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1. Project Objective 

The U.S. Bureau of Reclamation (USBR) uses many kinds of computational hydrologic, 
hydraulic, and sediment-transport models to protect and manage water resources.  Such models are used 
to forecast future conditions and to analyze the impacts of potential changes to water systems, and the 
results from these models guide countless decisions made by USBR and its stakeholders.  Unfortunately, 
the results of computational models inherently contain uncertainty due to uncertainty in the model inputs, 
the values of the model parameters, and the mathematical representation of the system.  This uncertainty 
ultimately forces conservative decisions, which increases project costs and exacerbates the conflicts 
between the various project objectives and stakeholders. 

USBR currently uses simplistic methods to assess uncertainty.  These methods usually focus on 
simulating perceived worst-case scenarios and evaluating the behavior of the system under these 
scenarios.  The central problem with this approach is that it is not statistically rigorous.  The scenario is 
determined by professional expertise, so no probability of occurrence can be assigned to it, and decision 
makers have little confidence that the results accurately reflect the uncertainty.  In addition, this approach 
does not directly connect the certainty in the model inputs, parameters, and mathematical structure to the 
determination of the worst-case scenario.  As a result, this approach cannot give the project team guidance 
about how to reduce the uncertainty. 

The overall objective of this project is to develop a method to assess and potentially reduce 
uncertainty in the forecasts from hydrologic, hydraulic, and sediment-transport models.  We mainly focus 
on sediment transport models because they are typically the most complicated and computationally 
intensive class of models.  To be feasible for widespread use, the new method must require few enough 
simulations to be applied to complex model applications in a reasonable amount of time yet retain enough 
formality to evaluate strategies to reduce uncertainty.   
 
2. Previous Accomplishments 

The first phase of the project focused on identifying a more formal method for uncertainty 
estimation that has been used in other fields and adapting it to apply to hydrologic, hydraulic, and 
sediment-transport models.  The method that was identified is Generalized Likelihood Uncertainty 
Estimation (GLUE), which is a method to assess the uncertainty in forecasts due to the uncertainty in the 
parameters (Beven and Binley, 1992).  This method was selected because it is among the simplest 
methods to assess parameter uncertainty.  GLUE has been widely-used with hydrologic models, but it has 
a key limitation that restricts its use for hydraulic and sediment-transport models.  Specifically, 
hydrologic models typically have calibration observations for only one output variable (discharge) 
whereas sediment transport models, for example, can have observations for multiple output variables (e.g., 
water surface elevations, stream bed elevations, and sediment grain size distributions).  For this reason, 
GLUE was generalized to consider multiple output variables (Ruark et al., 2011).  This generalization was 
accomplished by developing a new function in GLUE that calculates the likelihood that a given parameter 



set is correct given calibration observations for multiple variables.  The new likelihood function weighs 
the observations of different output variables based on the sensitivity of each parameter to each output 
variable.  The sensitivities are calculated using Fourier Amplitude Sensitivity Test (FAST) (Saltelli et al., 
1999).  The new likelihood function not only allows for multiple output variables but also uses a more 
statistically formal formulation than the ones that are commonly used with GLUE.   

The multi-objective GLUE method was evaluated by coupling it to the Sedimentation and River 
Hydraulics - One Dimension (SRD-1D) model and applying it to two flume experiments (an erosional 
case and a depositional case).  While the method is generally successful at quantifying the impacts of 
parameter uncertainty, three key limitations were identified.  First, the method potentially requires too 
many model simulations to be used when simulations require long computation times.  Second, the 
method assumes that the probability distributions that describe the uncertainty in the parameter values 
after calibration (i.e. the posterior distributions) are independent of each other, but the results indicate 
some interdependence.  Third, the method does not consider the uncertainty in the forecasts due to 
uncertainty in the mathematical structure of the model.  Structural uncertainty might be particularly 
important in sediment transport modeling because multiple empirical transport laws are available that can 
potentially give rather different forecasts. 

