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Executive Summary 
Reclamation's mission is designed around delivering usable agricultural water for the West. 
Therefore, being able to simulate salinity in a 2-D finite-volume model in a realistic timeframe would 
be of significant value to Reclamation. The goal of this project was to develop a salinity module to 
simulate salinity using SRH-2D, a two-dimensional (2D) flow hydraulic and mobile-bed sediment 
transport model for river systems that is frequently used by Reclamation. Additionally, this research 
sought to improve the efficiency of SRH-2D using graphics processing unit (GPU) acceleration 
methods. Unfortunately, due to issues with solution stability, neither goal was achieved during the 
timeframe of this project, but the research laid the groundwork for future research in this area. 
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1. Introduction 

1.1 Author’s Note 
The Principal Investigator of this project, Zackary Leady, left Reclamation before completing this 
report. As a result, this report has been compiled in his absence using a limited set of available 
documentation. The majority of the report consists of a literature review, as very little information is 
available regarding the research methodology or results. 

1.2 Research Goals 
Salinity is a key component of water quality. However, Reclamation currently does not have the 
ability to perform accurate modeling of salinity in many waterways. The goal of this project was to 
develop a salinity module to simulate salinity which could be coupled with or implemented into the 
Reclamation model SRH-2D. As described by Lai (2008), SRH-2D is a two-dimensional (2D) flow 
hydraulic and mobile-bed sediment transport model for river systems and has been widely used by 
Reclamation and outside institutions. Additionally, this research sought to improve the efficiency of 
SRH-2D using graphics processing unit (GPU) acceleration methods. 
 
One intended application of this research is to the Sacramento-San Joaquin River Delta (Delta) in 
California. Reclamation currently uses Delta Simulation Model 2 (DSM2), a one-dimensional (1D) 
model, to model salinity and other water quality parameters in the Delta. The use of a 2D model 
such as SRH-2D with a salinity module has the potential to increase the accuracy of modeling. A 
graphical overview of the proposed research process is shown in Figure 1. 

 
Figure 1. A graphical overview of the proposed research process.  
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2. Literature Review 
A literature review was undertaken to better understand current knowledge regarding GPU 
acceleration and transport modeling. Section 2.1 summarizes the reviewed literature on GPU 
acceleration and its application to computational fluid dynamics problems. Section 2.2 summarizes 
the reviewed literature on transport modeling, including SRH-2D, and previous applications to the 
San Francisco Bay-Delta. 

2.1 GPU Acceleration 

2.1.1 Overview of GPU Acceleration 
It is possible to speed up the solution process for a variety of numerical solution techniques using a 
GPU in place of a central processing unit (CPU), which is known as GPU acceleration. GPUs can 
be regarded as massively parallel vector processors (Govindaraju, 2006). Miller at al. (2013) 
recognized the increasing use of GPUs as a clear hardware trend in numerical simulations of water 
resources problems. 
 
Modern GPUs were introduced in 1995, with general-purpose programming capabilities becoming 
available in the early 2000s, and the programmability increasing over time. Modern GPUs contain a 
mixture of 32-bit and 64-bit capability. 
 
GPUs are designed to perform vector computations on input data represented as 2D arrays or 
textures. Each element of a texture is composed of four color components, and each component 
can store one floating point value. In order to perform computations on a data element, a 
quadrilateral covering the element location is rasterized on the screen. The rasterization process 
generates a fragment for each covered element on the screen and a user-specified program is run for 
each generated fragment. Since each fragment is evaluated independently, the program is run in 
parallel on several fragments using an array of fragment processors (Govindaraju, 2006). 

2.1.1.1 GPU Streaming Model 
Unlike in CPU programming, where programmers can write to any location in memory at any point 
in their program, GPU programming memory access is more structured. In the streaming model, 
programs are expressed as series of operations on data streams. The elements in a stream (that is, an 
ordered array of data) are processed by the instructions in a kernel (that is, a small program). A 
kernel operates on each element of a stream and writes the results to an output stream. These stream 
programming model restrictions are what allow GPUs to execute kernels in parallel (LeFohn et al., 
2005). 
 
For maximum efficiency, it is important to design an algorithm with the GPU streaming model in 
mind. GPUs such as the GeForce FX are characterized by inexpensive gather operations, lack of a 
scatter operation, and single-instruction multi-data (SIMD) semantics, which together characterize 
the abstract streaming model. The GPU streaming model is a specific type of abstract streaming 
model. Some design principles for peak performance under this streaming model are as follows: 
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- SIMD: Let p be the number of parallel pipelines; then every instruction operates on a tuple 
of p neighboring pixels. For peak performance, useful work must be made of every pixel in 
the tuple. 

- Triangle rasterization: GPUs are most efficient at rendering triangles. Rectangles may be 
considered to be comprised of a pair of axis-aligned right triangles, but some work along the 
hypotenuse of the triangles is wasted. This waste should be minimized. 

- Round-Robin Pipelining of Triangle: Streaming processors are typically multi-threaded to 
hide memory access latency, in which q independent streams are processed in an interleaved 
manner. The designer should optimize the value of q to hide memory latency while 
minimizing the time wasted by waiting for data-dependent instructions (Bolz et al., 2003).  
 

The use of Compute Unified Device Architecture (CUDA) abstracts the GPU streaming model 
somewhat, so that programmers access memory in a way that is more comparable to a CPU. 
CUDA-enabled GPUs provide five different types of memory: register, shared, local, global, and 
constant memory.  
 
On devices with compute capability 1.x, there are two locations where memory can reside: cache 
memory and device memory. For these devices, shared memory and constant cache memory are 
stored in cache memory. On devices that support compute capability 2.x, there is an additional 
memory bank that is stored with each streaming multiprocessor, which has a relatively small address 
space but very low access latency (van Oosten, 2011). 
 
The organization of these different memory types is shown in Figure 2. The properties of each 
memory type are summarized in Table 1. 
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Figure 2: CUDA memory model. Figure taken from van Oosten (2011). 
 
Table 1: Property of CUDA memory types. From van Oosten (2011).  

Memory Located Cached Access Scope Lifetime 
Register cache n/a Host: None 

Kernel: R/W 
thread thread 

Local device 1.x: No 
2.x: Yes 

Host: None 
Kernel: R/W 

thread thread 

Shared cache n/a Host: None 
Kernel: R/W 

block block 

Global device 1.x: No 
2.x: Yes 

Host: R/W 
Kernel: R/W 

application application 

Constant device Yes Host: R/W 
Kernel: R 

application application 

n/a: Not applicable 
R/W: Read/Write 
 
Threads on the GPU are organized in warps, defined as a group of 32 threads of consecutive thread 
IDs. The first or second half of a warp is referred to as a half-warp. Global memory bandwidth can 
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be used most efficiently by coalescing the simultaneous memory accesses by threads in a half-warp 
into a single memory transaction (Li and Saad, 2010). 

2.1.1.2 Gather and scatter operations 
Gather and scatter operations require special consideration on the GPU. Gather and scatter are 
fundamental data parallel operations, in which a large number of data items are read (gathered) from 
or are written (scattered) to given locations. A naïve implementation can reduce performance 
significantly due to a low utilization of the memory bandwidth and a long,   
 
He et al. (2007) implemented various common gather and scatter operations on an NVIDIA GeForce 
8800 GPU (G80) using CUDA and tested the performance. A basic implementation of the scatter is 
to sequentially scan the array for scatter L and the input Rin once, and output all Rin tuples to the output 
Rout once. Likewise, the basic implementation of the gather is to scan L once, read the Rin tuples 
according to L, and write the tuples to Rout sequentially. However, if L is random, the scatter and gather 
suffer from the random access, which has low cache locality and results in low bandwidth utilization.  
 
He et al. (2007) applied a multi-pass optimization technique to both the scatter and gather operations. 
This technique divides Rout into nChunk chunks, then performs the scatter in nChunk passes. In the ith 
pass, it scans L once, then outputs the Rin tuples belonging to the ith chunk of Rout, which achieves 
better cache locality than a single-pass scatter. This algorithm improves the scatter performance up to 
three times. Overall, the optimized GPU implementations are 2-7X faster than their optimized CPU 
counterparts.  

2.1.2 Solving Sparse Linear Systems on the GPU 
Sparse linear systems can be more readily parallelized than dense systems, because the solutions for 
certain elements are not necessarily dependent on the solutions of previous elements in the way that 
they are for dense systems. There are two main methods for exploiting this property of sparse linear 
systems for parallelization. The first is to preprocess the matrix to analyze the sparsity pattern and 
use the computed pattern to exploit available parallelism. The second strategy is to express the 
triangular matrix as a series of sparse factors. Variations of this strategy have also been applied to 
parallelize dense and banded triangular linear systems (Naumov, 2011).  
 

2.1.2.1 Preconditioners 
Preconditioners are algorithms that transform a linear system into a form that allows it to be solved 
more efficiently by numerical methods. Without preconditioning, the convergence of iterative solvers 
can be too slow for practical purposes (Bertaccini and Fillipone, 2016). Various types of 
preconditioners have been implemented on GPUs, including Incomplete LU (ILU), Incomplete 
Cholesky (IC), Schwarz, and approximate inverse preconditioners.  
 

2.1.2.1.1 Incomplete LU (ILU), Incomplete Cholesky (IC), and Schwarz preconditioners 
An incomplete LU factorization seeks triangular matrices L and U such that A ≈ LU, with the result 
that solving for LUx = b can be done quickly but does not yield the exact solution to Ax = b. Since 
the preconditioning matrix M = LU and LU ≈A, the preconditioning operation is a back 
substitution followed by a forward substitution, i.e., u = M-1v = U-1L-1v. If no fill-in is allowed in the 
ILU process, we obtain the ILU(0) preconditioner, which has the same sparsity pattern as A. The 
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ILU(k) preconditioner allows more fill-ins using the notion of level fill-in, and is more accurate than 
ILU(0). ILUT uses an alternative method to drop fill-ins, dropping them based on the numerical 
value of the fill-in elements; zeroing out elements smaller than a threshold (Li and Saad, 2010).  
 
Incomplete Cholesky (IC) preconditioners are commonly used for symmetric positive definite (SPD) 
matrices. However, the IC factorization does not exist for all SPD matrices, and so in some cases 
the modified IC (MIC) factorization (Robert, 1982), which exists for any SPD matrix, must be used 
(Chow and Patel, 2015). 
 
ILU factorization has been very useful in sequential computations, but is not readily parallelizable, 
so the basic ILU method tends to underperform on the GPU compared to the CPU, and also 
compared to more parallelizable algorithms on the GPU (Chow and Patel, 2015; Bertaccini and 
Fillipone, 2016). In many cases, it is even faster to transfer data from the GPU to the CPU and back 
to perform ILU factorization (Li and Saad, 2010).  
 
One method of enhancing parallelization with ILU preconditioners is to use multicolor ordering to 
reorder the rows and columns of the matrix. The nodes corresponding to the graph of the matrix 
are colored such that no two adjacent nodes share the same color, then the matrix is reordered such 
that like colors are ordered together. Nodes corresponding to the same color can then be eliminated 
in parallel. While this method leads to more parallelism, it has the disadvantages of leading to 
suboptimal ILU factorizations compared to other ordering methods, and of taking away the ability 
to reorder a matrix to enhance solver convergence (Chow and Patel, 2015). However, in an 
experiment by Li and Saad (2010), a multicolor ILU(0) preconditioner achieved approximately 5X 
speedup of a triangular solver compared to the CPU.  
 
Heuveline et al. (2011) developed a variation on the multicolored ILU(k) preconditioner in which 
they anticipate the fill-in pattern of the ILU(k) scheme, which they call the power(q)-pattern 
method. This modified ILU(k) method applied to a multi-colored matrix has no fill-ins in its 
diagonal blocks, leading to an inherently parallel execution of triangular ILU(k) sweeps. This method 
was implemented in the freely available finite element software package HiFlow.    
 
The power(q)-pattern method is based on the observation that the non-zero pattern of ILU(k) 
grows like |A|k+1, and thus the non-zero pattern of the factorization can be restricted by 
determining the pattern of |A|k+1 to avoid dynamic memory allocation. This restriction allows 
control over the sparsity patterns of the L and U matrices (Heuveline et al., 2011).  
 
