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ABSTRACT OF THESIS

A METHOD FOR ASSESSING IMPACTS OF PARAMETER UNCERMMWY IN

SEDIMENT TRANSPORT MODELING APPLICATIONS

Numerical sediment transport models are widely usexaluate impacts of
water management activities on endangered spédesgify appropriate strategies for
dam removal, and other projects. The SRH-1D (Sediation and River Hydraulics -
One Dimension) numerical model, formerly known &T@RS, is used by the U.S.
Bureau of Reclamation for many such evaluationse fredictions from models such as
SRH-1D include uncertainty due to errors in the siednathematical structure,
uncertainty in parameter values, and other sour@egntifying this uncertainty and its
origins could provide guidance for more efficieatal collection and model calibration
and could ultimately reduce project design requeets. In this research, we seek to
evaluate impacts that parameter uncertainty hakeaoncertainty in model forecasts.
This assessment is made using a new multi-objeedvson of Generalized Likelihood
Uncertainty Estimation (GLUE). In this approadine tikelihood of parameter values is
assessed using a function that weights differetgugwariables using their first order
global sensitivities obtained from Fourier Amplieu8ensitivity Test (FAST). The
method is applied to SRH-1D models of two flumeerkpents: an erosional case
described by Ashida and Michiue (1971) and a deiposil case described by Seal et al.
(1997). Eight parameters (critical shear streging factor, active layer thickness
multiplier, recovery factor for deposition, recoydactor for scour, bedload adaptation

length, weight of bedload fractions, and Manningsghness) are initially considered



uncertain in the analysis, and the sensitivities$ @amcertainties of output variables
describing median grain size, flow velocity, and Ipeofile elevation are analyzed.
Overall, the results suggest that the sensitivifegbe model outputs can be rather
different for erosional and depositional casestaatithe outputs in the depositional case
are typically sensitive to more parameters. Tiselts also suggest that the form of the
likelihood function can have a significant impaaotthe assessment of parameter

uncertainty and its implications for the uncertgiot model forecasts.

Morgan D. Ruark
Civil and Environmental Engineering Department
Colorado State University
Fort Collins, CO 80523
Fall 2009
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1 Introduction

The use of numerical sediment transport modelslrasatically expanded over
the past three decades. One-dimensional sedina@siort models in particular are
widely used to identify sediment equilibrium comaiits (Huang, Greimann and Yang,
2003), assess historical conditions to determirssipte impacts of watershed changes
(Holmquist-Johnson, 2004), evaluate water supplgagament (Greimann et al., 2006),
manage reservoirs (Greimann and Huang, 2006), eetigb impacts of proposed water
resource systems on endangered species (Holmalissdn, 2004).

Predictions from sediment transport models alwanaikeuncertainty. Sources of
uncertainty include: (@) errors or simplificatianghe mathematical structure of the
model and the model’s representation of procegbgsyrors in the initial and boundary
conditions, (c) errors in the observations usechtirate the model parameters, (d)
errors in the values of model parameters, andr{eysin model inputs or forcing (Clyde
and George, 2004; Gourley and Vieux, 2006; Refshgatal., 2006; Murray 2007). For
one-dimensional sediment transport models, thietamty can encompass orders of
magnitude in the computed sediment load and amaunaterial eroded or deposited at
critical locations (Simons et al., 2000; Daviegslet2002; Eidsvik, 2003). Past research
has focused on uncertainty arising from sedimemsyport models or formulae (Davies et
al., 2002; Pinto et al., 2006) and the active emsl processes (Daebel and Gujer, 2005;
Harmel and King, 2005; Jepsen, 2006; Ziegler, 2@86)ell as methods to manage
uncertainty (Osidele et al., 2003). Less attentias been paid to uncertainty throughout
the entire parameter space, or global uncertai@iyang and Yang, 1993) and the

implications of parameter uncertainty.



Currently, one of the methods used to assess p&aoreertainty in sediment
transport models of river systems to simply idgnéifworst-case scenario and develop a
numerical model for this condition. While this methhas the advantage of requiring
minimal model simulation, no formal criteria areadable to determine the worst-case
scenario and no likelihood of occurrence is assediwith this scenario. When applied
to the design of proposed projects, an overly amasee evaluation could result in over-
designed and needlessly expensive structures.la8iyniexcessively weak evaluation
could result in the failure of projects to meetitlubjectives and possibly even public
hazards.

Bayesian methods offer a formal method to assegadts of parameter
uncertainty (or other uncertainties) on model prains (Clyde and George, 2004,
Kuczera et al., 2006). Bayesian methods requéeertbdeler to specify a prior joint
probability distribution for the uncertain paranrsteThe prior joint distribution is then
combined with observations of model outputs frooakbration period to generate a
posterior joint distribution for the parameters {Be, 2000). The updating of the joint
distribution is based on a formal assessment ofikbkhood of a set of parameter values
given the observed model outputs (Clyde and Ge@@@}). The posterior distribution
of the parameter values is then used in the madehé forecast scenario to determine
the implied distribution of model outputs. The lkadvantage of Bayesian methods is
that they utilize a well-defined theoretical foutida including a formal likelihood
function for updating the joint probability disttibon (Clyde and George, 2004; Kuczera
et al., 2006). Key limitations of Bayesian methads that they can require inversion of

large matrices, which can be a computational byrded they often employ a variety of



simplifying statistical assumptions including notitya independence, and
homoscedasticity (Stedinger et al., 2008) thabéen violated in sediment transport
modeling applications. Changing variance, or hetsgdasticity, can be seen in
hydrologic modeling applications, such as dischérggrographs (Sorooshian and
Dracup, 1980). This suggests that some sedimerggoat modeling applications,
especially those involving streamflow, may viol#te homoscedastic assumption.
The generalized likelihood uncertainty estimatiGbUE) method offers an
alternative method to assess parameter unceri@etyen and Binley, 1992). The GLUE
methodology has been utilized for a variety of mimdeapplications including rainfall-
runoff models (Freer and Beven, 1996; Camplind.€2@02; Blasone et al., 2007),
groundwater models (Christensen, 2003; Hassan, &0418), water quality models
(Shirmohammadi et al., 2006), and atmospheric nso@Rdge et al., 2004), but to our
knowledge, it has not been applied to sedimenspart models. GLUE follows the
Bayesian approach, but it utilizes an informal tiorcto estimate the likelihood of
parameter values given a set of observations. b&hefit of the informal likelihood
function is that it can be selected based on theéetnaurpose (Mantovan and Todini,
2006), and different likelihood functions are knoterproduce different uncertainty
estimates (Freer and Beven, 1996; Beven, 2000yveMer, a series of papers
(Christensen, 2004; Stedinger et al., 2008) haweodstrated that previously-used
likelihood functions fail to reproduce the knownsperior distributions of parameters for
simple cases (normally and independently distritbateors). For such cases, these
authors identify the appropriate likelihood funetidut this function is not easily

evaluated within the GLUE framework (Stedingerlet2008).



Another challenge in the application of GLUE toisseht transport modeling is
the need to evaluate multiple objectives or outgutsh as sediment size, sediment load,
stream velocity, channel geometry, and bed pro#leailable methods of computing
multi-objective likelihood functions include theeusf fuzzy set theory (Beven and
Binley, 1992; Yang et al. 2004), the successivelmaation of likelihoods (through
multiplication), and weighted addition of likelihds (Beven, 2000). Such approaches
have been addressed elsewhere (Yapo et al., 199@nil Beven, 2004; Chanhinian and
Moussa, 2007). For this series of experiments,ighted likelihood function has been
selected. The use of such a weighted likelihoodton requires selection of individual
weights for each function. In the field of multpjective optimization, such weights are
often set ad hoc, but in uncertainty evaluationsoae rigorous (or at least standardized)
approach would be beneficial.

