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Introduction 
In recent years, a variety of new optimization heuristics have been described in 
the power engineering literature. The bulk of these are evolutionary algorithms. 
These approaches rely on innovative search techniques, drawn from biological 
and physical processes. Although computationally intensive, these methods can 
solve difficult constrained optimization problems, like the optimal economic 
dispatch problem, quickly and reliably. 
 
This scoping document describes some of the specialized terms encountered in 
the evolutionary algorithm literature, compares and contrasts traditional calculus 
based optimization approaches with evolutionary algorithms and describes one 
such algorithm, particle swarm optimization (PSO), in detail.  A review of the 
pertinent literature was undertaken and an extensive list of citations is included.  
This document is designed to inform future research efforts focused on the 
optimal hydropower economic dispatch problem. 

Selected Terms 
Like any branch of science, there are some terms used to describe mathematical 
optimization approaches which are not commonly encountered in other fields.  As 
an aid to understanding the narrative which follows, it will be useful to define 
some of these terms.  

Algorithm  

“A detailed sequence of actions to perform to accomplish some task. named after 
an Iranian mathematician, Al-Khawarizmi. Technically, an algorithm must reach 
a result after a finite number of steps, thus ruling out brute force search methods 
for certain problems, though some might claim that brute force search was also a 
valid (generic) algorithm. The term is also used loosely for any sequence of 
actions (which may or may not terminate)” (Computer Dictionary Online 2010).  

Heuristic 

“A rule of thumb, simplification, or educated guess that reduces or limits the 
search for solutions in domains that are difficult and poorly understood.  Unlike 
(true) algorithms, heuristics do not guarantee optimal, or even feasible, solutions 
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and are often used with no theoretical guarantee” (Computer Dictionary Online 
2010). 
 
In practice, the term algorithm is often used interchangeably with the term 
heuristic.  However, mathematicians typically reserve their use of the word 
algorithm to describing optimization approaches for which there is a theoretical 
mathematical basis for expecting a favorable result. Typically, mathematicians 
employ the term heuristic to describe any of the non-traditional optimization 
approaches not supported by mathematical theory. 

Objective Function 

The object of mathematical optimization is to minimize or maximize a specified 
mathematical expression.  This expression is known as an objective function. 

Penalty 

Many applied mathematical optimization problems have natural or logical 
constraints on the values which can be considered in the solution.  For example, 
physical (quantity) measurements are typically non-negative.   
 
One approach to characterizing constraints in a constrained mathematical 
optimization problem is to arithmetically disadvantage, or penalize, solution 
results which violate a constraint.  This topic is discussed in much greater detail in 
subsequent sections of this document.  A penalty function is used to compute the 
numerical magnitude of the disadvantage caused by one or more constraint 
violations.  A penalty is the value returned by a penalty function. 

Fitness 

In cases where penalty functions are used to characterize constraint violations, a 
fitness function is maximized or minimized instead of an objective function.  A 
fitness function returns the numerical value of the fitness—defined as the 
objective function value plus the value of the penalties for constraint violations, if 
any. 
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Optimization Approaches 

Taxonomy of Optimization Approaches 

For purposes of this document and the discussion which follows, it will prove 
useful to provide some type of taxonomy or classification scheme to illustrate the 
relationship.  Figure 1 provides some structure for this discussion. 
 
As shown in Figure 1, optimization approaches can be divided into traditional 
(calculus based) optimization algorithms and heuristic algorithms.  The latter 
class of optimization methods may also be described as metaheuristics or heuristic 
optimizers, depending on the author and the source. 
 
The focus of this research is on a sub-set of optimization methods which are 
classified as heuristic algorithms.  Even so, comparison and understanding of 
these methods is facilitated by some familiarity with traditional methods and 
approaches. 
 
 

 
Figure 1.  Taxonomy of Optimization Approaches 
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Traditional Solution Algorithms 

Optimization problems have traditionally been addressed with a variety of 
traditional calculus based methods and throughout the remainder of this 
document, these approaches will be referred to as “traditional” or calculus based 
approaches. Calculus based optimization approaches are routinely taught to all 
engineers and economists. Most students of these disciplines will surely have fond 
memories of the many hours they devoted to mastery of this topic!   
 
