

U.S. Department of the Interior September 29, 2020

Identifying Cracks in Concrete from
Previously Collected UAS Data
Using Deep Learning
Science and Technology Program
Research and Development Office
Final Report No. ST-2020-20105-01

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision
of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE
09/15/2020

2. REPORT TYPE
Research

3. DATES COVERED (From - To)
2020

4. TITLE AND SUBTITLE
Identifying Cracks in Concrete from Previously Collected UAS Data Using
Deep Learning

5a. CONTRACT NUMBER
20XR0680A1-RY15412020WI20105/X0105
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
1541 (S&T)

6. AUTHOR(S)
Matthew Klein, Civil Engineer
Zackary Leady, Modeler, CGB Region

5d. PROJECT NUMBER

Final Report ST-2020-20105-01
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Concrete and Structural Laboratory
Technical Service Center
Bureau of Reclamation
U.S. Department of the Interior
Denver Federal Center
PO Box 25007 (86-68530)
Denver, CO 80225

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Science and Technology Program
Research and Development Office
Bureau of Reclamation
U.S. Department of the Interior
Denver Federal Center
PO Box 25007, Denver, CO 80225-0007

10. SPONSOR/MONITOR'S ACRONYM(S)
Reclamation

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

Final Report ST-2020-20105-01

12. DISTRIBUTION/AVAILABILITY STATEMENT
Final Report may be downloaded from https://www.usbr.gov/research/projects/index.html

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Crack mapping concrete structures is a way to document and monitor cracks. In the past, crack mapping has been very labor
intensive from data collection to documentation. The use of UAS and photogrammetry has allowed for faster and more
comprehensive data collection and products including high-resolution orthoimages used to identify and document cracks. In
addition, deep learning models can be used to automatically identify cracks from the orthoimages. This paper presents the process
used to develop a deep learning model for automatic crack detection from data collected by UAS.

15. SUBJECT TERMS
Deep learning, machine learning, UAS, crack mapping

16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES
58

19a. NAME OF RESPONSIBLE PERSON
Matthew Klein

a. REPORT
U

b. ABSTRACT
U

THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(303) 445-2368

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

https://www.usbr.gov/research/projects/index.html

iv

Mission Statements
The Department of the Interior (DOI) conserves and manages the
Nation’s natural resources and cultural heritage for the benefit and
enjoyment of the American people, provides scientific and other
information about natural resources and natural hazards to address
societal challenges and create opportunities for the American people,
and honors the Nation’s trust responsibilities or special commitments
to American Indians, Alaska Natives, and affiliated island
communities to help them prosper.

The mission of the Bureau of Reclamation is to manage, develop, and
protect water and related resources in an environmentally and
economically sound manner in the interest of the American public.

Disclaimer
Information in this report may not be used for advertising or
promotional purposes. The data and findings should not be construed
as an endorsement of any product or firm by the Bureau of
Reclamation, Department of Interior, or Federal Government. The
products evaluated in the report were evaluated for purposes specific
to the Bureau of Reclamation mission. Reclamation gives no
warranties or guarantees, expressed or implied, for the products
evaluated in this report, including merchantability or fitness for a
particular purpose.

Acknowledgements
The Science and Technology Program, Bureau of Reclamation,
sponsored this research.

v

Identifying Cracks in Concrete from
Previously Collected UAS Data
Using Deep Learning
Final Report No. ST-2020-20105-01

prepared by

Technical Service Center
Concrete and Structural Laboratory
Matthew Klein, Civil Engineer

California Great Basin Region
Division of Planning
Zackary Leady, Modeler

Cover Photo: Example inputs and outputs from the automated crack mapping deep learning model.

vii

Peer Review
Bureau of Reclamation
Research and Development Office
Science and Technology Program

Final Report ST-2020-20105-01

Identifying Cracks in Concrete from Previously Collected UAS Data Using
Deep Learning

