Eileen Cashman.  “Usable Hydro 
Capacity, Electric Utility Production Simulations, and Reliability 
Calculations.”  Institute of Electrical and Electronics Engineers (IEEE), 
Transactions on Power Systems Vol 5 No. 2 (May 1990):531-538. 

Steves, Toby L. Electrical Engineer,  Hydropower Technical Services Group 86-
68450, U.S. Bureau of Reclamation. Technical Service Center, Denver, 
Colorado. Email message to David A. Harpman on April 5, 2012 

Storn, Rainer M. and Kenneth V. Price. Differential Evolution—A Simple and 
Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. 
Technical Report TR-95-12, International Computer Science Institute. 
March 1995.  Available from: http://www.icsi.berkeley.edu . 

90 

http:http://www.icsi.berkeley.edu


 

 
 

         
      

     
 

       
     

     
 

 
           

       
 

 

  
     

      
 

      
     

     
 

      
        

       
     

 
       

     
    

 
    

      
     

 
     

   
 

          
  

        
         

   
 

Storn, Rainer M. and Kenneth V. Price.  “Differential Evolution—A Simple and 
Efficient Heuristic for Global Optimization over Continuous Spaces.” 
Journal of Global Optimization 11 No. 4 (December 1997):341-359. 

Subotic, Milos.  “Artificial Bee Colony Algorithm for Constrained Optimization 
Problems Modified with Multiple Onlookers.” International Journal of 
Mathematical Models and Methods in Applied Sciences Vol 6 No. 2 (2012): 
314-322. 

Tang, Jun and Xiaojuan Zhao. “A Hybrid Particle Swarm Optimization with 
Adaptive Local Search.” Journal of Networks Vol. 5 No. 4 (April 2010):411-
418. 

Tang, K.,  X. Yao, P. N. Suganthan, C. MacNish, Y. P. Chen, C. M. Chen, and Z. 
Yang. Benchmark Functions for the CEC'2008 Special Session and 
Competition on Large Scale Global Optimization. Technical Report, Nature 
Inspired Computation and Applications Laboratory, USTC, China, 2007. 

Tankasala, Ganga Reddy. “Artificial Bee Colony Optimisation for Economic 
Load Dispatch of a Modern Power System.” International Journal of 
Scientific and Engineering Research Vol 3 No. 1 (January 2012):1-6 

Teodorovic, Dusan. “Bee Colony Optimization.” Chapter 3 in, Innovations in 
Swarm Intelligence.  Chee Peng Lim, Lakhmi C. Jain, Satchidananda Dehuri 
Editors. Studies in Computational Intelligence Vol. 248. Springer-Verlag: 
Berlin, Germany.  2009. pages 39-60. 

Tereshko, Valery and Andreas Loengarov. “Collective Decision-Making in 
Honey Bee Foraging Dynamics.” Journal of Computing and Information 
Systems Vol. 9 No. 3 (2005):1-7. 

Tuba, Milan, Nebojsa Bacanin and Nadezca Stanarevic. “Adjusted Artificial Bee 
Colony (ABC) Algorithm for Engineering Problems.” WSEAS Transactions 
on Computers Vol 11 No. 4 (April 2012): 111-120. 

Tukey, John W., Exploratory Data Analysis. New York: Addison-Wesley 
Publishing Company, 1977. 688 pages. 

Uy, Nguyen Quang, Nguyen Xuan Hoai, RI McKay, and Pham Minh Tuan. 
“Initializing PSO with Randomised Low-Discrepancy Sequences: The 
Comparative Results.” Pages 1985-1992 in, Proceedings of the IEEE 
Congress on Evolutionary Computation, CEC 2007, 25-28 September 2007, 
Singapore. 2007. 

91 



 

 
 

         
   

    
 

      
       

      
      

 
 

          

  
    

 
          

  
   

         
 

      
 

        
    

 
   

     
 

    
       

 
         

    
   

 
       

      
 

     
    

  
 

        
 

  
 

Uyar, A. Sima and Belgin Turkay. “Evolutionary Algorithms for the Unit 
Commitment Problem.” Turkish Journal of Electrical Engineering and 
Computer Science Vol.16 No. 3 (2008):239-255. 

Valle, Yamille del, Ganesh Kumar Venayagamoorthy, Salman Mohagheghi, Jean-
Carlos Hernandez and Ronald G. Harley.  “Particle Swarm Optimization: 
Basic Concepts, Variants and Applications in Power Systems.” IEEE 
Transactions on Evolutionary Computation Vol 12 No. 2 (April 2008):171-
195. 

Veselka, Thomas D., Leslie D. Poch, Clayton S. Palmer, Samuel Loftin and Brent 
Osiek Financial Analysis of Experimental Releases Conducted at Glen 
Canyon Dam during Water Years 1997 through 2005 ANL/DIS-10-7 August 
2010. [REVISED VERSION] 

Veselka, Thomas D., Leslie D. Poch, Clayton S. Palmer, Samuel Loftin and Brent 
Osiek. Ex Post Power Economic Analysis of Record of Decision 
Operational Restrictions at Glen Canyon Dam ANL/DIS-10-6.  Argonne 
National Laboratory.  Argonne, Illinois.  April 2010. 96 pages. 

Veselka, Thomas D., O. Benjamin Schoepfle and Matthew Mahalik. CRSP 
Basin-Wide Economic Methodology—Modeling the Aspinall Cascade. 
Systems Science Group, Argonne National Laboratory.  Argonne, Illinois: 
Argonne National Laboratory.  July 2003. 

Vicaria, Fernando.  “Totally Random—Getting a Truly Random Number.” 
Delphi Informant 9. No. 10 (October 2003):8-14. 

Wahde, Mattias. Biologically Inspired Optimization Methods-- An Introduction 
Southampton, MA: WIT Press. 2008.  225 pages. 

Weber, Ernst Juerg. “Optimal Control Theory for Undergraduates Using the 
Microsoft Excel Solver Tool.” Computers in Higher Education Economics 
Review (Cheer) 19 No. 1 (2007):4-15. 

Weise, Thomas. Global Optimization—Theory and Practice 2nd Edition.  eBook. 
Version 2008-07-07.  Available from: www.it-weise.de.  2008. 703 pages. 

Wong, Tien-Tsin, Wai-Shing Luk and Pheng-Ann Heng.  “Sampling with 
Hammersley and Halton Points.” Journal of Graphics Tools  2 No. 2 
(November 1997): 9-24. 

Wolpert, David H. and William G. Macready.  “No Free Lunch Theorems for 
Optimization” IEEE Transactions on Evolutionary Computation Vol. 1 No. 
1 (April 1997):67-82. 

92 

http:www.it-weise.de


 

 
 

     
        

 
         

      
       

 
         

      
 

 
       

       
  

      
 

         
     

  
 

       
 

       
 

      

         
 

   
 

     
       

 
          

   
         

       
 

       
        

         
     

     
 

Wood, Allen J. and Bruce F. Wollenberg. Power Generation, Operation and 
Control.  2nd Edition.  New York, New York: John Wiley and Sons, 1996. 

Wright, Alden H.  “Genetic Algorithms for Real Parameter Optimization.” In, 
Foundations of Genetic Algorithms. Gregory J.E. Rawlins (editor).  San 
Mateo, CA: Morgan Kaufmann.  1991. pp. 205-218. 

Wu, Bin and Cun Hua Quan.  “Differential Bee Colony Algorithm for Global 
Numerical Optimization.” Journal of Computers Vol. 6 No. 5 (May 2011): 
841-848. 

Yan, Yiming, Ye Zhang and Fegjiao Gao. “Dynamic Artificial Bee Colony 
Algorithm for Multi-Parameters Optimization of Support Vector Machine-
Based Soft-Margin Classifier.” EURASIP Journal on Advances in Signal 
Processing Vol 1 No. 146 (July 2012):1-13. 

Yang, Xin-She.  “Firefly Algorithm, Stochastic Test Functions and Design 
Optimization.” International Journal of Bio-Inspired Computation Vol 2 No. 
2 (March 2010):78-84. 

Yang, Xin-She and Suash Deb.  “Engineering Optimization by Cuckoo Search.” 
International Journal of Mathematical Modeling and Numerical 
Optimization. Vol. 1 No.4 (April 2010):330-343. 

Yang, Xin-She and Suash Deb.  “Cuckoo Search via Levy Flights.” in, 
Proceedings of the World Congress on Nature and Biologically Inspired 
Computing (NaBIC 2009, India).  IEEE Publications, USA.  pages 210-214. 

Yang, Xin-She.  “Engineering Optimizations via Nature-Inspired Virtual Bee 
Algorithms.” in, Artificial Intelligence and Knowledge Engineering 
Applications: A Bioinspired Approach. Lecture Notes in Computer Science 
Vol. 3562. Springer: Berlin/Heidelberg.  2005. pages 317-323. 

Zielinski, Karin and Rainer Laur.  “Stopping Criteria for Differential Evolution in 
Constrained Single-Objective Optimizations.” Chapter 5 in, Advances in 
Differential Evolution. Studies in Computational Intelligence, Volume 143. 
Edited by Uday K. Chakraborty.  Springer-Verlang: Belin, Germany.  2008. 