Since the time of Sir Isaac Newton (circa 1400), mathematicians, economists and 
engineers have collectively devoted vast amounts of effort to the study of 
optimization, with a particular focus on convex optimization problems with 
constraints.  There are many books devoted to this subject, one of the many 
modern examples being the tome by Boyd and Vandenberghe (2006).   
 
Numerical solution of convex optimization problems is typified by the Newton-
Raphson approach and its many variants.  This approach has been taught to 
engineers and economists since the early 1950’s (for example, see Wood and 
Wollenberg (1996) or Rau (2003)). 
 
As described in Press et al (1989) and Judd (1999), the Newton-Raphson 
approach has been largely supplanted by some of its recent and more advanced 
variants.  At the present time, two approaches are in the forefront of current 
calculus based optimization technology.  These are the sequential quadratic 
programming (SQQ) method, and, the generalized reduced gradient (GRG) 
method.  Both of these methods are aptly described in Rau (2003).  The SQQ 
method is often used in high-end commercially available optimization platforms, 
such as LINGO (www.lindo.com).  The GRG method has found its niche as the 
optimization solver incorporated in all currently shipping versions of Microsoft 
Excel (Fylstra et al 1998).  As such, it may well be the world’s most frequently 
used optimization algorithm. In any case, it is almost certainly the most widely 
installed optimization package!  As bundled with the ubiquitously available Excel 
program, the solver is broadly employed in graduate and undergraduate teaching 
(for example, see Weber 2007). 

Heuristic Optimization Methods 

The focus of this research is on the application of a subset of the heuristic 
optimization methods shown in Figure 1.  Heuristic optimization approaches are 
based on the application of rules and logic which reduce the search space and 
allow for solution of difficult optimization problems. Generalizing rather broadly, 
we can classify these methods into the three categories shown; evolutionary 
algorithms, other nature based algorithms and logical algorithms.   
 

http://www.lindo.com/�
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Evolutionary algorithms explicitly characterize crossover, mutation and selection 
operators (Engelbrecht 2005). As might be expected by their name, evolutionary 
algorithms are based on the concept of biological evolution.  These approaches 
are based on the improvement of an artificial population of individuals over a 
series of generations or iterations.  Each individual carries a solution to the 
optimization problem. At each generation, the most fit individuals in the 
population reproduce and their offspring survive into the next generation, the less 
fit individuals die and their inferior genes are lost. The fitness of the population 
and the quality of the solutions found, improve over time.  Genetic algorithms, 
differential evolution and particle swarm optimization fall into this category of 
algorithms. 
 
There are an amazing variety of optimization heuristics which are related to 
organisms, their behavior or some natural physical phenomenon.  Among these 
are ant colony optimization, bee optimization, firefly optimization and a host of 
others.  Typically, these algorithms are predicated on the collective food location 
strategies typified by the species.  
  
The realm of optimization heuristics is rather broad.  As might be expected, not 
all of them are based on natural systems.  For purposes of this document, we will 
classify these remaining approaches as logical heuristic search algorithms. While 
these may be very different from one another in search strategy, they are based on 
logical insights, experience and in-depth knowledge of one or more types of 
optimization problems.  As shown in Figure 1, this category includes such well-
known heuristics as Tabu search and Extremal optimization.  It also includes 
some less well known but quite effective algorithms such as the Substitution-
based Non-linear Approximation Procedure (SNAP) algorithm developed by 
Veselka, Schoepfle and Mahalik (2003)  

Comparison of Approaches 

Much of the research effort described in this report is focused on the application 
of evolutionary algorithms to two common hydropower optimization problems.  
A comparison of these two classes of algorithms and their respective suitability to 
these problems will provide both some background and rationale.  Table 1 
compares a number of pertinent characteristics of these two types of approaches. 
 