The objective of this paper is to explore the use GLUE-based method to
assess the implications of parameter uncertaintyhemutputs of a one-dimensional
sediment transport model and specifically to cagrsite issues of the likelihood function
and the weighting of multiple modeling objectivekhe likelihood function used in this
paper is based on the one described by Christd@86A) and Stedinger et al. (2008).
Additionally, global sensitivity analysis (GSA) ésnployed as a way to consider multiple
model outputs. GSA and GLUE have been coupledqusly (Ratto et al., 2001) but
not for the purpose of weighting multiple outpue GSA-GLUE method is applied to
SRH-1D models of two physical experiments (an emai case and a depositional case);

both to identify the parameters that lead to thetmacertainty in the model forecasts,



and to partially explore the implications of varsoassumptions in the GSA-GLUE
methodology.

The outline of the paper is as follows: (1) th&trsection, Methodology, details
how the GSA and GLUE-based methods are combinadgess the implications of
parameter uncertainty, (2) then, the Sedimentar@hRiver Hydraulics — One
Dimension (SRH-1D) model is described in the follogvsection, (3) next, the
Experiments section summarizes the physical exgatisnused to test the method, (4)
then the Results section discusses the main reduhe GSA-GLUE approach, (5) next,
the Analysis section evaluates key assumptionseofitethod, and (6) finally, the paper

closes by summarizing the conclusions and futurections for research.



2 Methodology

In this analysis, we assume that the model wilied to simulate two periods of time
(or, equivalently, two scenarios), which we caé ttalibration and forecast periods.
Traditionally, the calibration period is used tdetenine single values for each of the
model parameters, which allow the model to effitiereproduce observed system
responses (i.e. model outputs) for that periodreHthe calibration period will be used to
determine distributions of parameter values. Tredast period is the unobserved
scenario or period where the model is used to &stethe system behavior. In our
analysis, the distributions of parameter value$lvalused to obtain distributions of the
model responses for that period.

In practical terms, the GSA-GLUE method developethis paper includes three
main steps. The first step is the GSA. In thepst sample of parameter sets is
generated from a jointly uniform distribution withspecified ranges. The model is then
run for the calibration period using each paramsé¢in the sample. Based on an
analysis of the model results, the sensitivityattemodel output to each parameter is
estimated. To reduce the number of required siounls, the GSA is performed using
the Fourier Amplitude Sensitivity Test (FAST), whiplaces specific constraints on the
generation of the parameters sets, although theegtdirapproximately uniformly
distributed. This sampling procedure allows catioh of the sensitivities using a
Fourier analysis of the model responses (see belbloje that parameters that have little
effect on any model output can be fixed at thisypand excluded from further
consideration. The second step is the applicatidhe GLUE methodology to calculate

the likelihoods associated with each parameteraset from those likelihoods to



determine updated likelihood distributions for egainameter. Likelihoods are
calculated based on the model’s ability to repredibe observed system response when
given parameter sets are used. Because sedirapgsptrt models typically produce
multiple model outputs of interest (e.g., seding@rné, channel profile, etc.), the
sensitivities calculated in the first step are usedeight different outputs in the
calculation of likelihoods. This procedure plagesater importance on reproducing
outputs that are more sensitive to a particulaampater. The third step is to use Latin
Hypercube Sampling (LHS) with the likelihood dibtitions of the parameters to
generate a new sample of parameter sets. The nsadel for the forecast period using
these parameters sets, and quantiles are calctidatoe model outputs. These quantiles
allow an assessment of the implications of parameateertainty on the forecasts of the
model. The following subsections below describehezt the three steps in greater detail.
2.1 GSA

Sensitivity analysis usually aims to quantify howah the outputs of a model
change when a model parameter (or input) is vdBadtelli et al., 2008). While a local
sensitivity analysis evaluates these changes aroasel values for the parameters, GSA
assesses these changes across specified rangearokger values. Local analyses
usually measure the sensitivity with an index thaelated to the partial derivative of the
output with respect to the parameter (Saltellle2®908). In contrast, GSA most simply
uses standardized regression coefficients as mesaefiglobal sensitivity; however, this
approach assumes linearity of each output witheesjp each parameter (Saltelli et al.,
2008). A superior method is to use a variancedaseasure of sensitivity, which

partially overcomes the linearity assumption (Chaal., 1997). Here, we consider two



variance-based measures of sensitivity. One ifirgteorder indexs,, which is defined

as:

_var[ E(Y|X)]
S ST vary) 1)

where var(Y)is the total variance of the model outpivhen all the parameters are

varied within their specified rangeE,(Y|X ) is the expected value of outptfor a

particular value of paramett and var[E(Y|X)} is the variance oE (Y|X) whenX is

varied over its allowed range. The second measthe ital order inde%ry, which can
be written as:

var[E(Y‘X)J

var(Y) @

s, =1-

where var[E(Y‘X)} is the variance of the expected value¥afhen all inputs except

are held constant. The first order index evaluateslitect contribution that a parameter
makes to the variability of the output. If a modestrictly additive with respect to its
parameters, then the first order indices will sum to(&adtelli et al., 2008). In more
complex models, the effect of a parameter on the ontpytbe modulated by the other
parameter values. The total order index evaluatetothkcontribution of a parameter to
the output variability when all interactions betwgrmameters are included. Further
details about these sensitivity measures and theggties can be in Saltelli et al.
(1999).

FAST offers an efficient way to estimate these varidmased measures of

sensitivity. FAST was initially developed to stufihgt order effects in coupled reaction



systems in chemical models (Cukier et al., 1973)veasl later expanded to include the
total order effects (Saltelli et al., 1999). In FASie efficiency is achieved by varying
all parameters of interest simultaneously rather tletupbing the parameters one-by-
one. The parameters are varied at non-interfering freqge(Cukier et al., 1973;
Shaibly and Shuler, 1973) within the ranges that ageipd by the modeler. The
generated sequence of parameter sets is then usednotlel to generate an associated
sequence of model responses. The model responsasedsielecomposed using a
Fourier transform, which determines the variance thasseciated with each frequency.
By considering certain groups of frequencies, the firdéioand total order sensitivity
indices can be calculated for each parameter (Satadli, 1999). The sample size, the
total number of simulations performed, must be specifilte estimates of the
sensitivity indices from FAST asymptotically convetgehe definitions given in
Equations (1) and (2) as the sample size becomes large.

In the present analysis, FAST is used to calcutae@rmportance of each
parameter to each model output. Use of FAST alswovalscreening of parameters, in
order to remove those with little influence on modebats. In particular, if all the first
and total order sensitivities of the outputs to a paldr parameter are small, then the
parameter can be treated as a constant in the ant@ysiduce computation time. In
addition, the sensitivity indices are used in tkelihood function below to weight the
performance of the model in reproducing different modgbutgt
2.2 GLUE

The GLUE method is next used to determine revisedpsterior, distributions

for the parameters. By running the model with eachrpater set and comparing its



performance to the observed system behavior, we haeajed information about the
likelihood that the parameter set is correct. Indgpapplications of GLUE, a Monte
Carlo sampling of a uniform distribution is used toedetine the parameter values for the
model. However, the samples produced by the FASTiodedre also approximately
uniform and can be used in the GLUE method (Ratth,e2@01).

