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ES-1 

Executive Summary 

The Wind River and Bighorn River in Wyoming and Montana includes several Bureau of 
Reclamation facilities, including Bull Lake, Buffalo Bill Reservoir, Boysen Reservoir, and 
Bighorn Lake. Operation of these facilities requires knowledge of the timing and volume of 
snowpack-driven runoff during the spring runoff season. Water managers are challenged by two 
related issues – a lack of skill in seasonal water supply forecasts and a lack of skill in short- to 
mid-term streamflow forecasts. The latter lack of skill may come in part from the watershed 
forecast model’s inability to capture snowmelt events from low-elevation snowpack. The terrain 
of the Wind and Bighorn River Basins is mostly made up of high plains – low elevation relative 
to the surrounding mountains – which often see snow events that accumulate shallow, ephemeral 
snowpack across a broad area. Limited snow observation stations at lower elevations exist, and 
consequently, snow information used to set initial model states when developing streamflow 
forecasts may overlook this low elevation snowpack, leaving water managers unaware of the 
inflow produced when this snowpack melts. 
 
These two related forecasting challenges in the Wind and Bighorn River Basins motivated this 
research project to examine how more skillful forecasts may be developed by better representing 
snow processes within physically based hydrology models, and by identifying potentially useful 
snow and snow-related datasets and incorporating them into hydrology models. 
 
A literature review was conducted (section 1.3) of available snow products and select candidate 
products for use in hydrology modeling. Based on this review, five data products of snow 
variables, such as snow water equivalent (SWE) and fractional snow-covered area (fSCA) were 
selected for further study in this project (Table ES-1). 
 
 
Table ES-1.—Summary of selected snow data products 

Product Source Variable(s) 

Snow Data Assimilation System (SNODAS) NOAA2 / NOHRSC3 SWE and fSCA 

MODIS1 Snow Covered Area and Grain-size (MODSCAG)  NASA4 JPL5 fSCA 

MODIS1 Dust Radiative Forcing in Snow (MODDRFS) NASA4 JPL5 Albedo 

MODIS1 Normalized Difference Snow Index (NDSI) NASA4 fSCA 

Snow Water Artificial Neural Network Modeling (SWANN) University of Arizona Snow Depth and SWE 
1. Moderate Resolution Imaging Spectroradiometer. 
2. National Oceanic and Atmospheric Administration (NOAA). 
3. National Operational Hydrologic Remote Sensing Center (NOHRSC). 
4. National Aeronautics and Space Administration. 
5. Jet Propulsion Laboratory. 
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A snow data processing tool – the Snow-Hydrology Repo for Evaluation, Analysis, and 
Decision-making (SHREAD) – was developed to retrieve snow product data and format it for 
use in subsequent analyses (section 2.1). SHREAD provides functionality for downloading 
online snow datasets and processing them to match a user-specified spatiotemporal format, 
ideally to facilitate comparison to model outputs or input for model data assimilation. 
 
An assessment of existing forecast skill was conducted to examine the skill of existing seasonal 
water supply forecasts developed by the Natural Resources Conservation Service, and a brief 
review of the operational forecast models run by the National Oceanic and Atmospheric 
Administration’s Missouri Basin River Forecast Center (MBRFC) and their initial snow states 
was conducted (section 3.1). Because the MBRFC does not maintain a sufficient hindcast 
archive, verification was only possible for the Natural Resources Conservation Service forecasts. 
An assessment of the January and April forecasts for spring water supply showed a correlation 
skill (r2) reaching 0.82 for the Shoshone River below Buffalo Bill Dam. 
 
To assess the question of how model structural complexity relates to the ability of a model 
to simulate runoff, the Structure for Unifying Multiple Modeling Alternatives (SUMMA) and 
mizuRoute models were implemented on eight different configurations for the Buffalo Bill 
drainage area. Each configuration utilized different discretizations and permutations of key 
factors influencing snow accumulation, melt, and runoff: elevation, solar radiation exposure, and 
presence of canopy cover. For comparison, National Weather Service watershed models used in 
forecasting account only for elevation. A new public repository of the python-based geospatial 
analysis code (Github ‘watershed_tools’) was created to apply the analysis more broadly within 
the research and applications community. The SUMMA model was also upgraded to apply 
slope and aspect factors to the calculation of radiation inputs for different watershed areas, and 
workflows were created to set up and run SUMMA models with specialized discretizations. The 
analysis showed that among the three factors, accounting for radiation exposure had the most 
impact toward improving the skill of a watershed model before calibration. After calibration, 
however, all of the discretized models performed similarly, but their snow states during the melt 
period were notably different, with several of the discretized models appearing to be more 
realistic. 
 
The project builds on several years of prior development aimed at providing a new process-
oriented watershed modeling framework for watershed studies and applications including long-
range climate impact studies and forecasting. The effort led to the generation of Bureau of 
Reclamation-wide datasets and SUMMA models at a lumped, intermediate scale (HUC12). The 
new discretization capabilities developed in this project set the stage for a new phase of this 
modeling and applications that incorporate and additional level of physical realism and fidelity 
to real-world hydroclimate processes. The SHREAD tool complements this development by 
streamlining access and processing of snow datasets in model evaluation and assimilation. 
 



 

 
 

1 

1.0 Background 
The Wind River and Bighorn River in Wyoming and Montana includes several Bureau of 
Reclamation (Reclamation) facilities, including Bull Lake, Buffalo Bill Reservoir, Boysen 
Reservoir, and Bighorn Lake. Operation of these facilities requires knowledge of the timing 
and volume of snowpack-driven runoff during the spring runoff season. Water managers are 
challenged by two related issues – a lack of skill in seasonal water supply forecasts and a lack 
of skill in short- to mid-term streamflow forecasts. The latter lack of skill is hypothesized to be 
impacted, to an extent, by the forecast model’s inability to capture snowmelt events from low-
elevation snowpack. The Wind and Bighorn River Basins are comprised of a large percentage of 
high plains – low elevation relative to the surrounding mountains – which often see snow events 
that accumulate shallow snowpack, but across a broad area. Limited snow observation stations at 
lower elevations exist, and consequently, snow information used to set initial model states when 
developing streamflow forecasts may miss this low elevation snowpack, leaving water managers 
unaware of the inflow produced when this snowpack melts. These two related forecasting 
challenges in the Wind and Bighorn River Basins motivated this research project to examine 
how more skillful forecasts may be developed by better representing snow processes within 
physically based hydrology models, and by identifying potentially useful snow and snow-related 
datasets and incorporating them into hydrology models. A literature review was conducted to 
review available snow products and select products for use in hydrology modeling. This review 
is presented in section 1.3. A tool was developed to retrieve snow product data and format it for 
use in subsequent analyses. The development process for this tool and details about its functions 
are presented in section 2.1. An assessment of forecast skill was conducted to examine existing 
seasonal water supply forecasts developed by the Natural Resources Conservation Service 
(NRCS) and the operational forecast models run by the National Oceanic and Atmospheric 
Administration’s (NOAA) Missouri Basin River Forecast Center (MBRFC), as presented in 
section 3.1. Finally, new physically based hydrology models were developed with different 
configurations to assess how the structure impacts their representation of snowpack and overall 
skill in simulating streamflow. These results are presented in section 3.0, with a discussion of 
overall project findings in section 4.0. 

