Merging high-resolution airborne snowpack data with existing long-term hydrometeorological observations to improve water supply forecasting

Author(s): Lindsay A. Bearup, PhD, PE (Reclamation)
Ethan Gutmann, PhD (NCAR)
Andrew Wood, PhD (NCAR)

Performing Organization Name(s) and Address(es):
United States Department of Interior
National Center for Atmospheric Research
Bureau of Reclamation
Technical Service Center
P.O. Box 25007 Mailcode 86-68210
Denver, CO 80225-0007

Performing Organization Report Number: TSC Report Number ENV-2021-116

Sponsoring/Monitoring Agency Name(s) and Address(es):
Science and Technology Program
Research and Development Office
Bureau of Reclamation
U.S. Department of the Interior
Denver Federal Center
PO Box 25007, Denver, CO 80225-0007

Sponsoring/Monitoring Agency Report Number(s):
Final Report ST-2018-8116-01
Report Number ENV-2021-116

DISTRIBUTION/AVAILABILITY STATEMENT:
Final Report may be downloaded from https://www.usbr.gov/research/projects/index.html

ABSTRACT:

Mountain snowpack is a critical observation for seasonal streamflow forecasting in the Western United States. The Airborne Snow Observatory (ASO) methodology generates maps of snow depth, snow water equivalent (SWE) and albedo from airborne lidar and spectrometer measurements that inform snowpack modeling. In this work, we evaluate how traditional snow pillow station-based estimates of basin-wide SWE compare to more spatially complete estimates from ASO, and the impact these differences have on streamflow modeling and forecasts. While the ASO flights provide excellent spatial resolution and coverage of high elevation areas, observations are limited to flight times. Assessing the relationship between stations, which monitor continuously, and ASO flights, which capture a snapshot in time, this project identified that approximately 5-10 ASO flights, combined with stations, are sufficient to define 95% of the variability in the remaining flights. The ASO data are also assimilated into SUMMA, or the Structure for Unifying Multiple Modeling Alternatives, to evaluate the potential improvement for water supply forecast models. Using several approaches for when flights were assimilated, results suggest that including ASO SWE estimates near peak SWE can substantially improve ensemble streamflow predictions by removing much of error that accumulated from uncertain precipitation through the winter season.

SUBJECT TERMS:
Snow Water Equivalent, Airborne Snow Observatory, Water Supply Forecasting

LIMITATION OF ABSTRACT:

-

NUMBER OF PAGES: 6

NAME OF RESPONSIBLE PERSON: Lindsay Bearup

TELEPHONE NUMBER: 303-445-3919
Mission Statements

The Department of the Interior (DOI) conserves and manages the Nation’s natural resources and cultural heritage for the benefit and enjoyment of the American people, provides scientific and other information about natural resources and natural hazards to address societal challenges and create opportunities for the American people, and honors the Nation’s trust responsibilities or special commitments to American Indians, Alaska Natives, and affiliated island communities to help them prosper.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

Disclaimer

Information in this report may not be used for advertising or promotional purposes. The data and findings should not be construed as an endorsement of any product or firm by the Bureau of Reclamation, Department of Interior, or Federal Government. The products evaluated in the report were evaluated for purposes specific to the Bureau of Reclamation mission. Reclamation gives no warranties or guarantees, expressed or implied, for the products evaluated in this report, including merchantability or fitness for a particular purpose.

Acknowledgements

The Science and Technology Program, Bureau of Reclamation, sponsored this research. Special thanks to Thomas Painter (ASO, Inc.) and Konstantinos Andreadis (UMASS) for project guidance and data provision.
Merging high-resolution airborne snowpack data with existing long-term hydrometeorological observations to improve water supply forecasting

Final Report No. ST-2018-8116-01
TSC Report No. ENV-2021-116

prepared by

Water Resources Engineering & Management, Technical Service Center
Lindsay Bearup, PhD, PE, Civil Engineer (Hydrologic)

National Center for Atmospheric Research (NCAR)
Ethan Gutmann, PhD, Project Scientist III
Andrew Wood, PhD, Project Scientist III
Merging high-resolution airborne snowpack data with existing long-term hydrometeorological observations to improve water supply forecasting