Zielinski, Karin, Petra Weitkemper, Rainer Laur and Karl-Dirk Kammeyer. 
“Examination of Stopping Criteria for Differential Evolution based on a 
Power Allocation Problem.” In, volume 3, pages 149–156, Proceedings of 
the 10th International Conference on Optimization of Electrical and 
Electronic Equipment.  Brasov, Romania, 18-19 May 2006. 

93 



 

 
 

  
  

 

Zielinski, Karin and Rainer Laur.  “Stopping Criteria for Constrained Single-
Objective Particle Swarm Algorithm.” Informatica 31 No. 1 (March 
2007):51-59. 

94 



 

 
 

   

 

      
           

        
    
       

      
 

       
       

          
       

       
       
         

             
      

 
       

        
     
       

    
         

      
         

  
 

       
         

        
        

          
      

  
 

       
       

     

Appendix 1. ABCO Algorithm 

Introduction 

Artificial bee colony optimization (ABCO) algorithms are among the most 
recently (circa 2001) described algorithms to appear in the literature. ABCO is an 
optimization approach based on the collective behaviour of a hive of honey bees, 
searching for food.  ABCO utilizes employed bees and unemployed bees, 
composed of onlooker bees and scouts, to locate the best food sources in the 
search space, thereby identifying the optima of a function. 

There are several algorithms related to honey bees and their behaviour and this 
can prove to be quite confusing.  Literature examples include the bee algorithm 
(BA) proposed by Pham et al (2006), the virtual bee algorithm (VBA) used by 
Yang (2006), the bee colony optimization (BCO) algorithm of Lucic and 
Todorovic (2003), the honey bee mating optimization (HBMO) algorithm of 
Haddad, Ashfar and Marino (2006) and the artificial bee colony optimization 
(ABCO) algorithm.  Given the rapid emergence of new bee-related algorithms, 
there can be no guarantee this list is exhaustive.  Potentially, other bee related 
algorithms now exist that have not been identified by the author. 

The ABCO algorithm was selected for use in this research. The purpose of this 
research project is relatively narrow—the application of promising algorithms to 
hydropower optimization problems, which are continuous nonlinear constrained 
optimization problems.  Some of the bee-related algorithms are limited to discrete 
problem applications and others are either unsuitable for constrained continuous 
optimization problems, or have not been applied in this context.  Based on the 
assessment by Mezura-Montes and Cetina Dominguez (2012), the artificial bee 
colony optimization (ABCO) algorithm is the most promising algorithm for this 
research application. 

Karaboga et al (2012) attribute the first description of the ABCO algorithm to a 
seminal paper by Karaboga (2005).  Karaboga (2005), in turn, graciously credits a 
paper by Tereshko and Loengarov (2005) for inspiration.  Since the mid 2000’s, 
ABCO has been applied in a number of disciplines and optimization contexts. 
Excellent surveys of these applications can be found in Teodorovic (2009), Kaur 
and Goyal (2011), Teodorovic, Davidovic and Selmic (2011) and Karaboga et al 
(2012). 

Several published ABCO applications are of significance to this research effort. 
Sharma, Pant and Singh (2012) demonstrate the use of the ABCO algorithm for 
solving selected engineering design problems and introduce some enhancements 
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aimed at improving the convergence speed and exploitation capability of the 
algorithm.  Research reported by Stanarevic, Tuba and Bacanin (2011), Karaboga 
and Akay (2011) and Brajevic and Tuba (2012) advance the application of the 
basic ABCO algorithm and successfully apply it to constrained optimization 
problems.  Mezura-Montes and Cetina-Dominguez (2012) describe a systematic 
empirical analysis of a modified ABCO algorithm for constrained optimization. 
Of particular saliency to this effort are the Hemarmalini and Simon (2011), 
Sharma, Jain and Pandit (2011) and the Tankasala (2012) applications of ABCO 
to the economic dispatch problem, the subject of the Phase 1 research effort 
(Harpman 2012). 

ABCO Terms 

There are several ABCO specific terms commonly used in the literature. Their 
usage varies somewhat from the usage in other evolutionary algorithms reviewed 
previously.  It is likely that these terms are used differentially in various ABCO 
code implications.  The following terms are defined consistently with the ABCO 
Delphi code developed by Karaboga et al (2012) and labeled as version 5/17/2011 
(http://mf.erciyes.edu.tr/abc/). It is useful to note this code was explicitly 
developed for function minimization. 

•		 Fitness function- transformed4 objective function value. 
•		 Fitness- value of the fitness function 
•		 Penalty function—a function which assigns a value to each constraint 

violations. 
•		 Penalty—the aggregate penalty value of constraint violations. 
•		 Population best – best fitness achieved by any individual in the population 

Individual Components 

In the context of the ABCO algorithm, each individual is called a bee (of course!). 
There are employed bees and unemployed bees.  The unemployed bees are of two 
types; onlooker bees and scout bees. 

Each of the np individual bees in the virtual population consists of the following 
components, where d is the number of dimensions in the problem: 

•		 Coordinates of its current position: x=(x1…xd) 
•		 Fitness 
•		 Penalty 

4 See equation (11) for the details of this transformation. 
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In the ABCO Delphi code developed by Karaboga (http://mf.erciyes.edu.tr/abc/), 
scalars, vectors and matrices, but not data structures or objects, are employed. 
For consistency and to allow for selective code reuse, the same approach is used 
in this research project. Conversely, in the ABCO C# code described in Bacanin, 
Tuba and Brajevic (2011) it appears that each individual bee is coded as an object. 
This programming approach facilitates multi-threaded and parallel computing 
options.  The object oriented approach would appear to be programmatically more 
efficient, but certainly requires a higher degree of programming skill and effort to 
implement. 

Basic ABCO Algorithm 

The basic ABCO algorithm is relatively straightforward as illustrated in Figure 
20. First, each of the np members of the bee population is created, their positions 
initialized in the search space and their fitness evaluated and stored. The ABCO 
iterative process, which in this case is termed “cycling”, then begins.  During each 
iteration or cycle, there are two population subsets, employed bees and 
unemployed bees.  Employed bees search for new food sources within the fitness 
landscape.  The employed bees then return to the hive where they share the 
information they have gathered about food sources with the unemployed bees. 

Unemployed bees consist of two types; onlooker bees and scout bees.  The 
employed bees share the fitness and location information they have gathered with 
the onlooker bees back at the hive.  The onlooker bees probabilistically choose 
this information.  The onlooker bees fly out from the hive to the chosen location 
and search in the neighborhood for an improved solution. If the fitness of a 
particular employed bee does not improve in a preset number of cycles, it 
becomes a scout bee which is reinitialized randomly in the search domain. 

At the end of each cycle, a test is applied to determine if the bee population has 
converged.  If the population has converged, the iterative process is terminated 
and the results are reported. If the population has not converged, a new iteration 
is undertaken.  This process continues until the either the population has 
converged or the maximum number of iterations has been completed. 
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Figure 20.—Illustration of the Basic ABCO algorithm. 

Initialization 
The ABCO algorithm developed by Karaboga et al (2005), like the vast majority 
of heuristic algorithms, utilizes a randomized approach for determining the 
starting positions of all np-bees within the d-dimensional search space.  This 
process is termed, “initialization.” 

As this concept is carried out, for each bee (i) in the populations, an initial 
position in the search space is assigned by using expression (10) 

(10) xi, j  l j  rand j * (u j  l j ) 

Where: xi,j = value of decision variable (j) for bee (i) 
lj = lower bound value for variable (j) 
uj = upper bound value for variable (j) 
randj = uniform random variable (0,1). 

The vast majority of applied work uses the uniform random distribution to 
initially locate points in the search space.  Although easily implemented, the 
weakness of this approach is that a non-systematic location of the initialized 
points can result in the space.  As discussed in the Phase I Report (Harpman 2012, 
p. 25-27), a frequent contributor to this poor performance is the quality of the 
random number generator (RNG).  Appendix 12 in Harpman (2012) contains a 
rather exhaustive treatment of this topic and reports on the RNG selected for use 
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in this research effort. Low discrepancy sequences and other approaches are 
sometimes employed to overcome this behavior. A useful treatment of these 
topics, and an explanation of their application in this research, may also be found 
in the Phase I Report (Harpman 2013, Appendix 13). 

Fitness Evaluation 
Fitness evaluation in the ABCO algorithm differs somewhat from the approach 
used in the PSO, DE and RCG algorithms.  In the latter cases, the fitness value is 
composed of the objective function value plus the value of the penalty, if any. 
For the ABCO algorithm however, the fitness is composed solely of the objective 
function value, mathematically transformed as shown by equation (11). 

1 
if f (x)











0
	
(11), fit(x) 1 

1 

The ABCO algorithm of Karaboga et al (2005) is designed for function 
minimization and it tracks the value of the penalty separately from the fitness 
value. 



Employed Bees Phase 
Employed bees search the fitness landscape within the neighborhood of their 
position for new locations which have more nectar (are more fit). Each employed 
bee finds a neighboring food source and then evaluates its fitness.  Although there 
are variations on this approach, the most common approach is to generate a 
neighboring position using the formula shown in equation (12). 


 
 f (x) 


abs( f (x)) if f (x) 
0
	

(12)
	 yi, j 
xi, j 
Urand j *(xi, j 
xk , j )
	

Where:		 yi,j = value of neighborhood food source variable (j) for bee (i) 
xi,j = value of decision variable (j) for bee (i) 
Urandj = uniform random variable (-1,1).

 xk,j = value of decision variable (j) for randomly chosen bee (k≠i) 

Using expression (12), a neighborhood location is chosen by first randomly 
selecting another employed bee.  Then, for each dimension, subtracting its 
location from the current location of the employed bee, multiplying the resulting 
difference by a random value drawn from the range [-1,+1] and adding the result 
to the original value.  This process yields a new location, specified in d-
dimensions, in the neighborhood of the employed bee. 