Prepared by: Zackary Leady
Modeler, Division of Planning, MP-740

Prepared/Technical Approval by: Matthew Klein, P.E., Ph.D.
Civil Engineer, Concrete and Structural Laboratory, 86-68530

Checked by: Trevor Stockton-Salas
Civil Engineer, Concrete and Structural Laboratory, 86-68530

Peer Review by: Katie Bartojay, P.E.
Manager, Concrete and Structural Laboratory, 86-68530

“This information is distributed solely for the purpose of pre-dissemination peer review under
applicable information quality guidelines. It has not been formally disseminated by the Bureau of
Reclamation. It does not represent and should not be construed to represent Reclamation’s
determination or policy.”

viii

Acronyms and Abbreviations
3D three-dimensional
3DR 3D Robotics
APS-C advanced photo system type-C
CAD computer aided design
CFR Code of Federal Regulations
CGB California Great Basin
CNN convoluted neural network
CPN Cascade Pacific Northwest
CPU central processing unit
CSL Concrete and Structural Laboratory
DOI Department of the Interior
DOI digital object identifier
etc. and so forth
FAA Federal Aviation Administration
GIS Geographic Information System
GNSS Global Navigation Satellite System
GPU graphics processing unit
GSD ground sampling distance
i.e. that is
KL Kullback-Leibler [divergence]
LiDAR light detecting and ranging
mIoU mean-Intersection over Union
MP megapixel
NUPO National UAS Project Office
Reclamation Bureau of Reclamation
RGB red green blue
SGD stochastic gradient descent
SOTA state-of-the-art
T2D2 Thornton Thomasetti Damage Detector
TSC Technical Service Center
USACE United States Army Corps of Engineers
USGS United States Geologic Survey
UAS unmanned aerial system

ix

Contents

Page

Mission Statements ... iv
Disclaimer ... iv
Acknowledgements ... iv
Peer Review .. vii
Acronyms and Abbreviations .. viii
Contents .. ix
Tables ... ix
Figures.. x
Executive Summary .. xi
Introduction .. 12

Background .. 12
Unmanned Aerial Systems .. 13
Photogrammetry ... 14
Crack Mapping .. 19
Deep Learning ... 20

Problem ... 21
Objectives ... 22

Method ... 22
Third Party Software Review ... 22
Data Preparation .. 24
Data Sorting ... 25
Processing ... 26

Results .. 30
Discussion .. 34

Dataset Improvements ... 35
Neural Network Structure Improvements ... 35
Neural Network Training and Metric Improvements .. 36
Visualizations and Post-Processing Improvements ... 37

Conclusion and Summary .. 38
Data .. 38
References .. 39
Glossary .. 40
Appendix A – U-net Performance Verification Samples 42

Tables
Table 1. —The organization of the 15 orthoimages and labeled binary crack masks
used in creating the deep learning pipeline along with the number of non-
overlapping 256- by 256-pixel patches extracted from each. ... 27

x

Table 2. —The loss, accuracy, and mIoU metric of the proof-of-concept U-net’s
performance on the training and test datasets ... 31