Heuveline et al. (2011) tested the power(q)-pattern method on a dual-socket Intel Xeon E5450 
quad-core system (eight cores in total) with an NVIDIA Tesla S1070 GPU system with four GPUs 
attached pairwise by PCIe to one socket each. The memory capacity of a single CPU and GPU 
device was 16GB and 4GB, respectively. They applied the preconditioning method to a Conjugate 
Gradient (CG) solver for three test matrices. The CG solver on a power(q)-pattern method 
preconditioned matrix is several times faster than the non-preconditioned matrix, whether they are 
using a sequential CPU, parallelized CPU (with openMP), or GPU. For two of the three matrices 
tested, the power(q)-pattern method is moderately faster than the symmetric Gauss-Sneidel and 
multi-colored ILU(0) methods; for the third matrix, the multi-colored ILU(0) method is fastest.  
 
Another approach for parallelizing ILU factorizations is to split the matrix graph into various 
subdomains, which leads to coarse-grained parallelization. The ILU is computed in parallel for each 
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subdomain (Chow and Patel, 2015). There are multiple variations on this technique, depending on 
the method used for splitting the matrix. In the block Jacobi method, also known as the Block ILU 
method, the subdomains have no overlap, so one CUDA thread block can be assigned to each local 
block and no global synchronization or communication is needed, providing high parallelism. This 
method is also easy to program. However, this method usually results in a large number of iterations 
to converge, which can outweigh the benefits of increased parallelism (Li and Saad, 2010). 
 
A decoupled block ILU(k) method was implemented on the GPU by Yang et al. (2017). This 
method was applied to reservoir simulations, where block-wise matrices appear frequently. The 
matrix A is first abstracted into a point-wise matrix Ap. All nonzero blocks (blocks with at least one 
nonzero element) in A become nonzero elements in Ap, then the fill-in nonzero pattern P’ is 
established on Ap, and the block-wise matrix A’ is created according to the pattern P’. Thus, A’ has 
the same values as A but a different nonzero pattern, and can be used for a block-wise ILU(0) 
factorization directly.  
 
This preconditioning method was tested on a GMRES solver using an Intel Xeon E5-2680 0 CPU 
@2.70GHz and a NVIDIA Tesla K20Xm GPU with 249.6 GB/s memory bandwidth and 2688 
CUDA cores. The OS is Red Hat Enterprise Linux Server release 6.6 (Santiago) and the 
development environment is CUDA 6.5 and GCC 4.4.  Three matrices were used for testing. 
Relative to the CPU, speedups for the first two matrices ranged from 1.6 to 9.4, depending on block 
size and k level, with smaller block sizes and smaller k-levels generally increasing speedup. For the 
third matrix, speedups ranged from 1.2 to 6.8 with block sizes of 1, 2, and 4, but from 0.2 to 1.2 for 
a block size of 8, indicating that the parallel performance is exhausted by an overly large block size 
(Yang et al., 2017). These experiments demonstrate the importance of optimizing both block size 
and k-level. 
 
The restricted additive Schwarz method (RAS), developed by Cai and Sarkis (1999), is another 
method of splitting the matrix into subdomains, and is a cheaper variation on the classical additive 
Schwarz (AS) method. The AS method uses overlapping domains, so communication between the 
parallel threads is needed. With the RAS method, however, the domains have minimum overlap, 
making the communication cost cheaper. Cai et al. (1998) found that this method also requires fewer 
iterations to convergence than the AS method.  
 
Liu et al. (2014) implemented the RAS on the GPU and tested it on various matrices, using either 
ILU(0) or ILUT to factor each subdomain. The preconditioned matrices were solved using the 
GMRES solver. They performed the test using a workstation with Intel Xeon X5570 CPU and 
NVIDIA Tesla C2050/C2070 GPUs. The operating system was Fedora 13 X86-64 with CUDA 
Toolit and GCC 4.4. The maximum speedup achieved relative to the CPU was about 10, with an 
average speedup of 7.8 for the ILU(0) factorization and 6.2 for the ILUT factorization. 
 

2.1.2.1.2 Approximate inverse preconditioners 
Approximate inverse preconditioning has been popular over the last two decades. This method 
preconditions the system Ax = b by a direct approximation of A-1. Approximate inverse 
preconditioning is implemented using sparse matrix by vector multiplications, which can be 
implemented efficiently on highly parallel computing architectures such as the GPU (Bertaccini and 
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Fillipone, 2016). A disadvantage of approximate inverses is that it is difficult to predict whether the 
resulting matrix will be singular (Helfenstein and Koko, 2012).  
 
Various methods for computing sparse approximate inverses have been proposed in the literature, 
including minimization of the residual norm, approximation by a matrix polynomial, inexact inversion 
of sparse triangular factors, and incomplete biconjugation. Bertaccini and Fillipone (2016) 
implemented the last two of these methods (inexact inversion and incomplete biconjugation) on the 
GPU and tested the performance.  
 
For the inexact inversion, they followed the strategy of van Duin (1999). For effective preconditioning, 
a “drop strategy” is necessary to preserve the matrix sparsity. The “drop strategy” they used is based 
on level of fill and is called positional fill level triangular inverse, or INVK.  Each iteration of the main 
factorization loop consists of three phases: 

1. A copy-in phase, where the ith row of matrix A is expanded into a full row w 
2. A factorization loop where the needed updates from the previous phase and the first dropping 

rule are applied 
3. A copy-out phase in which the second dropping rule is applied. 

 
The first dropping rule compares the wk element with a user-specified threshold. For the second rule, 
first each element is compared with the threshold, then the p elements with the largest absolute values 
among those which were not dropped are retained. In order to efficiently select and remove the lowest 
ranked elements from a set and add elements to the set, in both the factorization and inversion phases, 
a partially ordered set abstract data type is used, which guarantees that both the insertion of a new 
element and deletion of the lowest ranked element can be performed with a cost O(log(|S|), where 
|S| is the cardinality of the set S.  
 
A variation of INVK using a numerical fill drop triangular inverse is termed INVT. Both INVK and 
INVT have the drawback of needing to specify multiple parameters, which leads to difficulty in tuning 
them in actual applications. For INVK, it is necessary to choose the level of fill in the sparse 
factorization and the level of additional fill in the approximate inversion phase. For INVT, four 
parameters must be chosen: the drop threshold ϵ and the number of additional nonzeros N for both 
the incomplete factorization and sparse inversion.  
 
The second method considered by Bertaccini and Fillipone (2016) was incomplete biconjugation. 
Their method is termed AINV and was used in RapidCFD, a GPU implementation of OpenFOAM 
(Arslan, 2016). Bertaccini and Fillipone’s method was proposed by Benzi and Tuma (1998) and 
extended in Benzi et al. (2000). Biconjugation is a similar method to incomplete factorization. Like 
with incomplete factorization, the AINV method may break down when the coefficient matrix is not 
an H matrix (Benzi et al., 1996). A modified method known as SAINV was created that will not break 
down for positive definite matrices. SAINV was implemented by Bertaccini and Fillipone (2016) but 
they did not observe any clear benefits over using AINV. SAINV has also been implemented on the 
GPU elsewhere (Geveler et al., 2011).  
 
The efficiency of AINV can be improved using a left-looking algorithm, where all the updates to a 
vector zi involving zj, j<i are performed in a single iteration of the outer loop. The left-looking variant 
groups together all the updates to a given column, and suffered less from pivot breakdown in test 
problems. The efficiency can also be improved by using the same partially ordered set abstract data 
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type used for inexact inversion. The left-looking AINV algorithm variation using the partially ordered 
set abstract data type is denoted LLK. 
 
Like INVT, LLK also requires the choice of two parameters. In the case of LLK, the two parameters 
are the dropping threshold ϵ and the amount of fill-in p. The computational complexity bounds for 
INVT and INVK are of the same order, which is substantiated by numerical results. The advantage 
of LLK is that it is normally easier to tune the control parameters of the algorithm, but once the tuning 
is done, the build phase of the INVT and INVK preconditioners is often faster. 
 
These preconditioners were studied using the Parallel Sparse BLAS (PSBLAS) library, along with the 
development of a number of support tools, in the context of the MLD2P4 framework, a package of 
multilevel preconditioners that can be plugged into the PSBLAS library, using only one MPI (message-
passing interface). They were tested on an Intel Xeon E5-2670 running at 2.6 GHz, coupled with an 
NVIDIA K20M graphics accelerator. The GPU kernels were compiled with CUDA 6.5, and all other 
software components were built with the GNU compilers (C and Fortran) version 4.8.3.  
 
They started with tests based on 2D and 3D convection-diffusion. On the CPU, INVK performs 
comparably to solving with no preconditioning, and worse than ILU(0) preconditioning. However, 
on the GPU, ILU(0) performs no better than the CPU using a Hybrid (HYB) matrix format, and 
much worse with a Compressed Sparse Row (CSR) format (see section 2.2.2 for descriptions of these 
formats). INVT and LLK both perform significantly better, with speed-ups for 1.6 to 8.2 for INVT 
and 1.6 to 8.0 for LLK, with higher speedups for larger matrices.  
 
They also tested these algorithms on matrices designed from an engine simulation application, which 
solves the turbulent Navier-Stokes equations with arbitrary Lagrangian-Eulerian (ALE) finite volume 
discretization solved with the SIMPLE method. The test matrices are those for the pressure-correction 
equation, which is the most demanding linear system in this application. The coefficient matrices are 
non-symmetric but with a symmetric sparsity pattern and have no more than 19 nonzero entries per 
row. Speed-ups with the LLK and INVT methods are lower than in the previous case but are still 
around 2 (1.1 to 2.8) for both methods.  
 
Lastly, they tested the preconditioning algorithms using a subset of matrices in the University of 
Florida Sparse Collection, to test the effects of renumbering the matrices using either the approximate 
minimum degree (AMD) algorithm (Amestoy et al., 1996, 2004) or the Gibbs, Poole, and Stockmeyer 
variant of reverse Cuthill-McKee numbering (Gibbs et al., 1976a,b; denoted GPS). They found that 
AMD renumbering is practically never beneficial, while GPS reordering produces modest speed-ups 
compared to no renumbering sometimes but not consistently.  
 
The LLK algorithm is available in a PSBLAS MLD2P4 plugin called MLD-AINV.  
 
Another method for approximate inverse preconditioning is preconditioning by a matrix 
polynomial. The polynomial preconditioning matrix M is defined by M-1 = s(A), where s is some 
polynomial. The polynomial coefficients are determined by the Stieltjes procedure. The 
computations used for preconditioning are SpMV and level-1 BLAS vector computations, both of 
which can be implemented efficiently on the GPU (Li and Saad, 2010). Li and Saad describe the 
algorithm by which these preconditioners are obtained, but no implementation or testing of these 
preconditioners on the GPU has been located, so they are not discussed further here. 
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2.1.2.2 Sparse-matrix vector multiplication (SpMV) 
The multiplication of a sparse matrix by a dense vector (SpMV) is widely used in many linear 
solvers. The SpMV kernel is well-known to be a memory bounded application, and its bandwidth 
usage is strongly dependent on both the input matrix and on the underlying computing platform. 
Techniques for implementing SpMV generally involve storing the sparse matrix in a compressed 
format and performs the multiplication on the compressed matrix. (Fillipone et al., 2017).  
 
Dozens of sparse matrix storage formats have been developed, each of which can be advantageous 
in certain circumstances. Four sparse matrix storage formats are available in cuSPARSE: Coordinate 
(COO), Compressed Sparse Rows (CSR), Compressed Sparse Columns (CSC), and Hybrid (HYB) 
(NVIDIA, 2018a). COO, CSR, and CSC are also available in PSBLAS (Fillipone and Buttari, 2018). 
These formats are discussed below. The ELL matrix format was introduced in ELLPACK, which is 
available for purchase from Purdue University (https://www.cs.purdue.edu/ellpack/).  
 
There is no single definition of a sparse matrix, but the most famous definition is attributed to James 
Wilkinson: Any matrix with enough zeros that it pays to take advantage of them. To “take 
advantage” of the zeros essentially means avoiding their explicit storage. However, this also means 
that the simple mapping between the index pair and the position of the coefficient in memory is 
destroyed. Therefore, all sparse matrix storage formats are devised around means of rebuilding this 
map using auxiliary index information. The cost of rebuilding the map can vary in the context of the 
operations one wants to perform (Fillipone et al., 2017).  
 