One aspect of relationship (12) could be overlooked but is useful to understand. 
As the difference between the x-values of the employed bee and a randomly 
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chosen bee, decrease, the perturbation also decreases.  Thus, as the search 
approaches the optimum solution in the search domain, the step length also 
decreases. 

The objective function value of this neighborhood location and its fitness value 
are then calculated as described by equation (11). 

The fitness of the neighborhood location and the original location of the employed 
bee are compared using a so-called “greedy” selection mechanism.  The employed 
bee either moves to the neighboring location, if this move is fitness improving, or 
it maintains its current location and fitness.  This decision is based on the 
relationship shown in (13). 






pi if pi 
di 




(13) Pi ,t 
1 

Where: Pi,t+1 = employed bee’s next position.
 pi = employed bee’s initial position and fitness 
di = neighborhood position and fitness. 

Unemployed Bees Phase 
After searching their neighborhoods for more promising sources of nectar, the 

 

employed bees return to the hive and share their knowledge of the fitness 
landscape with the unemployed bees.  There are two types of unemployed bees; 
onlooker bees and scouts. 

Onlooker Bees 

The employed bees communicate with the onlooker bees and convey information 
about the locations they have visited and the nectar content (or fitness) at those 
coordinates in the d-dimensional search space.  The waiting onlooker bees 
probabilistically choose the food sources they will visit.  In the ABCO algorithm 
they choose a food source depending on the rationalized probability values 
associated with these sources. In the Karaboga et al (2005) algorithm, roulette 
wheel selection is employed for this purpose. 

Using the roulette wheel selection approach, the probability that an onlooker bee 
will choose the location of any particular employed bee is given by ProbC, which 
can be calculated using the expression given by (14). 

d if d 
 pi i i 

(14) ProbC 
 


 

fiti 
np 

i 1 

fiti 
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The roulette wheel selection process is frequently employed in genetic algorithms. 
An excellent description of the roulette wheel selection process and an example of 
its application is provided by Haupt and Haupt (2004). 

After probabilistically selecting a promising food source to visit, the onlooker 
bees fly out into the fitness landscape to this location. The bees then began 
searching in the neighborhood of this location for new, better sources of nectar. 
Each bee generates a neighboring position and evaluates the fitness at this 
neighboring location using the relationships previously shown in equations (11) 
and (12). The fitness of the neighborhood location and the original location of the 
onlooker bee are compared using the selection mechanism described by equation 
(13). The onlooker bee either moves to the neighboring location, if this move is 
fitness improving, or it maintains its current location and fitness.  At the 
conclusion of the unemployed-onlooker bee phase, the global best position and 
fitness are recorded, prior to starting a new cycle or iteration of the algorithm. 

Scout Bees 

Employed bees whose fitness cannot be improved within some preset number of 
cycles (iterations) specified by the analyst become scout bees.  Scout bees 
abandon their food sources (locations) and are randomly reinitialized in the fitness 
landscape.  These scout bees begin searching for new, superior nectar sources at 
new locations. Through this interesting mechanism, initially discovered inferior 
fitness locations and high value but stagnant locations are abandoned.  This 
allows new, potentially superior positions to be explored. The conversion of some 
of the employed bees to scouts helps preserve fitness exploiting behavior and 
reduce the likelihood of premature convergence on a local optimal point. At the 
conclusion of the unemployed-scout bee phase, the global best position and 
fitness are recorded, prior to starting a new cycle or iteration of the algorithm. 

Convergence 
The preponderance of numerical optimization algorithms are based on some sort 
of iterative or repetitive procedure. An important aspect of these algorithms is the 
design of intelligent convergence or stopping rules. These rules detect when the 
routines have converged on a solution, and then halt the iterative process. 

The ABCO algorithm developed by Karaboga et al (2012) and typified by the 
Delphi code example, dated 5/17/2011 (http://mf.erciyes.edu.tr/abc/), uses a 
preset maximum number of cycles (iterations) as a stopping rule.  In this respect, 
this example of the ABCO algorithm is identical to the vast majority of heuristic 
algorithms.  Using this approach, the algorithm proceeds until a pre-set number of 
iterations have been completed-- then it halts.  The “best” solution from the 
population of solutions is identified and then reported. The primary advantage of 
this approach is it is simple to implement. This stopping rule is frequently used to 
compare the behavior of alternative parameter settings and algorithm variants. 
The disadvantage is profound—the preset maximum number of iterations may or 
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may not correspond to the number of iterations required for algorithm 
convergence. 

The Phase I Research Report contains a rather exhaustive treatment of 
evolutionary algorithm stopping rules.  It introduces several improved 
convergence approaches and describes their application to DE, PSO and RCGA, 
in replicated experiments (Harpman 2012, pages 35-39 and pages 54-58). 
Conceptually, similar performance improvements could be achieved by 
integrating some of these convergence approaches with the ABCO algorithm. 
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Appendix 2. ABCO Parent Code Base 
The artificial bee colony (ABCO) optimization algorithm is a recent innovation 
by Karaboga (2005). There are a number of descriptions of this algorithm and 
these vary considerably in terms of scope and detail.  Some of these descriptions 
include author specific embellishments and in some offerings, descriptions of the 
basic approach appear to vary significantly from the original source (Karaboga 
2005). For efficiency reasons, the parent Delphi code base for the ABC 
optimization algorithm used in this effort was downloaded directly from the 
Artificial Bee Colony Algorithm website homepage (http://mf.erciyes.edu.tr/abc/). 
Posted as version 5/17/2011, this Delphi code was designed for constrained 
minimization and includes several example engineering problems which are 
described in Akay and Karaboga (forthcoming), Akay and Karaboga (2011) and 
Karaboga and Basturk (2007). 

In contrast to some previous adventures, the Delphi code obtained from the ABC 
algorithm page compiled flawlessly in Borland Studio Developer 2006 and 
appeared to function correctly.  Using this parent code as a starting point, some 
new modular and more portable Delphi code was developed.  The improved ABC 
code was further revised, rewritten and applied to the suite of three unconstrained 
maximization test problems examined in Phase I of this research project. The 
resulting code was tested and validated for subsequent use in this project. 
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Appendix 3. Optimization, Minimization 
and Maximization. 

Many optimization algorithms are designed to identify the minima of a function. 
Similarly, the vast majority of explanations and documentation for optimization 
routines are couched in terms of function minimization (for example, see Press, et 
al 1989). In the case examined in this document however, the focus is on 
maximization.  Luckily, there is a straightforward relationship between 
identifying the minima of a function and finding the maxima of a function.  This 
relationship can and is exploited to use algorithms designed for minimization on 
maximization problems. 

As described in Press et al (1989), the tasks of minimization and maximization are 
“trivially related to each other.” Specifically, the minima of an arbitrary function, 
f(x) is the maxima of the negative of the function, f(x).  As with many 
purportedly trivial mathematical concepts, understanding is greatly facilitated by a 
simple 2-dimensional example. 

Consider the sphere function in 2-dimensions5.  The sphere function is written as 
shown in equation (5). 

(15) Z  (x 2 ) . 

Graphing the function described by equation (15) in 2-dimensions (x, y space) for 
x over values ranging from 6.0 to +6.0 yields the plot shown on the bottom half 
of Figure 21 as an inverted bowl shape in blue. 

The negative of the function specified by equation (15) is written as shown in in 
equation (16). 

(16)  Z  (x2 ) 

Graphing equation (16), which again is the negative of equation (15), in 2-
dimensions for x ranging from 6.0 to +6.0 yields the plot shown in upper half of 
Figure 21, as a red, bowl shaped surface. 

5 Note the 3-dimensional sphere function was used as an algorithm testing and development 
function in Phase 1 of this research project.  By extension, this makes it an obvious choice for 
this illustrative example. 
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Note that in Figure 21 the plot of Z is the mirror image of the plot of Z, and vice 
versa.  The optimal point (Z*), the maxima in the case of equation (16) and the 
minima in the case of equation (15) is identical (Z*=0.0) and both occur when the 
value of x=0.0. 

Figure 21.—Minimizing –f(x) is Identical to Maximizing f(x).
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Appendix 4. Test Functions for 
Algorithm Development 

Introduction 

This Appendix describes three optimization test functions which were employed 
in the early phases of algorithm development, including coding, testing, 
performance visualization and validation.  Each of these functions is a previously 
studied 3-dimensional (3-D) continuous, unconstrained, optimization problem. 
The test functions selected were restricted to three dimensions to facilitate 
implementation and to allow for real-time visualization of the algorithm’s 
behavior in the search space.  These test functions facilitated development of the 
evolutionary algorithms, prior to their application to the more difficult and higher 
dimension electric power-related problems, which were the focus of this research. 