In the second phase of the project, the importance of these limitations was evaluated by applying 
more sophisticated uncertainty methods and comparing their results to the multi-objective GLUE.  The 
more sophisticated method to assess parameter uncertainty is called Shuffled Complex Evolution 
Metropolis – Uncertainty Estimation (SCEM-UA) (Vrugt et al., 2003).  This approach is potentially 
quicker than GLUE because it uses information gained from the results of each model simulation to 
determine the configuration of the next simulation in the analysis.  In GLUE, all model simulations are 
performed independently, which means that it can perform simulations that are potentially unimportant to 
the results. SCEM-UA also accounts for the dependence between the parameter distributions after 
calibration.  SCEM-UA was generalized to allow for multiple output variables and called Multi-Variate 
Shuffled Complex Evolution Metropolis – Uncertainty Analysis (MSU) (Sabatine, 2012).  To include the 
an assessment of structural uncertainty, MSU was used in combination with Bayesian Model Averaging 
(BMA) (Hoeting et al., 1992).  BMA allows one to consider the uncertainty that is introduced by the 
selection of a particular sediment transport law. 

MSU and BMA were coupled with SRH-1D and applied to the same flume experiments that were 
considered with the multi-objective GLUE as well as an additional flume experiment (an erosional case 
with more data).  The results from MSU indicate that including the correlation between the most likely 
parameter values significantly alters the estimated forecast uncertainty.  However, the MSU algorithm 
requires approximately the same number of simulations to evaluate uncertainty as GLUE.  The results 
from BMA suggest that a combination of transport equations usually provides a better forecast than an 
individual equation.  The BMA results also indicate that structural uncertainty is an important 
contribution to overall uncertainty.  Overall, the results of MSU and BMA provide a rigorous evaluation 
of uncertainty that can be used to evaluate the performance of proposed quicker and simpler methods. 

 
3. Most Recent Results 
 In the most recent period of the project, a real river system was identified for further testing of the 
uncertainty methodologies.  All previous testing considered relatively simple flume experiments where 
either erosion or deposition dominated throughout the entire reach.  These experiments also consider 
small spatial extents and short time periods, so they can be simulated relatively quickly.  A real river 



system was selected that included regions of both erosion and deposition and reflects the computational 
requirements that are more commonly faced by USBR modelers.  The selected case study is the Tachia 
River in Taiwan.   

MSU was used to identify the uncertainty in the parameter values and the implications of 
parameter uncertainty on forecasts at the Tachia River.  MSU begins by assuming that each parameter 
conforms to a uniform distribution between specified limits.  This uniform distribution implies that there 
is no prior knowledge about the parameter values before they are calibrated aside from reasonable limits 
(the distribution bounds).  In the analysis, critical shear stress, hiding factor, active layer thickness 
multiplier, deposition recovery factor, scour recovery factor, bed load adaptation length, and weight of 
bed load fractions are treated as uncertain.  Manning’s roughness coefficient is treated as a certain 
parameter using a value that was suggested by the studies of the Water Resources Agency of Taiwan. 

MSU operates by first generating a relatively small sample of parameter sets from the uniform 
distributions and then sorting these parameter sets into complexes.  One parameter set in each complex is 
used as the first point of a Markov chain.  Trial parameter sets are then generated from a proposal 
distribution and the current point in the Markov chain.  The trial parameter set is retained (and the chain 
and complex are updated) based on the likelihood that the trial parameter set is the correct choice for the 
case study being simulated.  The likelihood is evaluated by using the parameter set in the SRH-1D model 
and then simulating the case study’s calibration period, which has observations for both the model forcing 
variables and the key output variable or variables.  If the simulation results closely match the observed 
outputs, then the parameter set is considered more likely.  The chains associated with each complex are 
updated for several iterations, and then the parameter sets in the complexes are shuffled.  From an 
optimization perspective, each Markov chain iterates toward a local optimum for the parameter values.  
The parameter sets are shuffled to help ensure that the global optimum parameter set is found.  MSU also 
iterates so that the generated parameter sets eventually conform to the distribution that describes their 
uncertainty after calibration (the posterior distribution). 