1.1 Nomenclature 
The Wind River and Bighorn River are names given to the same river, with “Wind River” used 
for the upper portion and “Bighorn River” used for the lower portion. The names change at the 
“Wedding of the Waters,” a location at the north end of the Wind River Canyon (Figure 1). 
Throughout this report, either Wind River or Bighorn River are used following this convention, 
with the overall basin referred to as the Wind and Bighorn River Basins. “Bighorn” has been 
written variously as “Bighorn” or “Big Horn” when referring to the River, Lake, Canyon, or 
other related feature. For consistency, this report uses “Bighorn” in all instances. 
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Figure 1.—Location map of Wind and Bighorn River Basins. 

1.2 Reclamation Operations 
Reclamation owns five reservoirs within the Wind and Bighorn River Basins – Bull Lake, Pilot 
Butte Reservoir, Boysen Reservoir, Buffalo Bill Reservoir, and Bighorn Lake (see Figure 1). 
Two of these reservoirs are operated by Reclamation’s Wyoming Area Office, Boysen Reservoir 
and Buffalo Bill Reservoir, and Bighorn Lake (Yellowtail Dam) is operated by Reclamation’s 
Montana Area Office. Bull Lake and the off-stream Pilot Butte Reservoir are operated by the 
Midvale Irrigation District. Reservoir operations rely on a combination of internal and external 
forecasts to determine water user allocations and set releases, and to respond to short-term 
events. The Wyoming and Montana Area Offices develop in-house statistical water supply 
forecasts which estimate the volume of seasonal inflow between April and July. The NRCS also 
provides seasonal water supply forecasts for forecast points in the basin, including inflows into 
the three Reclamation-operated reservoirs – Boysen Reservoir, Buffalo Bill Reservoir, and 
Bighorn Lake. The MBRFC issues short- to mid-term daily forecasts of streamflow for periods 
around peak runoff in spring and early summer. These forecasts are used by water managers to 
adjust reservoir releases to mitigate the need for flood control operations, meet in-stream flow 
demands, ensure adequate irrigation season water supply, and support lake recreation. Lack of 
skill in seasonal water supply forecasts and unexpected inflow events not captured by the daily 
streamflow forecasts negatively impact reservoir operations. These impacts are discussed in 
more detail in the forecast evaluation section  
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(section 3.1). Below is a brief description of each reservoir and the basin upstream of the 
reservoir. These descriptions provide context for understanding forecasting challenges and 
decisions made in the new hydrology model configurations explored in sections 2.3 and 3.2. 

1.2.1 Riverton Unit, Pick-Sloan Missouri Basin Program 

The Riverton Unit of the Pick-Sloan Missouri Basin Program (PSMBP) is comprised of 
Bull Lake, impounded by Bull Lake Dam on Bull Lake Creek, and Pilot Butte Reservoir, which 
received water diverted from the Wind River by the Wind River Diversion Dam through the 
Wyoming Canal. The Riverton Unit is operated by Midvale Irrigation District and provides an 
irrigation water supply to 71,000 acres of farmland. Bull Lake is located at approximately 
5,800 feet (ft) above sea level in a glaciated valley just east of the Wind River Range. Bull Lake 
Creek originates as a series of alpine lakes below the crest of the Wind River Range at elevation 
12,000 ft and flows for approximately 30 miles before ending at Bull Lake. The drainage area is 
a mix of high alpine glacial moraine, and morainal deposits, with no to intermittent tree cover. 
Portions of the watershed contain denser subalpine conifer. The upper headwaters contain 
several small glaciers. 

1.2.2 Boysen Unit, Pick-Sloan Missouri Basin Program 

Boysen Reservoir, impounded by Boysen Dam on the Wind River, compromises the Boysen 
Unit of the PSMBP. It provides hydropower production, flood control, and sediment retention. 
Boysen Reservoir does not directly provide a water supply but instead provides water to 
downstream units of the PSMBP. It also allows for upstream irrigation by releasing water to 
satisfy downstream water users through an exchange program. Boysen Reservoir is operated by 
Reclamation’s Wyoming Area Office and is located at approximately elevation 4700 ft. The 
Wind River basin upstream of Boysen Dam includes the entire east side of the Wind River 
Range, which contains the highest peaks in Wyoming, reaching above elevation 13,000 ft. An 
extensive series of glaciers exist at higher elevations along the crest of the range. The Wind 
River also drains the south side of the Owl Creek Mountains, which reach elevations around 
9000 ft. A small band of foothills buffer the mountains from the high plains and contain a mix 
of extensive glacial moraines, subalpine meadow, and subalpine conifer forest between the 
mountain crest and a transition to high plains between elevations 7000 and 8000 ft. The 
remainder of the basin is high plains with limited vegetation. 

1.2.3 Shoshone Project 

Buffalo Bill Reservoir, impounded by Buffalo Bill Dam on the Shoshone River, is the main 
storage reservoir on the Shoshone Project, which provides irrigation water supply to 93,000 acres 
of farmland. In addition, the dam provides a municipal water supply to the surrounding region, 
hydropower production, recreation, and incidental flood protection. Buffalo Bill Reservoir is 
operated by Reclamation’s Wyoming Area Office. The Shoshone River originates on the eastern 
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slope of the Absaroka Range, reaching an elevation to 13,000 ft. Above Buffalo Bill Reservoir, 
located at approximately elevation 5300 ft, the North Fork Shoshone River flows through a 
steep-sided canyon through the foothills of the Absaroka Range containing denser stands of 
subalpine conifers on north-facing slopes and sparse vegetation on south-facing slopes. The 
South Fork Shoshone River flows through a valley for approximately 40 miles before reaching 
foothills similar to the North Fork. Both the North Fork and the South Fork contain small 
glaciers within their basins along the crest of the Absaroka Range. 

1.2.4 Yellowtail Unit, Pick-Sloan Missouri Basin Program 

Yellowtail Dam, which impounds Bighorn Lake on the Bighorn River on the border of Montana 
and Wyoming, is the main development of the Yellowtail Unit of the PSMBP. In addition to 
Yellowtail Dam, the unit contains the Yellowtail Power Plant and the Yellowtail Afterbay Dam 
just downstream of Yellowtail Dam. 

1.3 Snow Product Review 
Historically, Reclamation water managers have relied on data from the NRCS’s SNOw 
TELemetry (SNOTEL) stations and snow courses, along with other external and internally 
collected snow course data. There has been limited use of other snow data products, including 
gridded products that could provide an assessment of snow conditions in areas without 
measurement sites and provide snow data to assimilate into hydrologic models. Seasonal water 
supply forecasts produced by the NRCS are developed using a principal component regression 
approach that uses snowpack data from SNOTEL sites (Garen, 1992). The NRCS is currently 
testing an updated forecasting methodology, the multi-model machine-learning metasystem 
(M4; Fleming et al., 2019); however, forecasts from this new system have not yet been 
extensively tested by Reclamation. Water supply forecasting research has extensively 
tested additional data types, such as remotely sensed snow water equivalent (SWE), gridded 
precipitation datasets, seasonal-scale numerical climate model forecasts, and other products, but 
so far these experimental predictors have experienced limited uptake into operational forecasting 
systems in the Western United States. A literature review and data search were performed to 
identify other existing snow data products that could be used to support water management and 
improve forecasting. Highlighted below are the snow products identified as possible candidates. 
 
NOAA’s National Operational Hydrologic Remote Sensing Center (NOHRSC) produces the 
several gridded snow products from the Snow Data Assimilation System (SNODAS), including 
snow depth and SWE (Carroll et al., 2001; NOHRSC, 2004). SNODAS provides daily gridded 
estimates of snow depth and SWE at 06:00 Coordinated Universal Time, at a 1-kilometer (km) 
resolution, across the contiguous United States (CONUS). SNODAS uses a spatially distributed 
snow and energy balance model to produce snow products. This model assimilates snow 
observations and uses downscaled numerical weather prediction fields as forcings. Additional  
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products available from SNODAS include snowmelt runoff at the base of the snowpack, 
sublimation of blowing snow, solid precipitation, liquid precipitation, and snowpack average 
temperature. SNODAS data are available from September 28, 2003, through the present. 
 
