
Description of SRM 

The snowmelt runoff model (SRM) is a conceptually based, temperature index model 

designed to simulate snowmelt in mountainous areas (Martinec et al., 1994; Mitchell and 

Dewalle, 1998).  Like most temperature index models, SRM is run in a semi-distributed manner.  

Model Input variables are distributed among several elevation zones (each with approximately 

500m of relief), and include daily estimates of air temperature, precipitation, and snow-covered 

area (SCA) (refer to section 2 for a full description of SCA).  SRM also operates on a daily time 

step (common among temperature index models), which eliminates the need to simulate snow 

pack processes that operate on sub-daily timescales.  The following equation is used in SRM to 

simulate daily streamflow discharge Q (m3 s-1): 

 

Qn+1 = Qn kn+1 + (1-kn+1) f  ∑ [(cSi,n * ai,n (Ti,n + ΔTi,n) Si,n + cRi,n * Pi,n)Ai]               (1) 
 

 
where n is the day number, i is the index for each elevation zone, and f  is a conversion factor 

(cm km2 day-1 to m3 s-1).  The recession coefficient, k, is the proportion of daily melt water 

production that immediately appears as runoff (Martinec et al., 1994), and corresponds to the 

ratio of runoff on consecutive days without snowmelt and rainfall.  Snowmelt and rainfall 

contributions are calculated separately for each elevation zone (area of A), and require the 

following input variables and parameters: T (oC day-1), the number of degree-days, the 

temperature-lapse-rate adjustment ΔT (oC), the precipitation P contributing to runoff (cm), the 

fraction of snow-covered area S (SCA), the degree-day factor a (cm oC-1 day-1), and the runoff 

coefficients for snow and rain (cS and cR), which represent the difference between the available 

water volume and the outflow from the basin.   



 To aid in the operational implementation of SRM, two enhancements were made to 

model (by the University of Idaho): 1) the use of an antecedent temperature index (ATI) method 

to track snowpack cold-content and determine when the snowpack is ripe, and 2) the use of both 

maximum and minimum critical temperatures to partition precipitation into rain, snow, or a 

mixture of rain and snow.  The snowpack is considered to be “ripe” if it is isothermal 

(temperature equal to 0 oC) and is saturated.  The inclusion of the ATI method into SRM is 

significant since the base version of the model does not track the heat deficit of the snowpack, 

and the user must estimate when the snowpack is ripe.  Thus the addition of the ATI method will 

reduce the amount of expertise in snowpack-dynamics required by the user.   The use of both 

maximum and minimum critical temperatures to partition precipitation is designed to increase 

the physical basis of the model.   At any given time of the year, the base version of SRM uses a 

single critical temperature to divide precipitation into either rain or snow, however, this does not 

take into account times where there are mixed rain/snow conditions, which typically occur when 

the air temperature is near 0 oC. 

Literature Review 

 SRM has been successfully tested in numerous mountainous watersheds around the world 

(e.g., Rango and Martinec, 1979; Shafer et al., 1982; Martinec, 1985; Hall and Martinec, 1985; 

Dey et al., 1989; Rango and Katwijk, 1990; Martinec et al., 1994; Rango and Martinec, 1997; 

Mitchell and Dewalle, 1998; Ferguson 1999; Nagler et al., 2000; Wang and Li, 2001; Gomez-

Landesa and Rango, 2002; Hong and Guodong, 2003), however it has only been used on a 

limited basis to create short-term streamflow forecasts.  Rango and Martinec (1994) used SRM, 

as part of a model intercomparison project conducted by the World Meteorological Organization 

(WMO, 1992), to forecast streamflow in the Illecillewaet Basin in the Canadian Rocky 



Mountains.   The streamflow forecasts extended out from 1 to 20 days (for 1983, 1985, and 

1986).  The results indicated that SRM performed well in the simulations with the accuracy of 

the forecasts decreasing as time increases.  Nagler et al. (2000) used SRM to generate real-time 

runoff forecasts up to six days in advance for four basins in the Alps of the Zillertal, Austria.  

The results indicated that the model performed fairly well out to 6 days (average R2 value of 

0.6), with the major limitation being the accuracy of the meteorological forecasts. 