Prepared by: Lindsay A. Bearup, PhD, PE
Civil Engineer (Hydrologic), Bureau of Reclamation

Peer Review by: Daniel P. Broman, PhD, PE
Civil Engineer (Hydrologic), Bureau of Reclamation

“This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by the Bureau of Reclamation. It does not represent and should not be construed to represent Reclamation’s determination or policy.”
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASO</td>
<td>Airborne Snow Observatory</td>
</tr>
<tr>
<td>CBRFC</td>
<td>Colorado Basin River Forecast Center</td>
</tr>
<tr>
<td>CDWR</td>
<td>California Department of Water Resources</td>
</tr>
<tr>
<td>ESP</td>
<td>Ensemble Streamflow Prediction</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NCAR</td>
<td>National Center for Atmospheric Research</td>
</tr>
<tr>
<td>LIS</td>
<td>Land Information System</td>
</tr>
<tr>
<td>Reclamation</td>
<td>Bureau of Reclamation</td>
</tr>
<tr>
<td>SUMMA</td>
<td>Structure for Unifying Multiple Modeling Alternatives</td>
</tr>
<tr>
<td>SWE</td>
<td>Snow water equivalent</td>
</tr>
<tr>
<td>WRF-Hydro</td>
<td>Weather Research and Forecasting Model Hydrological modeling system</td>
</tr>
</tbody>
</table>
Contents

Mission Statements .. iii
Disclaimer .. iii
Acknowledgements .. iii
Peer Review .. v
Acronyms and Abbreviations .. vi
Executive Summary .. 1

1. Methods, Results, and Discussion ... 2
2. Data ... 3
 2.1 Statistical analysis files .. 3
 2.2 SUMMA input and output files ... 3

References ... 4
Appendix A: Gutmann et al. 2022 ... 5
Appendix B: Wood et al. 2022 .. 6
Executive Summary

Measuring mountain snowpack has long been central to seasonal streamflow forecasting in the Western United States. Recent advances in airborne remote sensing have added tremendous observational capacity through increased spatial resolution and coverage across otherwise inaccessible topography. Airborne Snow Observatory (ASO, Painter et al. 2016) datasets are an example of high-resolution snow products that are not yet widely used in streamflow forecasting models. ASO was developed at NASA’s Jet Propulsion Laboratory (JPL) in 2013 and transferred to ASO, Inc. in 2019 when the program ended at NASA. ASO uses a plane-mounted lidar and imaging spectrometer to drive a licensed workflow that provides snow depth, snow water equivalent (SWE), and albedo. ASO also updates a distributed snow model called iSnobal (Marks et al. 1999), that provides snow density for calculating SWE from snow depth and can be used to provide snow estimates between flights when run continuously.

A growing number of water managers, led by early adopters such as the California Department of Water Resources (CDWR) and the San Joaquin River Restoration Program¹, report anecdotal successes using ASO data to understand current snow conditions more confidently in their basins of interest. These recent advances in observational ability, however, have outpaced research toward developing efficient and cost-effective strategies for leveraging the new high-resolution data in streamflow forecasting systems. Existing forecasting methods rely on calibrated hydrologic models or statistical approaches, both of which benefit from the longer observational records available at index stations, such as the snow sensors supported by CDWR. Hydrologic model calibration often compensates for biases in snowpack representation or precipitation inputs, and it is not yet known how new spatially detailed measurements can improve these model forecasts. Few studies exist that have demonstrated the use of ASO data in near real-time modeling frameworks to support water management decisions, and those that are published have assimilated ASO into snow models but not hydrologic models used to predict water supply runoff volumes.