The National Aeronautics and Space Administration’s (NASA) Jet Propulsion Laboratory (JPL) 
produces several snow-related datasets using two different approaches. The Moderate Resolution 
Imaging Spectroradiometer (MODIS) snow-covered area and grain size (MODSCAG) algorithm 
provide fractional snow-covered area (fSCA) and snow grain size. The MODIS Dust Radiative 
Forcing in Snow (MODDRFS) model provides the radiative forcing caused by the presence of 
dust in the snowpack. Both approaches use remotely sensed data from the MODIS instruments 
on the Aqua and Terra satellites. MODSCAG (Painter et al., 2009) uses surface reflectance data 
from MODIS in a spectral mixture analysis to obtain fSCA and snow grain size. Heterogeneity 
across pixels due to differences in topographic shading is handled by using the relative shape of 
the reflectance data rather than absolute values where each pixel is processed independently. The 
two MODSCAG products are available daily from April 10, 2014, though the present at roughly 
1-km resolution on the MODIS sinusoidal tile grid. The MODDRFS uses MODIS surface 
reflectance data to quantify the additional radiative forcing caused by light absorbing impurities 
like dust on the snowpack. MODDRFS data products are available daily from April 10, 2014, 
through the present at a roughly 1-km resolution on the MODIS sinusoidal tile grid. 
 
The University of Arizona produces a 4-km gridded snow depth and SWE product using the 
Snow Water Artificial Neural Network Modeling System (SWANN) covering the CONUS for 
the period between October 1, 1981, and September 2020 (Broxton et al. 2016a, 2016b; Dawson 
et al., 2016, 2017, 2018; Zeng et al., 2018). SWANN generates its estimates using artificial 
neural networks that assimilate in a wide range of snow observations that include SNOTEL 
stations and NOAA’s Cooperative Observer Network (COOP) stations. The University of 
Arizona also produces an equivalent product (Broxton et al., 2019) for the Salt River Project, 
who manage the Salt and Verde Rivers in Arizona. This product uses the same artificial neural 
networks as the CONUS product was trained using aerial lidar and field data collected over two 
field seasons. This product is provided to the Salt River Project by the University of Arizona and 
is not publicly available. 
 
The NOHRSC operates the Operational Snow Survey Program (Carroll, 2001), which makes 
airborne snow SWE measurements from aircraft across 29 States and 7 Canadian provinces. 
SWE is derived from measurements of the attenuation of naturally emitted gamma radiation 
from the bare ground surface through the snowpack. This method estimates SWE across a 
roughly 2-square-mile area with a root-mean squared error (RMSE) of < 1/2 inch. This method 
is sensitive to soil moisture and atmospheric moisture. 
 
The Airborne Snow Observatory (ASO), originally developed at JPL and now operated by ASO, 
Inc., makes airborne snow depth and SWE measurements from aircraft (Painter et al., 2016). 
Snow depth is calculated by taking the difference between a lidar-derived bare-earth ground 
surface and lidar-derived top of snowpack surface. If enough measurements are not available, 
snow density is estimated from mass spectrograph data and the image snowcover energy and 
mass balance model (iSnobal, Marks et al., 1999). Snow depth and snow density are then used to 
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estimate SWE. Snow depth estimates are produced at a 3-meter (m) resolution, and SWE 
estimates are produced at a 50-m resolution. Data collection has been intermittent across the 
Western United States. As of 2020, flights cover river basins in the Sierra Nevada Mountains in 
California and river basins in the Rocky Mountains in Colorado. 
 
NASA produces fSCA estimates from MODIS satellite data (using the MODIS instrument on the 
Aqua and Terra satellites) using an approach based on the Normalized Difference Snow Index 
(Salomonson and Appel, 2004; Riggs and Hall, 2016; Riggs et al, 2015). Data are available daily 
from April 10, 2014, through the present, at a roughly 500-m resolution on the MODIS 
sinusoidal tile grid. 
 
The U.S. Geological Survey (USGS) produces fSCA estimates from Landsat satellite data 
(Selkowitz and Forster 2016; Selkowitz et al., 2017) on the 30-m Landsat grid. Data are 
produced from Landsat 4 and Landsat 5 TM data starting in March 1984, Landsat 7 ETM+ data 
starting in July 1999, and Landsat 8 OLI starting in April 2013. 
 
The University of Colorado, Boulder, produces SWE estimates for the intermountain west, 
covering Colorado, Utah, and Wyoming, and estimates covering the Sierra Nevada. SWE 
estimates are produced at a 500-m resolution and developed using a regression-based approach 
(Schneider and Molotch, 2016), which takes in SWE measured by SNOTEL and Community 
Collaborative Rain Hail and Snow (CoCoRaHS) stations, MODSCAG fSCA, physiographic 
information, and historical daily SWE patterns using historical MODSCAG data and an energy-
balance model (Guan et al., 2013). 

2.0 Data and Methods 
2.1 SHREAD 

2.1.1 SHREAD Development 

A deliverable of this project was to develop a snow tool to retrieve and process currently 
available snow products. This snow tool was envisioned to use the data processing and 
visualization capabilities of Google Earth Engine to provide water managers the ability to view 
current snow conditions and provide processed data to assimilate into hydrologic models. 
Because of U.S. Department of the Interior limitations on the use of Google Earth Engine, the 
snow tool instead was developed as a command-line tool in Python and focused just on data 
retrieval and processing. This tool, the Snow-Hydrology Repo for Evaluation, Analysis, and 
Decision-making (SHREAD), provides access to existing snow and snow-related datasets and 
provides results in a few standard formats. 
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2.1.2 SHREAD Background 

SHREAD provides access to several snow and snow-related datasets identified in the literature 
review discussed in section 1.3. SHREAD was developed to be a stand-alone tool capable of 
retrieving and formatting snow data to meet the needs of this project. It was designed to be 
flexible enough to easily allow for changes to the output format of data and to easily add 
additional snow data products. It was also designed so that components of SHREAD, namely 
the data retrieval and data processing functions for each data product, could be easily repurposed 
into other production workflows (e.g., retrieving snow data and or saving to a database). The 
source code for SHREAD is available on GitHub at www.github.com/usbr/SHREAD. 
 
The review presented in section 1.3 was used to identify products to include in SHREAD. All 
available point measurements of snow were included – this includes SNOTEL, State and local 
observing networks, and COOP snow observations. Gridded data products included in SHREAD 
were selected based on the following criteria: 
 

• Products are available in near-real time 
• Products have a reasonable historical record 
• The temporal scale of a product is at least monthly 
• The spatial scale of a product is at least 1 km 

 
From this criteria, the following five data products were selected for inclusion: 
 
 
Table 1.—Summary of selected snow data products 

Product Source Variable(s) 

Snow Data Assimilation System (SNODAS) NOAA / NOHRSC SWE and fSCA 

MODIS Snow Covered Area and Grain-size (MODSCAG) NASA JPL fSCA 

MODIS Dust Radiative Forcing in Snow (MODDRFS) NASA JPL Albedo 

MODIS Normalized Difference Snow Index (NDSI) NASA fSCA 

Snow Water Artificial Neural Network Modeling (SWANN) University of Arizona Snow depth and SWE 
 
 
Several additional datasets were identified as good candidates but were not included because 
they did not meet the immediate needs of the project or had limitations that did not make them 
immediately useful. The USGS Landsat fSCA, for example, provides more spatially resolved 
fSCA data; however, the return period for spatial availability is 16 days. 
 