Figures
Figure 1. —3DR Solo and Ricoh GR II with 3D printed mount [2]. 14
Figure 2. —Image of Upper Stillwater Dam in Utah (left) and a screenshot of a
photogrammetric point cloud of the same dam (right). ... 15
Figure 3. —Screenshot of a photogrammetric point cloud at Altus Reservoir. The
ground points have been classified in brown and the vegetation are seen in white [2].
 ... 15
Figure 4. —Screenshot of the upstream face orthoimage at Elephant Butte Dam
(above) and an example of the orthoimage resolution (inset) [2]. 16
Figure 5. —Screenshot of the digital surface model (DSM) of the left abutment at
Brantley Dam. The area shown is about 1 square mile [2]. .. 17
Figure 6. —Screenshot of the point cloud model of the geologic features above the
parking garage and visitor center at Hoover Dam [2]. .. 18
Figure 7. —Screenshot of the photogrammetric model of the gate structure at
Vallecito Dam [5]. .. 18
Figure 8. —Screenshot of the photorealistic textured mesh of the Folsom Dam
Auxiliary Spillway Control Structure. .. 19
Figure 9. —Crack map drawing example at Elephant Butte Dam [8]. 20
Figure 10. —An original U-Net architecture diagram [12]. ... 21
Figure 11. —Examples of the T2D2 deterioration detection system (red boxes
highlight damage in real-time) [17]. ... 23
Figure 12. —Examples of the Niricson reporting system where cracks and damage
are identified by different color lines, points, and labels (Photos Courtesy of Niricson
Software). ... 24
Figure 13. —Example crack map drawing with cracks in red. 25
Figure 14. —Original Bay 6 Invert orthoimage ... 26
Figure 15. —Original Bay 6 Invert binary label mask .. 27
Figure 16. —The U-net Python code utilizing the Keras API of Tensorflow 2.0 for
the proof-of-concept effort .. 29
Figure 17.1 - 4. —Four examples from the Training dataset including the original
orthoimage input (left), the binary label mask target (center), and the output
prediction mask from the U-net (right) where “purple” is no crack detected and
“yellow” is crack detected ... 33
Figure 18.1-4. —Four examples from the Test dataset including the original
orthoimage input (left), the binary label mask target (center), and the output
prediction mask from the U-net (right) where “purple” is no crack detected and
“yellow” is crack detected ... 34

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

xi

Executive Summary
Concrete cracking can often be used to monitor a concrete structure’s health and can indicate the
cause of the damage. Concrete crack maps are sometimes developed to document the patterns or
growth of the cracks to determine the severity of the problem.

Crack maps can be hand drawn based on close-up observations, using a telescope device, or from
high-resolution pictures and images. These methods are rough estimates of the cracks and in order
to document the exact location, length, width of the cracks other methods must be used. One of
these methods is the use of photogrammetry. Photogrammetry can be used to generate an
orthomosaic or orthoimage of the surface that is corrected for perspective skew. This orthoimage
then contains the exact location and can be used to quantify the lengths and widths of the crack. In
addition, these highly accurate crack maps can be used to compare the growth and movement of the
crack over time.

Photogrammetric data collection requires access to perpendicular locations of the surface –
something that is not easy with tall vertical surfaces like the downstream face of a dam, which can be
obstructed by a powerhouse, canyon walls and hard to access due to the downstream water course.
However, with the recent adoption of unmanned aerial systems (UAS) at the Bureau of Reclamation,
collecting data required for photogrammetric generation of orthoimages is easier than before. UAS
can be used to position the camera at the exact location required for high-resolution data collection
and can operate to collect hundreds and even thousands of images of the surface.

The actual crack maps are usually manually drawn by engineers in a computer aided design (CAD)
software. Lines are drawn in over imported orthoimages and then saved as drawings. This process is
somewhat subjective and labor intensive. Advances in computing hardware and a subcategory of
artificial intelligence called deep learning can be used to develop a model that can automatically
detect cracks from a database of digital images.

This report describes the proof-of-concept procedure for automated crack identification developed
through a collaboration between Reclamation’s Technical Service Center’s (TSC) Concrete and
Structural Laboratory (CSL) and one of Reclamation’s experts on machine and deep learning located
in the California Great Basin (CGB) Region. The procedure utilized UAS data that had already been
processed for manual crack mapping to build a deep learning model to find and identify cracks
autonomously. It summarizes data collection, preparation, processing, and analysis. In addition, the
report also recaps a couple of third-party crack/defect mapping solutions. In the discussion and
conclusions, several suggestions and recommendations are given for future work to improve the
robustness and accuracy of the procedure and results.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

12

Introduction
Concrete design has long acknowledged the presence of cracks in concrete and engineering practices
are in place to limit the cracks to appropriate dimensions based on the loading condition. Most of
these cracks are small and barely perceivable with the naked eye. However, cracks may develop that
are detrimental to the performance of the structure. In addition, the style, type, extent, and size of
the crack can indicate the nature of the deterioration which, in turn, helps to determine the
appropriate repair.