The hydropower problems examined here are inherently nonlinear with both 
nonlinear and linear constraints.  Both traditional and evolutionary algorithms can 
be applied to these types of problems.  Very fast and incredibly reliable traditional 
algorithms are available for solving problems with linear objective functions and 
constraints.  However, traditional algorithms are typically less efficient when 
applied to nonlinear objectives and nonlinear constraints.  They typically require 
longer solution times and can fail to identify a solution more frequently in this 
setting. 
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Table 1. Traditional and Evolutionary Algorithms 

 Traditional 
Algorithms 

Evolutionary 
Algorithms 

Problem formulation Linear or nonlinear Linear or nonlinear 
Mathematical 
requirements 

Smooth, continuous and 
twice differentiable 

Can be piecewise, 
discontinuous and non-
differentiable 

Allowable constraints  Equality, inequality, 
linear or non-linear. 

Equality, inequality, linear 
or non-linear. 

Mathematical 
requirements 

Calculus, linear and 
matrix algebra operations 

Primitive mathematical 
operators only (add, 
subtract, multiply, divide) 

Function return Single solution Multiple solutions 
Nature of outcome Deterministic Stochastic 
Optimal point Extremal point closest to 

starting position usually 
identified.  This may or 
may not be the global 
optima. 

Extremal point within 
search range usually 
identified.  This is more 
likely to be the global 
optima. 

Memory requirements Extensive Modest 
Convergence 
characteristics 

Slow large-scale search 
Fast local convergence 

Fast large-scale search 
Slow local convergence 

Solution time Short Often lengthy 
Code implementation Complex (very) Unsophisticated 
 
 
 
Many commonly encountered hydropower problems are nonlinear, nonconvex, 
and have discontinuities.  This includes the dynamic economic dispatch problem 
and the unit dispatch problem examined here. Perhaps the chief strength of 
evolutionary programs is their applicability to these types of real-world 
hydropower problems, a factor which largely motivated this research effort.  The 
mathematical requirements for applying traditional optimization algorithms are 
rather restrictive. Typically, traditional algorithms can only be employed when the 
objective function and the constraints are smooth, continuous and twice 
differentiable. In contrast, evolutionary algorithms can solve a much wider range 
of problems including those which are discontinuous, piecewise, are not convex 
and which cannot be differentiated.   
 
Both traditional and evolutionary algorithms can solve constrained optimization 
problems with various types of constraints including equality, inequality, linear 
and nonlinear constraints.  Traditional algorithms are less well suited to solving 
optimization problems with nonlinear constraints.  The solution of problems with 
one or more equality constraints can be problematic for evolutionary algorithms. 
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The mathematical requirements for implementing evolutionary algorithms are far 
less onerous than they are for traditional (calculus based) algorithms. In both 
philosophy and practice evolutionary algorithms are not based on calculus and do 
not use calculus constructions for obtaining a solution.  In fact, some authors 
consider this to be their greatest strength! Evolutionary algorithms use only 
primitive mathematical operators such as addition, subtraction, multiplication and 
division.  Traditional algorithms are, of course, founded in calculus concepts.  As 
a result, they use not only gradients vectors (vectors of first partial derivatives) 
and hessian matrices (matrices of second partial derivatives), but also have 
advanced linear algebra requirements.  These advanced mathematical constructs 
are error prone to derive and code, difficult to implement numerically and require 
an extremely high degree of knowledge and skill on the part of the 
researcher/programmer.  Judd, a master of understatement, writes “Many readers 
could write acceptable unconstrained optimization code, but it is much more 
difficult to write good, stable, reliable code for constrained optimization (Judd 
1999, page 142) 
 
Traditional (calculus based) optimization algorithms return one single solution.  It 
is the solution to the problem, as every economics and engineering student is 
acutely aware.  A fundamental difference between traditional and evolutionary 
algorithms is that evolutionary algorithms return a population of solutions.  This 
difference in solution paradigm is both unfamiliar and potentially confusing.  
  