SHREAD was designed to support processing of snow products for easy visualization and 
assimilation of that data into hydrologic and forecasting models. As a command-line based tool, 
it is lightweight and easily scriptable into existing workflows. A configuration file is used to set 
up remote data sources, login information, local data paths and other required configuration files. 

http://www.github.com/usbr/SHREAD
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SHREAD is provided with a list of the desired data products, and dates of desired data. Using a 
spatial boundary dataset, SHREAD retrieves each requested data product for each requested day, 
transforms the data into a standard raster format clipped to the spatial boundary dataset (if spatial 
data), calculates spatial statistics (mean, median, minimum, and maximum) for each polygon 
within the spatial boundary dataset, and extracts point measurements from the raster at specified 
point locations. These data are then written to standard comma-separated value files. With point 
measurement data (e.g., SNOTEL), the point dataset is clipped to the spatial boundary dataset, 
and the data are written to comma-separated files. SHREAD provides the option to specify 
output units as “English” or “Metric” and defaults to using inches for SWE and snow depth 
for English units and millimeters for Metric units. Additional information about SHREAD, 
including the tool itself, a readme file, relevant files, and examples can be found at the SHREAD 
GitHub repository. 

2.2 Watershed Modeling with SUMMA and mizuRoute 
Clark et al. (2015) created a flexible modeling framework, namely the Structure for Unifying 
Multiple Modeling Alternatives (SUMMA), as a platform for testing and benchmarking different 
modeling approaches and parameterizations, different process representations across spatial 
scales, and different representations of spatial variability and hydrological connectivity. 
SUMMA’s spatial organization has two levels with hydrologic response units (HRUs) that are 
nested within grouped response units (GRUs) to represent the modeling domain. The units can 
have any dimensionality, such as grid or polygon shapes. To achieve a balance in complexity 
that allowed the model to represent a useful degree of spatial heterogeneity without being 
prohibitively expensive (computationally) to run, the Bighorn River basin implementation used 
a single HRU per GRU and the distributed a priori parameters were estimated for HRUs and 
GRUs defined by the USGS hydrologic unit code (HUC) watershed boundary dataset over the 
Bighorn River basin at a HUC12 scale. The a priori SUMMA model was configured with three 
soil layers, one aquifer layer, and a maximum of five snow layers. The nominal depth of the 
soil layers was fixed at 2 m, which is consistent with other land models used in large domain 
applications. The heights of the snow layers vary. The model timestep was set at 3 hours; 1 hour 
or less is more common in process-oriented modeling, but also computationally demanding, 
which limits the number of runs possible. Sensitivity testing of these choices (e.g., three- versus 
eight-layer soil, different timesteps, different total soil depths) using a CAMELS SUMMA 
dataset (Wood et al, 2022) spanning 761 watersheds across the CONUS confirmed that these 
are efficient selections with an acceptable tradeoff between model agility and complexity. 
 
The mizuRoute multi-method channel routing model (Mizukami et al, 2016) was implemented 
to route hydrologic total runoff (surface and subsurface) through a basin’s stream channel 
network, calculating streamflows at every stream reach represented. The model network is 
defined by the reach-based global Multi-Error-Removed Improved-Terrain (MERIT) Hydro 
Flowlines network (Yamazaki et al, 2019), after extracting stream channel segments local to the 
drainage area and adding necessary routing parameters. The network resolves the stream reaches 
and key flow locations at an intermediate scale, somewhat finer than the HUC12 SUMMA 
model scale. A unit hydrograph routing method, termed “impulse response function” or IRF in 
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mizuRoute, was applied. As noted earlier regarding SUMMA, the complexity (density) of this 
network and routing algorithm influences the agility, usability, and computational efficiency of 
the routing model solution. For purposes of bulk spring runoff prediction, this intermediate-scale, 
intermediate-complexity modeling approach was chosen to enhance the computational feasibility 
of running multiple sequences of ensemble predictions. 
 
The SUMMA and mizuRoute combination was implemented for the Bighorn River drainage 
area upstream of the Bighorn River near Xavier, Montana (USGS Gage 06287000), an area that 
was represented by 458 subcatchments (GRUs) and 1,117 stream reaches (Figure 2). Model 
control points were identified for the locations listed in Table 2. 
 

 
Figure 2.—Map of Bighorn Basin SUMMA model and feasible direct calibration points. 
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Table 2.—Model control points mapped to the SUMMA and mizuRoute HUC-based model 
implementation 

USGS ID 
reachID 

(mizuRoute) 
SUMMA HRU 

(HUC12) 
H5_ID 

(MBRFC) Name 

06279940 74016593 100800120304 NFSW4 North Fork Shoshone River above 
Buffalo Bill Reservoir, Wyoming 

06281000 74016694 100800130302 BBRW4 South Fork Shoshone River above 
Buffalo Bill Reservoir, Wyoming 

06218500 74018969 100800010212 DUBW4 Wind River near Dubois, Wyoming 

06228000 74020462 100800011004 WDRW4 Wind River near Riverton, Wyoming 

06259000 74018438 100800050607 SBDW4 Wind River below Boysen Reservoir, 
Wyoming 

06287000 74011555 100800150302 BHRM8 Bighorn River near St. Xavier, Montana 

06282000 74014171 100800140106 CDYW4 Shoshone River below Buffalo Bill 
Reservoir, Wyoming 

06236100 74020458 100800011006 n/a1 Wind River above Boysen Reservoir 
near Shoshoni, Wyoming 

06253000 74020952 100800050408 n/a Fivemile Creek near Shoshoni, 
Wyoming 

06280300 74016827 100800130106 VLYW4 South Fork Shoshone River near Valley, 
Wyoming 

06225000 74020802 100800011002 n/a Bull Lake Creek near Lenore, Wyoming 

06220800 74020657 100800010501 WRCW4 Wind River above Red Creek near 
Dubois, Wyoming 

06228000i 74020462 100800011004 n/a Wind River near Riverton, Wyoming; 
incremental 

     1 n/a = not applicable. 

2.2.1 Meteorological Inputs 

Meteorological input forcings for SUMMA were created using the Gridded Meteorological 
Ensemble Tool (GMET) methodology, which is based on multiple logistic and linear regression 
using static geophysical attributes to predict precipitation and temperature across a grid 
(Newman, 2015). The GMET has been recently updated to allow for the inclusion of dynamic 
gridded predictions from sources such as reanalysis products and numerical weather prediction 
(Bunn et al, 2021). Regression errors are used to condition spatially correlated Gaussian random 
fields for ensemble generation. The spatial regression approach for interpolating in situ  
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meteorological observations uses spatially distributed information as predictor fields in an 
ordinary least squares linear regression to explain the spatial distribution of point in situ 
observations. In this project’s application of the GMET, the spatial predictors are static 
geophysical attributes (slope, elevation, latitude, and longitude). The regression was applied to 
predict daily precipitation, mean temperature, and diurnal temperature range for each target grid 
cell, on each day, based on the current observed values of those variables within a sample from 
the 30 nearest meteorological stations and given their relationship to the local terrain features at 
the station locations. This strategy generates dynamic (time-varying) uncertainty estimates that 
were driven by daily observed meteorological conditions. Using the uncertain estimates coupled 
with spatially correlated random number fields (adopting spatial correlations from observations), 
a 36-member ensemble of daily meteorological inputs was generated. 
 