Hedrick et al. (2018) directly assimilated ASO measurements into an iSnobal model of the Tuolumne River Basin with a 50 m lateral resolution. This study demonstrated that ASO data can account for errors in the meteorological forcing data and local processes that redistribute snow, with much of this error captured by the first flight if it occurs around peak snow accumulation. Recent presentations at scientific conferences hint at the ongoing work to include ASO data in water supply models. Meyer et al. (2020) describe the ongoing effort to assimilate ASO-informed iSnobal output into the models used by the Colorado Basin River Forecast Center (CBRFC), which rely on a simple temperature-based index melt model. Lahmers et al. (2020) demonstrate the use of the assimilation capabilities of the NASA Land Information System (LIS) to include ASO information in the Weather Research and Forecasting Model Hydrological modeling system (WRF-Hydro). Results in the Tuolumne River basin suggest ASO may be able to reduce biases in both snowpack and streamflow relative to an open-loop simulation (i.e. a simulation without assimilating data).

¹ https://www.usbr.gov/newsroom/newsroomold/newsrelease/detail.cfm?RecordID=63168
This project explores the value of using existing ASO measurements to support water supply forecasting in the Tuolumne River basin with a focus on three tasks:

1) evaluating the use of ASO to support snow statistical analyses,
2) evaluating the use of ASO for statistical water supply forecasting methods, and
3) evaluating the use of ASO in dynamical Ensemble Streamflow Prediction (ESP) frameworks.

Snow statistical analyses predict basin mean SWE by combining ASO flights, which represent a point in time when the flight was flown, with ground station data, which are continuous in time. The analyses also identify where additional in-situ snow monitoring stations can be located to best improve estimates of basin-wide SWE. Analysis from the Tuolumne indicates that approximately 5-10 ASO flights, combined with stations, are sufficient to define 96% of the variability in the basin-averaged SWE from the remaining flights. However, this relationship starts to break down for times with very high or low SWE conditions, indicating that more flights or additional products are needed to improve the estimation of that relationship. Adding a new station at very high elevation would improve these relationships.

With relatively simple regressions, statistical forecasting using the combined ASO and station timeseries improved predictions of streamflow into the Hetch Hetchy Reservoir relative to the station-only estimates. Using observations of snow, however, only predicts about 90% of the variance in streamflow. Adding the precipitation that remains for the season increases the performance of these predictions, capturing 96-98% of the variance. The need to capture the uncertainty in future precipitation supports exploring the use of ASO data in ESP frameworks.

Assimilating ASO in a calibrated Structure for Unifying Multiple Modeling Alternatives (SUMMA) watershed model improved model volume forecasts, even with a relatively simple direct insertion approach that directly replaces the modeled snow states with the observations. Flights near peak SWE correct errors in winter precipitation and provide the most improvement in model forecast skill, while subsequent scenes provide less improvement and may even reduce model skill if not assimilated carefully. Other assimilation approaches (e.g. Ensemble Kalman Filter) that update more model states may support further forecast improvement. Increasing resolution and the representation of late season (high elevation) model snow will likely also improve late season simulation.

1. Methods, Results, and Discussion

Two manuscripts containing pertinent data and results (one pertaining to the statistical research tasks and one pertaining to the dynamical ESP modeling) are being finalized and submitted to a refereed journal. The principal investigator of this work will update this section and appendices to include the submitted manuscript once the journal peer review process has been resolved and information is ready for public dissemination.
2. Data

2.1 Statistical analysis files

Share Drive folder name and path where data are stored:
\\bor\DO\TSC\Jobs\DO\NonFeature\Science and Technology\2018-PRG-Airborne Snow Observations for Water Supply Forecasting\DATA

Point of Contact name, email, and phone: Lindsay Bearup, lbearup@usbr.gov, 303-445-3919

Short description of the data: Jupyter notebooks documenting statistical approaches. Note that Hetch Hetchy inflows were obtained from Hetch Hetchy Water and Power under the condition that they were not released. ASO, Inc. provided snow pillow information that was quality controlled from the CDWR, here: https://cdec.water.ca.gov/snow/current/snow/ and ASO data used in this study are available here: https://nsidc.org/data/ASO_50M_SWE/versions/1

Keywords: Snow Water Equivalent

Approximate total size of all files: 500 Kb

2.2 SUMMA input and output files

Share Drive folder name and path where data are stored:
\\bor\DO\TSC\Jobs\DO\NonFeature\Science and Technology\2018-PRG-Airborne Snow Observations for Water Supply Forecasting\DATA