GLUE evaluates the likelihood of each parameter sstdan the model’s ability
to reproduce observations when that parameter se¢ds dany previous papers have
used the Nash-Sutcliffe Coefficient of Efficiency or NSGHle basis of the likelihood
function (Beldring et al., 2003; Arabi et al., 2007 geélund et al., 2006; Engelund and

Gottschalk, 2002; Uhlenbrook and Sieber, 2003). N&CGfalculated as:

(O'_MJ)2

|
Z ]
NSCE =1-| 55—

I (0,-0)

= 3
whereO is an observed value ailis the model’s valug,is an index of locations (or
times), and is the total number of locations (or times) where olzems are available
(Legates and McCabe, 1999; Nash and Sutcliffe, 19N@CE is 1 when the model
perfectly reproduces the observations, and decreases amtel performance
deteriorates.

Recent papers (Mantovan and Todini, 2006; Stedinigat 2008) have shown
that arbitrary likelihood functions, such as NSCH peoduce arbitrary results in the
GLUE methodology. Stedinger et al. (2008) demonstrdtis by applying GLUE, with
a likelihood function based on NSCE, to a simpleeca@kere the appropriate likelihood
function is known for basic statistics. The case tmysidered is linear regression with

assumed normal, independently distributed errors waitistant variance (Stedinger et al.,
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2008). In that case, they argued that the apprepnay to calculate the likelihoddfor
a given parameter set is:

| i(oj_Mj)z

L=Kexp -2 = (4)

(0, -mje)

=
whereM represents the model’s value when a particular parasetés usedy!™ = is

the model’s value when the parameters are obtained frelaximum Likelihood
Estimator (MLE), anK is a normalization constant that ensures that allikelihoods
sum to one. This likelihood function has some snities to NSCE, but it includes two
key differences. First, the denominator determinedikielihood by comparing the
performance of a given parameter set to that of the ML&d{®ger et al., 2008). Second,
the use of as a coefficient accounts for the number of indepenulesdrvations that are
available to constrain the likelihood (Stedingealet2008). These changes allow for (1)
comparison of the individual model to the best paramstt, as identified by the MLE,
and (2) weighting of the likelihood function based lba@ humber of independent
observations available.

In the present application, a likelihood functiowidized that is similar to the
one in Equation (4), with two key differences. The filifterence is that the errors are
not expected to be independent between observatbations, so the coefficiehts
replaced by aeffective number of independent locatioms The second difference is the
need to account for multiple output variables, or dbjes, in calculating the likelihoods.
This issue is confronted using a weighted sum ofilikelds. In the case where three

output or response variables are available, the regdilielihood function is:
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Zli,( ) Zli,(oz.j _Mz.j )2 Zli(o&j _M3.j )2 (5)

37‘ +W, exp -

Z;;( _MMLE)

J

L=K{wexp -

NJE

where the subscripts 1, 2, and 3 distinguish thestresponse variables and this are

the individual weights. The weights are calculaisohg the first order sensitivities from
the GSA, but could also be calculated using thel mder sensitivities (the impact of this
selection is evaluated later). First order weights wetected because they may be
estimated using methods which are faster than FASTellGett al., 2008), such as
Monte-Carlo based methods (Homma and Saltelli, 1996 Ramdom Balance Designs
(Tarantola et al., 2006).

Specifically, when calculating the likelihood for a@n parameter, the weights
are the first order sensitivities of the three observeputsito that parameter, divided by
the sum of the first order sensitivities of the obseruggut variables. Note that a given
parameter set will have a different likelihood for eacltapeeter. To evaluate the
likelihood function in Equation (5), the performancelsf MLE is required. In general,
the MLE is not generated from the GLUE methodologyif sbassumed that the
performance of the MLE is the same as the best perforparameter set in the sample.

For simplicity, performance is judged by finding the imom of total errors where:

1 < 1<
:_22(01,1' _Mll Z(OZJ 2J 2 o2 Z(O (6)
Jo, = a5, = Jo, i=1
and
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o =1.Y(@, -0’ )

=1
L |
andQ, zl—lzolyj : (8)
=1

The variances and averages for output variableslZavould be calculated using
expressions equivalent to Equations (7) and (&) flormalization consta#tis found
from the constraint that all the likelihoods foparameter should sum to one. In practical
terms, preliminary likelihoods are calculated bygleetingK in Equation (5). Then, the
sum of these likelihoods is calculated, and eaelimiary likelihood is divided by the
sum to determine the final likelihoods. The cuntivposterior distribution for each
parameter can be calculated by summing all thdilideds associated with values of the
parameter.

The limitations of this methodology should be séegk The likelihood function
in Equation (5) is proposed rather than derivedhfeoparticular set of statistical
assumptions. In addition, the method neglectsetation or dependence between the
most likely values of different parameters. Otilg targinal posterior distributions for
the parameters are produced by this method.
2.3 LHS

The third and final step of the methodology is $e the posterior distributions of
the parameters in the model to simulate the fotquarsod and to determine the
associated distributions for the model outputs.Slislused to sample the marginal
posterior distribution of each parameter (Halllet2005; Chang et al. 2005). In contrast
to Monte Carlo sampling, which generates randormegfrom the distribution, LHS

attempts to explore the parameter space repres@iyaselecting parameter values at
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regularly-spaced percentiles. LHS is used becptsgous research has shown that
smaller sample sizes can be used to charactedizrdoution for LHS than for Monte
Carlo simulations (McKay et al., 1979). Even $® tequired number of simulations at
this stage of the analysis can be rather larganierous parameters are treated as
uncertain. To reduce the number of simulations prameters can be screened.
Parameters that have little impact on the modelltgsbased on the GSA conducted for
the calibration period, can be assigned to the oirdpf the allowable range. The
remaining parameters are treated as uncertainangled using LHS. In the LHS
scheme, the posterior cumulative likelihood funetior each parameter is obtained from
the GLUE methodology described earlier. The cutddikelihood scale is divided

into a selected number of equally-sized bins aedidpoints of those bins are
determined. Then, the cumulative likelihood fuantis used to find the parameter value
associated with each midpoint. Because the postéistributions are typically non-
uniform, the parameter values will be irregulanpased. The values for each parameter
are then combined with those for every other patans® that every combination is
included in the sample. The sample of parameteris¢hen used in the model for the

forecast period to determine the associated digtab of model responses.
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3 SRH-1D

The methodology for assessing parameter uncertangsted using the SRH-1D
model. SRH-1D is an outgrowth of the Generalizgd&n Tube model for Alluvial
River Simulation (GSTARS) and is currently usediy Bureau of Reclamation to
simulate flows and sediment transport in channedsraver networks with or without
movable boundaries (Huang and Greimann, 2006). niddel can simulate steady or
unsteady flow and can treat cohesive and non-cebesidiment. It has been used in the
assessment of the impacts of proposed projectsnj@na et al., 2006), evaluation of
existing structures including dams and off-takedtires (Greimann and Huang, 2006),
and evaluation of historical conditions of riversediment supply (Huang and Bauer,
2005; Huang et al., 2003)).