Fillipone et al. (2017) discussed 71 matrix formats that have been proposed in recent years and 
evaluated the performance of 7 of these formats for SpMV on the GPU. They classified the formats 
according to the base sparse matrix format they extend or derive from (COO, CSR, CSC, ELL, and 
Diagonal (DIA)). These matrix formats are described below. They also considered hybrid 
approaches that use multiple formats depending on the matrix sparsity pattern or other matrix 
parameters, and those approaches that do not directly extend any existing formats.  
 
The COO format is a particularly simple storage scheme. It is defined by three scalars M, N, and 
NZ and three arrays IA, JA, and AS. The AS array contains the non-zero coefficients, the IA and JA 
arrays contain the row and column indices, respectively (Fillipone et al., 2017).  
 
The Compressed Sparse Rows (CSR) format, perhaps the most popular sparse matrix 
representations, explicitly stores column indices and nonzero values in two arrays JA and AS, and 
uses a third array of row pointers, IRP, to mark the boundaries of each row. The Compressed Sparse 
Columns (CSC) format is extremely similar to CSR, except that the matrix values are first grouped 
by column, a row index is stored for each value, and column pointers are used (Fillipone et al., 
2017). 
 
The ELL (format) in its original conception comprises two 2-dimensional arrays AS and JA with M 
rows and MAXNZR columns, where MAXNZR is the maximum number of nonzeros in any row. 
Each row of the arrays AS and JA contains the coefficients and column indices; rows shorter than 
MAXNZR are padded with zero coefficients and appropriate column indices. This format is well 
suited for matrices in which the maximum number of nonzeros per row is not much larger than the 
matrix, and when the regularity of the data structure allows for faster code, for example, by allowing 
vectorization. 

https://www.cs.purdue.edu/ellpack/
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The DIA format in its original conception comprises a 2-dimensional array AS containing in each 
column the coefficients along a diagonal of the matrix, and an integer array OFFSET that 
determines where each diagonal starts. The diagonals in AS are padded with zeroes as necessary. 
This matrix format is well suited for matrices with a diagonal structure. 
 
The seven matrix formats tested by Fillipone et al. (2017) were selected primarily based on their 
availability, and are as follows: The original CSR format available in cuSPARSE, the JSR variation on 
CSR, the HYBrid format from cuSPARSE (a mixture of ELLPACK and COO), the SELL-P format 
implemented in MAGMA 1.7.0, the ELLPACK-like and Hacked ELLPACK formats from their 
group, and the Hacked Diagonal (HDI) format from their group. They tested the formats on 31 
matrices from the University of Florida sparse matrix collection, and three matrices generated from 
a model 3D convection-diffusion PDE with finite difference discretization, using four test 
platforms, with different CPUs and GPUs.  
 
Refer to Fillipone et al. (2017) for detailed results of their comparison. One key outcome is that for 
matrices that come from a partial differential equation (PDE) discretization, they found ELLPACK-
like formats to perform the best, provided sufficient memory is available, unless the matrix also has 
a piecewise diagonal structure, in which case Hacked DIA (HDI) performs the best. They also noted 
that there is overhead associated with the creation of sophisticated data structures, so if the matrix is 
only used for a few products, it may be best to use a simple format like CSR.  
 
The original ELLPACK format is efficient for matrices with approximately the same number of 
nonzeros per row. For matrices with significant variation in the number of nonzeros, several 
variations are available. One format that aims to reduce the memory overhead is Sliced ELLPACK 
(Monakov et al., 2010), abbreviated as SELL or SELL-C, which preprocesses the rows and reorders 
and partitions them into slices of similar length, each of which is packed separately in the 
ELLPACK format. Each slice is assigned to a block of threads in CUDA and thread load balancing 
can be achieved by assigning multiple threads to a row. Slice size can be either fixed or variable. If 
the slice size is variable, heuristics is used to define each slice size. With an optimal slice size, the 
performance can be quite good, but picking the wrong slice size can adversely affect performance. 
 
Warped ELL (Maggioni et al., 2013) is a variation on Sliced ELLPACK based on warp granularity 
and local rearrangement to reduce the overhead associated with the data structure, to reduce the 
variability of the number of nonzeroes per row and improve the data structure efficiency without 
affecting the cache locality. Maggione et al. (2013) found that Warped ELL achieves a reasonable 
performance over Sliced ELLPACK for the considered matrices.  
 
HDI (Barbieri et al., 2010) is a variation of the DIA format used to limit the amount of padding, by 
breaking the original matrix into equally size groups of rows, and then storing these groups as 
independent matrices in DIA format. Like the original DIA format, this format is only convenient 
for matrices with a natural diagonal structure, often arising from the application of finite different 
stencils to regular grids, and is efficient for memory bandwidth (Fillipone et al., 2017).  
 
Li and Saad (2010) also tested the performance of various matrix formats for SpMV kernels, using a 
workstation with Intel Xeon E5504 Processor (4M Cache, 2.00 GHz, 8-core) and an NVIDIA 
TESLA C1060 GPU (240 cores, 1.3 GHz, 4GB memory) running 64-bit Linux. They used matrices 
from the University of Florida sparse matrix collection, and from reservoir simulations. The formats 
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they tested were the CSR format, the vector CSR format, the Jagged Diagonal (JAD) format, and the 
DIA format. The CSR and DIA formats are described above.  
 
The vector CSR format is a variation on the CSR format to assign a half-warp (16 threads) to each 
row, instead of only one thread, to increase the chances of memory coalescence. This technique 
incurs a problem releated to computing vector dot products, so to solve this problem, each thread 
saves its partial result into shared memory and a parallel reduction is used to sum all partial results. 
 
 The JAD format is a generalization of the ELLPACK format, which removes the assumption on 
fixed-length rows. To build the JAD structure, the rows are first sorted according to the number of 
nonzeros per row, then the first JAD element consists of the first element of each row, the second 
JAD consists of the second element, etc. Only one thread works on each matrix row to exploit fine-
grained parallelism.  
 
For non-diagonally structured matrices, the JAD format generally performed the best, followed by 
the vector CSR format, then the CSR format. All formats achieved significant speed-ups over the 
serial CPU implementation. A parallel CPU implementation was faster than the CSR method in 
some cases, but was still slower than the JAD and vector CSR methods. For diagonally structured 
matrices, the DIA format significantly outperformed the JAD and Vector CSR methods.  
 

2.1.2.3 Parallel Triangular Solvers 
Lower triangular problems and upper triangular problems are commonly applied in many scientific 
applications, such as incomplete LU (ILU) preconditioners, domain decomposition preconditioners, 
and Gauss-Seidel smoothers for algebraic multigrid solvers. The algorithms for these problems are 
serial in nature and difficult to parallelize (Chen et al., 2016).  
 
Naumov (2011) implemented a sparse triangular linear system solve using the CUDA parallel 
programming paradigm, as a set of routines in the cuSPARSE library. Naumov’s algorithm is 
focused on the situation where the same linear system needs to be solved multiple times with a 
single right-hand-side, as arises in the precondition of iterative methods using ILU and Cholesky 
algorithms. The cuSPARSE method uses the first parallelization strategy described above, splitting 
the solution into an “analyze” phase (which is relatively slow but only needs to be done once) and a 
“solve” phase (which is faster and may be done multiple times).  
 
The principle of the “analyze” phase is to develop a directed acyclic graph (DAG) and to traverse it 
using, for example, a modified breadth-first-search, which visits each node’s children only if they 
have no dependencies on the other nodes. The purpose of the search is to group the independent 
nodes into levels, which are then passed to the “solve” phase.  
 
The algorithm of the solve phase is as follows (with notation modified from the original source for 
consistency with that used in other papers): 
 
1: Let nlev be the number of levels. 
2: for e =1:nlev do 
3:  list = the sorted list of rows in level e. 
4:  for row ϵ list in parallel do  > Process a Single Level 
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5:   Compute the element of the solution corresponding to row. 
6:  end for 
7:  Synchronize threads.   > Synchronize between Levels 
8: end for 
 
A comparison was made between standalone sparse triangular solvers using the cuSPARSE level 
scheduling on the GPU and using Multiple Kernel Learning (MKL) on the CPU, made using the 
hardware system with NVIDIA C2050 (ECC on) GPU and Intel Core i7 CPU 950 @ 3.07GHz, 
using the 64- bit Linux operating system Ubuntu 10.04 LTS, cuSPARSE library 4.0 and MKL 
10.2.3.029 (Naumov, 2011). 
 
MKL outperforms the cuSPARSE method for a single solve. However, there are many cases where 
the solution of the sparse triangular linear system needs to be repeated multiple times, so the time 
taken by “solve” phase becomes more significant than that of the “analyze” phase, which only needs 
to be performed once. The “solve” phase of the cuSPARSE method is faster than the MLK method 
14 out of 17 times. For these matrices, the number of iterations needed to catch up with MKL’s 
performance ranges from 4 to 80 (Naumov, 2011).  
 
Chen et al. (2016) developed another method to speed up solutions to linear triangular systems, 
which included a new matrix format, denoted by HEC (Hybrid ELL and CSR). An HEC matrix 
contains two submatrices: an ELL matrix, which was introduced in ELLPACK, and a Compressed 
Sparse Row (CSR) matrix. The ELL matrix also has two submatrices: a column-indices matrix and a 
non-zeros matrix. The length of each row in these two matrices is the same. In the HEC format, the 
regular part of a given triangular matrix L is stored in the zero part, and the irregular part is stored in 
the CSR part.  
 
Like the cuSPARSE level scheduler solver, Chen et al.’s solver has an “analyze” phase, which groups 
the nodes into levels, and a “solve” phase. The steps of the “analyze” phase are as follows: 

1. Calculate the level of each unknown using the following equation: 
l(i) = 1+maxl(j) for all j such that Lij ≠ 0, i = 1,2,…,n, 

 where Lij is the (i, j)th entry of L, l(i) is zero initially, and n is the number of rows. 
2. Calculate the map m(i) using the following equation: 

𝑚𝑚(𝑖𝑖) = �𝑁𝑁𝑗𝑗 + 𝑝𝑝𝑘𝑘(𝑥𝑥(𝑖𝑖))
𝑘𝑘−1

𝑗𝑗=1

, 𝑥𝑥(𝑖𝑖) ∈ 𝑆𝑆𝑘𝑘 

 where 𝑝𝑝𝑘𝑘(𝑥𝑥(𝑖𝑖)) is the position of 𝑥𝑥(𝑖𝑖) in the set 𝑆𝑆𝑘𝑘 when 𝑥𝑥(𝑖𝑖) belongs to 𝑆𝑆𝑘𝑘. 
3. Reorder matrix L to L’ using the map m(i). 
4. Convert L’ to the HEC format. 

 
The lower triangular problem is then solved using the following algorithm: 
 
1: Let nlev be the number of levels 
2: for i=1:n do 
3:  b’(m(i)) = b(i); 
4: end for 
5: for i = 1:nlev do 
6:  start = level(i) 
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7:  end = level(i + 1) – 1 
8:  for j = start:end do 
9:   solve the jth row 
10: end for 
11: end for 
12: for i = 1:n do 
13: x(i) = x’(m(i)); 
14: end for 
 
In the above algorithm, level(i) is the start row position of level i. First, the right-hand side b is 
permutated according to the map m(i) that was computed. Then the triangular problem is solved 
level by level and the solution in the same level is simultaneous. At the end, the final solution is 
obtained by a permuatation (Chen et al., 2016).  
 
The upper triangular problem is mapped to a lower triangular problem using the following 
transferring map: 

𝑡𝑡(𝑖𝑖) = 𝑛𝑛 − 𝑖𝑖 
where n is the number of rows. 
 
The performance was tested using a workstation with Intel Xeon X5570 CPUs and NVIDIA Tesla 
C02050/C2070 GPUs, with a Cent OS 6.2 X86_64 with CUDA Toolkit 4.1 and GCC 4.4. 
 