In support of this study and related SUMMA modeling projects, the GMET was applied for 
the period 1970 to present at both 1/8th and 1/16th degree resolutions, yielding daily 
precipitation and temperature minima and maxima. The 16th degree outputs were spatially 
remapped to the HUC12 modeling fabric and then disaggregated to 3-hourly time resolution 
and to a full set of meteorological fields (including radiation, pressure, humidity, wind variables) 
using MetSim (Bennett et al, 2019), a python-based wrapper for the mountain microclimate 
simulator (MT-CLIM) spatial meteorological extrapolation program (Running et al, 1987). 
This approach was applied to the entire Western United States, and the model forcing inputs 
for the Bighorn domain were extracted from the large Reclamation-domain forcing dataset. 
Although ensemble forcings have been used in other data assimilation or forecast studies 
(e.g., Huang et al, 2017) as a strategy for estimating model state uncertainty or initializing 
forecasts, here we use only the first ensemble member as a deterministic model forcing in 
calibration and simulation. 

2.2.2 Model Calibration 

Because SUMMA had not been applied for streamflow prediction in prior studies, significant 
effort was made to develop a model streamflow calibration strategy. Approximately 
40 parameters were exposed for calibration and a one-at-a-time sensitivity analysis and 
model diagnosis was used to identify a smaller tractable set of parameters to enable SUMMA 
to be optimized to produce streamflow of acceptable quality (i.e., a Kling-Gupta Efficiency 
[KGE] value of > 0.7). This set of calibration parameters was chosen and refined over several 
months to impact key hydrologic processes, leading to the set of 13 parameters listed in Table 3. 
These parameters affect infiltration, evapotranspiration and interception, soil water storage 
and transmission, snow accumulation and melt, aquifer baseflow generation, and hillslope 
runoff timing. The selection of a small, but effective, set of calibration parameters is 
critical because optimization algorithms perform best within a small parameter search 
space. 
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Table 3.—List of SUMMA calibration parameters 

Parameter name Description 
Distributed (D) or constant (C) 

and relevance 

k_soil Soil hydraulic conductivity (D) Soil water transmission 

theta_sat Soil porosity (D) Soil water storage 

Fcapil Capillary retention as a fraction of the 
total pore volume 

(C) Snowmelt 

aquiferBaseflowExp Baseflow exponent (C) Baseflow  

aquiferBaseflowRate Baseflow rate when aquifer storage = 
aquifer Scale Factor 

(C) Baseflow  

heightCanopyTop Height of canopy top (D) Snow accumulation and melt, 
evapotranspiration, interception 

heightCanopyBottom Height of canopy bottom (D) Snow accumulation and melt, 
evapotranspiration, interception 

frozenPrecipMultip Frozen precipitation multiplier (C) Snow accumulation 

k_macropore Saturated hydraulic conductivity for 
macropores 

(C) Soil water transmission 

qSurfScale Scaling factor in the surface runoff 
parameterization 

(C) Runoff  

routingGammaScale Scale parameter in gamma distribution 
used for subgrid routing 

(C) Hillslope routing 

routingGammaShape Shape parameter in gamma distribution 
used for subgrid routing 

(C) Hillslope routing 

summerLAI Maximum leaf area index at the peak of 
the growing season 

(C) Evapotranspiration, interception 

 
 
This project developed workflows for SUMMA calibration based on a multi-method general 
parameter optimization program called Ostrich (Matott et al., 2013). Ostrich has become an 
in-house capability being actively developed by Reclamation. In Ostrich, the dynamically 
dimensioned search (DDS) algorithm (Tolson and Shoemaker, 2007) was used to optimize 
model parameters to minimize errors in simulated daily flow with respect to observed flow. A 
shell script workflow for applying Ostrich-DDS was written to leverage high-performance 
computing on the National Center for Atmospheric Research (NCAR) system. The workflow 
sets initial parameter ranges based on the SUMMA local parameter range specifications, 
runs a split domain simulation in which parameter multipliers are calibrated, merges the 
GRU-level total runoff outputs, runs the mizuRoute model to produce streamflow, and assesses 
performance. A number of supporting scripts for generating initial parameter limit files, updating 
parameters in text and NetCDF input files, and assessing performance were written as part of the 
workflow. 
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2.3 Spatial Discretization Approach 
Until this project, the spatial discretization of SUMMA implementations for streamflow 
simulation has always used the lowest level of heterogeneity possible, namely that each GRU has 
contained only one HRU. This approach performs satisfactorily over medium to large domain 
basins containing > 10 GRUs, but in smaller basins, such as for Taylor Park Reservoir (with 
3 GRUs), the need to specify uniform characteristics across each catchment proves limiting, 
particularly for catchments with mixed canopy cover or mixed aspect. Thus, we sought to 
develop scientific rationale and implementation methodologies for creating sub-GRU HRU 
representations that efficiently represented the major factors controlling snow accumulation and 
melt, and runoff processes. We focus on representing elevation, vegetation (in the form of 
canopy or noncanopy land cover types), and solar radiation loading, which combines the terrain 
features of aspect and slope to depict their impact on direct incoming radiation, a strong driver of 
snowmelt. 

2.3.1 Discretization Factor Inputs 

The GRU shapefile is derived from the watershed boundary dataset for 12-digit hydrologic 
units (HUC12, USGS 2019). The elevation raster data is from the MERIT Digital Elevation 
Model (Yamazaki et al., 2017) at 3-second resolution (approximately 90 m at the equator). 
The land cover raster data is from the 17-category International Geosphere-Biosphere 
Programme (IGBP) land cover dataset at 1/160th degree resolution (IGBP, 1990) 
(http://www.eomf.ou.edu/static/IGBP.pdf). The radiation data are calculated from the 
elevation data based on the algorithm developed by Allen et al. (2006). 

2.3.2 Method 

In this study, HRUs are developed within each GRU independently, given analysis of fine 
resolution gridded elevation, land cover, and radiation data. The HRU discretization process 
includes three steps. 
 

Step 1: Classify the continuous input and the fine category input (e.g., land cover) that are 
needed for HRU definition into a limited number of classes. This procedure simplifies input 
data and helps to reduce the number of the derived HRUs. In detail, the elevation data are 
classified into two types, high and low classes, by taking the median value of GRU elevation 
as the classification threshold. The elevation classification threshold varies by GRU. The 
land cover data are classified into two types, canopy and noncanopy, by taking all the forest 
and woody savanna lands as canopy and the others as noncanopy, as summarized in Table 4. 
 
Step 2: An integrated analysis of the GRU, classified elevation, land cover, and radiation to 
get the HRU configuration. Each HRU is identified as a unique combination of GRU 
affiliation, elevation band, land cover class, and radiation class. 
  

http://www.eomf.ou.edu/static/IGBP.pdf
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Step 3: The third step is to simplify the HRU configuration by merging some small HRUs 
with other HRUs. There are many merging methods available, such as merging small 
HRUs with the neighboring HRUs that have the largest area or the longest shared border, 
merging small HRUs with the neighboring HRUs that have the most similar attribute based 
on the modeler’s definition of similarity, or merging small HRUs with the largest HRU 
within the same subbasin if they are adjacent or not. In addition, modelers can simplify the 
HRU configuration by merging the HRUs with a certain specified attribute. For example, 
merge all the HRUs with the land cover type of water within one subbasin into one HRU. In 
this study, we merged the HRUs that have areas smaller than 5% of the GRU area to which it 
is affiliated with their largest neighbors. 