The experiments considered in this paper use dahdy flow and non-cohesive
sediment. SRH-1D uses one-dimensional flow catmirig, including the standard step
energy method for steady gradually varied flow (hyand Greimann, 2007). The
hydraulic component determines flow depths basedotumetric flows, cross-sectional
geometry, Manning’s equation, hydraulic gradient] ather energy losses. Between

adjacent cross-sectionsandj+1), the energy equation is written:

2

Via Vi
j+1+ﬂi+12_g_zj_lgj2_g_hf_hczo (120)

Z
whereZ represents the water surface elevatis, a velocity distribution coefficient,is
the average velocity at the cross-sect®is, gravitational acceleratioh; represents

friction loss, andh represents contraction or expansion losses. Btratuof the friction

loss in Equation (10) ultimately requires use offiiag’s equation and specification of

Manning’s roughness coefficient
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SRH-1D also simulates sediment transport usingethrain elements: sediment
routing, bed material mixing, and cohesive sedintentsolidation (if cohesive sediment
is present). For sediment routing, SRH-1D canaiber unsteady sediment routing or
the Exner equation routing. Because steady floeorsidered here, the Exner equation

is used and mass conservation can be written:

0Q 0A,
S+e—-0, =0 11
ox ot % (1)

whereQs is volumetric sediment dischargeis volume of sediment per unit bed layer
volume (related to porosity)dy is volume of bed sediment per unit length, goi
lateral sediment inflow per unit length. The Exequation is integrated over control
volumes associated with cross-sections and appépdrately for each sediment size
fractions. Lateral inflows are specified by thewand are zero in the present
application. Because the cross-sections may Iselgi@paced in some cases, SRH-1D
does not assume that the sediment discharge efealgnsport capacity. Rather, it
assumes the capacity is reached over an equatizatigth. Evaluation of the
equalization length requires specification of albad adaption length parameter as well
as separate deposition and scour recovery factdrse transport capacity expression
used here is Parker's sand and gravel equatiorchwhiimately requires specification of
a reference, or critical, shear stress and a hi@iar, which accounts for differences in
critical shear stresses for particles of differgnes.

Bed material mixing is modeled by dividing the betb a thin active layer and a
series of underlying inactive layers. Erosion degosition of sediment can only occur
from the active layer. Each layer is considerechbgeneous within its depth. The

active layer thickness is determined using the ggammean of the largest size class and
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a user-specified proportionality constant. Whess&m occurs, the active layer shifts
downward and material from the underlying layersdmees part of the active layer.
When deposition occurs, the active layer shiftan@ material is now classified as the
top inactive layer. As part of the bed materiakimg, the user must specify a bedload
weighting, which controls the importance of beddiaathe transfer of material between
the active layer and the underlying layer.

In the end, eight parameters are treated as @anecéntthis analysis: Manning'’s n,
critical shear stress, hiding factor, depositiatokeery factor, scour recovery factor,
bedload adaptation length, active layer thicknesKiptication factor, and the weighting
of bedload fractions for transfer from surfaceubsurface. None of these parameters
are measurable in the field, and they can varyifsogmtly from case to case. Thus, they
are typically specified by the modeler. Table @wh the selected minimum and
maximum values of each of these parameters usiiisianalysis. These ranges were
chosen because they represent a reasonable rapgssilile parameter values across

various model applications.

Table 1. Selected bounds for the uniform distributbns describing the eight parameters.

Parameter Minimum value Maximum value
Critical Shear Stress 0.01 0.06
Hiding Factor 0 1

Active Layer Thickness Multiplier 0.1 2
Deposition Recovery Factor 0.05 1

Scour Recovery Factor 0.05 1
Bedload Adaptation Length 0 10
Weight of Bedload Fractions 0 1
Manning’s n 0.015 0.065
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SRH-1D produces a large number of outputs includimgss balance, sediment
load, sediment sizes, bed profile, flow velocitydasediment concentrations. These
outputs are available at multiple locations andesrfor a given simulation. For our key
model response variables, we selected the lengthaged median sediment size, flow

velocity, and bed profile. For sediment size,\thdable is defined as:

s, = (12)

wheredl; j + 1 is the length between cross-sectigrend;j + 1, dg,oJ is the median grain

size at cross-sectignandLiqg is the total length of the reach (the sum of\lls).

Similarly, the length-averaged flow velocity is ohefd as:

I Vi +V'+l
S

13
Ltotal ( )

wherey; is the average flow velocity at cross-secfioifrinally, the length-averaged bed

elevation is defined as:

~( P +Pa
Z[ 2 AL“”J

p=12 14
L[otaJ ( )

whereP; is the average bed elevation of the channel asesectior.
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4 Experiments

The model was applied to two flume experimentse €xperiment is an erosional
case and the other is depositional. These expetinweere chosen in part due to their
well-documented conditions. In particular, voluneflow rate, sediment supply, initial
bed geometry, and initial bed material are knowrbfath experiments. Thus, there is
little uncertainty about the system configuratiarifee model inputs. Another reason that
these experiments were selected is that calib@id-1D models were already available
for both cases.

The Ashida and Michiue (1971) experiment was dexigio simulate river bed
degradation and scour downstream of a dam. Theeflwas 0.8 m wide and 20 m long.
The experiment used in this paper was called Rop the authors. In this case, the
initial bed slope was 0.01 m/m (1%), a sand-to-grarticle size distribution was used
for the bed material with sizes ranging from 0.2 nod0 mm and an initial median
diameter of 1.5 mm. A clear-water discharge o80Dnt/s was applied at the upstream
end of the flume for the ten hour experiment.

Unfortunately, the observations that charactetizerésulting system behavior are
rather limited. The resulting degradation was meas at three locations (7, 10, and 13
meters from the downstream end of the flume) ab#gnning of the experiment and at
hours 1, 2, 4, and 10. Bed gradation was also unedst three locations (1, 10, and 13
meters from the downstream end of the flume) abt#ginning and end of the
experiment. Due to the lack of an extensive s@hgkical data, output from a calibrated
SRH-1D model was used in place of physical obsematwhen evaluating the

parameter uncertainty. This approach means thatlisagreement between model
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simulations performed as part of the analysis o&dpeter uncertainty and the “observed”
values is due to errors in the parameter valudss dpproach also allows us to vary the
amount of observations supplied to the method arttttermine which observations are
most valuable in reducing parameter uncertaintlyis dpportunity is exploited later in

the Analysis section.

Figure 1a shows the comparison of values from thekibrated model, as seen in
Table 2, and the experimental observations. Tis¢re@m boundary condition

was set to no sediment inflow, and the downstreaumbBary condition was set to allow
sediment outflow. Actual observations were usethasnitial conditions for the
calibration simulation. Cross section spacing weasye0.5 meters, with 41 total cross
sections. Grain sizes were broken into 9 clasgiboa. The model was manually
calibrated using both comparisons with the obsebextiprofile and the observed bed
grain size distribution. The calibrated model conegavell to these observations through
hour 2. After hour 2, the calibrated model app¢aitse overestimating the erosion that
occurs. It is suspected that as erosion happehssiexperiment, armoring of the bed

occurs, which is not properly captured by the catibd model.
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Figure 1. Observed bed elevations (points) and tHeed profiles produced by the calibrated models
(lines) for the (a) Ashida and Michiue (1971) andh) Seal et al. (1997) experiments.

Table 2. Parameter values for two calibrated models

Parameter Ashida and Michiue (1971) Seal et al {199
Critical Shear Stress 0.0386 0.0386
Hiding Factor 0.905 0.905
Active Layer Thickness Multiplier 1 1
Deposition Recovery Factor 0.25 1

Scour Recovery Factor 1 1
Bedload Adaptation Length 5.0 0.10
Weight of Bedload Fractions 0 0
Manning’s n 0.027 0.022

For the analysis of parameter uncertainty, the Rarperiment was divided into

a calibration period from 0 to 2 hours and a fose¢geeriod from 2 hours to 10 hours.
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Results of the calibrated model from O to 2 houesteeated as observations to which the
simulations using other parameter values are cosadpakfter simulation of the
calibration period, the bed elevation and graie siamposition of the bed are set to the
profile of the calibrated model. The forecast pérfimm 2 to 10 hours is then simulated.
For the forecast cases, the observations fromalierated model were used as the initial
conditions for the simulations. The forecast pehad identical conditions to the
calibration period aside from the initial condition

The Seal et al. (1997) experiment was designetidtuate downstream fining of
poorly-sorted sand and gravel in a narrow channelta simulate deposition and
armoring processes. Their experiments consistéidreé separate laboratory flume
setups (Runs 1, 2, and 3). All three flume expernta were 0.3 m wide and 45 m long
with an initial slope of 0.002 m/m (0.2%). A disehe of 0.049 fifs was applied at the
upstream end of the flume. The durations of théviddal setups were 16.83 hours, 32.4
hours, and 65 hours. For each setup, a sand velgrarticle size distribution was used
for the sediment feed with sizes from 0.125 to 64.r8ediment feed rates for the three
experiments varied from 0.19 to 0.05 kg/s. The lteguprofile was regularly measured
(every half hour, every hour, and every 2 hoursRans 1, 2, and 3, respectively) at 18
locations for the duration of the experiments. 8wt sizes of the surface were
measured at the end of each experiment using sthpdant counts of 100 grains for 8 to
10 samples over the length of the deposit alondltinee. Subsurface sampling was also

conducted at the end of each experiment.