Three preconditioners were tested on two real-world sparse matrices: block ILU(0), block ILUT, 
and Restricted Additive Scharwz (RAS). The solver with block ILU(0) preconditioning was sped 
over three times faster, with block ILUT preconditioning was sped around 2 times, and with RAS 
preconditioning was sped up to 7 times faster. Using an SPE10 benchmark matrix, which is highly 
heterogeneous and designed to be hard to solve, the average speedup was around 6 with block 
ILU(0) preconditioning and 5 with RAS preconditioning. Speedup was not achieved with block 
ILUT preconditioning for this matrix, due to the matrix’s irregular non-zero pattern. 

2.1.2.4 Krylov Subspace Solvers 
Krylov subspace solvers are a class of linear solvers in which the kth iteration minimizes some 
measure of error over the kth shifted Krylov subspace 

Κk = span(r0, Ar0,…,Ak-1r0) 
for k≥1 (Miller et a., 2013). These are the most commonly used linear solvers for computational 
fluid dynamics problems. Three kinds of Krylov subspace solvers are discussed here: Conjugate 
Gradient (CG), Bi-Conjugate Gradient Stabilized (BiCGSTAB), and Generalized Minimum Residual 
(GMRES).  
 
Krylov subspace solvers perform well when the coefficient matrix is close to the identity matrix or 
has a few small clusters of eigenvalues and is diagonalizable. Discretizations of differential operators 
lead to poorly conditioned linear systems, so applying a suitable preconditioner is key to making 
Krylov solvers perform well (Miller et al., 2013).  

2.1.2.4.1 Conjugate Gradient (CG) Solvers 
Conjugate gradient (CG) solvers are popular for solving linear systems on the GPU that involve a 
real, symmetric, and positive definite coefficient matrix and a real right-hand side, due to their 
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parallelizability (Michels, 2011). The conjugate gradient algorithm was introduced by Hestenes and 
Stiefel (1952). The kth iteration minimizes ||u-u*||A over u0 – Kk, where u* =A-1f is the solution 
and the A-norm is defined by: 
 ||𝐮𝐮 − 𝐮𝐮∗|| 𝐴𝐴 =  �(𝐮𝐮 − 𝐮𝐮∗)𝑇𝑇𝐀𝐀(𝐮𝐮 − 𝐮𝐮∗)  
(Miller et al., 2013). The implementation of a conjugate gradient solver involves only a few types of 
non-trivial operations: scaled vector additions, dot products, and matrix-vector multiplications (Bolz 
et al., 2003; Michels, 2011). Thus, the efficiency of the CG solver is largely controlled by the 
efficiency of these three operations. CG is very efficient in terms of storage, needing only five 
vectors for the entire iterative method, plus the storage necessary for the coefficient matrix. 
 
An early (pre-CUDA) application of GPUs to solving sparse linear systems was done by Bolz et al. 
(2003), who implemented a CG solvers and a multigrid solver on the GPU and compared their 
performance to CPU implementations. As the multigrid solver is applied only to regular grids, it is 
not discussed here. The GeForce FX GPU was used for their implementation.   
 
Implementing a conjugate gradient method or one of its variants on the GPU requires the 
construction of (1) data structures for sparse matrices, (2) data parallel algorithms for sparse matrix 
vector multiplies, and (3) reduction operators for inner product computations. If the underlying 
PDE is non-linear, it is desirable to compute the matrix entries on the GPU as well. The algorithm 
of Bolz et al. (2003) accommodates this, making it well suited for both linear and non-linear PDEs 
on unstructured meshes. 
 
In a vector multiply operation, the fragment program executes the inner product between a given 
row and a vector of unknowns. Fragment programs must execute in lockstep, with no branching or 
early termination. Bolz et al. (2003) improved the efficiency of this step by “rendering” groups of 
rows with equal numbers of non-zero entries. 
 
For problems of the type y = Ax, in the case that the entries of A depend on x (for example, when 
the coefficient of a given edge is controlled by the two incident triangles, which are in turn described 
by their incident vertices), two additional kernels are required: one to update 𝐴𝐴𝑖𝑖𝑥𝑥 and another for 𝐴𝐴𝑗𝑗𝑎𝑎. 
In traditional FEM codes, this is typically done by iterating over all elements computing local 
stiffness matrices, then accumulating these local stiffness matrices into a global stiffness matrix. 
However, this procedure requires a scatter operation. Scatter operations were not available on 
current-generation GPUs (Bolz et al., 2003), but were made available in 2007 with NVIDIA’s release 
of CUDA (Ye et al., 2007) – see the “Gather and scatter operations” section. As a result of this 
limitation, the non-zero entries were computed directly.  
 
The sum reduction of vector inner products is made more efficient by rendering a quadrilateral with 
half the dimension along either axis, summing four elements. This process is repeated until a single 
pixel quadrilateral is rendered containing the results of the sum reduction. If the length of the vector 
is not a power of two, odd-length dimensions will result. These are dealt with by placing zeroes in 
unused pixels (Bolz et al., 2003).  
 
The cuSPARSE sparse triangular solver discussed above was also analyzed in the context of solving 
a linear system using preconditioned Bi-Conjugate Gradient Stabilized (BiCGStab) and CG iterative 
methods for non-symmetric and symmetric positive definite (SPD) matrices, respectively. They were 
preconditioned using ILU and Cholesky factorizations, respectively. Both the pseudocode and an 
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implementation in the C programming language using the cuBLAS and cuSPARSE libraries is 
provided in Naumov (2018). 
 
In a performance comparison using the incomplete-LU and Cholesky preconditioned iterative 
methods implemented on the GPU, using the cuSPARSE and cuBLAS libraries achieved an average 
of 2x speedup over their MKL implementation. The best speedup was obtained using incomplete-
LU and Cholesky factorization with 0 fill-in. In general, the speedup for the incomplete 
factorizations decreased as the threshold parameters were relaxed and the factorization became 
more dense. These comparisons were made using the hardware system with NVIDIA C2050 (ECC 
on) GPU and Intel Core i7 CPU 950 @ 3.07GHz, using the 64- bit Linux operating system Ubuntu 
10.04 LTS, cuSPARSE library 4.0 and MKL 10.2.3.029 (Naumov, 2011). 
 
Scaled vector additions take the form of sum = x + λy, where λ is the scaling factor and x and y are 
vectors with n components each. This addition can be realized with n threads which execute in 
parallel. If t threads run in parallel, the runtime can be decreased from O(n) to O(n/t) (Michels, 
2011). 
 
Michels (2011) implemented a CG solver using CUDA that used the ELLPACK-R matrix format 
and a SSOR preconditioner; however, while their algorithm achieves 4-7X speedups over an MKL 
implementation on the CPU, in testing they found their algorithm to be about 2X slower than the 
CG solver included in the CUDA Toolkit 3.2, which uses the CSR format. 
 
Müller et al. (2014) took a different approach to implementing a CG solver on the GPU, using a 
matrix-free implementation. They focused on the elliptic PDE for the pressure correction arising in 
the dynamical core of numerical weather- and climate-prediction models. They note that similar 
implementations could be developed for other types of Krylov subspace iterative methods.  
 
Their algorithm does not explicitly store either the coefficient matrix nor the preconditioner matrix. 
For matrices arising from the discretization of PDEs, the local matrix stencil only couples each grid 
to its neighbors. Because memory access is more expensive than floating point operations on GPUs, 
they recalculate the stencil whenever it is needed in the SpMV of preconditioner solve. An additional 
advantage of the matrix free method is that there are no matrix setup costs, and the costs for 
precomputing the vectors is negligible.  
 
Müller et al. (2014) took an interleaved approach to preconditioning, such that the main iteration 
consists of only two loops over the grid, each of which contains either the SpMV or the tridiagonal 
solve and a number of BLAS operations. This reduces the number of memory references, especially 
if the cache can be used efficiently.  
 
They tested their algorithm using the GPU node of the aquila cluster in Bath, which contains an 
Intel Xeon E5-2620 Sandybridge CPU with a clockspeed of 2.0 GHz and an NVIDIA Fermi M2090 
GPU. The M2090 GPU contains 512 cores running at a clockspeed of 1.3 GHz with are organized 
into 16 streaming multiprocessors with 32 cores each. They used version 4.4.6 of the gnu C compiler 
for compiling the CPU code, and the NVIDIA nvcc compiler for compiling the CUDA code. The 
optimized BLAS and LAPACK libraries were used for the CPU code. The tested matrix had a size 
of 256 x 256 x 128, which is a typical size for meteorological applications (Müller et al., 2014).  
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The matrix-free CUDA implementation of the preconditioned CG solver is 3-5 times faster than the 
matrix-explicit CSR CUDA implementation, and 30-60 times faster than the CPU implementation. 
The interleaved version is about 1.5 times faster than the non-interleaved version (Müller et al., 
2014).   
 
Phillips and Fatica (2016) compared the performance of various high-performance GPU CG 
algorithms, using a preconditioner based on symmetric Gauss-Seidel smoothing (SYMGS). Their 
considered set of algorithms included the baseline CuSPARSE algorithm (which requires a CSR 
matrix format), the CUSPARSE algorithm with color ordering, custom kernels with color ordering 
and the CSR format, and custom kernels with color ordering and the ELL format. The use of 
custom kernels allows the adoption of a more flexible matrix format which simplifies the reordering 
of the matrix, and removes the need for sorting of the row elements with respect to the diagonal.  
 
They tested these four versions on a K20X GPU with ECC enabled, with a 1283 domain. The matrix 
reordering had the strongest improvement in performance, since it exposes more parallelism in the 
SYMGS preconditioning routine. Overall, the fourth version that includes custom kernels with color 
ordering and ELL format was the fastest, with more than 4x speedup over the baseline CuSPARSE 
algorithm. They then tested this optimized version on several GPU platforms, which produced the 
fastest results per processor ever recorded.  

2.1.2.4.2 Generalized Minimum Residual (GMRES) Solvers 
GMRES solvers are used for the numerical solution of nonsymmetric systems. The method was 
developed by Saad and Schultz (1986). The kth GMRES iteration minimizes ||f – Au||2 over u0 – 
Kk. The GMRES method requires substantially more storage than the CG method, as it must store a 
basis of k orthonormal vectors for the Krylov subspace, a demand which can be impossible to meet 
for large problems. Low-storage alternatives to GMRES have been developed, but they all have 
limitations. One method of limiting storage in the GMRES method is by limiting it to an m-
dimensional Krylov subspace, then restarting the iteration when storage is exhausted, a method 
known as GMRES(m). However, GMRES(m) does not share the rigorous convergence theory of 
GMRES, and can fail to converge (Miller et al., 2013).  
 
A GPU GMRES solver was implemented by Liu et al. (2015) for the solution of a finite difference-
based thermal simulation algorithm. This algorithm was implemented using NVIDIA CUDA and 
run on a Tesla C2070 GPU, which has 488 cores of 1.15 GHz and 5-GB global memory. The CPU 
results were tested on a quad-core Xeon E5620 machine at 2.00 GHz with 28-GB memory. They 
tested three solvers: serial GMRES on CPU, parallel GMRES on a CPU-GPU platform with 
preconditioners, and a parallel LU solver called superLU_MT. The GPU preconditioners used were 
AINV and ILU0, and DIAG. The GPU implementation was up to 4X faster than the CPU 
implementation, and up to 700x faster than the SuperLU solver, though the speedup was highly 
variable and for some smaller matrices was less than 1 with AINV preconditioning, as the speedup 
in solving time was insufficient to outweigh the time required for preconditioning. The DIAG 
preconditioner performed best for small matrices, but failed to converge for larger matrices. For all 
matrices, speedup was higher for ILU0 preconditioning than for AINV preconditioning, though Liu 
et al. (2015) note that the AINV preconditioner is more accurate. 

2.1.2.4.3 Bi-Conjugate Gradient Stabilized (BiCGSTAB) Solvers 
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BiCGSTAB is another non-symmetric CG solvers. It does not require a transpose-vector product, 
but it does need two matrix vector products and does not have a complete convergence theory. 
BiCGSTAB can fail to converge in certain situations, so the user must be prepared to reinitialize 
failed iterations when necessary (Miller et al., 2013). 
 
Naumov (2018) provide both pseudo-code for the GPU implementation of the BiCGSTAB 
algorithm, and an implementation using the C programming language and the CuSPARSE and 
CuBLAS libraries. The tests described in the CG section were also performed using the BiCGSTAB 
algorithm. The BiCGSTAB algorithm produced average speedups of 2.1-2.7 relative to the CPU 
implementation.  