 
 

Table 4.—Land cover classification 

IGBP land 
cover class IGBP land cover class name 

Class in this 
study 

1 Evergreen needleleaf forests Canopy 

2 Evergreen broadleaf forests Canopy 

3 Deciduous needleleaf forests Canopy 

4 Deciduous broadleaf forests Canopy 

5 Mixed forests Canopy 

6 Closed shrublands Noncanopy 

7 Open shrublands Noncanopy 

8 Woody savannas Canopy 

9 Savannas Noncanopy 

10 Grasslands Noncanopy 

11 Permanent wetlands Noncanopy 

12 Croplands Noncanopy 

13 Urban and built-up lands Noncanopy 

14 Cropland/natural vegetation mosaics Noncanopy 

15 Snow and ice Noncanopy 

16 Barren Noncanopy 

17 Water bodies Noncanopy 
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2.3.3 Experimental Design 

To understand the influence of accounting for each of the runoff factors alone and in 
combination, we assessed eight different strategies for HRU discretization, summarized 
in Table 5. The level 0 variation corresponds to no discretization, and the three level 1 variations 
each discretize by an individual factor. The three level 2 variations each assess two factors (in 
level 2b, as an example, the input factor layers describing elevation and radiation are jointly 
assessed to assign all grid cells in the basin to one of four classes: low elevation and low 
radiation, low elevation and high radiation, high elevation and low radiation, high elevation 
and high radiation). The level 3 variation applies all three factors. A threshold can be set to 
merge GRU areas that are smaller than a specified percent of the GRU area (e.g., 5%), which 
results in efficiencies for the simulation. For instance, in the level 3 case, though the GRU is split 
into eight permutations of HRU type, the number of final HRUs only increases by a factor of 6. 
 
 

Table 5.—Five levels of HRU discretization complexity 

Level  
name Input factor layers 

Number of 
HRUs 

0 None 43 

1a Elevation 86 

1b Canopy cover 81 

1c Radiation 86 

2a Elevation, canopy cover 141 

2b Elevation, radiation 172 

2c Canopy cover, radiation 147 

3 Elevation, canopy cover, radiation 253 

3.0 Results 
3.1 Assessment of Existing Forecasts 

3.1.1 NRCS Water Supply Forecasts 

The NRCS currently produces water supply forecasts for 13 forecast points within the Wind 
and Bighorn basin upstream of Bighorn Lake in addition to the Bighorn River near St. Xavier, 
Montana. Three of these locations correspond to inflows into Reclamation reservoirs – Wind  
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River below Boysen Reservoir, Wyoming (USGS 06259000) for inflows into Boysen Reservoir, 
Shoshone River below Buffalo Bill Reservoir, Wyoming (USGS 06282000) for inflows into 
Buffalo Bill Reservoir, and Bighorn River near St. Xavier, Montana (USGS 06287000) for 
inflows into Bighorn Lake. The NRCS water supply forecasts provide estimates of total inflow 
for the April to July runoff season and are issued monthly on January 1, February 1, March 1, 
April 1, May 1, and June 1. The forecasts provide volume estimates at five percentiles – 10th, 
30th, 50th, 70th, and 90th – providing a probabilistic estimate of streamflow volumes and what can 
be viewed as an ensemble. Forecasts for the three reservoir inflow points were available for 
the years 2008 to 2020. Reservoir inflow data available through the Missouri Basin Region 
Hydromet (Reclamation, 2020) were used to evaluate the skill of the NRCS forecasts using three 
different metrics – coefficient of variation (R2), RMSE, and ranked probability skill score 
(RPSS). R2 and RMSE were computed using the 50th percentile forecast. The RPSS (NCAR, 
2015; Wilks, 2005) is a measure of the accuracy of probabilistic ensemble forecasts relative to a 
naïve climatological forecast (climatology). Water supply forecasts were categorized into three 
categories, “low” (below the 33rd percentile of the long-term record), “average” (between the 
33rd and 66th percentile of the long-term record inclusive), and “high” (above the 66th percentile 
of the long-term record), and the percentage of estimates falling into each category were 
computed to develop probabilities. For example, if two out of the five forecast volumes were 
below the 33rd percentile, the probability would be 2/5 or 0.4 for the low category. The naïve 
climatological forecast assumes an equal probability (0.33) for each category. The RPSS values 
range from negative infinity to 1, with values < 0 meaning the forecast accuracy is worse 
than climatology, 0 equal to climatology, and 1 perfect accuracy. To develop the 33rd and 
66th percentile thresholds, the 30-year period between 1990 and 2009 was used as the long-term 
record (Table 6). 
 
 

Table 6.—Seasonal April through July inflow volumes in thousand acre-feet for different percentiles over 
the 1990 to 2009 historical period 

Forecast point Reservoir 
33% 

inflow 
50% 

inflow 
66% 

inflow 

Wind River below Boysen Reservoir Boysen Reservoir 586 743 827 

Shoshone River below Buffalo Bill Reservoir Buffalo Bill Reservoir 306 663 806 

Bighorn River near St. Xavier, Montana Bighorn Lake 764 1188 1587 

 
 
Table 7 contains the forecast skill metrics for the three reservoir inflow forecast points and 
shows metrics for forecasts issued on January 1 and April 1. Additional forecast dates are 
provided in appendix A. 50th percentile forecasts exhibit moderately good coefficient of variation 
(R2), with the observations for both forecast periods (0.537–0.820); however, there also exist 
large RMSEs. Forecasts for Buffalo Bill Reservoir show the best performance with the smallest 
RMSE relative to reservoir median inflow (47% for the January 1 forecast and 28% for the 
April 1 forecast). Forecasts for Bighorn Lake show the worst performance using this same 
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metric. January 1 forecasts for Boysen Reservoir are slightly worse when looking at R2 and 
RMSE relative to median inflow; however, the April 1 forecast for Bighorn Lake has a 
noticeably poorer skill metric. 
 
 
Table 7.—NRCS forecast skill metrics for forecasts issued on January 1 and April 1 

Forecast point Reservoir Issue date R2 RMSEa RPSS 

Wind River below Boysen 
Reservoir 

Boysen Reservoir January 1b 0.537 347 (47%) 0.385 

Shoshone River below Buffalo 
Bill Reservoir 

Buffalo Bill Reservoir January 1b 0.761 239 (36%) 0.481 

Bighorn River near St. Xavier, 
Montana 

Bighorn Lake January 1b 0.676 547 (46%) 0.325 

Wind River below Boysen 
Reservoir 

Boysen Reservoir April 1 0.735 256 (34%) 0.302 

Shoshone River below Buffalo 
Bill Reservoir 

Buffalo Bill Reservoir April 1 0.820 184 (28%) 0.723 

Bighorn River near St. Xavier, 
Montana 

Bighorn Lake April 1 0.704 492 (41%) 0.435 

     Note: R2 and RPSS are unitless; RMSE is in thousand acre-feet. 
     a Percentages next to RMSE values show percent of long-term median inflow. 
     b No January 1 forecasts were issued in 2019; these metrics are based on available years (2008–2018; 2020). 

 
 
For Boysen Reservoir, RMSE for the January 1 forecast is 347 thousand acre-feet (KAF), 
approximately 47% of the long-term median inflow. RMSE for the April 1 forecast is reduced 
to 256 KAF, but such errors still pose challenges for water management. For Buffalo Bill 
Reservoir, RMSE for the January 1 forecast is 239 KAF, 36% of the long-term median inflow. 
RMSE for the April 1 forecast is reduced to 184 KAF. 
 