To be consistent with the erosional experiment, aatibrated SRH-1D model was developed for the
runs and used in place of the physical data as “obsvations.” The upstream boundary conditions
specified the feed rate for sediment inflow, and # downstream boundary conditions allowed
sediment outflow. Actual observations were used dke initial conditions for the calibration
simulation. Cross section spacing was every 1 metdor a total of 56 cross sections (for model
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continuity, this total length is greater than the &tual length of the flume). Nine grain size
classifications were used. This model was calibrateusing comparisons with the observed bed profile
and the sediment size distributions. For this expément, Run 2 was used as the calibration case. The
duration of Run 2 is 32.4 hours with a sediment fekrate of 0.09 kg/s. Figure 1b shows a comparison
of the calibrated model values, as seen in

Table 2, and the experimental observations. Thrated model compares well
to the observations with the largest discrepanoi@scurring near the downstream end
of the depositional wedge. Run 1 and Run 3 wetk bsed as forecast cases. For both
forecast cases, the actual observations were s anitial conditions for the
simulations. These runs have the same volumetve fate (0.049 fits) as the
calibration case (Run 2). However, Run 1 and Ztsadiment feed rates of 0.09 kg/s

and 0.05 kg/s and durations of 16.8 and 65 hoaspectively.
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5 Results

5.1 GSA

The FAST method, as previously described, was agpb the calibration cases
of the two physical experiments. The eight paransatientified earlier were varied, and
the three model outputs were evaluated. Both egiphns of FAST used sample sizes of

5000 simulations (smaller sample sizes are disdusser in this paper).

(a) Ashida and Michiue (1971) Experiment, (b) Ashida and Michiue (1971) Experiment,
First-order sensitivity Total order sensitivity
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0% -+

d50 Velocity Profile d50 Velocity Profile

B Critical Shear Stress E Scour Recovery
O Hiding Factor OBedload Length
O Active Layer Thickness Multiplier MWt Bedload Fractions
O Deposition Recovery B Manning's n
(c) Seal et al (1997) Experiment, (d) Seal et al (1997) Experiment,
First-order sensitivity Total order sensitivity
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20%
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d50 Velocity Profile dso Velocity Profile

Figure 2. First order and total order sensitivity indices for SRH-1D models of Ashida and Michiue
(1971) and Seal et al. (1997) experiments. Sensties are stacked in each column in the same order
they are listed in the legend.

Figure 2a plots the estimated contribution of gaatameter to the total variance
of the three output variables for the Ashida andhie (1971) experiment based on the
first order sensitivity indices. To produce thetpi@ns shown in a given column, the
first order indices were divided by the sum of ingt order indices and plotted as a
percentage. Recall these indices should sum tdylifdthe model is additive with
respect to the parameters (Saltelli et al., 2068yure 2b shows the results for a similar

computation using the total order indices. Nottso that the legend lists the parameters
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in the order that they are stacked in each coluBwth Figure 2a and Figure 2b suggest
that four parameters are particularly importanprioducing variability in the length-
averaged median grain size, velocity, and bed lpfiThese parameters are the critical
shear stress, hiding factor, active layer thickmesKiplier, and Manning’s n. In fact,
only these parameters have total sensitivity vafles/e 5%. For the d50 output, hiding
factor is the parameter that produces the greséesitivity by far. This result should be
expected because hiding factor attempts to acdoutite difference in the mobility of
different size fractions. Thus, it should havdemcimpact on sediment size distribution
of the bed. For velocity, Manning’s n is the paeten that produces the greatest
sensitivity. This result reflects the relationsbgtween Manning’s n and velocity as
stated in Manning’s equation. For the bed pradiéput, critical shear stress is the
parameter that produces the most sensitivity.icatishear stress impacts bed profile
through its role in determining the overall erodif§pof the bed material. It is interesting
to note that these same relationships hold whelieetirst order or the total order
sensitivity is considered. In general, the comnttiln of the less important parameters is
magnified when the total order indices are congderThis suggests that these
parameters are primarily important because thegcathe contributions of the more
important parameters, such as critical shear sthedisig factor, and Manning’s n.
Hence, their contribution to the variance is langben parameter interactions are
included in the analysis.

Figure 2c and Figure 2d show the equivalent resoitthe Seal et al. (1997)
experiment. When considering the first order sansés (Figure 2c), four parameters

again have contributions larger than 5%: critslaar stress, hiding factor, weight of
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bedload fractions, and Manning’s n. This listimitar to the erosion case, with the
weight of bedload fractions replacing the actiwelathickness multiplier. For d50, the
hiding factor plays a smaller role for the depasiéil case than it did for the erosional
case, but it is still the parameter that produ¢hregmost variance. For velocity,

Manning’s n plays an even larger role for the déposal case than it did for the

erosional case. For the bed profile, Manning’©w overtakes the critical shear stress as
the parameter that producing the most variancee ifitreased importance of Manning’s

n in determining variability of the bed profileegpected because the flow velocity plays
an important role in deposition.

The total order sensitivities in Figure 2d show encomplex behavior than
suggested by the first order indices. Similati tesults for the erosional case, the less
important parameters have a bigger role in thd totier indices than they do in the first
order indices. For the total order sensitivitg% threshold would identify the same four
parameters as most important for the d50 outpwieher, for the velocity and bed
profile outputs, this threshold would identify phrameters as being important.
Increasing the threshold to 10% for the velocitg &ed profile outputs would identify
the same four parameters included in the first osdasitivity, plus scour recovery factor
for the bed profile output. Comparing the totadarindices from the erosional and
deposition cases (i.e. Figure 2b and Figure 2dyestgthat the depositional process is
much more complex than the erosional process.ekample, most of the bed profile
variance comes from the critical shear stresseretiosional case, but for the depositional

case, all parameters have roughly comparable imfle on the bed profile.
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5.2 GLUE

After the sensitivity analysis was completed fa thvo experiments, the GLUE
method was used to calculate the posterior likelihdistributions for each parameter as
described in the Methodology section. Recall thatlikelihood function uses weights
based on the first order sensitivity indices, whaeh plotted in Figure 2a and Figure 2c.
The final weights are tabulated in Table 3. Thkellhood function also requires a value
for m, the effective number of independent locationgresinis 1, the most conservative
value for this variable, since it will produce tlaegest estimate in parameter value
uncertainty. The effect that has on the results is evaluated later.

Table 3. Weights used in the evaluation of the likihood function in Equation 5 when median grain
size, flow velocity, and bed profile are observed.