By design, this research effort utilizes only a small and rather rudimentary subset 
of the universe of test functions investigated by other authors.  As popularized by 
De Jong (1975), many existing studies examine the performance of evolutionary 
algorithms on a suite of optimization test functions (for example, see Mishra 2007 
or Mezura-Montes and Flores-Mendoza 2009). There are numerous optimization 
test functions available for this purpose, some of which are exceedingly complex. 
A sample of the test functions encountered in this literature is described in De 
Jong (1975), Haupt and Haupt (2004), Engelbrecht (2005), Price, Storn and 
Lampinen (2005), Feoktistov (2006) and other sources. 

Test Function 1—Sphere 

The sphere function is one of the most rudimentary 3-D optimization problems.  It 
is a symmetric, continuous real-valued function possessing a single (global) 
optimal point. This function is defined over the set of all real numbers, however a 
bounded search range is used in this application. 

In 3-D, the equation describing the sphere function is (17). 

(17) Z   x 2  y 2 

The gradient of this test function is especially useful as a device for ascertaining 
the quality of a solution on convergence.  For this test function, the expression for 
the gradient, or vector of first partial derivatives, is shown in equation (18). 

Z(18) Z x  xi 

 2xi 
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The domain for the sphere function is the real number line (-∞≤ x ≤+∞).  For test 
purposes however, the search domain for the independent variables (x, y) was 
restricted to the bounded interval (-2≤ x ≤+2). 

The maximum value of Z for this test optimization function is Z=0.0.  This 
maximum Z value is obtained when x=0.0 and y=0.0. 

Plan View 3-D View 

Figure 22.—Plan and 3-D Views of the Sphere Function. 

Figure 22 illustrates the plan (top) view and the 3-D view of test function 1, the 
sphere function.  As shown in this figure, the contours are symmetric about the 
optimal point. The global maximum is the sole optima in the bounded search 
space. 

The sphere function is perhaps the most rudimentary of all optimization test 
problems.  It is symmetric about the origin, easily implemented in code and 
readily solved.  This function was used primarily for early-stage development of 
the evolutionary algorithms employed in this research.  This test function allowed 
for visual verification of algorithm functioning and effectiveness during the 
coding process. 

Test Function 2—Ridge 

The ridge function is a somewhat more complex 3-D optimization problem.  It is 
a continuous but not a symmetric function.  It has a single (global) optimal point 
located at the top of a ridge, bounded on either side by steep canyons.  This 
function is defined over the set of all real numbers, however a bounded search 
range is used in this application. 

In 3-D, the equation describing the ridge function is (19). 
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x 2 y(19)		 Z x  2ey  e  e 

The gradient of this test function is especially useful as a device for ascertaining 
the quality of a solution on convergence.  For this test function, the expressions 
for the gradient, or vector of first partial derivatives, is shown in equations (20) 
and (21) 

Z x(20)		 Z   1.00  ex x 

Z 2 y(21)		 Z y   2e  2e 
y 

The domain  for  the ridge function  is  the real  number  line (-∞≤  x ≤+∞).  For test  
purposes  however,  the search  domain  for  the independent  variables  (x,  y)  was  
restricted  to  the  bounded  interval  (-2≤  x ≤+2).   

The  maximum  value  of  Z  for  this  test  optimization  function  is  Z=-1.00.   This  
maximum  Z v alue is  obtained when  x=0.0 and y=0.50.  

Figure 23 illustrates  the plan  (top)  view and the 3-D view of  test  function  2,  the so  
called ridge function.  As  shown  in  this  figure,  the contours  are  asymmetric  about  
the  optimal  point.   The  global  maximum  is  the  sole  optima  in  the  bounded  search  
space.  It  lies  at  the top of  a long  gently  sloping ridge with  canyons  on  either  side.   

Plan View 3‐D View 

Figure 23.—Plan and 3-D Views of the Ridge Function. 

The slope of the ridge changes very gradually, often causing premature 
convergence for certain types of gradient based algorithms and poorly 
parameterized evolutionary algorithms.  A single badly calculated step can send 
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the solution down one of the precipitous canyons on either side of the ridge, 
causing the algorithm to fail. 

In the general scheme of things, the ridge function is a relatively straightforward 
optimization test problem.  It is easily implemented in code, although not so 
readily solved.  This function was used as a test bed during the development of 
the evolutionary algorithms described in this research.  This test function allowed 
for visual verification of algorithm functioning and effectiveness during the 
coding process. 

Test Function 3—Alpine 

The Alpine test function, as described by Clerc (2006) and Haupt and Haupt 
(2004), is a complex 3-D optimization problem.  It is a continuous, but not 
symmetric function.  It has a multiple local optima and a single (global) optimal 
point in the search space.  This function is defined over the set of all real numbers 
and has multiple local optima in that range (as might be expected).  A finite 
bounded search range is used in this application. 

In 3-D, the equation describing the Alpine function is (22). 

(22) Z sin(x)  sin( y) * xy 

The gradient of this test function is especially useful as a device for ascertaining 
the quality of a solution at convergence.  For this test function, the expressions for 
the gradient, or vector of first partial derivatives, is shown in equation (23). 

Z(23) Z   tanh(x )  2xx i ix 

The domain for the ridge function is the real number line (-∞≤ x ≤+∞).  For test 
purposes however, the search domain for the independent variables (x, y) was 
restricted to the bounded interval (-10≤ x ≤+10). 

The maximum value of Z for this test optimization function is Z=7.885600724. 
The maximum Z value is obtained when x=7.917052686 and y=7.917052686. 
This point is located in the upper right-hand quadrant of the plot. 

Figure 24 illustrates the plan (top) view and the 3-D view of test function 3, the 
Alpine function.  As shown in this figure, the contours are quite complex.  There 
are multiple local optima in the search space.  The global maximum (in this 
bounded search space) is located at the top of Mount Blanc (as termed by Clerc 
2006) or Longs Peak (as termed by Haupt and Haupt 2004), in the upper right-
hand quadrant of the plot. Mount Blanc is surrounded by lesser peaks. 
Encountering any of these lesser peaks will cause a gradient based algorithm to 
converge and announce it has located a solution.  Identification of the global 
optima in this search space is extremely difficult. 
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Plan View 3‐D View 

Figure 24.—Plan and 3-D Views of the Alpine Function. 

In the general scheme of things, the Alpine function is a relatively complicated 
optimization test problem.  It is quite easily implemented in code, although not so 
readily solved, particularly by gradient based methods. This function was used 
extensively during the development of the evolutionary algorithms described in 
this research.  This test function allowed for visual verification of algorithm 
functioning and effectiveness in a complicated solution space. 
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Appendix 5. Reservoir Characteristics
	
Operation of the hydropower plant is made possible by and affects the state of the 
storage reservoir.  Conversely, the state of the storage reservoir, in particular its 
elevation and the existence of physical and engineering constraints directly effects 
the manner in which the hydropower plant can be operated. 

The reservoir characterized in the ESIM03 model has a maximum storage 
capability of 640,000 af when it is full.  A reservoir full condition occurs when 
the water surface elevation reaches 2008.1856 ft above mean sea level.  The 
reservoir can be drafted by 200 ft for power generation purposes. The minimum 
power pool occurs at an elevation of 1808.1856 ft or a volume of 240,795.83 af. 
There is a difference between the elevation at the top of the penstock and the 
minimum power pool elevation.  This difference reflects the minimum 
submergence depth6 necessary for power production.  When there is no release 
from the dam, the elevation of the tailwater is 1708.1856 ft. An illustration of 
these critical elevations and depths is provided in Figure 25. 

Figure 25.—Critical Reservoir and Powerplant Elevations. 

The relationship between the volume content of the reservoir and the elevation of 
the reservoir is represented by a cubic polynomial of the form shown in equation 
(24). 

(24)		 elev  a  vol 3  b  vol 2  c  vol  d 

Where:		 elev=water surface elevation of reservoir (ft above mean sea level) 
vol=volume of the reservoir (acre-feet) 

6 A minimum submergence depth is necessary to prevent the creation of vortices and the 
entrainment of air in the turbines. If this were to occur, it would cause cavitation and damage 
the turbines. 
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 a, b,c,d are coefficients. 

The coefficients for this relationship are shown in Table 11. 

Table 11.—Coefficients for Volume and 
Elevation Equation 

Coefficient Value 

a 2.400e-15 

b -3.85e-09 

c 0.0024 

d 1420.00 

Figure 26 shows a plot of this relationship (equation 24) over a range of 
applicable storage volumes. 

Figure 26.—Relationship Between Reservoir Volume (af) and 
Elevation (ft). 

The relationship shown characterizes a topography which is fairly typical for 
storage reservoirs.  Initially, the elevation increases rapidly as the volume of the 
reservoir increases.  As the reservoir approaches its full condition, the elevation 
increases much less rapidly. 
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There is a one to one relationship between reservoir volume and reservoir surface 
elevation.  Specifying the reservoir volume is equivalent to specifying the 
elevation and vice versa.  Since some calculations require the elevation and some 
calculations require the reservoir volume, the ability to convert rapidly back and 
forth between the two measurements is essential.  Given a specified reservoir 
volume, the reservoir elevation is easily computed by using equation (24). 
However, computing the reservoir volume from a known reservoir elevation 
requires the solution of a cubic equation which is somewhat more difficult.  The 
(cubic) relationship for volume as a function of elevation can be solved using the 
methodology described in Press et al (1989 page 163). 
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Appendix 6. Dispatch Test Problems 

Narrative Description 

Each of the dispatch test problems represents a hypothetical hydropower plant 
with either two generators or four generators, and an outlet works. The generator 
units have different engineering and operational characteristics as described 
subsequently. The elevation of the storage reservoir (forebay) and the amount of 
water which must be released from the facility are assumed to be known 
(exogenously determined). The head is calculated as the difference between the 
reservoir elevation and the tailwater elevation. The elevation of the tailwater (also 
known as the afterbay or tailrace) is an increasing function of the total amount of 
water released from the plant. Each generator has a minimum and maximum 
release constraint. For any given reservoir elevation and release level, the 
objective of the operator is to release water from the operating generation units 
and the outlet works to maximize the total generation. 