  Nagler et al. (2008) used SRM to generate real-time ensemble runoff forecasts for the 

Otztal drainage basin (Austrian Alps) for the years of 2005 and 2006.  The ensemble forecasts 

extended out from 1 to 6 days.  Meteorological ensemble predictions, obtained from the 

European Centre for Medium Range Weather Forecast Model (ECMWF), were used to force the 

model (51 ensembles were used).  The ensemble forecasting results showed that the model 

performed favorably, but they identified significant errors, which were attributed to the large 

uncertainty in the precipitation forecasts.  In addition errors in the temperature forecasts were 

found to have a significant influence on the streamflow forecast results.  Thus, they concluded 

that downscaling processes needed to be applied to remove bias and error in the meteorological 

forecasts. 

 The main advantage of temperature index models (i.e. SRM), over other model types, is 

that they only require air temperature data to obtain estimates of melt.  The wide availability of 

these data (mainly in mountainous areas) has led to the popularity of temperature index models, 

especially in operational streamflow forecasting.  Also, since temperature index models are 

mainly run in a semi-distributed manner, they often require less parameterization than do fully-

distributed physically-based models.  One disadvantage, however, is that melt factors obtained 

using point surface measurements may not be representative of the entire basin or zone (as in the 



semi-distributed approach).  This is due to the fact that the melt factor may vary significantly 

over short distances (Hock, 1999).  Another limitation of temperature index models is that, 

although temperature and solar radiation are generally correlated, they cannot account explicitly 

for the spatial and temporal variation exhibited by solar radiation (Ferguson, 1999).  Also, other 

factors that control melt, including latent and sensible heat exchange, wind speed and surface 

roughness are not included in the melt factor.  Consequently there are at least three cases in 

which the temperature index method fails to accurately predict snowmelt: (i) warm temperatures 

with little wind (overestimation due to small amounts of sensible heat exchange), (ii) high dew 

point temperatures with high wind (underestimation due to large amounts of condensation melt, 

and (iii) low temperatures with clear sky conditions (underestimation due to the dominance of 

solar radiation). 

Model Enhancements 

Antecedent Temperature Index Method 
 

To account for rain-on-snow events, SRM uses a parameter called the rain contributing 

area (RCA) to determine whether rain falling on the snowpack is retained by the snowpack or 

added to snowmelt.  Rain falling on the snowpack early in the melt season is retained by the 

snow, which is usually dry and deep (option 0).  After the snowpack becomes ripe, rain falling 

on the snow is added to melt (option 1).  The antecedent temperature index (ATI) method is used 

in the enhanced version of SRM to determine when the snowpack is ripe and to automatically 

alter the rain contributing area (RCA).  This method works on the premise that the amount of 

heat required to warm the snowpack to the ripe phase (the heat deficit) is proportional to the 

difference between the average daily air temperature (Ta) and the ATI, as well as the addition of 



any snowfall (Anderson, 1973).  The ATI is used in the model as a surrogate for the temperature 

of the surface layer of the snowpack and is calculated using the following equation: 

( )n n 1 n n 1ATI ATI TIPM Ta ATI− −= + −                                                 (2) 

where ATIn and ATIn-1 are the antecedent temperature index values (oC) for day n and day n-1, 

Tan is the average daily air temperature (oC) on day n, and TIPM is the antecedent temperature 

index parameter.  The TIPM is a parameter used to estimate the effectiveness of the air 

temperature in altering the temperature of the surface layer of the snowpack (ATI).  The TIPM 

ranges from zero to one and changes in response to the thickness of the snowpack.  TIPM values 

less than 0.1 are indicative of a deep snowpack and suggest that differences between the air 

temperature and the previous day’s ATI will have little impact in altering the ATI.  In other 

words, the temperature of the surface layer of the snowpack would be expected to change slowly 

over time.  On the other hand, TIPM values greater than 0.5 suggest that differences between the 

air temperature and the previous day’s ATI will have a significant impact in altering the ATI.  

This is indicative of a shallow snowpack.  Anderson (1973) found that a TIPM value of 0.5 

provides reasonable results for mountainous watersheds.  A value of 0.5 is also used in this 

study.   

The heat deficit (represented as cm of water equivalent) provides a cumulative account of 

the heat required to warm the snowpack to the ripe phase and must be reduced to zero for the 

rain contributing area to be switched to 1.  The change in the heat deficit is based on the 

difference between the previous day’s ATI (snowpack surface temperature) and the average daily 

air temperature as well as the addition of any snowfall.  The following equation is used to 

calculate the change in the heat storage (ΔHs) when the average daily air temperature is less than 

or equal to 0 oC:  



( ) s n
s n 1 n

P *TaH NMF ATI Ta
160

−∆ = − −                                                  (3) 

where NMF is the negative melt factor (cm oC-1 day-1) and Ps is the amount of snowfall (cm) 

falling on day n.  Equation (3) makes the assumption that the temperature of the new snow is 

equal to the average daily air temperature.  ΔHs is greater (less) than zero when the air 

temperature is colder (warmer) than the previous day’s ATI. 