The NRCS forecast ensemble exhibits only moderate skill in discerning the category of inflow 
year (low, average, or high), with the RPSS ranging around 0.4. The one exception is the April 1 
forecast for Buffalo Bill Reservoir, where the RPSS is 0.723. Figure 3 shows computed reservoir 
inflows against the April 1 NRCS forecasts. There are numerous instances of the range of 10th to 
90th percentile forecasts not containing the computed inflow, suggesting that the forecasts are not 
adequately capturing the true range of variability. 
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Figure 3.—Computed April to July reservoir inflow (blue) and NRCS April 1 
forecasts (dashed showing different percentile forecasts). 
Shaded region shows the range of the 10th to 90th percentile forecasts. Long-term 
median inflow is shown as the solid gray line. 

3.1.2 MBRFC Streamflow Forecasts 

The MBRFC issues deterministic streamflow forecasts with 5- or 10-day lead times for forecast 
points in the Wind and Bighorn River Basins only during the spring runoff season. The MBRFC 
uses the Sacramento-Soil Moisture Accounting (Sac-SMA) hydrology model, coupled to the 
SNOW17 temperature-index snow model, with additional routines to account for channel loss, 
river management, and known but unmodeled gains and losses. The Sac-SMA model is a 
semidistributed model simulating hydrologic components within defined subbasins. Basins 
can be subdivided into subbasins and further into “zones,” typically by elevation, to account 
for differences across potentially large subbasins. The MBRFC has, over the past decade, 
continued to develop their models of these Basins to improve simulations of high-elevation 
zones (Figure 4). In 2012, all subbasins within the Wind and Bighorn River Basins contained one 
or two elevation zones. An updated model put into use in 2017 added a third elevation zone for 
subbasins covering the southern half of the Wind River Mountains. Further updates put into use 
in 2019 added a third elevation zone to the subbasins covering the remainder of the Wind River 
Mountains and other mountain ranges along the western edge of the Wind and Bighorn River 
Basins. 
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Figure 4.—MBRFC subbasin and elevation zone 
boundaries as they existed in 2012 (top left), 
2017 (top right), and 2019 (bottom). 
 
 
 
 
 
 
 

 
 
Forecasts for 14 forecast points were available between 2008 and 2018 for review. These 
include forecasts for inflows into three Reclamation-operated reservoirs: Boysen Reservoir 
(ID SBDW4), Buffalo Bill Reservoir (ID CDYW4), and Bighorn Lake (ID BHRM8). A 
summary of forecasts for inflow into the Buffalo Bill Reservoir (ID BBRW4) are shown 
in Table 8. 
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Table 8.—Buffalo Bill Reservoir forecast summary for available water years between 2008 
and 2018 

Water 
year 

Forecast start 
date 

Forecast end 
date 

Forecast period 
length (days) 

Peak flow 
date 

Peak flow 
(ft3/s)c 

2008 2008-05-17 2008-06-29 43 2008-06-27 3,360 

2011 2011-06-24 2011-07-11 17 2011-06-30 6,520 

2014 2014-05-27 2014-07-09 43 2014-05-30 3,540 

2015 2015-05-16 2015-06-12 27 2015-06-11 4,390 

2016a 2016-06-05 2016-06-07 2 2016-06-05 2,950 

2017 2017-05-11 2017-06-23 43 2017-06-09 5,590 

2018b 2018-05-19 2018-05-29 10 2018-06-18 3,750 
     a Few forecasts were issued in 2016. 
       b Forecasts missed streamflow peak. 
     c Peak flows reported in cubic feet per second (ft3/s). 

3.2 Spatial Discretizations 
To troubleshoot and refine the discretization and model generation and calibration workflows, 
the project focused on the drainage area of the Shoshone River watershed above Buffalo Bill 
Reservoir rather than tackling larger or multiple Bighorn drainage areas. As described above, 
eight levels of complexity in GRU discretization were developed based on various permutations 
of elevation, canopy cover, and radiation. The factors were applied in binary fashion (high/low 
elevation, high/low radiation, canopy/noncanopy land cover), resulting in eight permutations. 
These classifications were applied within each GRU separately. 
 
To this end, a workflow comprising eight python scripts was developed and archived in a new 
code repository, https://github.com/NCAR/watershed_tools/. It is written in python, using 
various python GIS libraries, and the effort to create, test, and refine it to be robust was 
significant. To handle the radiation estimation, a number of methods were investigated, 
ultimately leading to the adoption of code written by Genevieve Brown of the University of 
Waterloo (who agreed to be a co-author on the methods). Particular suboptimal characteristics 
of shapefile topologies and raster processing algorithms, such as aliasing and topology issues, 
led to a repeated need to diagnose arcane errors related to geostatistical data processing and 
methodological choices. Ultimately, these were resolved, and the resulting terrain decomposition 
approach (which is nontrivial), is expected to be a valuable resource for the modeling 
community. 
 
The basin discretizations resulting from the application of the code are shown on Figure 5 
through Figure 12. The workflow has since been applied to other Reclamation basins of interest, 
including the Tuolumne River Basin, Taylor Park Basin (which will become the test case in the 
repository), and the Big Thompson above Moraine Park.   

https://github.com/NCAR/watershed_tools/
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Figure 5.—Basin discretization for level 0 complexity (HRU = GRU). 
 
 

Figure 6.—Basin discretization for level 1a complexity.  
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Figure 7.—Basin discretization for level 1b complexity. 
 
 

Figure 8.—Basin discretization for level 1c complexity.  
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Figure 9.—Basin discretization for level 2a complexity. 
 

Figure 10.—Basin discretization for level 2b complexity.  
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Figure 11.—Basin discretization for level 2c complexity. 
 

Figure 12.—Basin discretization for level 3 complexity.  
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3.3 Watershed Modeling and Calibration 
It was unclear at the outset of the project whether the hierarchical multi-HRU implementations 
would work or what input protocols would be needed. This project helped us discover that 
several code alterations were necessary to run a multi-HRU simulation approach, to use radiation 
information correctly, and that there are several requirements for input formatting (regarding 
ordering of the HRU and GRU attribute and parameter files). During the project, bugs were 
discovered and corrected in SUMMA (such a double counting of basin runoff) and in the GMET 
(erroneous calculation of ensemble uncertainty, among other things), and at several stages, 
model simulations and inputs needed to be regenerated. An ID number scheme for the HRUs, 
which fit inside HUC12 GRUS was devised to allow for potential use in targeted calibration 
(e.g., the HRUs IDs are the GRU IDs with 2 digits appended to indicate the type of discretization 
units they are associated with). A split domain run strategy was devised, recognizing that all 
HRUs within a GRU must currently be run together so that their runoff can be combined into a 
common timestep output before routing (allowing for the possibility of structures that pass runoff 
from one HRU to another in a Topmodel type formulation). 
 
Scripts were written and applied to remap parameters and attributes to the new HRU 
discretization models. In this first attempt to develop discretized multi-HRU SUMMA models, 
the forcings were spatially remapped as well, yielding forcings that were relatively uniform 
within each GRU. Due to upgrades in SUMMA, the radiation forcings will at least be 
conditioned on slope and aspect, which can now be input to SUMMA as an HRU attribute. 
 
Model calibration was affected using the same Ostrich strategy used in other studies, albeit with 
a slightly refined parameter set. Parameter multipliers were calibrated and applied to the 
distributed a priori parameter fields to generate semidistributed optimized parameters. Calibrated 
model results are shown in appendix C, Figures C1–C8. Calibration scores are shown in Table 9. 
 