For the Tachia case study, an initial population size of 250 parameter sets was organized into 2 
complexes so that each complex contained 125 parameter sets at any one time. The algorithm was set to 
iterate for a total of 10,000 simulations to be certain that all parameters converged and large samples from 
the posterior parameter distributions were attained. Only the volume of sediment deposition was used as 
an output variable for the calibration period due to data limitations for this case study.  Thus, MSU 
simplifies to SCEM-UA in this application because only one output variable is observed.  The period 
from 2000 to 2005 was used as the calibration period, so the conditions in 2000 were provided to SRH-
1D as a starting point, and the parameters were evaluated based on the model’s ability to predict the 2005 
observations.  Observations are available at 48 different locations for each time.  In the application of the 
method, it is assumed that the volumes of sediment deposited at all locations at a given time have the 
same variance of their residuals and can be treated as a single output variable.  The scale of the 
measurements at all locations at a given time does not vary greatly, but the scale of these measurements 
can change with time, which would likely imply a change in the variance of the residuals as well.  The 
parameter uncertainty was evaluated when SRH-1D uses three different sediment transport equations:  the 
Parker (1990) equation, the Wilcock and Crowe (2003) (W&C) equation, and the Wu (2000) equation. 

The Tachia River case study provides some valuable insights into the assessment of parameter 
uncertainty.  The MSU algorithm converges when it is sampling from the stable posterior distribution.  
Because more than one Markov chain is used in the method, convergence can be measured by the ratio of 
the variance of the average parameter value from each chain and the average of the variances of 



parameter values within each chain.  This ratio is the basis of Gelman and Rubin’s Scale Reduction Score 
(SRS).  MSU has exactly converged when the SRS for all parameters is equal to 1.  Because this is very 
difficult to achieve in practice, SRS values of less than 1.2 are usually used to indicate approximate 
convergence (Vrugt et al., 2003; Gelman and Rubin, 1992).  MSU achieves convergence under 1500 
iterations with the Parker, W&C, and Wu equations for the Tachia River case.  This number is lower than 
what was observed for the data rich flume experiments, and it implies that a formal method such as MSU 
might be practical although time-consuming for models of real river systems.   

To evaluate the extent to which the parameter values are constrained by the calibration data in 
this model application, one can compare the posterior parameter histograms to the prior histograms.  
Figure 1 shows the prior (black) and posterior (gray) histograms for the Parker, W&C, and Wu equations.  
For all three transport equations, both histograms for the roughness coefficient indicate a single value 
because the roughness coefficient was constrained as constant during the simulations.  For the Parker 
equation, the critical shear stress and active layer thickness multiplier the best constrained by the 
calibration data and appear to have most likely values near the middle of their ranges.  However, 
considerable uncertainty remains in those values.  The other parameters are poorly constrained because 
their histograms are still wide and relatively similar to the uniform prior histograms.  For the W&C 
equation, the critical shear stress, hiding factor, and active layer thickness multiplier are more constrained 
by the data and appear to have a symmetrical distribution around the middle of the ranges, but those 
parameters also contain considerable uncertainty.  The other parameters are poorly constrained.  For the 
Wu equation, most parameters are somewhat constrained by the calibration data except the active layer 
thickness multiplier and scour recovery factor.  Overall, these results suggest that the available 
observations are not adequate to infer the values for most parameters and much uncertainty remains after 
calibration. 

Figure 2 compares the simulated sediment volumes to the observations for the most likely 
parameter set associated with each transport equation.  Volumes of erosion and deposition were estimated 
by computing the average bed change from the 2000 to 2005 cross sections, then multiplying the average 
bed change by the width of the active cross section and the distance between cross sections.  The 
comparison of deposition volumes from the Parker, W&C, and Wu equations at each individual cross 
sections from the downstream end (section number 1) to the Shih-Gang Dam (number 36) are shown in 
Figure 2.  These results suggest another reason that uncertainty in the parameter values is so great:  even 
the best performing (most likely) parameter set does not reproduce the observed patterns of erosion and 
deposition well.  The sum of squared errors (SSE) indicates that the Wu equation has the best 
performance, but the Parker equation best represents the drastic changes in deposition volume between 
sections 15 and 23.  
 