2.1.2.5 Tridiagonal solvers 
Tridiagonal matrices arise in many engineering and scientific applications, and thus the triangular 
solver is a critical building block for such applications. Chang and Hwu (2014) note that there is no 
single best tridiagonal solver for all applications, as each application may have different 
requirements, such as data with different layouts, matrices with a certain structure, or execution on 
multi-GPUs. Most tridiagonal solvers on the GPU contain two components: partitioning methods 
to divide workload for parallel computing, and optimization techniques for independent solvers. 
 
cuSPARSE offers both pivoting (gtsv) and non-pivoting (gtsv_nopivot) tridiagonal solvers. The 
pivoting solver offers better accuracy and stability at the expense of some execution time. The non-
pivoting algorithm uses a combination of the Cyclic Reduction (CR) and the Parallel Cyclic 
Reduction (PCR) algorithms to find the solution. It achieves optimal performance when the size of 
the linear system is a power of 2 (NVIDIA, 2018a). 
 
The CR algorithm, also known as odd-even reduction, contains two phases, forward reduction and 
backward substitution. In every step of the forward reduction, each odd (or even) equation is 
eliminated using the adjacent two even (or odd) equations. After a step of CR forward reduction, 
redundant unknown variables and zeros can be removed, and a half-size matrix is formed of the 
remaining unsolved equations. Each step of the backward substitution solves for unknown variables 
by substituting solutions obtained from the smaller system (Chang and Hwu, 2014). 
 
The PCR algorithm differs from CR in that is only performs the forward reduction, and the forward 
reduction is performed on all equations, instead of odd (or even). 
 
Another tridiagonal solver algorithm is the SPIKE algorithm, which was originally introduced by 
Sameh and Kuck (1978) and modified by Pollizi and Sameh (2006). It is a domain decomposition 
algorithm, that partitions a matrix into block rows containing diagonal sub-matrices and off-diagonal 
elements (Chang and Hwu, 2014). The SPIKE algorithm source code is provided by Chang et al. 
(2012) at http://impact.crhc.illinois.edu.  
 
Chang and Hwu (2014) developed a new hybrid algorithm, SPIKE-CR, as a case study to 
demonstrate how to apply optimization techniques. In the SPIKE-CR, the SPIKE algorithm is 
applied to partitioning, due to its lower computation overhead than PCR and lower memory access 
overhead than other domain partitioning methods. CR is then applied for the independent solver. 
Various optimization techniques are applied, including register packing, CR/PCR hybridization, a 
new warp level PCR, and another level partitioning using the SPIKE algorithm to minimize 

http://impact.crhc.illinois.edu/
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communication between warps within a thread block. Some code fragments for this method are 
provided in Chang and Hwu (2014).  
 
Chang and Hwu (2014) compared their new SPIKE-CR method to the SPIKE method and the 
cuSPARSE non-pivoting method. The SPIKE-CR method produced a speedup of 1.2 over the 
SPIKE method, and a speedup of 2.2 over the cuSPARSE non-pivoting method, since SPIKE-CR 
has no data marshaling overhead and less memory access overhead.  

2.1.2.6 Summary of solution methods for sparse linear systems 
To obtain a fast, accurate, and stable solution to sparse linear systems, developers must choose a 
preconditioning method (or choose not to precondition matrices), matrix storage format, and solver.  
Consideration of preconditioning methods and matrix storage formats for application to this project 
was limited to methods that have been implemented on the GPU and whose implementation is 
readily available for use. This primarily consists of the methods available in cuSPARSE.  
 
The two preconditioners available in cuSPARSE are ILU(0) and IC preconditioners. Despite the 
proliferation of efficient preconditioners in recent years, these two preconditioners remain popular. 
While, as mentioned in section 2.1.2.1.1, the ILU(0) algorithm is not readily parallelizable, the 
cuSPARSE implementation of ILU(0) computes levels to extract more parallelism from both the 
ILU(0) and IC preconditioners (NVIDIA, 2018a). As a result, IC preconditioning is a strong 
candidate for SPD matrices, and ILU(0) for non-SPD matrices.  
 
cuSPARSE supports the following matrix formats: COO, CSR, CSC, and HYB. There are also two 
variations on CSR available: Block CSR (BSR), and Extended BSR (BSRX), which are appropriate 
for sparse matrices with dense submatrices (NVIDIA, 2018a). The HYB matrix is a hybrid of COO 
and ELL matrix formats. Given various format comparisons discussed above, the HYB format is 
likely to outperform the other available formats. However, a simpler matrix format like COO, CSR, 
or CSC may perform better if the matrix is only used for a few operations, given the time required to 
convert a matrix into a complex format. 
 
The CG and BiCGStab solution methods are both popular for solving sparse linear systems on the 
GPU, due to their parallelizability, and implementations of both methods using the cuSPARSE and 
cuBLAS methods are available (NVIDIA, 2018b). The primary advantage of the BiCGStab method 
is its applicability to non-symmetric matrices. For SPD matrices, the CG method is generally 
preferable, due to its more complete convergence theory. 

2.1.3 Applications of GPU Acceleration to Computational Fluid Dynamics Problems 
Amouzgar et al. (2016) implemented a Tsunami model, using a second-order accurate hydrodynamic 
model, on the GPU using the CUDA framework and achieved speed-ups of 45 to 64 relative the 
CPU. Their model solves the 2D shallow water equations using a finite volume Godunov-type 
scheme incorporated with an HLCC approximate Riemann solver.  
 
Ha et al. (2018) applied GPU acceleration to the solution of the incompressible Navier-Stokes 
equations using a fractional step method. Ha et al. note that fully explicit schemes for integrating the 
Navier-Stokes equations are the most readily parallelizable, as the problem can be decomposed into 
tasks operating on independent data sets. However, semi-implicit schemes, such as the fractional 
step method, are more commonly used for solutions of wall-bounded incompressible flows. This 
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method integrates the convective terms explicitly and the viscous terms implicitly. The implicit 
treatment of the viscous terms allows a stable solution even at a larger time-step size. 
 
When the viscous terms are discretized using a second-order central-difference scheme and are 
integrated implicitly, the resulting momentum equations require inversion of multiple tridiagonal 
matrices (TDMAs). Tridiagonal matrices can easily be inverted using the Thomas algorithm, but this 
algorithm is inherently difficult to parallelize (Ha et al., 2018).  
 
Each of the Navier-Stokes solver comprises three major sub-steps: the computation right-hand side 
(RHS) of momentum equations, the alternating direction implicit (ADI) solver used for solving for 
the velocity, and the Poisson equation solution, which is transformed with a Fourier transform then 
solved directly. In a traditional single-core CPU implementation, the ADI solver takes the most time 
(Ha et al., 2018). 
 
The RHS computation involves many arithmetic operations arising from finite differences. The 
computation can be expressed as a triply nested loop, which can easily be parallelized as CUDA 
kernels. The simplest way to map the RHS is to CUDA kernels is to use CUDA Fortran compiler 
directives, which instruct the compiler to automatically generate asynchronous kernels from the host 
code containing tightly nested loops. Alternatively, one can transform the triply nested loop into a 
kernel by mapping loop indices onto thread and block indices, which is moderately faster. The RHS 
kernel can be further optimized by using a cache configuration preferring L1, and by substituting 
locally defined temporary variables of the kernel into shared memory variables (Ha et al., 2018).  
 
The ADI solver requires six inversions of general TDMAs and three inversions of periodic TDMAs 
at each sub-step. The TDMA solver is parallelized using the hybrid CR-PCR tridiagonal method 
implemented in cuSPARSE, discussed previously. At boundaries, periodic TDMAs arise, which is 
primarily a TDMA with a few additional nonzeros. This problem can be converted into the 
inversion of two TDMAs using the Sherman-Morrison Algorithm (Ha et al., 2018). 
 
The parallelism of the ADI solver can be further improved using multi-level parallelism. In 2-level 
parallelism, the first level is the equation-level at which equations are eliminated in parallel using 
reduction algorithms, and the second level is the matrix-level at which multiple TDMAs of one 
coordinate direction are inverted in parallel, which can be achieved in cuSPARSE using 
cusparseDgtsvStridedBatch to invert multiple matrices concurrently. In 3-level parallelism, the first 
and second levels are the same as in 2-level parallelism. The third level is the velocity-level at which 
multiple TDMAs are inverted together in parallel. 3-level parallelism inverts the matrices for all u1-, 
u2-, and u3-momentum equations in parallel.  A fourth level can be used to maximize the workload 
for GPUs and minimize dynamics allocation, however, 4-level parallelism has issues regarding 
memory capacity (Ha et al., 2018). 
 
The Poisson equation solution requires a half-range cosine transform in the x1 direction and a 
Fourier transform in the x3 direction, both of which can be computed with a Fast Fourier 
Transform (FFT), which are computed using functions from the cuFFT library. The second-order 
central discretization results in multiple TDMAs, the inversion of which is the bottleneck for GPU 
acceleration. This linear system has real-valued diagonals on the left-hand side and a complex-valued 
right-hand side. The TDMAs must be inverted once for the real part of the right-hand side, and 
another time for the imaginary part, using an algorithm similar to the Sherman-Morrison algorithm 
used for the ADI solver. Inversion of the TDMAs in the Poisson equation are unstable and 
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therefore require pivoting (Ha et al., 2018). As discussed above, the cuSPARSE pivoting algorithm is 
slower but more accurate and stable compared to the non-pivoting algorithm. 
 
Numerical experiments were conducted to compare the GPU code with a highly-optimized single-
core CPU counterpart. The CPU code was run on a CentOS 6.5 Linux server with two deca-core 
Xeon E5-2660 v3 @2.6 GHz CPUs, and was compiled with an Intel Fortran Compiler v. 16.0.3. 
The GPU code was run on a CentOS 6.8 workstation with an Xeon E5-2630 v3 @2.4 GHz CPU 
along with an NVIDIA Tesla K40c GPU, and compiled with a PGI Fortran Compiler v. 16.1.0. 
Additional performance tests of the GPU solver are conducted on a modern GPU server, IBM 
Power System S822LC for High Performance Computing, which is equipped with two octa-core 
Power8 CPUs and four Tesla P100 GPUs, but only a single GPU was utilized for this study. The 
GPU code was run on Ubuntu 16.04 and was compiled with a PGI Fortran Compiler version 17.4 
(Ha et al., 2018). 
 
The maximum grid size supported on the GPU was estimated to be 134 million on the Tesla K40C 
and 190 million on the Tesla P100. Speed-ups relative to the CPU for different grid sizes range from 
5.7 to 20.0 on the Tesla K40C and 6.4 to 45.4 on the Tesla P100, with greater speedups for large 
grid sizes (note that the Tesla K40c was not used for the largest three grids due to its memory 
limitations). The Tesla P100 has more than 3 times higher computational power than K40c due to 
an increase in the number of DP cores and core frequency, but the solver runs only 2.4 times faster 
on the Tesla P100 than on the Tesla K40c, due to memory bandwidth limitations (Ha et al., 2018). 
 
Ha et al. (2018) also compared their ADI solve method to a preconditioned conjugate gradient 
(PCG) method. The ADI method is generally faster from the viewpoint of operation counts, but has 
the drawbacks of difficulties in parallelization of TDMA inversion and in multiple data transfers. For 
the comparison, Ha et al. implemented a conjugate gradient (CG) method using built-in functions 
from cuBLAS and cuSPARSE – one case without a preconditioner, and one with an ILU(0) 
preconditioner, following the code provided in NVIDIA (2018b). The CG method is fastest for 
grids with between 4 and 50 million cells, while the ADI method is faster for larger grids.  
 
Helfenstein and Koko (2012) also developed a method for solving the Poisson equation on the 
GPU. They used the PCG method with a Symmetric Successive Over-Relaxation (SSOR) 
approximate inverse preconditioner. They tested this method using an Intel Xeon Quad-Core CPU 
with 2.66 GHz, 12 GB RAM using gFortran, and an NVIDIA Tesla T10 GPU with 240 cores and 4 
GB RAM using CUDA. For matrix sizes ranging from 265,000 to 2.1 million, using 8-thread warp 
per row, they achieved speedup of their PCG method ranging from 1.2 to 1.9 relative to the CG 
method on the GPU (less speedup for larger matrices) and 6.2 to 10.3 relative to the CG method on 
the GPU (more speedup for larger matrices).  They also tested the PCG algorithm using a different 
implementation of SpMV that splits multiplication and additional operations, which is faster than 
the basic SpMV implementation only for the smallest matrices tested. 
 