To expand upon this concept, we must recall that evolutionary algorithms 
characterize a population of individuals.  This population is of say size, np, which 
could consist of from 5 to 100 individuals or more. Fundamentally, each of these 
np individuals stores a solution (in some cases, more than one).  The stored 
solution consists of not only the optimal function value, but the vector of values 
which produces it.  As the evolutionary process proceeds, each of these np 
solutions evolves and becomes better, or more “fit.”  When the evolutionary 
process terminates, the result is np, not necessarily unique, individual solutions-- 
not one single solution.  As a practical matter, the analyst will often choose to 
report the best of these np individual solutions as the solution.  Since evolutionary 
algorithms are probabilistic in nature, each new run will produce slightly different 
results (in contrast with a traditional algorithm which produces identically the 
same result for a given starting condition).  In the case of evolutionary algorithms, 
it is customary to undertake multiple runs and report the mean and other 
descriptive statistics for the outcomes. 
 
Many real-world optimization problems have more than one optimal or extremal 
point.  At an extremum, the first order necessary conditions (FOCs) for a 
minimum or maximum are satisfied.  In the case of a traditional calculus based 
algorithm, the specific extrema identified by the algorithm depends primarily on 
the starting conditions specified by the analyst.  These types of functions are the 
bane of researchers everywhere!  In the absence of detailed knowledge about the 



 

8 

optimal surface, the usual procedure is to restart the traditional algorithm at many 
different points in the solution space and search for the global optimum point. 
Problems which exhibit multiple local optima can often be solved by these 
calculus based methods.  However, there is no theoretical or practical way to 
guarantee the solution identified by the researcher is the global solution to the 
problem.  
 
Evolutionary algorithms are sometimes described as global optimizers owing to 
their well-documented ability to identify the global optima within the given 
search space.  Notwithstanding the published glowing reports, an equal body of 
published evidence suggests this behavior is not universally observed.  
Furthermore, it cannot be proved theoretically that they can be relied upon to 
identify the global best solution.  It is most certainly true that relative to 
traditional algorithms, evolutionary programs carry more solutions through the 
iteration process and have much greater exploratory ability.  These two 
characteristics enable evolutionary algorithms to more exhaustively traverse the 
solution space.  Consequently, they are much more likely than traditional 
algorithms to identify the global optima. 
 
Traditional optimization algorithms make heavy use of vectors, matrices and 
linear algebra operations, which themselves exact a huge computer memory 
overhead.  Consequently, traditional optimization algorithms require extensive 
amounts of computer memory, especially for the solution of sizable problems. As 
little as ten years ago the practical usage of traditional optimization algorithms 
was restricted by the amount of physical and virtual memory addressable by 
existing microcomputers.  In contrast, evolutionary algorithms do not make use of 
vectors, matrices or other advanced mathematical structures or operators.  Their 
memory requirements are quite modest for similar size problems. 
 
In cases where they can be applied, traditional calculus based optimization 
algorithms are known for their rapid converge properties.  This is especially true 
in the case of convex functions with linear constraints.  Experiments show that for 
traditional optimization algorithms, the initial phases of search are quite slow.  
Once they have identified the region where the optima resides, local convergence 
to the final solution is often very fast.  Evolutionary algorithms on the other hand, 
exhibit behavior which is very much the opposite.  Experiments on evolutionary 
algorithms demonstrate the initial search phase is very fast—the algorithms 
quickly and efficiently locate the region of the optima.  However, the local 
convergence of these algorithms is slow, in some cases, painfully so.  Typically, 
large amounts of time are required for the population to converge on an optimal 
point, after the region where it is located has been isolated. 
 
The computational resources required by traditional calculus based algorithms 
and evolutionary algorithms differ profoundly.  Not surprisingly, the time 
required to achieve convergence is vastly different. Traditional algorithms require 
large amounts of memory but typically require less than 100 major iterations to 
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converge to a solution.  Evolutionary algorithms often require thousands or tens 
of thousands of iterations to converge to a solution.  While it is true that 
evolutionary algorithms utilize only primitive mathematical operations—it is no 
understatement to say they do so intensively!  Prior to the advent of 
microcomputers, the lack of sufficient computing power and sheer cost of 
computer resources precluded the use of evolutionary algorithms for civilian 
purposes. 
 