For this reason, when conducting a condition assessment of a concrete structure, engineers will
detect and mark cracks, often on the structure, if it is accessible, and then document the cracks in a
crack map. The crack map is a drawing that will place the location, length and sometimes the width
of the cracks within the plan or elevation views of different components of the structure. This crack
map can be analyzed for the source of the deterioration and archived for future comparison to
determine if the crack(s) have changed. Photographs of the surface can accompany the crack maps if
the cracks are large enough or if the photographs have a great enough resolution that can allow
identification of the cracks.

Identification of cracks require close access to the surface as the cracks and other defects are usually
only detectible by the naked eye at about 24 inches [1]. Once the cracks and other defects are
identified, that are marked on the concrete sometimes with a red or colored crayon for easy
detection when photographing or sketching them on a drawing.

At Reclamation, cracks have been identified from the ground, using telephoto lenses on high-
resolution film and digital cameras, utilizing rope access teams to reach inaccessible features such as
inclined and vertical dam faces, and by deploying UAS to capture images. Documentation of the
cracked surfaces has been from hand sketches, photos, and digital images as well as by combining a
series of high-resolution images into a composite orthorectified image called an orthoimage.

For crack mapping large areas such as the face of an entire face of dam, the orthoimages are
imported into CAD software and lines are drawn over the cracks for emphasis and to allow for
computation of total number of cracks. This also allows for future time-based quantitative
comparisons.

Background
For this research, several areas of specialized expertise were assembled. The first was using UAS
collected data. This data was previously collected for manual crack mapping on other projects. The
second was working with data that was processed photogrammetrically to produce composite
orthoimages. The third was leveraging deep learning expertise to develop a model that could identify
cracks from the UAS data.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

13

Unmanned Aerial Systems
Reclamation has been operating UAS commercially since 2012, though UAS usage increased shortly
after the Federal Aviation Administration (FAA) released its 14 CFR (Code of Federal Regulations)
Part 107 rules which were incorporated into the Department of the Interior (DOI) in the late
summer of 2016 [2]. Initially, UAS data collection was limited to aerial photography and videography
but it quickly grew into a reliable tool for photogrammetric data collection given that UAS can be
pre-programmed with Global Navigation Satellite System or GNSS waypoint navigation.

The Reclamation Technical Service Center (TSC) in Denver acquired UAS shortly after the FAA
Part 107 rules were released. Because of its expertise in concrete inspection, geographical
information systems (GIS), and photogrammetry, methods were quickly developed to collect close-
range, high-resolution imagery. Within about 2-1/2 years, the TSC had five certified UAS pilots that
had completed 22 missions, 20 of which were in support of photogrammetric data collection.

The most common airframe used by DOI and Reclamation has been the 3DR (3D Robotics) Solo
quadcopter. The Solo features custom payloads and sensors (with a maximum payload capacity of
about 1 pound), supports real-time video downlink, has a 10-minute battery life, can be operated
autonomously using pre-programmed waypoint navigation, and has a 0.5-mile range [3].

The sensor most often paired with the 3DR Solo to collect photogrammetric data is the Ricoh GR
II. The GR II has a 16-megapixel (MP), APS-C (advanced photo system type-C) sensor with a global
shutter and fixed focal length lens [4]. It also features a time-lapse mode that is used to capture
overlapping photogrammetric images synchronized with the UAS velocity. The camera offers full
control over all the exposure settings as well as can capture images in a raw format for
postprocessing the exposure if required. Since the Solo was not originally intended for use with the
GR II, custom, three-dimensional (3D)-printed fixed mounts were designed by the United States
Geological Survey (USGS) National Unmanned Aircraft Systems Project Office (NUPO) in Denver
(see Figure 1).

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

14

Figure 1. —3DR Solo and Ricoh GR II with 3D printed mount [2].