Mathematical Specification 

The Test Dispatch Problems can be specified relatively efficiently in 
mathematical notation.  This problem is a nonlinear mixed integer optimization 
problem with constraints. It can be written as shown in equations (25) though 
(30). 

iN 

(25) Max [ pi (qi ,Q)] 
i1 

    Subject  to:  

nN 1 

(26) qi  Q 
n1 

(27) qi  0 

(28) if qi  0, qi  ki 

(29) qi  wi 
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(30) 1808.19  elev  2008.19 

where: i = source indicator 
N = number of release sources (generators + outlet works)

 pi = real power generated (MW) at generator (i) 
qi = release of water (cfs) from source (i) 
Q = total release from all sources (cfs) 
elev = forebay reservoir elevation (ft above mean sea level)

 ki = minimum release constraint (cfs)
 wi = maximum release constraint (cfs) 

Equation (25) is the objective function for this constrained maximization problem. 
The operator’s objective is to maximize generation by optimally choosing the 
amount of water to release from the available N-generators, and the outlet works. 
Water released from the outlet works does not generate electricity but does affect 
the tailwater elevation and consequently the amount of electricity generated at the 
operating generation units. 

Equation (26) is the applicable water balance constraint. This constraint ensures 
the amount of water released from all sources (generators 1 through N, and the 
outlet works) exactly equals the intended release, Q. 

Equation (27) is a nonnegativity constraint. This logical constraint is needed to 
ensure that all of the releases, from all sources, are nonnegative. 

Equation (28) is a deceptively complex logical and minimum release constraint. 
In narrative form, this equation requires that the release from a particular source, 
such as turbine 2, must be either 0.0 (off), or, if it is positive (on), it must be 
greater than some given minimum release constraint (k). This type of constraint 
is often coded as an binary (1/0) constraint and it vastly increases the complexity 
of this problem. 

Equation (29) is the maximum release constraint. Releases from any source (i) 
must be less than or equal to the maximum physical release capabilities of that 
source (w). 

Constraint equation (30) delineates the limits of the active pool in the hypothetical 
storage reservoir.  Allowing for a minimum submergence depth, the lower limit 
for generation occurs at a reservoir elevation of 1808.19 ft. The normal full pool 
for this hypothetical storage reservoir occurs at a reservoir elevation of 2008.19 ft. 
Appendix 5 illustrates the characteristics of this hypothetical forebay storage 
reservoir. 
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Common Mathematical Structure 

In this analysis, the real power generation for any particular generator (i) is 
characterized by the expression shown in (31). 

p 
 qi   eff  head (Q,elev)  hptokw (31) i  

i 
  

 fptohp  1000  

Where: 
pi = (real) electric power generated (mw) by generator (i) 
γ = 62.40, specific weight of water at 50 degrees Fahrenheit (lbs/ft3). 
effi= efficiency factor18 (dimensionless) for generator (i) 
qi = release (cfs) from source (i) 
Q = total release from all sources. 
elev = reservoir elevation (ft above mean sea level). 
head = (gross) head (ft) 
fptohp = 550, foot-pounds/sec to horsepower conversion factor. 
hptokw = 0.746, horsepower to kilowatts conversion factor. 

For purpose of this problem, (gross) head is defined as the difference between the 
reservoir elevation and the tailwater elevation. While it is assumed the forebay 
reservoir elevation is known, the elevation of the afterbay or tailwater varies with 
the total release from all sources, Q.  More explicitly, the head depends not only 
on the releases made from, for example turbine 1, but also on releases being made 
from the remaining turbines and the outlet works, if any.  For our purposes, we 
characterize net head as shown in (32). 

(32) head [elev  (w0  w1 Q)] 

Where: 
head = generation head (ft) 
elev = reservoir elevation (ft above mean sea level). 
w0 = 1708.186, tailwater elevation (ft above mean sea level) when Q=0.0 
w1 = 0.0070, change in tailwater elevation as release changes (ft/cfs) 
Q = total release from all sources 

18 In this application the efficiency (eff) is represented as a constant. More 
generally, efficiency may vary as a function of release and head. 
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Prohibited Operating Zones 

Prohibited operating zones are operational or production ranges which should be 
avoided for engineering and functional reasons.  Operation of a unit within these 
prohibited zones may cause the machinery to vibrate excessively (rough zones), 
may cause cavitation, or may result in other undesirable system states. 

In general prohibited operating zones are delimited with a lower and operating 
zone limit.  For example, a prohibited operating zone may be described as the 
zone between a release of 1000 cfs and 3400 cfs, or, alternatively, the generation 
levels between 100 MW and 200 MW. 

The locations of prohibited operating zones are dynamic.  Stated differently, the 
lower and upper limits of prohibited operating zones, and the range between them, 
is a function of the head, as well as the engineering characteristics of the installed 
equipment. 

Dispatch Test Problem 1 

Dispatch Test Problem 1 has one small generation unit (Unit 1), with a nominal 
capacity of 64 MW, and one large generation unit (Unit 2), with a nominal 
capacity of 153 MW.  The relationship between release and generation for both of 
these units is shown in Figure 27. 

Figure 27.—Dispatch Problem 1 Release and Generation Characteristics. 

Each of these generation units has minimum and maximum operational release 
capacities which are described in Table 12.  For Unit 1, the minimum release 
capacity is 20 cfs and the maximum release capacity is 3000 cfs.  In Test Problem 
1, there are no prohibited operating zones for Unit 1. For Unit 2, the minimum 
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Unit 

Release Constraints Prohibited Zone 1 Prohibited Zone 2 

MinQ 
(cfs) 

MaxQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

1 20 3000 

2 200 9000 

   

 
           
         
         

       
 
 

 
    

 
        

         
          
         

          
         

         
         

release capacity is 200 cfs and the maximum release capacity is 9000 cfs.  In Test 
Problem 1, there are no prohibited operating zones for Unit 2. The release 
constraints for all of the units in Test Problem 1 are summarized in Table 12. 

Table 12.—Dispatch Test Problem 1 Characteristics 

Dispatch Test Problem 2 

Dispatch Test Problem 2 has one small generation unit (Unit 1), with a nominal 
capacity of 64 MW, and one large generation unit (Unit 2), with a nominal 
capacity of 153 MW.  The relationship between release and generation for both of 
these units is shown in Figure 28. 

Figure 28.—Dispatch Problem 2 Release and Generation Characteristics. 

Each of these generation units has minimum and maximum operational release 
capacities.  For Unit 1, the minimum release capacity is 20 cfs and the maximum 
release capacity is 3000 cfs.  In Test Problem 2, Unit 1 has a single prohibited 
operating zone.  The lower boundary for prohibited operating zone 1 in Unit 1 is 
1000 cfs.  The upper boundary for prohibited operation zone 1 for this unit is 
1500 cfs.  For Unit 2, the minimum release capacity is 200 cfs and the maximum 
release capacity is 9000 cfs.  In Test Problem 2, Unit 2 has two prohibited 
operating zones. The lower boundary for prohibited operating zone 1 is 1300 cfs. 
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Unit 

Release Constraints Prohibited Zone 1 Prohibited Zone 2 

MinQ 
(cfs) 

MaxQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

1 20 3000 1000 1500 

2 200 9000 1300 1700 4000 5000 

 

   

           
           
           

       
          

 
 

The upper boundary for prohibited operation zone is 1700 cfs.  For prohibited 
operating zone 2, the lower boundary is 4000 cfs. The upper boundary for 
prohibited operation zone 2 is 5000 cfs. The release constraints and prohibited 
operating zones for all of the units in Test Problem 2 are summarized in Table 13. 

Table 13.—Dispatch Test Problem 2 Characteristics 

Dispatch Test Problem 3 

Dispatch Test Problem 3 has four total generation units.  These consist of two 
small generation units (Unit 1 and Unit 3), with a nominal capacity of 64 MW 
each, and two large generation units (Unit 2 and Unit 4), each of which has a 
nominal capacity of 153 MW.  The relationship between release and generation 
for all of these units is shown in Figure 29. 

119 



 

 
 

 

 
    

 
        

        
            

       
         

             
         

 
 

   

 

    

   

     

      

     

      

Unit 

Release Constraints Prohibited Zone 1 Prohibited Zone 2 

MinQ 
(cfs) 

MaxQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

1 20 3000 

2 200 9000 

3 20 3000 

4 200 9000 

Figure 29.—Dispatch Problem 3 Release and Generation Characteristics. 