Kao and Sheu (2018) developed a finite element solver on multiple GPU cards for solving three-
dimensional incompressible Navier-Stokes equations. They discretized the Navier-Stokes equations 
using the streamline upwind finite element model. In this finite element flow solver, all the 
elementary matrices can be only stored in an element level; there is no need to assemble a global 
matrix, which reduces the amount of computer memory needed. To get an unconditionally 
convergent solution, they transformed the asymmetric and indefinite matrix equations into an 
equivalent SPD counterpart by multiplying its transpose on it. Since the matrix equations are then 
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SPD, the CG iterative solver can be applied to get an unconditionally convergent solution. However, 
the use of this approach increases the condition number and makes the convergence of CG very 
slow. The convergence can be accelerated with the use of a suitable preconditioner. They selected 
the Jacobi preconditioner due to its easy parallel implementation.  
 
The matrix-vector product is the most expensive operation in the algorithm developed by Kao and 
Sheu (2018). Since the global matrix is never assembled, they decomposed the matrix-vector product 
into a sum of element-level matrix-vector products, using a mesh coloring technique to ensure that 
any two elements in a given subset do not share the same node. Their finite element code was 
written in CUDA Fortran and compiled with the PGI accelerator. They used an Intel E5-2690 V4 
CPU with 14 cores, 1.54 TB off-chop memory, 37.1 GB/s peak flops, and 76.8 GFlops/s memory 
bandwidth, coupled with an Nvidia Pascal P100 GPU with 3584 single-precision cores (1792 
double-precision), 16 GB off-chip memory, 10.6 TFlops/s peak flops (single-precision), 5.3 
TFlops/s (double-precision), and 732 GB/s memory bandwidth. They tested the algorithm using a 
three-dimensional lid-driven cavity flow problem, with problem sizes ranging from 1.6 million to 
10.8 million degrees of freedom. The speed-up relative to the CPU ranged from 56.4 to 63.9 for a 
single GPU, 66.3 to 117.0 for two GPUs, and 74.9 to 134.4 for four GPUs, with larger speed-ups 
for larger problems. Note that the largest problems were run only using 4 GPUs.  
 
Liu et al. (2018) solved the 2D shallow water equations based on an unstructured Godunov-type 
explicit finite volume scheme for flood simulation, termed the Monotone Upstream Scheme for 
Conservation (MUSCL)-Hancock scheme, with triangular computational grids. Rather than using 
CUDA, they used the OpenACC programming interface, which is collection of runtime routines 
and compiler directives that use FORTRAN of C/C++ languages to compile the specified code 
blocks of computational loops. Due to the explicit nature of their scheme, they were able to take 
advantage of the natural parallelism in their independent data loops.  
 
Liu et al. (2018) tested their model on an Intel Xeon E5-2690 CPU @ 3.0 GHz with a Tesla K20 
card with a Kepler GK110 GPU and 2496 NVIDIA CUDA cores. They first used two simple test 
cases for validation, then applied it to a real-world application with three grid-division schemes, 
ranging from 179,000 to 2.9 million triangular elements, and simulated a dike breach. The speedup 
on the GPU relative to the CPU ranged from 11.3 to 31.1, with higher speedups for larger grid sizes. 
 
Tomczak et al. (2013) provided another application of GPU acceleration to the numerical solutions 
of the Navier-Stokes equations. They analyzed the pressure implicit with operator splitting (PISO) 
and semi-implicit method for pressure linked equation (SIMPLE) solvers on unstructured grids. 
Their GPU implementation of PISO and SIMPLE followed the CPU implementation of Jasak 
(1996) and Weller et al. (1998). Their implementation uses Jacobi preconditioning and the ELL 
matrix format.  
 
They tested their algorithm on the Tesla C2070 GPU attached to a CPU running 64-bit Ubuntu 
10.04 LTS, graphics driver v.290.10, CUDA 4.1, and gcc 4.4.3. The reference CPU tests were 
performed using OpenFOAM v.1.7 on a dual-socket Intel Xeon X5670 processor system running 
12 MPI processes to fully saturate all available CPU cores. CPU tests were performed using both the 
simple Jacobi preconditioning used on the GPU, and the geometric-algebraic multi-grid solver 
(GAMG), considered to be among the fastest solvers of the pressure equation available in 
OpenFOAM. They solved three different CFD problems: steady flow in a 3D lid-driven cavity, the 
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transient Poiseuille flow in two dimensions, and the steady flow through the human left coronary 
artery, with regular mesh resolutions varying from 103 to 2233 cells.  
 
The GPU solver is slower than the CPU for meshes of less than approximately 105 cells, and 
significantly faster when the mess has more than 106 cells, up to 4.2x. However, the GPU solver is 
slower than the CPU with GAMG preconditioning for most of the cases considered, due to the 
higher number of iterations necessary to achieve convergence with Jacobi preconditioning (Tomczak 
et al., 2013), illustrating the importance of selecting an optimal preconditioner. 

2.2 Transport Modeling 

2.2.1 Transport Modeling Overview 
Water quality models depend on the principle of mass balance. Within a segment of a water quality 
model, the components of mass balance include changes by transport into and out of the segment, 
changes by physical or chemical processes occurring within the segment, and changes by sources or 
discharges to and from the segment. Changes by transport include both advective transport 
(transport by flowing water) and dispersive transport (transport resulting from concentration 
differences). Advective transport generally dominates in flowing rivers, while dispersion is the 
predominant transport mechanism in estuaries subject to tidal action (Loucks and van Beek, 2005). 
 
The advective transport, 𝑇𝑇𝑥𝑥0

𝐴𝐴 , at site x0 is the product of the average water velocity at that site, 𝑣𝑣𝑥𝑥0, 
the surface or cross-sectional area, A through which advection takes place, and the average 
concentration of the constituent, 𝐶𝐶𝑥𝑥0: 

𝑇𝑇𝑥𝑥0
𝐴𝐴 = −𝑣𝑣𝑥𝑥0×𝐴𝐴×𝐶𝐶𝑥𝑥0 (1) 

 
The dispersive transport, 𝑇𝑇𝑥𝑥0

𝐷𝐷 , across a surface area A can be calculated as: 

 𝑇𝑇𝑥𝑥0
𝐷𝐷 = −𝐷𝐷𝑥𝑥0×𝐴𝐴×

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑥𝑥=𝑥𝑥0 (2) 

 
where 𝐷𝐷𝑥𝑥0 is the dispersion or diffusion coefficient at site x0 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
|𝑥𝑥=𝑥𝑥0 is the concentration 

gradient at site x0 (Loucks and van Beek, 2005). 
 
In one dimension, the principle of mass balance results in the following advection-diffusion 
equation, also known as the generic scalar transport equation (valid only for passive scalar transport 
without source/sink terms): 
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(𝑣𝑣𝑣𝑣) (3) 

 
where C is the average concentration, D is the dispersion of diffusion coefficient, and v is the 
average velocity. In three dimensions, this equation becomes: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑥𝑥
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

− 𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐷𝐷𝑦𝑦
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑦𝑦2

− 𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐷𝐷𝑧𝑧
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧2

− 𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(4) 

 



GPU Accelerated Salinity Module 

24 

with dispersion coefficients 𝐷𝐷𝑗𝑗  defined for each direction. The advection-diffusion reaction equation 
emerges by adding source terms S (additional inflows of water or mass) and fR (reaction terms or 
‘processes’) to the above equation. As many source terms as required may be added (Loucks and van 
Beek, 2005). This equation is closely related to the incompressible Navier-Stokes equations, which 
consist of equations that ensure conservation of mass and conservation of momentum. 
 
The advection-diffusion reaction equation can only rarely be solved analytically. For most real-world 
computational fluid dynamics problems, this equation and other governing partial differential 
equations are too complex to be solved analytically. Therefore, the problem must be solved 
numerically, most frequently using a finite volume method. With finite volume methods, the model 
domain is divided up into control volumes, with the value at the center of each control volume 
taken to be representative of all values within the control volume. Integrating the original PDE over 
the control volume casts the equation into a form that ensures conservation, and generates a system 
of sparse linear equations that can be solved using a standard linear solver method, a process termed 
discretization (Norris, 2000). Problems must be discretized in both space and time. 
 
Computational fluid dynamics models can be either one-dimensional (1D), two-dimensional (2D), or 
three-dimensional (3D). For a mesh in a Cartesian coordinate system, the 2D and 3D discretizations 
are composed of two or three (respectively) orthogonal 1D discretizations along each axis of the 
model domain (Norris, 2000). While 3D discretization allows for the greatest model complexity, and 
thus allows for the greatest accuracy in representing real-world problems (given sufficient 
constraints), it is also the most computationally intensive, and certain systems may be simplified to 
1D or 2D with minimal loss of accuracy.  
 
According to MacWilliams et al. (2006), 1D models are able to represent tides, water levels, and 
depth-averaged temperature, and to partially represent tidal trapping, sediment routing, erosion and 
deposition, and passive and active particle trapping. Moving to a 2D model adds the ability to 
represent mixing in open water embayment and wind waves, to fully represent tidal trapping and 
sediment routing, and to partially represent mixing at junctions and wind-driven circulation. All of 
the above-mentioned physical processes can be fully represented by a 3D model, along with 
temperature stratification and gravitational circulation / salinity intrusion.  
 
While SRH-2D is typically applied to rivers and has not previously been applied to the Sacramento-
San Joaquin River Delta (Delta), according to Martyr-Koller et al. (2017), hydrodynamics and scalar 
transport in the Delta can be well described by a 2D model. Several 2D models have been applied to 
the Delta, including RMA2 (King, 1990) and 2D implementations of the 3D models Delft 3D 
Flexible Mesh (Achete et al., 2015) and Trim3D (Monsen et al., 2007).  
 
Key factors in obtaining an accurate, stable solution for finite volume computational fluid dynamics 
problems include the choice of discretization scheme and the mesh geometry. Decreasing the size of 
the mesh and the size of the time step increases the accuracy of the solution, but also increases the 
computational time. Additionally, some schemes (primarily the so-called explicit time discretization 
schemes) produce stable schemas only with sufficiently low values of the Courant number, C, 
defined in one dimension as: 

𝐶𝐶 =
𝑢𝑢∆𝑡𝑡
∆𝑥𝑥

(5) 
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where u is the characteristic velocity of the system, Δt is the time step, and Δx is the grid spacing. 
Thus, for these schemes, as velocity increases or mesh size decreases, the time step must be 
decreased to ensure stability. The maximum value of the Courant number that ensures stability is 
referred to as the Courant-Friedrichs-Lewy (CFL) condition. 
 
Discretization schemes can be classified by their order (first, second, or third), frame of reference 
(Eulerian, Lagrangian, or semi-Lagrangian) or explicitness (fully explicit, fully implicit, or semi-
implicit).  
 
The order of a discretization scheme is defined by how many terms of a Taylor Series expansion are 
included. First-order schemes are the simplest but tend to be overly diffusive, leading to solutions 
that are both quantitative and qualitatively incorrect. Higher order schemes are more accurate, but 
their solutions can contain nonphysical oscillations. Many higher order schemes apply damping to 
prevent oscillations. 
 
In an Eulerian specification of the field, the governing equations are discretized in time using a fixed 
frame of reference. They are generally the easiest methods to understand and code. With Lagrangian 
specification of the field, the equations are written along a moving frame of reference, following the 
motions of an individual parcel of fluid (Giraldo, year unknown). 
 
Explicit schemes are generally less computationally intensive to solve than implicit schemes but 
must have a Courant number less than 1 to ensure stability. Semi-implicit schemes attempt to 
balance stability and computational speed by solving some terms implicitly and others explicitly. 