4. Path Forward 

At this stage of the project, a diverse set of test cases has been assembled, and the uncertainty in 
these test cases has been evaluated using the formal methods of MSU and BMA.  Those results provide a 
benchmark against which quicker and more approximate methods can be compared.  To complete the 
project, three major tasks remain: 

1.  Develop a simplified methodology that requires fewer simulations to evaluate uncertainty 
2. Evaluate the performance of this method by applying it to the test cases considered 

previously 



3. Implement the method in streamlined software, train USBR staff in its use, and publish the 
results in refereed journals 

Faster convergence of the method can be achieved by better representing the knowledge that the 
modeler has prior to uncertainty estimation.  The previous methods assume that the modeler has no 
knowledge aside from the bounds for the parameter distributions, but an experienced modeler can predict 
in advance the parameters that will have little effect on the results, which could be treated as certain with 
little effect on the uncertainty estimation.  In addition, an experienced modeler has some knowledge of 
realistic parameter values for a given case, and such knowledge could be incorporated into the forms of 
the prior distributions.  Also, some models may be calibrated manually before the uncertainty estimation 
is performed, which should also be reflected in the prior distributions.   

We plan to exploit this knowledge to make the uncertainty methods quicker.  First, a screening 
algorithm based on sensitivity analysis will be conducted to identify the parameters that contribute the 
most to output variability.  In the screening analysis, parameter sets will be generated by individually 
varying the value of each parameter within its plausible range while fixing the values of the other 
parameters.  Each generated parameter set will be used to simulate the calibration period, and the 
variability in the outputs will be evaluated.  Parameters that introduce much variation need to be treated as 
uncertain, while parameters with little effect can be treated as certain.  Using this approach, the number of 
parameters and thus the number of required simulations can be reduced.  Second, the prior parameter 
distributions can be defined based on the modeler’s prior knowledge of the parameter values.  A beta 
distribution can be used for the uncertain parameters, and the minimum, maximum, mode, 75th percentile 
values of the parameter can be used to determine the shape of the beta distribution. The modeler can 
determine the minimum and maximum values from the physically possible range for that parameter 
(similar to the method used to define the uniform distributions).  The mode can be determined from the 
manually calibrated value, and the 75th percentile can be determined from the modeler’s assessment of the 
plausible range of values for the application case. 

The revised algorithm will be tested by applying it to the same case studies that have been 
evaluated previously.  The number of required simulations will be compared to the previous numbers of 
simulations to assess the improvement in speed for the simplified approach.  Similarly, the estimates of 
forecast uncertainty that are generated by the simplified method will be compared to the more rigorous 
estimates determined previously to evaluate the degree of approximation.  The method will also be 
applied to determine data collection strategies that would most effectively reduce the forecast uncertainty. 

Finally, after the method has been developed and tested, an efficient implementation will be 
developed in Matlab and delivered to USBR staff for their routine use. The software will be freely 
available to USBR and to the public. Moreover, the results of the project will be published in progress 
reports and refereed literature to ensure broad dissemination and public use of the methodology.   
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a) Parker equation 

 
b) W&C equation 

 
c) Wu equation 

Figure 1. Prior and posterior histograms from MSU showing the likelihood that each parameter value is 
correct for the (a) Parker, (b) W&C, and (c) Wu equations.  n is roughness coefficient,  Θr is critical shear 
stress, λ is hiding factor, nalt is active layer thickness multiplier, ζd is deposition recovery factor, ζs is 
scour recovery factor, bL is bed load adaptation length, and ξ is the weight of bed load fractions.  
 



 
Figure 2. Comparison between measured and simulated deposition volumes downstream of Shih-Gang 
Dam for the Parker, W&C, and Wu equations. 
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