Each of these generation units has minimum and maximum operational release 
capacities.  For Units 1 and 3, the minimum release capacity is 20 cfs and the 
maximum release capacity is 3000 cfs.  In Test Problem 3, neither Unit 1 nor Unit 
2 have any prohibited operating zones. For Unit 2 and Unit 4 the minimum 
release capacity is 200 cfs and the maximum release capacity is 9000 cfs.  In Test 
Problem 3, neither Unit 2 nor Unit 4 have any prohibited operating zones. The 
release constraints for all of the units in Test Problem 3 are summarized in Table 
14. 

Table 14.—Dispatch Test Problem 3 Characteristics 
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Dispatch Test Problem 4 

Dispatch Test Problem 4 has four total generation units.  These consist of two 
small generation units (Unit 1 and Unit 3), with a nominal capacity of 64 MW 
each, and two large generation units (Unit 2 and Unit 4), each with a nominal 
capacity of 153 MW.  The relationship between release and generation for all of 
these units is shown in Figure 30. 

Figure 30.—Dispatch Problem 4 Release and Generation Characteristics. 

Each of these generation units have minimum and maximum operational release 
capacities.  For Unit 1 and Unit 3, the minimum release capacity is 20 cfs and the 
maximum release capacity is 3000 cfs.  In Test Problem 4, Unit 3 has a single 
prohibited operating zone.  The lower boundary for this prohibited operating 
(zone 1) is 1000 cfs.  The upper boundary for prohibited operation zone 1 is 1500 
cfs.  For Units 2 and 4, the minimum release capacity is 200 cfs and the maximum 
release capacity is 9000 cfs.  In Test Problem 4, Unit 4 has two prohibited 
operating zones. The lower boundary for prohibited operating zone 1 in Unit 4 is 
1300 cfs.  The upper boundary for this prohibited operation zone is 1700 cfs.  For 
prohibited operating zone 2 Unit 4, the lower boundary is 4000 cfs.  The upper 
boundary for this prohibited operation zone 2 is 5000 cfs. The release 

121 



 

 
 

 

         
  

 
 
 

   

 

    

    

     

      

     

   

 

Unit 

Release Constraints Prohibited Zone 1 Prohibited Zone 2 

MinQ 
(cfs) 

MaxQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

LowerQ 
(cfs) 

UpperQ 
(cfs) 

1 20 3000 

2 200 9000 

3 20 3000 1000 1500 

4 200 9000 1300 1700 4000 5000 

constraints and prohibited operating zones for all of the units in Test Problem 4 
are summarized in Table 15. 

Table 15.—Dispatch Test Problem 4 Characteristics 
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Appendix 7. Condensing, Motoring and 
Leakage 

Unit Leakage 

Depending on the plant, its design, maintenance condition and age, each turbine 
unit may unavoidably release some amount of water, even when it is not 
operating.  This is termed, “leakage” and occurs to a greater or lesser extent in all 
hydropower plants.  The major (but by no means only) source of leakage is 
passage of water around and through the closed wicket gates.  When the unit is 
not operating, the water being released is wasted, since it does not drive the 
turbine runners and produces no electrical energy.  A perfect seal around the 
wicket gates is not typically achievable and some level of leakage is typically 
expected, and tolerated. 

Unit State and Leakage 

For purposes of this modeling effort, each generator/turbine unit can be in any one 
of four states. These are (a) Dry maintenance/repair, (b) Off-line but operational, 
(c), Motoring/Condensing, and, (d) Operational.  Table 16 summarizes the 
presence or absence of leakage compared across different unit states. 

Table 16.—Unit State, Dispatch and Leakage 

Unit State 

Leakage 

(1=yes, 0=no) 

Available 
for Dispatch 
(1=yes, 0=no) 

Electric Energy 
Production 

(MW) 

Dry Maintenance 0 0 0 

Off-line 1 1 0 

Motoring/Condensing 1 1* negative (-) 

Operational 0 1 positive (+) 

*If under automatic generation control (AGC) and 
depending on the applicable market rules. 

When a unit is under dry maintenance or repair, the unit is dewatered, the wicket 
gates are isolated and leakage is minimized.  If there is any leakage while the unit 
is in this state, it is generally reduced to insignificant levels. Some degree of 
leakage is expected to occur when the turbine/generator units are off-line and also 
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when they are being used in condensing mode. When a unit is in the operating or 
generating state, all of the water released by the unit is being used to drive the 
turbine runners and, by definition, no leakage occurs. In this state, model leakage 
is assumed to be zero. 

The modeling implications of Table 16 are fairly straightforward. First, if a unit 
is in the dry maintenance/repair state, it is unavailable for dispatch and it is 
assumed not to leak. From a modeling standpoint, this unit cannot be dispatched 
and will not appear in the available unit list. Second, if a unit is available for 
dispatch, but is not currently in operation, it is leaking.  From a modeling 
standpoint, there are some unavoidable water releases from all nonoperational 
units.  These collateral releases are not subject to modeling control but should be 
accounted for in the calculation of aggregate plant release.  Interestingly enough 
however, a nonscientific survey of Reclamation power dispatchers suggests this 
source of leakage is not explicitly accounted for in management decisions or in 
the dispatch decision. A further modeling difficulty is that leakage from this 
source cannot be known, before the dispatch decision is made.  For these reasons, 
the unit dispatch model does not consider potential leakage from operational but 
idle units. The designation of a unit for condensing/motoring is typically an 
operator based decision, outside of modeling control. Selection of a unit for 
condensing removes that unit from the list of units available for dispatch. The 
leakage which results from condensing unit(s), while not subject to model control, 
is accounted for in the calculation of total plant release.  Finally, if a unit is 
operational (has been dispatched), all water released from that unit is used to 
produce electrical energy and no leakage occurs. The releases from operational 
units are subject to full modeling control and leakage is assumed to be zero for 
those units. 

Characterizing Leakage in the Model 

Leakage from any particular hydropower plant varies considerably depending on 
the design, installed equipment, its maintenance condition and age.  In addition, it 
may vary with the elevation of the forebay reservoir (hence, the head).  The data 
on leakage at Reclamation hydropower plants is limited but initial indications 
suggested it might be quite substantial.  For seven plants, Steves (personal 
communication, 2012) calculated that leakage at zero generation output is in the 
range of about 16-percent of the total turbine release capacity, measured in cubic 
feet per second (cfs). Subsequent explorations of this problem with other 
Reclamation Staff provided more definitive evidence that leakage at zero 
generation was much lower, on the order of 0.5 to 2 percent of the total turbine 
release capacity. 

With this additional information as guidance, a leakage of 1.0-percent of the total 
unit release capacity for all units which are not operating, but are available for 
dispatch, is used as the default value in the unit dispatch model.  To accommodate 
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the effects of greater or lesser degrees of unit leakage, the user may vary the 
amount of leakage in any given model run. 

Unit Condensing and Motoring 

Depending on the design of the plant, hydro units can be operated as synchronous 
condensers to increase reactive power on the interconnected grid. In this mode 
(also referred to as "motoring"), the hydro unit’s breaker switch is closed and no 
water is released to drive the turbine. Air is pumped into the turbine to allow it to 
spin freely.  Real electric power is supplied to the unit and the unit’s generator 
acts like a motor, rotating the turbine shaft and supplying reactive power to the 
system.  Depending on the control settings, condensing units can also be used for 
voltage and frequency control in the system. 

Characterizing Condensing in the Model 

The designation of a unit for condensing/motoring is commonly an explicit 
decision made by the plant operator. This decision is outside of modeling control. 
Selection of a unit for condensing removes that unit from the list of units available 
for dispatch. A condensing unit has two important features that should be 
characterized by the model.  First, a condensing unit requires a supply of real 
electric energy to turn the generator. This is summarized in Table 16.  For 
modeling purposes, the amount of real energy required for condensing is assumed 
to be 5% of the generator’s rated maximum output capacity, measured in MW.  It 
is assumed the other operating generation units must produce this additional 
energy, in addition to their otherwise planned output levels, to support unit 
condensing operations. To accommodate the effects of greater or lesser real power 
requirements to enable unit condensing, the user may vary the amount of 
condensing energy required in any given model run. A second feature which 
should be considered is that a condensing unit is subject to leakage. A leakage of 
16-percent of the total unit release capacity for all condensing units is used as the 
default value in the unit dispatch model.  To accommodate the effects of greater 
or lesser degrees of unit leakage, the user may vary the amount of leakage in any 
given model run. The leakage which results from condensing unit(s), while not 
subject to model control, must be (and is) accounted for in the calculation of total 
plant release. 
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Appendix 8. Triangular Rough Zone 
Penalty 
Constraints separate the solution space into feasible and infeasible spaces. The 
resulting feasible solution space is generally limited and can be discontinuous, 
even when the optimization problem is not.  Constraint equations can be linear or 
nonlinear in nature. In general, there are three classes of constraint equations. 
These broad classes are; boundary constraints, equality constraints and inequality 
constraints. 

Research on the incorporation of constraints in evolutionary programming 
methods and the solution of constrained optimization problems with evolutionary 
methods is rather voluminous.  Carlos Coello Coello published a widely cited 
synopsis of this work (Coello Coello 2002) and maintains an online annotated 
bibliography summarizing this ever-expanding body of research 
(http://www.cs.cinvestav.mx/~constraint/index.html).  As of February 2012, this 
bibliography exceeded 115 pages in length. 