2.2.2 Analytical Solutions to the Scalar Transport Equation 
As stated in section 2.2.1, most real-world transport problems are too complex to be solved 
analytically. However, analytical solutions are available for some simple problems. These simple 
problems can be used for verification and error analysis of numerical models. Most analytical 
solutions are for 1D problems and/or problems on infinite or semi-infinite domains (Pérez 
Guerrero et al., 2009), which are unsuitable for the numerical verification of SRH2D, but solutions 
do exist for 2D/3D problems on a finite domain. 
 
Pérez Guerrero et al. (2009) solved the scalar transport equation using a change-of-variable and 
integral transform technique. Their solution is valid for three-dimensional linear problems in a finite 
domain with decay and source terms, with any combination of type 1 (Dirichlet), type 2 (Neumann), 
or type 3 (Cauchy) boundary conditions. Notation in the section below is changed from the original 
source for consistency with equation (4). 
 
For advection-diffusion in a transient regime governed by the equation 

𝑅𝑅
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑥𝑥
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑥𝑥2

− 𝑣𝑣𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝐷𝐷𝑦𝑦
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑦𝑦2

− 𝑣𝑣𝑦𝑦
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐷𝐷𝑧𝑧
𝜕𝜕2𝐶𝐶
𝜕𝜕𝑧𝑧2

+ 𝑣𝑣𝑧𝑧
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜆𝜆𝜆𝜆𝜆𝜆 (6) 

the full solution is: 
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and 𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦, and 𝑣𝑣𝑧𝑧 are the advection components, 𝐷𝐷𝑥𝑥,𝐷𝐷𝑦𝑦 , and 𝐷𝐷𝑧𝑧 are the diffusion constants, 𝜆𝜆 is 
the generic decay constant, 𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧; 𝑡𝑡) is any equation satisfying the original boundary conditions 
of 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡), iψ~  is a normalized eigenfunction, iµ is an eigenvalue, 𝑅𝑅 is a coefficient, G is the 
integral transform of the source term G, τ is an auxiliary variable, ρ is the initial condition, V is the a 
generic finite volume, and 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3 are constants for the algebraic substitution. The derivation 
of this solution is included in Pérez Guerrero et al. (2009). 
 
A comparison between equation (4) and equation (6) shows that, for a salinity transport problem, 
the diffusion constant λ is 0 and the coefficient R is 1, thus the solution simplifies somewhat to: 
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While this solution is theoretically applicable to problems with time-dependent boundary conditions, 
the need to define the filter function F in both time and space can make its application to such 
problems in a finite domain very difficult (Chen and Liu, 2011). While the generality of this solution 
is useful for its application to a large variety of problems, it can be difficult to evaluate. 
 
Zoppou and Knight (1999) determined analytical solutions that are easy to evaluate for four 
different 2D scalar transport problems. The problem they considered is for a line source of unit 
strength and for corner flow. 
 
They solved the scalar transport for four different scenarios: an instantaneous or steady release of 
contaminant, and with or without an impermeable boundary. These solutions are simple enough that 
they can be easily evaluated in a spreadsheet software such as Microsoft Excel.  
The solution for the concentration following an instantaneous unit line release is: 

𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =
1

4𝜋𝜋𝐷𝐷0𝑢𝑢0𝑡𝑡�𝑥𝑥𝑥𝑥𝑥𝑥0𝑦𝑦0
�
𝑥𝑥𝑦𝑦0
𝑥𝑥0𝑦𝑦

�
1

(2𝑢𝑢0𝐷𝐷0)
exp �

−𝜌𝜌2 − 2(1 + 𝐷𝐷02𝑢𝑢02)𝑡𝑡2

4𝐷𝐷0𝑡𝑡
� (7) 

where 

𝜌𝜌 =
1
𝑢𝑢0
�ln2 �

𝑥𝑥
𝑥𝑥0
� + ln2 �

𝑦𝑦
𝑦𝑦0
� (8) 
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and 𝐷𝐷0 is the constant diffusion coefficient, 𝑢𝑢0is the constant velocity, and 𝑥𝑥0 and 𝑦𝑦0 are the 
locations of the of the initial release of contaminant in the 𝑥𝑥 and 𝑦𝑦 directions, respectively,  
 
This solution was implemented in Microsoft Excel, using values of 𝐷𝐷0 = 2, 𝑢𝑢0 = 1, 𝑥𝑥0 = 5, and 
𝑦𝑦0 = 5. For simplicity, a 20-by-20 grid was used, but the solution is applicable to any non-zero 
values of 𝑥𝑥 and 𝑦𝑦, so it could also be applied to an arbitrary unstructured grid. An example of the 
solution from this implementation at 𝑡𝑡 = 0.05 is shown in Figure 3. 
 

 
Figure 3. Contaminant concentration at 𝑡𝑡 = 0.05 using the solution of Zoppou and Knight (1999) for an 
instantaneous unit line release located at  𝑥𝑥0 = 5, 𝑦𝑦0 = 5, using values of 𝐷𝐷0 = 2 and 𝑢𝑢0 = 1. 

2.2.3 Summary of SRH2D 
SRH2D is a 2D unstructured hybrid mesh numerical model that was developed to simulate open 
channel flows (Lai, 2010), following the 3D work of Lai et al. (2003).  
 
The governing equations are depth-averaged Navier-Stokes equations, which are solved for steady or 
unsteady incompressible turbulent flows. Depth averaging may be performed because most open 
channels have shallow depths and negligible vertical motion (Lai, 2010).  
 
The equations are discretized using the segmented finite volume approach. An element-centered 
scheme is used, meaning that all dependent variables are located at the centroid of the element 
instead of at the element vertices. An arbitrarily shaped element can be divided into triangles by 
connecting the center point of the element to all vertices. Thus, the equations may be discretized 
over triangular faces without loss of generality, as the solutions for a triangular face may be summed 
across all triangles comprising an element (Lai, 2000).  
 
The cell face diffusive flux at an element face is calculated by defining a local nonorthogonal 
coordinate system, allowing the diffusive flux to be split into a normal term and a cross term. The 
cross term may be transformed to a line integral along the perimeter of the face using Green’s 
theorem. The resulting cross term is second-order in accuracy, while the normal term is second 
order only for select mesh geometries (Lai, 2000). 
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Cell face values are calculated using the procedure proposed by Rhie and Chow and Peric et al., in 
which the face normal velocity is obtained by averaging the momentum equation from element 
centers to element faces (Lai, 2000). SRH-2D uses the nRT1 method to obtain nodal velocities from 
normal velocities. In this method, nodal velocities are calculated using RT0 basis functions for node 
p using the two adjacent edges. These nodal velocities differ when calculated in different cells for the 
same node and thus are considered “local” nodal velocities (Wang et al., 2011; Walters et al., 2007). 
 
The pressure correction equation is derived from the mass conservation equation using a predictor-
corrector algorithm called PISO. PISO can use any number of corrector steps, but two is usually 
sufficient (Lai, 2000).  
 
Four boundary conditions are encountered: inlet, outlet, no-slip wall, and symmetric boundaries. 
Various extrapolations are needed to solve the momentum equations at the boundaries. At inlet and 
no-slip wall boundaries, the Cartesian velocity components are specified at boundary element face 
centers, and the pressure is extrapolated from the interior. At an outlet, pressure is specified at the 
element face center and Cartesian velocity components are extrapolated from the interior. At 
symmetric boundaries, the velocity component normal to the boundary is set to zero while 
tangential components and pressure are extrapolated from the interior (Lai, 2000).  
 
All governing equations are solved sequentially. For a typical steady-state simulation, momentum 
equations are solved first assuming a known pressure field, then the predicted velocity field is used 
to calculate the element face normal velocity. This calculated velocity usually does not satisfy mass 
conservation, so the corrector steps of the PISO algorithm are applied by solving pressure 
correction equations. This solution process iterates until a preset convergence criterion are reached. 
The systems of linear equations generated by this method are solved using the preconditioned 
conjugate gradient method for unstructured meshes, and the strongly implicit procedure (SIP) for 
structured or block structured meshes (Lai, 2000). 
 
While the solver is approximately second order using formal Taylor series analysis, the actual 
accuracy will be less than second order due to the use of damping in the convective flux and the 
reduced accuracy of the normal diffusion on nonregular mesh. For an example nonregular 
hexahedral mesh, the order of accuracy was estimated to be less than but close to 2.0 (1.79-1.95). 

2.2.4 Comparisons of transport schemes 
Gross et al. (1999) evaluated the performance of various scalar advection schemes in complex, 
energetic estuarine tidal flows in which advection often dominates the evolution of transported 
scalars. For each scheme, they used relatively simple test cases with specified steady velocity fields 
and uniform bathymetry, then evaluates them with a complex test case of the tidal flow of the South 
San Francisco Bay and compares computed with measured salinity fields. 
 
The schemes evaluated were leapfrog-central, QUICKEST (Leonard, 1979), first-order upwind, 
LWlim, MPDATA (Smolarkiewicz, 1984), and ELM. The leapfrog-central scheme has no dissipation 
but only dispersive error, resulting in strong oscillations. The QUICKEST scheme is a variation on 
the popular QUICK scheme. Unlike QUICK, QUICKEST is stable for pure advection when used 
with explicit Euler time advancement, for |c|≤1. LWlim is a flux-limiting scheme that uses Roe’s 
superbee limited and a second-order Lax-Wendroff scheme. It is total-variation diminishing (TVD) 
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and conservative, so it will not create oscillations and is guaranteed to be stable. MPDATA ensures 
sign preservation of scalar values and has low numerical diffusion relative to first-order upwind 
differencing. The original version may allow oscillations, but a later variation does not. ELM is a 
nonconservative scheme. Scalar fluxes are never calculated – instead, concentrations are calculated 
by tracing Lagrangian trajectories to determine where the water parcel at the center of a cell 
originated at the previous time step. This scheme is stable and oscillation-free (Gross et al., 1999). 
 
Velocities for the advection calculations in the complex test case were obtained from the TRIM-2D 
model. The governing equations for hydrodynamics are the depth-averaged shallow water equations, 
including the continuity equation, x- and y- momentum equations, and a depth averaged 
conservative tracer transport equation (Gross et al., 1999). 
 
When applied to the South San Francisco Bay Model, the Leapfrog-central method was not stable. 
The authors used an Asselin filter to try to stabilize it but it was inadequate. MPDATA was stable 
but not conservative; 40% of the initial salt mass was destroyed numerically (Gross et al., 1999).  
 
The QUICKEST, first-order upwind, and LWlim schemes gave similar results, though QUICKEST 
had some oscillations. The ELM scheme did not match the field data closely, possibly due to lack of 
conservation. The authors concluded that stability and conservation appear to be more important 
than Taylor-series accuracy for the modeled application and grid size of 200 meters (Gross et al., 
1999). 
 
Another common algorithm, which was not analyzed in Gross et al.’s 1999 paper, is the SIMPLEC 
algorithm. SIMPLEC (Semi-Implicit Method for Pressure Linked Equations-Corrected) is a 
modified form of the SIMPLE algorithm and was developed by van Doormall and Raithby (1984). 
SIMPLEC seeks to mitigate the effects of dropping velocity neighbor correction terms, by retaining 
approximate versions of these terms. SIMPLEC is found to have approximately the same cost per 
iteration as SIMPLE but converge 20-30% faster for many problems.  

2.2.5 Previous Modeling of the San Francisco Bay-Delta 
The hydrologic system comprised of the San Francisco Bay and Sacramento-San Joaquin River 
Delta (Delta) is referred to as the San Francisco Bay-Delta. The Delta is the largest estuary on the 
west coast of North and South America, covering more than 1300 square miles (Isenberg et al., 
2008). The Delta is connected to the San Francisco Bay by the Carquinez Strait. 
 
Saline marine flows enter the San Francisco Bay in the west through the San Francisco channel. 
These flows mix with fresh water from the Delta in the east, creating a salinity gradient from west to 
east. The stratification of salinity varies on hourly to seasonal time-scales and is influenced by the 
volume of freshwater outflows and changes in the strength of tidal mixing. Salinity distribution is 
also affected by Pacific Ocean salinity and higher conductivity waters from the San Joaquin River 
and from agricultural run-off. Short-term processes such as fronts and intermittent, short-duration 
surface flows can also impact surface conductivity (Martyr-Kroller, et al., 2017).  
 