Weight of
d50 output  Velocity output  Bed profile output

Parameter

Ashida and Michiue (1971) experiment, First ordsrsstivity weights

Critical shear stress 0.027 0.098 0.875
Hiding factor 0.826 0.022 0.153
Active layer thickness multiplier 0.589 0.025 0.386
Manning’s n 0.014 0.942 0.044
Ashida and Michiue (1971) experiment, Total ordsrstivity weights

Critical shear stress 0.061 0.114 0.825
Hiding factor 0.766 0.050 0.184
Active layer thickness multiplier 0.419 0.173 0.408
Manning’s n 0.035 0.850 0.115
Seal et al. (1997) experiment, First order serigjtiveights

Critical shear stress 0.211 0.064 0.725
Hiding factor 0.857 0.043 0.100
Weight of bedload fractions 0.458 0.025 0.517
Manning’s n 0.049 0.604 0.347
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Figure 3. Posterior cumulative likelihood distributions for (a) critical shear stress, (b) hiding faair,
(c) active layer thickness multiplier, and (d) Maniing’s n for the Ashida and Michiue (1971)
experiment. Dashed lines indicate the assumed iidt uniform distribution for each parameter.
Vertical lines indicate the parameter value used ithe calibrated model.

The solid lines in Figure 3 show the marginal postecumulative likelihood

distributions of critical shear stress, hiding taciactive layer thickness multiplier, and

Manning'’s n for the Ashida and Michiue (1971) expent. Recall that the GSA

identified these parameters as producing the marstnce in the model outputs. The

dashed lines show the initial uniform distributioria the interests of brevity, the

posterior distributions of the remaining parameterge not been shown. The steep

sections in these posterior distributions indicateges with higher concentrations of

likelihood. Such sections are seen in the distidms for critical shear stress, hiding

factor, and Manning’s n. In contrast, the disttibn for active layer thickness multiplier
does not demonstrate such a steep section. Thil seiggests that the active layer
thickness parameter is more poorly constrainedbyavailable observations than the

other parameters.

28



Cumulative Likelihood

Cumulative Likelihood

1.0

(a)

0.8
0.6
0.4
0.2
0.0

0.01

1.0

0.03 0.04 0.05

Critical Shear Stress

0.02

(c)

0.06

0.8
0.6
0.4
0.2

0.0
0.00

0.25 0.50 0.75
Weight of Bedload Fractions

1.00

Cumulative Likelihood

Cumulative Likelihood

1.0

(b)

0.8
0.6
0.4
0.2
0.0

1.0

1.0

0.8
0.6
0.4
0.2

~
-~
-
-~
-~
P
P
~
0.0 0.2 0.4 0.6 0.8
Hiding Factor
(d)
~
~
~
P
~
-
-~
~
~

0.0

Manning's n

0015 0025 0035 0045 0055 0.065

Figure 4. Posterior cumulative likelihood distributions for (a) critical shear stress, (b) hiding fator,
(c) weight of bedload fractions, and (d) Manning’'s for the Seal et al. (1997) experiment. Dashed
lines indicate the assumed initial uniform distribttion for each parameter. Vertical lines indicate tte
parameter value used in the calibrated model. Initl parameter value for weight of bedload fractions

is zero.

Error! Reference source not found.shows the posterior cumulative likelihood

distributions of critical shear stress, hiding tactwveight of bedload fractions, and

Manning'’s n for the Seal et al. (1997) experimefgiain, these are the parameters found

to produce the most variance in the model outpurtshis experiment. Steep sections are

observed for the cumulative distributions of hidfagtor and Manning’s n, indicating

that the most likely values of these parametetsafigthin relatively well-defined ranges.

Critical shear stress and weight of bedload frastido not exhibit such large steep

sections, suggesting that these parameters arepuorbky constrained.

5.3 LHS

After the posterior distributions were created, LW&s used to develop samples

from them. For both physical experiments, the samsple was 1296 parameter sets

(other sample sizes are discussed below). Sixegahere generated for the four

parameters that produced the greatest sensitivityd outputs, while a single midpoint
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value was used for the remaining parameters. @&jecnly one value for the
parameters that produced relatively little sengitin the outputs effectively neglects the
uncertainty in the outputs produced by uncertaimtyrese parameter values. Screening
out these parameters ultimately allows a much gnalimber of simulations to be
conducted for the forecasting period, which redwmesputation time.

For the Ashida and Michiue (1971) experiment, silues were generated from
each distribution for the posterior distributiorfatical shear stress, hiding factor,
active layer thickness, and Manning’s n. Singleie@a were used for deposition recovery
factor, scour recovery factor, bedload adaptatmgth, and weight of bedload fractions.
The first order sensitivity for each of these paggars is less than 1% of the total
sensitivity for any of the outputs. Figure 5 pltite histograms for the length-averaged
d50, velocity, and bed profile when parameter geteerated from LHS are used to
simulate the forecast period (shown as a solid.lik®r comparison, the figure also
shows the histograms of these output variablesywexdi for the calibration period
(shown as a dashed line), where the parametersgeeerated from a uniform
distribution via FAST. The vertical axes show tiea frequency of occurrence, which
was calculated using 30 bins for d50, velocity, bad profile. The vertical lines
represent the observed values for these outpuesdiBitributions of these outputs have
shifted from the calibration to the forecast perthe in part to differences in the initial
conditions and elapsed simulation time. In patéicuhe duration of simulation was only
2 hours for the calibration period while it was@uhns for the forecast period. Typically
one expects a wider range of output values fongdo simulation (i.e., the forecast

period). However, the output histograms also otfllee narrow posterior distributions of
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the parameters used for the forecast period. @n@wer distributions of the parameters
are likely the reason that the velocity histogramarrower for the forecast period than
for the calibration period. The most common valokd50 range from 3 to 6 mm for the
forecast period. The observed value (from thébcaled model) was actually 4.2 mm.
The most common values of velocity range from @d38.54 m/s for the forecast period,
and the observed value was 0.47 m/s. The most convaues of the bed profile range
from -0.080 to -0.005 m, and the observed value®@#&20 m. Thus, all of the
histograms include the actual value for the forepasiod. In some cases, the actual
values for the forecast period is near the valudggd to be most likely from the

histograms in the figure.
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For the Seal et al. (1997) experiment, six valuesevgenerated from each
distribution for the posterior distributions oftacal shear stress, hiding factor, weight of
bedload fractions, and Manning’s n, using the LH&huod. Single values were used for
the active layer thickness multiplier, depositienavery factor, scour recovery factor,
and bedload adaptation length. Again, as can &e iseFigure 2, the first order
sensitivities for these fixed parameters are al knan 1% of the total first order

sensitivity for any of the model outputs.
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Figure 6. Histograms of (a) d50, (b) velocity, an{c) bed profile for calibration and forecast periods
for Seal et al. (1997) experiment. Vertical linesdicate the output value from the calibrated model.

Figure 6 plots the histograms for the length-avedadf0, velocity, and bed
profile for the two Seal et al. (1997) cases comsd as forecast scenarios (shown as
solid lines). These histograms were generatedyusrbins for d50, velocity, and bed

profile. The figure also shows the histograms esthoutput variables that were
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produced for the calibration period (shown as d&dddine), using parameters generated
from a uniform distribution via FAST. The vertidales represent the observed values
for these outputs.

Overall, observed values for the forecast periggeally fall within the range of

values included in the histogram, although not gbwat the most likely value.
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6_Analysis

The results described in the previous section saenened based on several
decisions made in the application of the methodplobthese decisions include: (1) the
sample size used in FAST to assess the senstiwafithe outputs to the parameters, (2)
the use of the first order sensitivities rathemntkize total order sensitivities to calculate
the weights in the likelihood function, (3) the aseed effective number of independent
observationsm, (4) the mathematical form of the likelihood fuoct, (5) inclusion of
observations of d50, velocity, and bed profile dmstrain the parameters, (6) neglecting
the possible correlation in the posterior distribng of the parameters, and (7) the sample
size used in the LHS method for the forecast peribde impact of each of these
decisions is examined below using the Ashida anchMe (1971) experiment.