The NMF is used in equation (3) to represent the rate of change in the heat deficit based 

on the air temperature per unit time.  Although, the NMF has the same units as the degree-day 

factor, it is only used in the model to estimate the change in the heat deficit.  With the TIPM 

value set at 0.5, values for the NMF were initially set using values suggested by Anderson (1973) 

then were adjusted slightly to minimize the absolute error in the forecasts.  Values of the NMF, 

used in this study, increased from 0.3 cm oC-1 day-1 at the beginning of the snowmelt season 

(March 1) to 1.2 cm oC-1 day-1 at the end of the snowmelt season.  These values are expected to 

increase throughout the snowmelt season in response to changes in the snow depth (Anderson, 

1973).   If the average daily air temperature is greater than 0 oC, the change in heat deficit is 

assumed to be equal to zero, and the heat deficit is reduced by the melt (M) calculated in the 

following equation: 

( )o
nM Ta 0 C= −a                                                                                (4) 

where M is the daily snowmelt depth (cm), a is the degree-day factor (cm oC-1 day-1), and Tan is 

the daily average air temperature (oC). 

 

 
 
 
 
 



Maximum and Minimum Critical Temperatures 
 

The enhanced version of SRM uses both maximum and minimum critical temperatures to 

partition precipitation into rain, snow, and mixed conditions with rain and snow.  This 

partitioning is accomplished using the following equations: 

 
Ps = P                  Ta <= Tcritmin                                       (5) 
Ps = (Tcritmax - Ta)/(Tcritmax - Tcritmin) × P  Tcritmin < Ta < Tcritmax 
Ps = 0       Ta >= Tcritmax 
 
Pr = P – Ps 

 
 
where P is the total amount of precipitation (cm), Ps is the total amount of snowfall, Pr is the total 

amount of rainfall, Tcritmax is the maximum critical temperature (oC), Tcritmin is the minimum 

critical temperature (oC), and Ta is the average daily air temperature (oC). 

 
Model Inputs 

Temperature and Precipitation 
 

Ensemble forecasts of temperature and precipitation are obtained from the Global 

Forecasting System (GFS) model (2.5 degree grid cells) produced by the National Center for 

Environmental Prediction (NCEP).  Due to the coarse spatial resolution of the GFS forecast data, 

the forecasted values are downscaled to the locations of Snow Telemetry (SNOTEL) stations, 

located within or surrounding the study basin.  SNOTEL data are provided by the Natural 

Resources Conservation Service (NRCS).  The downscaling process uses historical forecast data 

from the GFS to assess the statistical relationship between weather forecast variables and 

observed temperature and precipitation values from the SNOTEL stations (Clark et al., 2004; 

Moore, 2005).  GFS forecasts are generated every 12 hours and extend out 1 to 15 days in 

advance (Hamill et al., 2004).  Each forecast initialization uses 15 different initial conditions 



from which 15 meteorological forecast ensembles are derived, however only the control (best 

guess) forecast is used to determine the regression coefficients used in the downscaling process.  

Seven forecast variables are used, including, 2m air temperature, precipitation, 700mb RH, sea 

level pressure, 10m meridional and zonal wind components, and total column precipitable water.  

These variables have been previously found to be important predictor variables for downscaling 

temperature and precipitation in the contiguous USA (Clark and Hay, 2004) and verified for the 

intermountain West region by Moore (2005).   

Multiple-linear regression with forward selection is used to downscale the temperature 

and precipitation forecasts to the location of SNOTEL sites located within or surrounding each 

basin.  Unique regression equations are generated for each SNOTEL site, variable (temperature 

and precipitation), month (March-July), and forecast leadtime (30 leadtimes extending out 15 

days), using the technique outlined by Clark and Hay (2004).  These equations are based on the 

seven GFS variables from the three nearest consecutive 12-hour time steps.  This results in 21 

predictors (7 variables at 3 time steps) each for both temperature and precipitation.  In addition to 

the multiple linear regression method described above, logistic regression with forward selection 

is used to estimate the probability of precipitation occurrence (Clark and Hay, 2004).  The 

coefficients are determined by training the regression equations (multiple linear regression and 

logistic regression) on a subset of the data (i.e. 1995-2001); the remainder of the data are then 

used for validation.   