The San Francisco Bay is comprised of four smaller bays, with different salinity levels. In order of 
increasing salinity, they are the Suisun Bay, the San Pablo Bay west of Carquinez Strait, the  
South Bay, and the central Bay connected to the ocean at the Golden Gate (Chao et al., 2017). 
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Modeling of the San Francisco Bay-Delta system began in the late 1970s with the 1D Fischer-Delta 
Model, with multidimensional modeling beginning in the mid-1990s (MacWilliams et al., 2006). A 
subset of multidimensional models that have been applied to the San Francisco Bay-Delta are 
described here. 

2.2.5.1 UnTRIM 2D/3D 
TRIM models are a family of semi-implicit finite difference schemes that have been formulated so 
that the gravity wave terms, transport terms, and vertical terms are treated implicitly due to their 
effects on stability, while the remaining terms are treated explicitly. This approach improves 
computational efficiency while maintaining stability. Computations are carried out over a uniform 
finite-difference mesh without invoking coordinate transformations. UnTRIM is a model which 
preserves the basic numerical properties and modeling philosophy of TRIM, but uses an 
unstructured orthogonal grid (Cheng and Casulli, 2002). Unstructured grids are often desirable for 
estuarine systems, because of the need for a large model domain, with high resolution critical near-
shore but coarse resolution acceptable offshore (Shen et al., 2006). 
 
UnTRIM uses an Eulerian-Lagrangian transport scheme for the convective terms, which does not 
require a CFL condition for stability (Shen et al., 2006). The boundary conditions at the bottom and 
free surface are considered almost flat horizontal, allowing for simplification of the tangential stress 
boundary conditions for the momentum equations. This simplification is valid for more 
environmental problems, in which the vertical scale is much smaller than the horizontal scale 
(Casulli and Zanolli, 2002). 
 
Unstructured grids in UnTRIM must be orthogonal, meaning that a line segment joining the centers 
of any two adjacent polygons intersects the boundary between those polygons; for example, a set of 
Delaunay triangles with only acute angles (Shen et al., 2006).  
 
One limitation of UnTRIM is that it has not yet been directly coupled with sediment transport, 
water quality, or ecology models (Achete et al., 2015). 
 
UnTRIM was applied to the San Francisco Bay by Cheng and Casulli (2002). MacWilliams and 
Cheng (2006) added grid refinement around San Pablo Bay to evaluate the effects of a proposed 
Aquatic Transfer Facility, and performed calibration and validation against two independent 
observed datasets. They found that their model accurately predicted tidal range and tidal propagation 
from the Pacific Ocean through Suisun Bay.  

2.2.5.2 Delft3D-FM 
Delft 3D Flexible Mesh (Delft3D-FM) is a semi-implicit unstructured grid finite volume model. It 
allows for straightforward coupling of its hydrodynamic modules with a water quality model, Delft-
WAQ. Coupling occurs off-line for faster calibration and sensitivity analysis (Achete et al., 2015). 
 
The governing equations for Delft3D-FM are the incompressible 3D Navier-Stokes equations. The 
transport equation is simplified by ignoring density variations. Spatial discretization is performed in a 
staggered manner, with velocity normal components defined at the cell edges and water levels at the 
cell centers. In the horizontal direction the discretization is unstructured but must be orthogonal; in 
the vertical direction an equidistant mesh is applied that is either fixed in space or moving with the 
local water column height (Martyr-Kroller et al., 2017). 
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Horizontal spatial discretization is performed by fist discretized advection and diffusion operators at 
cell centers, then interpolating them back to faces and projecting them to the face-normal direction. 
A higher-order limited upwind scheme is used for the cell-centered discretization of advection 
(Martyr-Kroller et al., 2017).  
 
Vertical advection of momentum and turbulence properties are regarded to be less important than 
other terms and are discretized using a first-order upwind scheme. A higher-order scheme is used 
for vertical advection of transported matter, such as salt, temperature, and sediment. Temporal 
discretization is performed using a predictor-corrector time-step method. 
 
Because the horizontal advective terms are discretized explicitly, a CFL condition arises. However, 
because of the implicit treatment of other terms, the CFL condition is based only on the horizontal 
advection velocity, and not on the free-surface wave propagation speed or the vertical advection 
velocity. 
 
Delft-3D-FM was used to study sediment dynamics in the San Francisco Bay-Delta in 2D by Achete 
et al. (2015). Their model was able to reproduce the general trends in suspended sediment 
concentration, but in some places it was limited by its inability, as a 2D model, to represent the 
vertical stratification of salinity. 
 
The Delft3D-FM was also the foundation for the Computational Assessments of Scenarios of 
Change for the Delta Ecosystem (CASCaDE) II study of the San Francisco Bay-Delta estuary-
watershed system led by the USGS (USGS, 2015). CASCaDE II uses a linked model approach, 
applying a hydrodynamic model to separately drive associated sediment, water-quality, contaminants, 
and ecology models in a loosely coupled format (Martyr-Koller et al., 2017).  
 
The CASCaDE II study included modeling the spatiotemporal patterns of salinity. Modeled salinity 
generally matched observed salinity at the tidal, seasonal, and annual scales, though there were 
differences in timing and magnitude of some variations. Modeled stratification matched the general 
pattern of measured stratification, but the modeled stratification ranges were smaller than measured 
ranges (Martyr-Kroller, 2017). 

2.2.5.3 SCHISM 
Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM) is an open-source, 
semi-implicit 3D (2D optional) unstructured grid hydrodynamic model. SCHISM, formerly known 
as SELFE, is the working model of the California Department of Water Resources (DWR) 
(Ateljevich et al., 2014).  
 
SCHISM is based on ELCIRC but its discretization and solution scheme has been modified to 
improve the depiction of bathymetry and salinity plume transport, and it has been parallelized for 
efficient computation. SCHISM also shares aspects of the UnTRIM family of models (Ateljevich et 
al., 2014). 
 
The governing equations are the Navier-Stokes equations and the transport equations for salt and 
heat. Flow is assumed to be Reynolds-averaged. There are three algorithm options for constituent 
transport: first-order upwind, TVD upwind, and the Eulerian-Lagrangian Method (ELM). The first-
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order upwind is faster but diffuses the vertical salinity structure, while the TVD upwind method is 
slower but preserves sharp gradient. These two schemes may be mixed adaptively for different 
locations and depths. ELM combines particle-like backtracking along the velocity field with 
interpolation, but is rarely used because it is not mass conservative (Ateljevich et al., 2014).  
 
The horizontal mesh is unstructured. The mesh is limited to triangles, but those triangles are not 
required to be orthogonal. Vertical meshing allows for a combination of fixed depth or terrain-
following layers (Ateljevich et al., 2014).  
 
This model was applied to the San Francisco Bay-Delta by Ateljevich et al. (2014). Their model uses 
bathymetry from 10m and 2m digital elevation models (DEMs), includes all major gate and hydraulic 
structures in the Bay-Delta system, a horizontal mesh composed of 144,000 triangles that range in 
width from approximately 1 km in the ocean to less than 5 meters near Middle River, and a vertical 
mesh consisting of 23 terrain-following layers. This model was calibrated for 2009-2010. Salinity 
results generally followed seasonal trends well and has errors comparable to other models. The 
sensitivity to sustained periods of low outflows was found to be problematic. The model is able to 
pick up a large stratification at Richmond, but under-predicts the largest events at Benicia (Ateljevich 
et al., 2014).  
 
Chao et al. (2017) also applied SCHISM to the San Francisco Bay-Delta, using the bathymetry and 
mesh produced by Ateljevich et al., (2014) and adding a longer period of simulation (2005-2016), 
coupling to a coastal Regional Ocean Modeling System (ROMS), and connection to coastal 
processes. This model represented the patterns of salinity variations relatively well, but like the 
Ateljevich et al. (2014) model, tended to underestimate salinity. 

2.2.5.4 SUNTANS 
SUNTANS (Stanford Unstructured Nonhydrostatic Terrain-following Adaptive Navier-Stokes 
Solver) is a parallel nonhydrostatic three-dimensional unstructured grid coastal ocean hydrodynamic 
model that uses a finite-volume formulation to solve the hydrodynamics and scalar transport 
simulations. Chua and Fringer (2011) used a hydrostatic implementation of SUNTANS to model 
salinity in North San Francisco Bay. 
 
The governing equations are the three-dimensional, Reynolds-averaged primitive equations. The 
primitive equations of the ocean consist of a continuity equation, a thermal energy equation, and a 
form of the Navier-Stokes equation that describes hydrodynamical flow on the surface of a sphere 
using the Boussinesq approximation and hydrostatic approximation (Lehner, 2017). 
These equations are solved using the theta-method (Casulli, 1999) to solve implicitly for free-surface 
height, vertical diffusion of momentum, and vertical scalar advection and diffusion, and the second-
order Adams-Bashforth method for all other terms. The Eulerian-Lagrangian method is used for 
advection of momentum (Chua and Fringer, 2011). The momentum scheme is conservative, but 
introduces a CFL condition as momentum is calculated explicitly (Friger et al., 2006).  
 
The SUNTANS model of Chua and Fringer (2006) was found to reproduce the variability in the 
observed currents relatively well at both Richmond and Oakland. There was also good agreement 
between observed and modeled salinity amplitude and phase at both of the locations considered, 
Benicia and Point San Pablo. The model also reproduced the observed stratification at Point San 
Pablo, except during one time period where the model unpredicted the stratification as a 
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consequence of overpredicting the minimum surface salinity. At Benicia, the modeled stratification 
is relatively insensitivity to the spring-neap variability, while the observed stratification is more 
sensitive to this parameter. 
 
The sensitivity of the model to grid resolution was also tested. This sensitivity analysis showed that 
model convergence is highly sensitive to the choice of advection scheme and the turbulence model. 
Using the TVD scheme for salt transport, rather than first order upwinding, and including a 
turbulence model achieved the best convergence rate in space. Without the turbulence model, the 
error is about one order of magnitude higher, due to the lack of feedback between vertical mixing 
and stratification. The error with first-order upwinding is about twice as high, and does not decrease 
with mesh refinement. 

2.2.5.5 TELEMAC-MASCARET 
TELEMAC-MASCARET is an integrated open-source hydrodynamic simulation system that 
includes both a 2D module (TELEMAC -2D) and 3D module (TELEMAC-3D) (Galland, et al., 
1991). Both TELEMAC-2D and TELEMAC-3D use a horizontally unstructured triangular element 
grid; TELEMAC-3D adds a series of model planes between the bed and surface planes.  
 
The Navier-Stokes equations are solved base on the Operator-Splitting method, where the 
hyperbolic and parabolic parts of the Navier-Stokes equations are treated separately. The Method of 
Characteristics and Streamline Upwind Petrov-Galerkin method are used for advection to ensure 
mass conservation and an oscillation-free solution without excessive mesh refinement. The 
propagation, diffusion, and source terms are solved using the finite element method with implicit 
time discretization and solved by an iterative conjugate gradient method (Fernandes et al., 2001). 
 
TELEMAC-2D was applied to the Sacramento-San Joaquin Delta by Wu et al. (2009), for the 
purpose of generating synthetic drifter data for incorporation into their 1D model. Because the 
TELEMAC modeling was not the focus of their research, it was not described in detail. However, 
TELEMAC has been applied to numerous other estuary systems, including the Patos Lagoon in 
Brazil (Fernandes et al., 2001), Scheldt Estuary in Belgium, France, and the Netherlands (Smolders 
et al., 2014), and the Irish Sea (Jones and Davies, 2006). 
  



GPU Accelerated Salinity Module 

34 

3. Methods and Results 
A proof-of-concept Preconditioned Conjugate Gradient solver was implemented in C++ using 
CUDA and the CUBLAS library. This solver used ILU(0) preconditioning. At that time, a need 
was identified for Unified Memory to allow CUDA to access memory more efficiently. 
 
CUDA Fortran compilers were obtained and tested. Early stage implementation began of 
CUDA Fortran in the SRH-2D solver, using a subset of functions within the PDE solvers. Early 
results suggested it would be possible to obtain significant speedup without requiring significant 
modifications to SRH-2D’s modeling framework. However, upon further analysis, the results 
were found to be theoretically unstable. At least one new approach was attempted to try to make 
the results more stable, but significant progress beyond this point was not achieved. 
 
Effort began to implement a SRH-2D salinity module, but significant progress does not appear 
to have been achieved. 
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