 

Table 9.—Calibration skill metrics (KGE) before and after calibration 

Complexity 
level a priori KGE KGE after calibration Calibration iterations used 

0 0.39 0.92 62 

1a 0.39 0.90 40 

1b 0.42 0.92 57 

1c 0.72 0.87 85 

2a 0.40 0.92 120 

2b 0.74 0.86 57 

2c 0.74 0.89 36 

3 0.74 0.88 20 
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4.0 Discussion 
This study sought to bring together a range of new snow datasets for watershed applications, 
including watershed model validation, and to assess different strategies for watershed 
modeling to shed insight on how model representations of watershed heterogeneity impact 
snow accumulation and melt, and runoff generation. Ultimately, this insight could inform our 
understanding of streamflow forecast errors and help the community build more accurate 
forecast models. 
 
To this end, the study created a new snow data processing and analysis tool, SHREAD. It also 
developed new capabilities for model implementation and discretization (in the form of a new 
python workflow called watershed_tools) and additional scripts and insights for configuring the 
SUMMA and mizuRoute models. Previously, SUMMA had not been run in a multi-HRU fashion 
for streamflow simulation. The study led to a number of code enhancements and bug fixes in 
SUMMA. The workflows, once developed, debugged, and refined, were also applied to other 
basins in the Western United States. 
 
Eight configurations of SUMMA with varying levels of spatial complexity were generated and 
tested for the drainage basin of Buffalo Bill Reservoir, on the Shoshone River, Wyoming. These 
models were assessed with a priori parameters and after calibration. A key finding is that 
before calibration, more complex models that recognize differences in radiation exposure in 
subelements of the model simulation perform markedly better than those that do not, whereas all 
models perform similarly after calibration. Given the influence of solar radiation on snowmelt 
in the Western United States, this finding may guide more judicious implementation of 
watershed models not only for forecasting (for which operational models recognize mainly 
elevation aspects of watersheds) but also climate impact analyses. 
 
We note that there is more work to be done in the direction begun by the project, and indeed, due 
to the need to address challenges in model development as well as the discretization approach, 
parts of the planned scope were not accomplished. The work does, nonetheless, establish 
an important foundation for future modeling work not only involving SUMMA but any 
intermediate-scale (i.e., not hyperresolution) watershed model. Greater refinement of the model 
forcing strategy is needed to be more compatible with the model discretization work of this 
project. Many alternative approaches are possible, with a likely superior approach being to 
develop forcings either specifically for the HRU characteristics (e.g., elevation, aspect), or for 
a fine resolution grid that imposes terrain characteristics on the forcings, before remapping. 

5.0 Data Availability 
This project helped create standard workflows for SUMMA model discretization. These have 
become part of the SUMMA script ecosystem and can be used in multiple Science and 
Technology projects as well as by collaborators in other institutions. These workflows 
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and scripts are housed in online code repositories, listed below. All data files from this 
project are archived in the form of tarred and gzipped files on a File Transfer Protocol 
site: ftp://ftp.rap.ucar.edu/pub/andywood/SnT/178/. 
 
Related online repositories used in this work include: 
 

• github.com/NCAR/watershed_tools (private) 
• github.com/NCAR/summa (public) 
• github.com/NCAR/mizuRoute (public) 
• github.com/NCAR/GMET (public) 
• https://github.com/NCAR/hydro_model_utils (private) 

6.0 Publication 
The SUMMA model discretization development work and SUMMA modeling using different 
levels of complexity for the Wind/Bighorn basin are being written up in a publication to be 
submitted to the Water Resources Research journal. 
 
 
 

ftp://ftp.rap.ucar.edu/pub/andywood/SnT/178/
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Appendix A 

Natural Resources Conservation Service (NRCS) Forecast Skill Metrics 
 
 
 





 

 
 

A-1 

Forecast point Reservoir Issue date R2 RMSEa RPSSb 

Wind River below Boysen Reservoir Boysen Reservoir January 1 0.537 347 0.385 

Shoshone River below Buffalo Bill Reservoir Buffalo Bill Reservoir January 1 0.761 239 0.481 

Bighorn River near St. Xavier, Montana Bighorn Lake January 1 0.676 547 0.325 

Wind River below Boysen Reservoir Boysen Reservoir February 1 0.575 345 0.324 

Shoshone River below Buffalo Bill Reservoir Buffalo Bill Reservoir February 1 0.796 230 0.506 

Bighorn River near St. Xavier, Montana Bighorn Lake February 1 0.649 545 0.232 

Wind River below Boysen Reservoir Boysen Reservoir March 1 0.590 313 0.238 

Shoshone River below Buffalo Bill Reservoir Buffalo Bill Reservoir March 1 0.778 198 0.610 

Bighorn River near St. Xavier, Montana Bighorn Lake March 1 0.646 517 0.275 

Wind River below Boysen Reservoir Boysen Reservoir April 1 0.735 256 0.302 

Shoshone River below Buffalo Bill Reservoir Buffalo Bill Reservoir April 1 0.820 184 0.723 

Bighorn River near St. Xavier, Montana Bighorn Lake April 1 0.704 492 0.435 

Wind River below Boysen Reservoir Boysen Reservoir May 1 0.853 223 0.409 

Shoshone River below Buffalo Bill Reservoir Buffalo Bill Reservoir May 1 0.923 176 0.628 

Bighorn River near St. Xavier, Montana Bighorn Lake May 1 0.824 404 0.514 

Wind River below Boysen Reservoir Boysen Reservoir June 1 0.881 290 0.310 

Shoshone River below Buffalo Bill Reservoir Buffalo Bill Reservoir June 1 0.897 358 0.118 

Bighorn River near St. Xavier, Montana Bighorn Lake June 1 0.867 562 0.156 

     a RMSE = root-mean squared error. 
     b RPSS = ranked probability skill score. 
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A paper from this work is in preparation. 
 
Assessing the contribution of hydrologic spatial heterogeneity to runoff and streamflow 
variability in the Shoshone River basin 
 
Authors: H Liu, A.W. Wood, D. Broman, G. Brown, J. Lanini, and L. Bearup 
 
Draft Abstract: 
 
Throughout the Western United States, sparse observations and variable weather can make 
snowmelt runoff volume and timing difficult to predict. Errors in model-based streamflow 
forecasts can challenge water managers’ ability to optimally manage reservoir systems, 
particularly in years with extreme or unusual snow conditions. During periods of snow 
accumulation and snowmelt when watershed temperature and radiation inputs straddle the 
range separating freezing from melting conditions, forecast models that do not represent spatial 
heterogeneity in factors controlling snow accumulation, melt, and related runoff generation 
may be unable to simulate streamflow variability. This study assesses whether resolving such 
heterogeneity in three factors – elevation, solar radiation exposure, and the presence of canopy – 
can improve the ability of a process-oriented model to represent runoff and streamflow in 
snowmelt-driven runoff events. We focus on the Shoshone River basin upstream of the Buffalo 
Bill Reservoir, in Wyoming, USA, using simulations from the Structure for Unifying Multiple 
Modeling Alternatives  hydrologic modeling framework and the mizuRoute routing model. We 
describe new watershed-based configurations of these models and new strategies for model 
configuration, discretization, and calibration. We assess six different watershed discretization 
strategies and find that the models with higher complexity yield greater performance before 
calibration, but calibration brings all models to a similar skill level. 
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Figure C1.—Model calibration visualization for complexity level 0. 
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Figure C2.—Model calibration visualization for complexity level 1a.  
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Figure C3.—Model calibration visualization for complexity level 1b. 
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Figure C4.—Model calibration visualization for complexity level 1c. 
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Figure C5.—Model calibration visualization for complexity level 2a. 
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Figure C6.—Model calibration visualization for complexity level 2b.  
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Figure C7.—Model calibration visualization for complexity level 2c. 
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Figure C8.—Model calibration visualization for complexity level 3. 
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