The impact of the sample size used in FAST is erathfirst, as seen in Figure 7.
In the previous section, a sample size of 5000 laitimns was used (Figure 7a). To test
whether this sample size is adequate to quantés#énsitivities, a second sample of
equal size was generated and used in FAST to dstittna sensitivities for the Ashida
and Michiue (1971) experiment (Figure 7b). As carsben, the same main parameters
were identified in the global sensitivity analysiSmaller sample sizes of 1160 and 968
simulations (Figure 7c and Figure 7d) were alscegated and used to estimate the
sensitivities with FAST. Both of these showed gogodlitative agreement with the
sensitivity analysis of the initial sample. In peular, analysis of both samples identified
the same main parameters. A sample size of 520l&iions was also tested. For this
simulation size, the sensitivity analysis faileddentify the same parameters previously

found to produce the most variance in the outptitsus, this sample size is too small to
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produce reliable estimates of sensitivity, and wayreatly impact the assessment of

parameter uncertainty, at least for this experiment

Ashida and Michiue (1971) Experiment, First order sensitivity
(a) 5000 simulations (b) 5000 simulations, second set
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Figure 7. Comparison of first order sensitivity indces for SRH-1D model of Ashida and Michiue
(1971) experiment using different sample sizes. 1Sstivities are stacked in each column in the same
order they are listed in the legend.

Next, the impact of using the first order sensiiidd to determine the weights in
the likelihood function in Equation (5) is examined/hile the total order includes
parameter interactions in judging the impact ofveeilg parameter on the outputs, using
first order sensitivities potentially allows apg@iton of faster methods to estimate the
sensitivities (Saltelli et al., 2008; Gatelli et,&008). The weights used in this
comparison are shown in Table 3. Figure 8 showgdst¢erior cumulative likelihood
distributions for critical shear stress, hidingtéacactive layer thickness multiplier, and
Manning'’s n, using both the first order and totaley sensitivities to determine the
weights. As can be seen from Table 3, the weiglgsianilar, so the resulting posterior
distributions are very similar in Figure 8. In fathe cumulative likelihood distributions

for critical shear stress are visually indistindnaible. This analysis provides preliminary
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evidence that the use of first order instead d@ltotder weighting may have relatively

little impact on the assessment of parameter uaicgyt
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Figure 8. Comparison of posterior cumulative likelhood distributions for (a) critical shear stress, If)
hiding factor, (c) active layer thickness multiplie, and (d) Manning’s n when the likelihood function
uses the first order or total order sensitivity. [ashed lines indicate the assumed initial uniform
distribution for each parameter. Vertical lines indicate the parameter value used in the calibrated
model. All results are for the Ashida and Michiue {971) experiment.

Another key assumption in the methodology abovkéaseffective number of
independent observations, Previouslymwas assumed to be 1 due to the expected
error dependence at different cross-sections imalation. Here, the practical effect of
m on the results of the analysis is examined. UsliegAshida and Michiue (1971)
experiment, posterior cumulative likelihood distriions for critical shear stress and

hiding factor were generated using valuesafarying from 1 to 20 in Figure 9a and

Figure 9b.
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Figure 9. Comparison of the effect of the choice @, the effective number of independent
observations, on the posterior cumulative likelihod distributions for (a) critical shear stress and )
hiding factor. Dashed lines indicate the assumeditial uniform distribution for each parameter.
Vertical lines indicate the parameter value used ithe calibrated model. All results are for the
Ashida and Michiue (1971) experiment.

As can be seen in this figure, an increase in creates a posterior distribution with a more erratc
shape, where a very small number of parameter valgebegin to dominate the distribution. Overall, a
larger value of m increases the likelihoods of the parameter valudbat produce results that are very
similar to the observations and penalizes the paraeter sets that produce more dissimilar results.
The values of critical shear stress and hiding faot from the calibrated model were 0.0386 and 0.905,
respectively, as seen in

Table 2. While the value for critical shear strisslocated at a relatively flat
portion of the distribution, or one with a lowekdiihood, the value of hiding factor is
located at a particularly steep portion of therdistion; that is, one with a greater
likelihood. The hazard of a large valuenois that the method forces an exact match to
the observations, essentially neglecting measurearghother possible sources of error.

The form of the likelihood function was also assdrnregenerating the results in
the previous section, based on a conceptual extesithe likelihood function presented
by Stedinger et al. (2008) to include multiple eria. However, an alternative likelihood
function could be devised by normalizing each ottauwiable and then including them in
the function presented by Stedinger et al. (2068hm this logic, the likelihood function

would be:
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where the indices 1, 2, and 3 are the differertesyoutputs, andry, , UOZ, anda are
the variances of the observations for each outpbe MLE values are calculated in the
manner described earlier. A value of 1 is usedifemumber of independent

observationsi, in this application.
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Figure 10. Comparison of the effect of the mathematal form of likelihood function on the posterior
cumulative likelihood distributions for (a) critical shear stress and (b) hiding factor, using Equatio 5
and Equation 15. Dashed lines indicate the assumédtial uniform distribution for each parameter.
Vertical lines indicate the parameter value used ithe calibrated model. All results are for the
Ashida and Michiue (1971) experiment.

Figure 10 (a, b) shows the posterior cumulativeliifood distributions calculated
using both this likelihood function (Equation 15)dathe multi-objective likelihood
function used earlier (Equation 5). The multipledablikelihood function assigns nearly
all of the likelihood to a single parameter valoesating a vertical (or “stair-step”)
posterior distribution. The parameter set selebtethis function is the MLE parameter
set. Part of the reason for this form is thatdhservations used in this analysis are
actually model results, so the MLE is capable pfoducing the results with very little
error. Thus, it is judged to have a very highlitkeod. However, these results

demonstrate that the form of the likelihood funetean have major impacts on the
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results of a GLUE analysis and that the likelihdawiction contains hidden assumptions
about the measurement error and the importancgreeskio exactly matching the
observations.

The use of calibrated model outputs in place aia@abbserved data allowed the
inclusion of a larger number of observations tostaan the parameters than were
actually available in the physical observations.many cases, smaller numbers of
observations or observations of fewer variablesageglable. To test the impact of the
available observations on the results, it is heseimed that no observations for d50 were

available. In such a case, the likelihood functithinclude only two outputs rather

than three.
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Figure 11. Comparison of posterior cumulative likehood distributions for (a) critical shear stress,
(b) hiding factor, (c) active layer thickness multplier, and (d) Manning’s n when d50 is observed or
unobserved. Dashed lines indicate the assumed inituniform distribution for each parameter.
Vertical lines indicate the parameter value used iithe calibrated model. All results are for the
Ashida and Michiue (1971) experiment.

Figure 11 compares the posterior cumulative lilaith distributions for critical
shear stress, hiding factor, active layer thickmesHiplier, and Manning’s n, developed
using observations for d50, velocity, and bed pepfind developed using only velocity

and bed profile. The posterior distributions fdtical shear stress and Manning’s n
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(Figure 11a and Figure 11d) do not change notigeall this model, median grain size,
d50, is not sensitive to critical shear stress aniMng’s n, so its observations have little
impact on the likelihood functions for these partare The posterior distribution for
hiding factor (Figure 11b), however, shows a draenatange when d50 observations are
unavailable, moving closer to a uniform distributi@ecause the parameter is assumed
to be uniformly distributed in advance of the siatirlg the calibration period, this
implies that the observations from the calibrap@niod are not effective at constraining
this parameter. Similarly, the posterior distributifor active layer thickness multiplier
(Figure 11c) moves closer to a uniform distributimnplying that the velocity and bed

profile observations are of limited effectivenassestraining this parameter.
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Figure 12. Histograms of (a) d50, (b) velocity, an¢t) bed profile for the calibration and forecast
periods for the Ashida and Michiue (1971) experimetn with d50 output observed and unobserved.