One of the advantages of evolutionary algorithms is their ease of implementation.  
Unlike traditional algorithms, effective cutting-edge evolutionary algorithms are 
routinely developed by researchers and hobbyists.  As of December 2010, there a 
number of toolboxes and working computer codes are available.  Even so, many 
researchers with limited resources, develop research grade evolutionary 
algorithms using high level computer languages such as C++, C, Fortran, Java, 
Visual Basic and Delphi.  This is rarely the case for traditional calculus based 
algorithms. 

Evolutionary Algorithms 
Evolutionary algorithms (EAs) belong to a larger class of algorithms best 
described as being inspired by natural phenomenon, particularly the behavior of 
different organisms.  These are often called nature based, nature inspired, or in 
some cases, biological algorithms.  The universe of nature inspired algorithms is 
large and creative.  Nature inspired algorithms span the realm from bacteria (Kim, 
Abraham and Cho 2007), to fireflies (Yang 2009), raindrops (Shah-Hosseini 
2009), ants (Dorigo and Stutzle 2004) and beyond.  Newly described algorithms 
appear in the literature on a regular basis.  A selection of the more common and 
better documented nature inspired algorithms is shown in Table 2.  
 
The evolutionary algorithms, including genetic algorithms, particle swarm 
optimization, and differential evolution are a sub-category of the nature inspired 
optimization algorithms.  Evolutionary algorithms and their characteristics are the 
focus of this research and are discussed in greater detail in subsequent sections of 
this document. 
 
Research on nature inspired algorithms is ongoing and active. There have been 
several evaluations and performance comparisons of nature inspired algorithms.  
These have typically focused on the less-esoteric members of this algorithm class.  
The most expansive of these evaluations is found in the book by Wahde (2008).  
Readily obtainable studies by Potter et al (2009) and Mezura-Montes and Lopez-
Ramirez (2007) are also very useful contributions to this line of research. 
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Table 2. Selected Nature Inspired Optimization Algorithms 

Algorithm References 
Ant colony optimization (ACO) Dorigo and Stutzle (2004) 
Artificial immune system optimization Cutello and Nicosia (2002) 
Bacterial foraging optimization Kim, Abraham and Cho (2007) 
Bee optimization Karaboga and Bosturk (2007) 

Pham et al (2006) 
Cuckoo algorithm Yang and Deb (2009, 2010) 
Differential evolution (DE) Storn and Price (1995, 1997) 
Firefly optimization Yang (2010) 
Fish optimization Huang and Zhou (2008) 
Genetic algorithms (GA) Haupt and Haupt (2004) 
Particle swarm optimization (PSO) Eberhart and Kennedy (1995) 

Kennedy and Eberhart (2001) 
Raindrop optimization Shah-Hosseini (2009) 
Simulated annealing Kirkpatrick, Gelatt and Vecchi 

(1983) 
 
 

Particle Swarm Optimization 

Introduction 

Particle swarm optimization (PSO) is one of the more promising examples of an 
evolutionary algorithm.  It was invented by Kennedy and Eberhart (1995) who 
developed the concept by observing the behavior of flocking birds.  Since that 
time, there have been an impressive number of PSO applications encompassing at 
least three books (Kennedy and Eberhardt 2001, Engelbrecht 2005, Clerc 2006) 
and over one thousand published articles.   

Description of PSO 

The PSO approach exploits the behavior of np-independent virtual particles, 
which "fly" through the search domain, have a memory and are able to 
communicate with other members of their "swarm." Each particle has a single 
purpose—to better its fitness—and thereby identify the optimum (minimum or 
maximum) of a function.   
 