The Phase 1 Report (Harpman 2012) reviewed the complete spectrum of 
constraint handling technologies employed in traditional (calculus based) and 
evolutionary algorithms.  One of the commonly employed constraint handling 
methods is to penalize or mathematically disadvantage the fitness value for 
solutions which are infeasible.  This approach is widely used both in traditional 
calculus based applications as well as in the application of evolutionary 
algorithms.  In the case of a maximization problem, fitness (F) is typically defined 
as the sum of the objective function value (f(x) minus the infeasibility penalties 
(P), if any.  This is shown in equation (33). 

(33) F=f(x) - P. 

The unit dispatch problem examined in this Phase 2 research effort has some of 
the same types of constraints examined in the Phase 1 effort including boundary 
constraints, inequality constraints and equality constraints.  In addition, the unit 
dispatch problems examined here have rough zone constraints, also known as 
prohibited operating zones. 

Mathematically speaking, the presence of rough zones creates a piece-wise and 
discontinuous problem, a class of optimization problems which is much more 
difficult to solve.  Figure 31 conceptually illustrates a unit dispatch problem with 
two rough zones, Rough Zone 1 and Rough Zone 2. These two rough zones 
divide the flow versus generation function into three discrete sections; one 
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segment is from zero to the lower limit of Rough Zone 1, the next segment is 
from the upper limit of Rough Zone 1 to the lower limit of Rough Zone 2 and the 
final segment is from the upper limit of Rough Zone 2 onward. 

Figure 31.—Rough Zones and Penalties. 

Mechanically and operationally, the generation unit being dispatched should be 
operated within one of the permissible ranges, and not within one of the rough 
zones.  The generation unit should be operated below the lower limit of Rough 
Zone 1, or in the range between the upper limit of Rough Zone 1 and the lower 
limit of Rough Zone 2, or somewhere in the region above the upper limit of 
Rough Zone 2. 

As part of this research effort, a triangular penalty function was developed to 
characterize rough zones and efficiently avoid the dispatch of generation units 
within them.  These triangular rough zone penalty functions mathematically 
disadvantage solutions falling within a prohibited operation zone but are zero for 
solutions within permissible operation regions.  A non-zero penalty is assessed 
any solution greater than the lower limit of the rough zone or less than the upper 
limit of the rough zone.  As the name implies, the numerical magnitude of the 
penalty is triangular. The penalty linearly increases as a potential solution moves 
from the lower limit of the rough zone towards the middle of the rough zone and 
reaches a maximum half-way between the lower limit and upper limit of the 
rough zone (the apex of the triangle).  The magnitude of the penalty then 
diminishes linearly as the solution moves from the center of the rough zone 
towards the upper limit of the rough zone. 
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Figure 31 illustrates the triangular rough zone penalty function.  To understand 
this concept more fully, it is helpful to take note of the common horizontal axis 
(release (cfs)) and note the right-hand vertical axis indicates the absolute value of 
the penalty.  As shown in Figure 31 the penalty is denoted in red and the 
numerical value of the penalty (P) is zero for releases outside of the rough zones. 
The penalty increases within a given rough zone, reaches a maximum at the center 
of the rough zone and then decreases as the potential release approaches the upper 
limit of a rough zone. 

The triangular rough zone penalty approach efficiently conveys information about 
the feasibility status of a solution to the evolutionary solution algorithms. 
Potential solutions outside of the rough zone are preferred to solutions within the 
rough zone and infeasible solutions are not uniformly penalized as might be the 
case with less sophisticated techniques. Potential solutions near the outside limits 
of the rough zone are preferred (or are less penalized) over solutions at the middle 
of the rough zone (which are penalized more). 

The triangular rough zone penalty function approach has proven to be quite 
effective for the unit dispatch test problems examined.  This approach serves to 
efficiently disadvantage the set of solutions which are infeasible, relative to those 
which are feasible.  In the evolutionary algorithm context, the individuals with the 
greatest fitness form the basis for potential solutions in succeeding generations. 
As a result, the population will select for, or move towards, the feasible solution 
space, with each successive iteration. 
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Appendix 9.  Box and Whisker Plots 

Box and whisker plots provide a quick summary of important dataset 
characteristics including the central tendency, dispersion, asymmetry, and 
extreme values. These plots are based on descriptive statistics of the underlying 
empirical distribution and are nonparametric or distribution-free.  Consequently, 
they do not reflect any of the assumptions associated with distributions, such as 
the normal distribution.  They provide an effective way of identifying 
asymmetrical attributes in datasets. Perhaps most importantly, the graphically 
compact nature of box and whisker plots facilitates rapid side-by-side comparison 
of different samples or datasets, which can otherwise be difficult to interpret. 

Box and whisker plots were first proposed by statistician John Tukey circa 1970. 
Their application has become relatively commonplace and standardized. 
Consumers of technical literature recognize there are some variations in the way 
these plots are defined. As related by Banacos (2011) the majority of these 
variations are in the definition of the “whiskers.” 

For purposes of this research project, the 5th and 95th percentiles are used in this 
document for the ends of the whiskers. Using this convention, there is a 5% 
probability a data point will fall beyond the high or low values at the ends of the 
whiskers.  The range between the whiskers encompasses 90% of the empirical 
distribution. 

Figure 32 illustrates a representative Box and Whiskers plot as employed in this 
study.  As shown in Figure 32, the median (black horizontal line within the box) 
illustrates the central tendency measure of the plotted data set. The median is the 
50th percentile point, or the point where one-half the data lie above and one-half 
the data lie below.  The “box” illustrates the inter-quartile space between the 75th 

percentile and the 25th percentile of the empirical data distribution.  The size of 
the box provides an indication of how much variance or dispersion are reflected in 
the data. The median point may or may not be in the center of the box depending 
on whether the data is symmetric around the median or is asymmetric (skewed). 
In Figure 32 the whiskers extend to the 95th percentile and the 5th percentile of the 
empirical distribution.  The dispersion of the empirical distributions are indicated 
by the distance between the ends of these whiskers—the greater the distance 
between them, the more the dispersion and the shorter the distance between the 
ends of the whiskers, the less the dispersion. If the empirical distribution is 
symmetric, the whiskers will be the same length.  If the distribution is 
asymmetric, the upper and lower whiskers will be of differing lengths. 
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Figure 32.—Interpreting a Box and Whisker Plot. 

There is no built-in functionality for generating a Box and Whisker plot using 
Microsoft Excel.  However, using the tedious and lengthy set of steps described in 
the very helpful Peltier Tech Blog (www.peltiertech.com), Excel can be used to 
create these helpful summaries.  These box and whisker plots illustrate the 
characteristics of empirical distributions and facilitate the comparison of different 
samples. 
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Appendix 10.  Initialization Experiments
	
The numerical results of replicated initialization experiments (ntrials=50) using 
different initialization approaches for dispatch test problem 4 with a release of 
10,000 cfs are reported in this appendix. Except where noted in the results tables, 
all of the algorithm parameters were set to their default values, as described in the 
text. Some of these results are summarized in graphic form in the main body of 
the report. 

Table 17.—DDE Iterations to Convergence by Initialization Type. 

Uniform Neider Weyl/Torus Haber Halton OBL 
nobs 50 50 50 50 50 50 
mean 289.1 285.4 298.6 283.3 281.4 291.5 
std. dev 37.7 29.9 35.5 38.7 36.1 38.5 
minimum 210.0 228.0 242.0 214.0 222.0 201.0 
05th perc 236.8 247.9 247.5 232.9 239.7 243.8 
25th perc 262.0 262.5 273.3 261.3 259.5 262.3 
median 283.0 286.0 298.5 279.0 278.5 288.0 
75th perc 313.5 308.8 324.8 305.0 289.0 315.8 
95th perc 355.5 332.0 355.8 360.7 368.0 364.0 
maximum 381.0 368.0 380.0 395.0 395.0 392.0 

Table 18.—PSO Iterations to Convergence by Initialization Type.
	

Uniform Neider Weyl/Torus Haber Halton OBL 
nobs 50 50 50 50 50 50 
mean 94.1 92.8 81.7 79.5 95.1 87.2 
std. dev 59.1 76.3 27.8 26.9 48.8 40.0 
minimum 32.0 36.0 32.0 35.0 31.0 33.0 
05th perc 34.5 46.8 48.5 49.0 47.5 35.0 
25th perc 58.5 62.3 60.0 60.8 63.3 62.5 
median 72.0 77.0 74.5 72.5 85.0 82.5 
75th perc 112.5 99.0 98.8 97.5 110.8 99.8 
95th perc 205.8 141.5 127.0 120.1 191.2 159.1 
maximum 311.0 581.0 168.0 165.0 307.0 221.0 
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Table 19.—RCGA Iterations to Convergence by Initialization Type.
	

Uniform Neider Weyl/Torus Haber Halton OBL 
nobs 50 50 50 50 50 50 
mean 2529.0 2493.9 2400.0 2445.6 2613.4 2250.9 
std. dev 1263.7 1392.0 1741.5 1550.2 1362.6 1277.5 
minimum 597.0 147.0 214.0 237.0 98.0 127.0 
05th perc 857.9 548.4 629.7 702.1 496.1 476.1 
25th perc 1562.8 1493.8 1299.3 1353.3 1687.8 1229.0 
median 2316.5 2191.0 1790.0 2075.5 2525.0 2207.5 
75th perc 3120.0 3454.8 3063.3 3115.8 3631.8 2830.5 
95th perc 4755.0 5065.0 6206.5 5538.6 5010.9 4866.5 
maximum 5918.0 6012.0 8100.0 7209.0 5547.0 5587.0 
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Appendix 11. Stopping Rule 
Experiments 

The numerical results of replicated stopping rule experiments (ntrials=50) using 
different stopping rules for dispatch test problem 4 with a release of 10,000 cfs 
are reported in this appendix.  Except where noted in the results tables, all of the 
algorithm parameters were set to their default values, as described in the text. 
Some of these results are summarized in graphic form in the main body of the 
report. 