Once the regression coefficients have been determined, they can be applied to real-time 

GFS ensemble forecasts to obtain ensemble forecasts of temperature and precipitation.  The 

coefficients are applied to each of the 15 forecast ensembles and all 30 forecast leadtimes.  This 

results in 15 ensemble forecasts of temperature and precipitation amount (QPF) that extend out 



15 days (30 leadtimes, each with a length of 12 hours).  Once the precipitation forecasts have 

been computed, the logistic regression coefficients obtained during the downscaling process are 

applied to estimate the probability of precipitation occurrence.  Random numbers are then 

generated from a uniform distribution for each ensemble and forecast leadtime.  If the probability 

of precipitation occurrence is less than the random number, we assume that there is no 

precipitation.  However, if the probability of precipitation occurrence is greater than the random 

number, we assume that precipitation will occur and the amount determined from the multiple 

regression is used in the forecast.          

Since SRM runs on a daily time step, the 15 temperature and precipitation ensemble 

forecasts (30 leadtimes, extending out 15 days), are converted to daily forecast values.  This is 

accomplished by temporally matching the forecasts with the SNOTEL observations.  GFS 

forecasts are generated at both 1200 UTC (5am Mountain Standard Time; MST) and 0000 UTC 

(5pm MST) and are valid for the previous 12 hour period.  Analysis of hourly SNOTEL data 

records indicates that the minimum daily temperature (Tmin) typically occurs between 5pm and 

5am, and the maximum temperature (Tmax) typically occurs between 5am and 5pm.  Therefore, 

the downscaled Tmin ensemble forecasts are calculated using forecast leadtimes 1, 3, 5…29, and 

the downscaled Tmax ensemble forecasts are derived from forecast leadtimes 2, 4, 6…30.  As a 

result, daily Tmin and Tmax ensemble forecasts are computed out to 15 days.  The forecasted 

ensemble values Tmax and Tmin are then converted to forecasted values of daily average 

temperature (15 ensembles) by simply averaging them.  The ensemble precipitation forecasts are 

converted to daily values by taking the sum of the precipitation forecasts obtained for each of the 

two time steps for a given day.  For example, the precipitation forecast for time step 1 is added to 

the forecast for time step 2.   



Coherence between the temperature and precipitation forecasts is achieved through the 

use of the ‘Schaake Shuffle’ as described by Clark et al. (2004).  The Shuffle essentially 

integrates the coherence in the historical record into the forecast ensembles.  Time-series 

historical daily-average temperature values (extending out 15 days) from the SNOTEL sites used 

in the downscaling process are collected so as to lie within 7 days before and 7 days after the 

forecast date; dates can be selected from all years in the historical record except from the year 

that is being forecasted.  This process is completed separately for each of the 15 forecast 

ensembles; however, the same historical dates are used for each station.  The historical daily-

average temperature values are then sorted from lowest to highest.  In addition, the daily-average 

temperature forecast ensemble members are also sorted from lowest to highest.  The sorted 

historical data is replaced with the sorted ensemble forecasts, and then resorted by (historical) 

year.  For example, if the first year in the historical time series (say 1979) had the 20th highest 

temperature, then the first temperature ensemble member would be the ensemble with the 20th 

highest temperature. The corresponding precipitation forecast ensemble would then be used for 

ensemble #1.  This preserves the observed correlation between temperature and precipitation for 

the ensemble members (Clark et al., 2004). The downscaling process results in 15 forecast 

ensembles of daily-average temperature and precipitation for each SNOTEL station and each of 

the 15 forecast leadtimes (days).  A sixteenth ensemble member (for temperature and 

precipitation) is then created by taking the average of the 15 ensemble members described above.  

This ensemble member is now referred to as the “mean” ensemble.  

Finally, the daily-average temperature ensemble forecasts for each station and leadtime 

are averaged to create a synthetic station and are extrapolated to the hypsometric mean elevation 

of each elevation zone using monthly mean lapse rates from Blandford et al. (2007).  This 



process is completed separately for each ensemble member.  For example, temperature ensemble 

#1 from station #1 is averaged with temperature ensemble #1 from the remaining stations.  The 

elevation of the synthetic station is the mean elevation of all of the SNOTEL stations used to 

model each basin (Richard and Gratton, 2001).  The precipitation ensemble forecasts are also 

averaged to create a synthetic station; however, the average values are applied across the entire 

basin.  No adjustment is made to account for changes in precipitation with elevation.     