Vertical lines indicate the output value from the alibrated model.
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The resulting histograms for d50, velocity, and peafile for the calibration and
forecast periods are shown in Figure 12 (a, bV¢hen only velocity and bed profile are
observed in the calibration period, the histogramdb0 in the forecast period resembles
the histogram from the calibration period, with agnlikely value of 5.2 mm. This
occurs because hiding factor, which is most imputrita controlling d50 (see Figure 3),
was poorly constrained by the calibration obseoreti Active layer thickness multiplier,
also known to impact d50 outputs, is similarly umstnained. The histograms of velocity
and bed profile after the forecast period are simitespective of whether d50 was
observed or not. Because velocity and bed profiervations were available for the
calibration period, the most important parametieas impact velocity (Manning’s n) and
bed profile (critical shear stress) were about Bygeanstrained irrespective of whether
d50 was observed. This analysis suggests trabgneficial during the calibration
period to observe any output variable for whictetasts will be required. Such
observations help constrain the parameters thaddbhthe same output variable. In the
circumstance where direct observations of the ddsiutput are not possible, the GSA
provides a tool to identify other, more measurabigputs that depend on the same
parameters.

Another key assumption in the methodology is th@ahto neglect correlation
between the most likely values of the differentgmaeters. All posterior distributions
shown in this paper are marginal distributions,aliiintegrate over all values of the other
parameters. These distributions are then usdteihHS method, which implicitly
neglects any correlation or dependence in the ghsttibution of the parameter values.

Figure 13 plots the value of Manning’s n againstvhlue of the critical shear stress for
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the parameter sets in the sample used in the aabhrperiod for the Ashida and Michiue

(1971) experiment.
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Figure 13. Comparison of likely critical shear stress and Manning's n values, for likelihoods greater
than 0.0001, using Equation 5 with equal weights fall outputs. Ashida and Michiue (1971)
experiment.

In this plot, only the best performing parametds $er most likely parameter
sets) are shown. If all points were included,gbits would be uniformly distributed.
The lines of points visible in the plot occur doethe FAST sampling method described
earlier. For this figure, performance was caladaiising the likelihood function in
Equation (5) with equal weights for d50, velociéyd bed profile. The figure shows that
most likely values for critical shear stress andhkiag’s n values are clustered within a
particular region. In addition, the most likelylwes for Manning’s n tend to be larger
when the critical shear stress is larger (althomgich scatter is observed). Based on this
observation, some dependence between the distwbaficritical shear stress and
Manning'’s n is likely. Similar dependences betwegtical shear stress and hiding
factor, hiding factor and active layer thickness] &iding factor and Manning’s n are

suspected. Additional examination would be necgssadetermine how such
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dependences would change the overall assessmi@ iofipacts of parameter
uncertainty.

Finally, the impact of the sample size in the LH&8thod was examined. As
described earlier, 6 values were generated fod th@ameters most important
parameters, while the other parameters were fikégedr midpoints. This approach
produced a total of 1296 simulations for each expemt. To assess the impact of the
sample size, the number of values was varied frasn®bfor each parameter, producing
sample sizes of 625, 1296, 2401, 4096, and 656dlations. Each of these sample sizes
produced very similar forecast distributions foe gelected outputs. The most likely
value varied up to 1.6% for the d50 output (basethe value from the 1296 sample

size), up to 0.5% for the velocity output and u@14% for the bed profile output.
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7 Conclusions

In this paper, a new method was developed to asisessipacts of parameter
uncertainty on the uncertainty of sediment transpardel forecasts. The method begins
by assuming the parameters are uniformly distridbwtghin specified bounds and then
updates these distributions by comparing the residilsimulations based on these
parameter values against observations for a ctitlorgeriod. The distributions are then
updated using a likelihood function that extendsdhe proposed by Stedinger et al.
(2008) to include multiple model output variablds.the likelihood function, the output
variables are weighted using the first order glagadsitivities, calculated using FAST.
The updated distributions of the parameters ane saenpled using LHS to produce
histograms of model outputs for the forecast peribde main conclusions from the
application of this method are as follows:

1. The sensitivities of length-averaged mediamngsee, flow velocity, and bed
profile to the model parameters can be quite diffefor erosion and deposition cases. In
the erosional Ashida and Michiue (1971) experimarégian grain size is most
dependent on hiding factor, velocity is most deggri@én Manning’s n, and bed profile is
most dependent on critical shear stress. Forépegitional Seal et al. (1997)
experiment, median grain size is most dependehiding factor and weight of bedload
fractions, velocity is most dependent on Manning’'and bed profile is most dependent
on critical shear stress and Manning’s n. Alse,dhtputs for the depositional case tend
to be sensitive to more parameters. For exampie¢hé erosion case considered here,

median grain size is most sensitive to hiding faeatad relatively insensitive to the other
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parameters. For the depositional case consideney] median grain size is sensitive to
critical shear stress, hiding factor, weight of lbad fractions and Manning’s n.

2. The analysis of global sensitivities suggdsésitportance of calibrating
against observations of variables that will beudeld in the forecast. For example, if the
forecast includes median grain size, then the mslg@lild be calibrated using
observations of median grain size. This approasists the calibration method in
constraining the parameters most important to tr@bles included in the forecast. If
the variables included in the forecast cannot senled directly during the calibration
period, then the global sensitivities can be usadéntify alternate output variables that
depend strongly on the same parameters. Thesraitevariables could then be used to
constrain these parameters, reducing the uncertaitihe forecast.

3. Based on the evaluation of the impacts of patanuncertainty presented
here, weighting the different output variables loage the first order sensitivity in the
likelihood function appears to be an adequate gubesfor use of the total order
sensitivity. This approximation is potentially eficial because faster methods are
available to estimate the first order sensitivitgn the total order sensitivity. Further
testing is needed to determine the generalityisfrisult and to identify model structures
and applications where the total order sensitimitght produce substantially different
results.

4. By using two mathematical forms of the likeltfuofunction, it was observed
that the choice of the likelihood function can piod widely differing estimates of the
parameter uncertainty remaining after calibrateomy thus the uncertainty in the model

forecasts due to parameter uncertainty. Simildhlg,choice of the variabla, the
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effective number of independent observations, heigraficant impact on the results.
These issues are related to implicit assumptioositahe structure of measurement and
other errors in the analysis. Further researcle&led to select and test an appropriate
likelihood function. Itis recommended that thesearch begin by applying the
methodology to cases where the error and modedtates are simple and the likelihood
function are known from basic statistics and thegi to transition towards more
complex, but interesting, sediment transport cases.

5. In the sampling of the posterior distributidasthe parameters, any
dependence between the most likely values of @iffeparameters is neglected.
Anecdotal evidence in this analysis suggests tepéddencies do occur. If present, these
dependencies could affect the histograms for thecst model outputs. Further
research should investigate methods to estimatmitmidikelinood function.

Overall, the research described in this paper shbellexpanded to consider other
cases to establish the generality of the reséltiditional cases might include more
flume-scale experiments, such as deposition in wrmesandy channels (Toro-Escobar et
al., 2007), and erosion in alluvial channels. Theguld also include river-scale models,
where a sufficient set of field observations exisigsting could also consider additional
output variables such as channel width, flow degfl, d84, and sediment load.
Additionally, other sediment transport equationshsas Meyer-Peter Muller, Laursen,
and Ackers-White could be examined to see howdlaionships between model

parameters and outputs change.
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