Point of Contact name, email, and phone: Lindsay Bearup, lbearup@usbr.gov, 303-445-3919

Short description of the data: NetCDF input and output files and text configuration files to reproduce SUMMA model runs. This includes files for the following simulations:

1) ESP hindcasts run open loop, stop at forecast point then run all ESP
2) Same as 1) but update with ASO on flight date then run a set of ESP through the remainder of the season, resulting in one set of ESP outputs for each ASO flight.
3) Same as 1) but update until ASO then ESP, but continue until next ASO flight and make ESP
4) Same as 1) but assimilate only the ASO flight closest to April 1

Keywords: Water supply forecasting, Hydrologic Modeling

Approximate total size of all files: 1 Gb
References

Appendix A: Gutmann et al. 2022

Draft Title: Statistical Approaches for Using Airborne Snow Observatory Data in Water Supply Forecasting

Draft Abstract

The majority of runoff in the western United States is derived from snowmelt, making the measuring and mapping of snow a critical component for water resource management. Federal and state-run programs support a long history of snow measurements at point locations throughout the west. Although many of these stations now provide temporally continuous snow measurements, they lack complete information on the spatial distribution of snowpack. Over the last decade, the development of airborne lidar workflows for snow depth measurement has filled in these spatial gaps, with the ability to create high resolution maps of snow across a watershed. Combining the temporal record of the station data with the spatial richness of the lidar-derived maps presents an opportunity to support better estimates of snow water equivalent (SWE) across a basin. Here, we compared historical measurements with mapped snow in the Tuolumne River Basin, where there is a relatively long record of airborne lidar data from the Airborne Snow Observatory (ASO) and many nearby in situ stations for analysis. ASO mapped snow and in situ measurements are highly correlated in time. Using a simple linear regression to predict basin mean SWE from multiple stations resulted in a correlation coefficient of 0.99 and a root mean squared error of 12 mm. We show that 5 to 10 flights are sufficient to define 96% of the variability in basin SWE as determined in a leave-one-year out cross validation statistical experiment. Evaluating the correlations on a cell-by-cell basis suggests that new stations should be installed at very high elevations to maximize new information. Ultimately, the use of flights to develop relationships with long term stations permits us to project basin mean SWE back in time for model calibration, to interpolate between available flights, and to project mean SWE to the present prior to a new flight request.
Appendix B: Wood et al. 2022

Draft Title: Ensemble Streamflow Prediction using Airborne Snow Observatory Datasets

Draft Abstract

Measuring mountain snowpack has long been central to seasonal streamflow forecasting in the Western United States. Snow water equivalent (SWE) observations are used directly in a statistical regression framework to predict spring runoff, termed a water supply forecast (WSF), and can be assimilated into a watershed hydrology model to produce ensemble streamflow predictions (ESP). Recent advances in airborne remote sensing of snow provide a new, high spatial resolution observation that has potential value to improve the skill of WSFs in watersheds with seasonal snowpack, yet few published quantitative analyses of the marginal benefits of such projects exist. We assess and benchmark the skill of water supply forecasts for the Hetch Hetchy Reservoir in the Tuolumne River basin, California, focusing on the impact of spatial SWE observations from the lidar-based Airborne Snow Observatory (ASO). We compare the skill of runoff forecasts from a calibrated SUMMA semi-distributed watershed model with and without the assimilation of ASO observations, for 58 forecast initializations during 2013-2019. A direct assimilation approach was used in both sequential and non-sequential modes. Forecasts from all approaches showed high skill, and ASO was found to marginally improve forecast accuracy over model-only forecasts, with an increase in r² from 0.94 to 0.98 calculated over the entire forecast series, and benefits varying from year to year. Assimilating only one ASO observation per year near April 1 provided nearly all the benefits of repeated assimilations, correcting for model snow accumulation errors, and late-season assimilations slightly degraded forecast performance. The greatest value of high-resolution snow observations may come through judicious application in real-time forecasting, coupled with use in model calibration and improvement efforts.