Snow Covered Area (SCA)     

 SCA data are obtained from the MODIS 8-day composite snow cover data product 

(MOD10A2).  This data product was provided to us by the National Snow and Ice Data Center 

(NSIDC).  Eight-day composite data are used to minimize the effect of cloud cover and 

maximize the amount of useable SCA images.  Since the SCA data are only available every 8 

days, modified snow depletion curves (MDCs) are generated from the raw SCA data.  MDCs 

relate the daily reduction in SCA to the cumulative melted depth.  The melted depth is 

determined by multiplying the degree-day factor by the average daily temperature.  Because 

there is often a considerable amount of scatter in the raw SCA data, a Gaussian distribution is 

used to fit a curve to the data.  Separate depletion curves are generated for each elevation zone 

and year.  Using the equation obtained from the Gaussian fit, forecasted values of snow-covered 

area (extending out 1 to 15 days in advance) can be obtained using the forecasted melted depth.   

Model Updating 

Real-time model updating is used to avoid the propagation of errors in the streamflow 

forecasts.  This is important since the accuracy of the streamflow forecasts is dependent on the 

accurate representation of conditions over the basin at the start of each forecast period (Martinec 

et al., 1994).  Since a new 15-day streamflow forecast is generated every day, the model is 



updated with observed temperature and precipitation values from the previous day, obtained 

from the SNOTEL sites used to model each basin.  The actual measured data are handled in the 

same manner as the forecast data (e.g., synthetic station).  The replacement of forecasted model 

inputs with actual temperature and precipitation values is important since SRM temporarily 

stores new snow in areas deemed non-snow covered from the SCA imagery.  This temporary 

snowpack is then melted off and contributes to runoff when a sufficient number of degree-days 

are accumulated.  Thus, updating the model with actual temperature and precipitation data is 

important to make sure that the amount of new snow accumulated in the model is as accurate as 

possible.  

  In addition to updating the model with observed SNOTEL data, the model is also updated 

with actual streamflow values from the previous day.  These data are obtained from the United 

States Geological Survey (USGS) [http://water.usgs.gov].  The observed streamflow data are 

also used to evaluate the accuracy of the streamflow forecasts.   

Model Parameters 

Degree-day Factor 

As stated in the model description section, the degree-day factor is used in SRM to 

simulate the amount of melt occurring within each elevation zone.  The degree-day factor is not a 

constant, and changes in response to changing snow properties and atmospheric conditions.  

Most studies indicate that the degree-day factor typically increases during the snowmelt season 

(e.g., Semadeni-Davies, 1997; Singh et al., 2000; Hock, 2003).  This may be due to several 

factors, such as increasing snow density, increasing solar radiation, decreasing snow albedo, and 

other changes to the surface energy balance (Arendt and Sharp, 1999; Dunn and Colohan, 1999; 

Hock 2003).  Martinec (1975) developed the following relationship for the computation of the 



degree-day factor (a), which takes into account the positive correlation between snow density 

and the degree-day factor: 

    1.1 s

w
a ρ

ρ
=                                                                                             (6) 

where ρs  (g cm-3) and ρw (1 g m-3) are the densities of snow and water.  Daily snow water 

equivalency (SWE) and snow depth data, obtained from SNOTEL sites, are used to estimate the 

density of the snowpack. The density of the snowpack is calculated using the following equation: 

ρs = (SWE * ρw) / sd                                                                             (7) 

where sd  is the depth of the snowpack (cm).  Since there is more than one SNOTEL station in 

each of the test basins, basin-wide average values (time-series) are obtained and applied to each 

elevation zone. 

Runoff Coefficients 

The runoff coefficients (cS and cR) represent the difference between the available water 

volume and the outflow from the basin.  Separate coefficients are used for snowmelt and rainfall 

to account for differences between these two processes (Martinec et al., 1994).  Adjustment of 

the runoff coefficient is typically required when the runoff simulations are not initially successful 

(Martinec et al., 1994), but only after the input data have been checked for errors.  Many times, 

changes to the runoff coefficients can be avoided by correcting errors detected in the data 

Recession Coefficients 

 The recession coefficient (k), used in SRM to govern the decline of discharge during 

periods with no snowmelt or rainfall, can be determined using historical daily streamflow (time-

series) data.  This is accomplished by dividing the actual stream discharge on day n+1 by the 

actual discharge on day n (k = Qn+1 / Qn).  Since we are interested in the streamflow recession, 

we are only concerned with k values that are less than 1 (when the discharge on day n+1 is less 



than the discharge on day n).  The k value is not constant and tends to increase as the magnitude 

of the stream discharge decreases, thus SRM uses x and y coefficients to estimate the recession 

coefficient on day n+1 (kn+1) using the magnitude of the simulated discharge on day n (Qn): 

kn+1 = x * Qn
-y                                                                                       (8) 