Although computationally intensive, PSO has many advantages over traditional 
optimization methods.  It can accommodate continuous, discrete, nonlinear and 
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complex objective functions as well as many forms of constraints.  PSO is more 
likely to identify a global extrema and less prone to converge on a local optima.  
This approach is especially well suited for complex optimization problems 
characterized by multiple local extrema. 

PSO Terms 

There are several PSO specific terms commonly used in the literature.  Among 
these are the following. 
 

• Fitness function- objective function value plus penalties, if any. 
• Fitness- value of the fitness function 
• Personal best (p)− a particle’s (own) best fitness 
• Global (or neighborhood) best (g) – best fitness achieved by the swarm (or 

neighborhood sub-swarm) 
• Velocity (v)− change in location from one iteration to the next along a 

single dimension 
 

Individual Components 

Each of the np particles in the swarm consists of the following components, where 
d is the number of dimensions in the problem: 
 

• Coordinates of its position: x=(x1…xd) 
• Current velocity: v=(v1…vd) 
• Personal best position: p=(p1…pd) 
• Global (or neighborhood) best position: g=(g1…gd) 

 
Operationally each particle is typically coded as either an object, in object 
oriented programming languages such as C#, or as a record type. 

Basic PSO Algorithm 

The basic PSO algorithm is relatively straightforward as illustrated in Figure 2.  
First, each of the np particles in the swarm is created and their positions and 
velocities are initialized.  The PSO iterative process then begins.  During each of 
these iterations, (a) the fitness each of the 1…np particles is evaluated, (b) the 
personal best and global (or neighborhood) best of each particle in the swarm are 
updated, and, (c) a new velocity and a new particle position are computed.  A test 
is then applied to determine if the swarm has converged.  If the swarm has 
converged, the iterative process is terminated and the results are reported.  If the 
swarm has not converged, a new iteration is undertaken.  This process continues 
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until the swarm has either converged or the maximum number of iterations has 
been completed. 
 
 
 

 
Figure 2. The basic PSO algorithm. 

 
 
 
The velocity, or change in the location of each particle in a given dimension, is 
updated according to the rule illustrated in equation (1). 
 
(1)  ][][)]1([)( 2211 dddddd xprandcxgrandctvwtv −+−+−=  
 
  Where: 
   w = inertia coefficient 
   c1,c2 = cognitive and social weights 
   rand = uniform random value 
   v = velocity     x = current location 
   g = global best     p = personal best 
   t=iteration counter or index. 
 
 
The new velocity of each particle depends on the velocity in the previous 
iteration, an inertia coefficient (w), the cognitive weight (c1), a social weight (c2), 
the particle’s current location in each of the d-dimensions (xd), two random 
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uniform deviates, the particle’s own personal best position (pd), and the global (or 
neighborhood) best position (gd). 
 
After the particle’s velocity has been updated, its position is updated using 
equation (2). 
 
(2)  )()1()( tvtxtx ddd +−=  
 
  where: 
   v = velocity     
   x = current location 
 
As shown, each particle’s new position depends on its position in the previous 
iteration and the new (updated) velocity. 

Conclusion 
A fairly extensive review of emerging heuristic optimization algorithms was 
undertaken. Several promising evolutionary algorithms (EA’s) were identified in 
the process, including the real coded genetic algorithm (RGGA), differential 
evolution (DE) and particle swarm optimization (PSO).  A narrative and feature 
comparison between traditional calculus based optimization approaches and 
evolutionary algorithms was made. The particle swarm optimization (PSO) 
algorithm is described in some detail and a flowchart was constructed to allow for 
future code development. In aggregate, the available literature suggests these 
algorithms could successfully be applied to the optimal hydropower economic 
dispatch problem. 
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Mission Statements 
 
The mission of the Department of the Interior is to protect and 
provide access to our Nation’s natural and cultural heritage and 
honor our trust responsibilities to Indian Tribes and our 
commitments to island communities. 
 
 
The mission of the Bureau of Reclamation is to manage, 
develop, and protect water and related resources in an 
environmentally and economically sound manner in the 
interest of the American public. 
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