The table and the figure below detail the results obtained with the PSO algorithm 
using each of the stopping rules.  As shown, the intelligent rules (Pop_SD, 
Elite_SD, and Elite_Mean) greatly decrease the computational time and expense 
required to achieve convergence on dispatch test problem 4.  The Elite_Mean 
approach appears to have a small computational advantage relative to the other 
approaches.  However a formal statistical investigation of this possibility remains 
to be undertaken. 

Figure 33.—PSO Stopping Rule Results.
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Table 20.—PSO Numerical Results of Stopping Rule Experiments.
	

Iter5000 Pop_SD Elite_SD Elite_Mean 
nobs 50 50 50 50 

mean 704.3 77.6 67.1 43.0 
std. dev 35.2 119.4 71.2 27.5 
minimum 615.0 9.0 14.0 13.0 
05th perc 649.4 10.5 16.4 14.0 
25th perc 687.3 18.5 31.5 20.3 
median 695.0 51.5 50.5 40.0 
75th perc 713.3 94.8 82.5 55.8 
95th perc 772.9 177.5 137.9 87.3 
maximum 786.0 801.0 503.0 146.0 

Experiments comparing the population standard deviation stopping rule to the 
elite standard deviation were also undertaken.  Figure 34 illustrates the results of 
those experiments.  Although the elite approach might be expected to reduce 
convergence time, this expectation does not hold across all of the algorithms. 
Potentially, this counterintuitive result stems from the additional time required to 
sort the observations to identify the elite fraction. 

Figure 34.—Elite and Population SD Stopping Rule Results.
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Appendix 12. Problem Size 
Experiments 

The numerical results of replicated experiments (ntrials=50) comparing the 
solution time for different sized unit dispatch problems are reported in this 
appendix.  Some of these results are summarized in graphic form in the main 
body of the report. 

The values in these tables are CPU time measured in milliseconds (msec). 

Table 21.—Problem 1 (2-Unit) Convergence Results. 

DE_P1 PSO_P1 RCGA_P1 ABCO_P1 
nobs 50 50 50 50 
mean 12.3 18.9 167.3 14.0 

std. dev 1.6 8.2 78.7 0.8 
minimum 9.0 9.0 28.0 12.0 
05th perc 10.0 11.0 46.0 13.0 
25th perc 11.0 13.0 118.0 14.0 
median 12.0 16.0 158.0 14.0 

75th perc 13.0 23.0 216.8 14.8 
95th perc 15.0 37.2 307.0 15.0 
maximum 17.0 44.0 338.0 15.0 
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Table 22.—Problem 3 (4-Unit) Convergence Results.
	

DE_P3 PSO_P3 RCGA_P3 ABCO_P3 
nobs 50 50 50 50 
mean 33.5 26.3 188.7 65.4 

std. dev 4.1 12.8 112.9 9.4 
minimum 26.0 9.0 27.0 52.0 
05th perc 26.5 10.0 45.2 53.0 
25th perc 31.3 17.0 113.5 59.0 
median 33.0 21.5 163.5 65.0 

75th perc 36.0 37.0 231.3 68.8 
95th perc 41.0 49.7 398.3 81.1 
maximum 43.0 55.0 535.0 99.0 
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Appendix 13. Rough Zone 
Experiments. 
The numerical results of replicated experiments (ntrials=50) comparing the 
solution time for problem 1 (2-units, no rough zones) and problem 2 (2-units, with 
rough zones) are reported in this appendix.  The construction of this problem with 
a release level of 7500 cfs ensures the rough zone constraint is binding in problem 
2. Some of these results are summarized in graphic form in the main body of the 
report. 

The values reported in these tables are the CPU time measured in milliseconds 
(msec). 

Table 23.—Problem 1 Convergence Results (Q=7500). 

DE_Q75 PSO_Q75 RCGA_Q75 ABCO_Q75 
nobs 50 50 50 50 
mean 12.7 16.0 145.1 14.4 
std. dev 1.4 2.7 69.2 0.9 
minimum 8.0 12.0 29.0 12.0 
05th perc 11.0 13.0 39.8 13.0 
25th perc 12.0 14.0 91.5 14.0 
median 13.0 15.0 139.5 14.5 
75th perc 13.0 18.0 200.8 15.0 
95th perc 15.0 20.6 262.4 15.0 
maximum 16.0 22.0 284.0 16.0 
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Table 24.—Problem 2 Convergence Results (Q=7500).
	

DE_Q75 PSO_Q75 RCGA_Q75 ABCO_Q75 
nobs 50 50 50 50 
mean 21.3 37.7 69.1 17.8 
std. dev 2.1 8.2 51.4 9.3 
minimum 18.0 21.0 6.0 12.0 
05th perc 18.0 28.0 7.0 12.0 
25th perc 20.0 34.0 34.3 13.0 
median 21.0 37.0 54.5 14.0 
75th perc 22.8 40.0 102.0 18.0 
95th perc 25.0 47.0 180.6 36.6 
maximum 27.0 78.0 214.0 58.0 
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Appendix 14. PSO Parameter 
Experiments 
The numerical results of replicated experiments (ntrials=50) comparing the 
solution time for different values of the social weight (c2) parameter used in the 
PSO algorithm are reported in this appendix.  Some of these results are 
summarized in graphic form in the main body of the report. 

The values in these tables are the number of iterations to convergence. 

Table 25.—Results of C2 Parameter Experiments. 

c2=1.3 c2=1.5 c2=1.7 c2=1.9 c2=2.1 c2=2.3 
nobs 50 50 50 50 50 50 
mean 1663.1 176.9 115.0 93.0 79.7 86.8 
std. dev 1840.9 157.3 146.8 51.1 35.2 41.1 
minimum 85.0 37.0 31.0 31.0 26.0 28.0 
05th perc 94.8 38.5 36.0 46.4 40.3 40.0 
25th perc 229.3 72.3 63.3 62.0 57.3 61.0 
median 751.5 141.0 83.0 80.5 72.0 76.0 
75th perc 2386.8 235.3 119.0 103.5 92.3 99.5 
95th perc 5028.4 366.6 196.4 204.5 146.9 177.1 
maximum 7283.0 972.0 1032.0 270.0 215.0 218.0 
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Appendix 15.  DE Mutation Strategies
	
The numerical results of replicated experiments (ntrials=50) comparing the 
solution time for different mutation strategies used in the DE algorithm are 
reported in this appendix.  Some of these results are summarized in graphic form 
in the main body of the report. 

The values in these tables are the number of iterations to convergence. 

Table 26.—DE Mutation Strategy Experiments. 

Rand1 Best1 RandSF Trigon 
nobs 50 50 50 50 
mean 150.0 497.2 509.4 3147.6 
std. dev 18.8 105.9 114.8 1011.6 
minimum 101.0 262.0 268.0 1961.0 
05th perc 120.5 340.7 327.1 2054.5 
25th perc 138.0 429.0 416.3 2499.0 
median 150.5 484.5 523.0 2869.5 
75th perc 166.0 561.3 590.0 3554.8 
95th perc 177.0 668.6 690.1 5425.6 
maximum 180.0 771.0 756.0 6331.0 

Table 27.—DE Mutation Experiments (continued).
	

Detvsf SelfAdapt Best2 Rand2 
nobs 50 50 50 50 
mean 1077.7 287.1 1162.7 1772.1 
std. dev 194.8 34.6 327.0 394.6 
minimum 672.0 203.0 603.0 873.0 
05th perc 748.0 249.9 771.2 1142.7 
25th perc 957.5 263.0 901.3 1503.0 
median 1086.0 284.5 1105.5 1808.0 
75th perc 1194.8 305.8 1353.3 2046.5 
95th perc 1361.9 353.3 1758.2 2442.2 
maximum 1615.0 381.0 2090.0 2591.0 
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Appendix 16. Program Dictionary 
The table below contains the names of the programs used in this analysis and a 
description of their purpose. This will help facilitate location of the source code 
files and their reuse at a later date. 

Table 28.—Program Dictionary 

EA Filename Purpose 

DE de04 Development 

DE uddeXE2 Economic dispatch 

DE uddeXE2prod Testing environment 

PSO pso4 Development 

PSO udpsoXE2 Economic dispatch 

PSO udpsoXE2prod Testing environment 

RCGA rcgen Development 

RCGA udrcgaXE2 Economic dispatch 

RCGA udrcgaXE2prod Testing environment 

ABCO abc04_xe2 Development 

ABCO udabco_xe2 Economic dispatch 

ABCO udabcoxe2prod Testing environment 
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Mission Statements 
The U.S. Department of the Interior protects America’s natural 
resources and heritage, honors our cultures and tribal communities, 
and supplies the energy to power our future. 

The mission of the Bureau of Reclamation is to manage, develop, 
and protect water and related resources in an environmentally and 
economically sound manner in the interest of the American public. 
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