 
The x and y coefficients can be estimated taking the log of the k and actual stream discharge 

values on day n and plotting them against one another.  A regression line can then be fit to the 

data.  An alternative would be to fit a lower envelope line to the data, since the regression fit may 

not always provide the best estimate for the k values.  The value (k1) when the actual stream 

discharge value on day n is equal to 1 cms (Q1) and the value (k2) when the actual stream 

discharge value reaches its maximum (Q2) are then obtained from the plot.  The x and y 

coefficients are then calculated using the following equations: 

log k1 = log x – y log Q1                                                                             (9) 
 
log k2 = log x – y log Q2                    (10) 

 
Since the log of Q1 (1 cms) is equal to 0, the value for x is equal to the value for k1.  The value 

for x can then be inserted into equation (10) to obtain the y value  

Temperature Lapse Rates 
 
Temperature lapse rates (oC / 100m) are used in SRM to distribute point-based 

observations of daily average air temperature to the hypsometric mean elevation of each 

elevation zone.  For the purpose of simplification, an average value of 0.65 oC per 100 meters is 

typically used in hydrologic modeling studies (Barry and Chorley, 1987).  The results, however, 

may be inadequate since the lapse rate changes continually (e.g., daily, seasonally, etc.) with 

varying conditions (Roland, 2003; Blandford et al., 2007).  To avoid the need for estimating 

daily forecasted lapse rates, mean monthly lapse rates are used in this study.  Mean monthly 



lapse rates are estimated by obtaining daily average temperature (average of maximum and 

minimum temperatures) data for each SNOTEL station in (or surrounding) the basin of interest 

and plotting them versus their respective elevations (Blandford et al., 2007).  A regression line is 

then fit to the data, and the daily lapse rate is equal to the slope of the line.  The resulting lapse 

rates are then averaged on a monthly basis to obtain mean monthly values.  If near-surface 

monthly average temperature data (e.g., SNOTEL data) are available, there is no need to estimate 

daily lapse rates.  Monthly average lapse rates can then be obtained directly from the average 

temperature values. 

Maximum and Minimum Critical Temperatures 

The maximum and minimum critical temperatures (Tcritmax and Tcritmin) were estimated 

using precipitation, SWE, and average daily temperature data measured at the SNOTEL sites.  

Precipitation was assumed to have fallen as snow if the SWE value (for the same station) showed 

a corresponding increase.  If the SWE value decreased or remained constant, the precipitation is 

determined to have fallen as rain.  The corresponding daily average air temperature values (for 

the days that the precipitation events occurred on) were binned into data classes with half degree 

increments.  This process was completed to ensure that there was a sufficient amount of 

precipitation observations at each temperature value.  The data were then sorted and used to 

calculate the probability of precipitation falling as rain or snow at any given temperature.  The 

resulting probabilities (rain and snow) can be plotted against daily average air temperature to 

obtain estimates of the critical temperatures.  The minimum critical temperature is the highest 

temperature at which the precipitation falls as snow 100% of the time.  Likewise, the maximum 

critical temperature is the lowest temperature at which the precipitation falls as rain 100% of the 

time.  In this study, maximum and minimum critical temperatures are estimated for each 



SNOTEL station located within the basin of interest.  Once the values are found, they are 

averaged and applied to the individual elevation zones. 

This methodology is similar to the one applied by Auer (1974), which used 

approximately 1000 weather observations to determine of the probability of precipitation falling 

as snow or rain using two-meter air temperatures.  Auer (1974) indicates that rain was never 

recorded when the two-meter air temperature was below 0 oC and snow was never observed 

when the temperature was above 6 oC. 

Time Lag 

 The time lag is used in SRM to account for the amount of time that streamflow discharge 

lags behind the rise in temperature (Martinec et al., 1994).  The default value for the time lag in 

SRM is 18 hours, however, the time lag can be estimated using historical streamflow data.  For 

example, if the air temperature begins to rise at 6 am and the discharge starts rising each day at 

noon, the streamflow lags behind the rise in temperature by 6 hours.  The time lag may require 

adjustment if the timing of the forecasted and measured streamflow do not coincide. 
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