Photogrammetry
Photogrammetry has been used by Reclamation for many years specifically for mapping. Within the
past 15 years or so, photogrammetry has been explored for developing 3D models of foundations,
rock faces, and most recently, for facilities. With the development of high-resolution digital cameras
and faster computing, photogrammetry can generate millions of points for a subject similar to the
digital models that LiDAR (Light Detecting and Ranging) scanners can produce. These models are
capable of producing products like point clouds, meshed surfaces, topography, maps, and high-
resolution orthoimages as shown in Figures 2 to 8 below.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

15

Figure 2. —Image of Upper Stillwater Dam in Utah (left) and a screenshot of a photogrammetric point
cloud of the same dam (right).

Figure 3. —Screenshot of a photogrammetric point cloud at Altus Reservoir. The ground points have been
classified in brown and the vegetation are seen in white [2].

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

16

Figure 4. —Screenshot of the upstream face orthoimage at Elephant Butte Dam (above) and an example
of the orthoimage resolution (inset) [2].

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

17

Figure 5. —Screenshot of the digital surface model (DSM) of the left abutment at Brantley Dam. The area
shown is about 1 square mile [2].

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

18

Figure 6. —Screenshot of the point cloud model of the geologic features above the parking garage and
visitor center at Hoover Dam [2].

Figure 7. —Screenshot of the photogrammetric model of the gate structure at Vallecito Dam [5].

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

19

Figure 8. —Screenshot of the photorealistic textured mesh of the Folsom Dam Auxiliary Spillway Control
Structure.

Crack Mapping
Crack and deterioration mapping had limited use from terrestrial data collection and
photogrammetry in a several instances in Reclamation [6] [7]. However, once techniques for close-
range, high-resolution UAS data collection and photogrammetry had been developed, that
knowledge was applied to crack mapping as early as 2018 [8].

The current process of crack/deterioration mapping involves importing the orthoimage into CAD
software. Then the cracks are observed visually at the resolution of the orthoimage. This observation
is systematic throughout the orthoimage and often, gridlines and blocks are added and numbered to
aid in the observation process. Once a crack is identified, a line is drawn over the crack. When the
crack is jagged but not varying from the overall trendline, a single line is used to represent the crack.
Due to the time required and to limit bias, this process is conducted usually by one to two engineers
with a background and training in concrete deterioration mechanisms. Review of the cracks mapping
is informal and occur on subsets of the data also by an engineer with a background in concrete
deterioration mechanisms.

Using this method, crack mapping is much more precise and easier to compare than before with less
room for error and is less subjective. However, it is time consuming and can take up to a month to
complete. Reclamation projects that used the high-resolution crack mapping method include
Elephant Butte Dam, Seminoe Dam, Brock Reservoir, and Folsom Dam [8] [9] [10] [11] (see Figure
9, below, for an example).

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

20

Figure 9. —Crack map drawing example at Elephant Butte Dam [8].

Deep Learning
Machine learning is a subset of artificial intelligence specialized in automatically improving computer
algorithms through experience. By providing more data, the computer can actually improve how the
task is performed. Deep learning is a subset of machine learning that leverages deep neural networks
which are capable of automatically detecting differences in computer vision tasks such finding cracks
in digital images. While Reclamation has been exploring machine learning applications since 2016, it
has recently gained more traction as greater expertise on the subject has been gained. Specifically,
Zackary Leady, in the CGB Region, has expertise in setting up and coding deep learning
methodologies beginning with a 3-year research project started in 2018, Seasonal Wetland and
Temporary Floodplain Delineation using High-Resolution Sensing and Machine Learning. Leady
used the procedures developed and applied them to detecting cracks in this project.

Deep Learning is a branch of machine learning that is focused on the use of many layers in a single
neural network to achieve a “deep” neural network that is capable of various tasks. For the purpose
of this discussion the focus is primarily on deep convolutional neural networks (CNNs) which have
become the state-of-the-art (SOTA) methodology for image-based tasks such as image classification
and semantic segmentation. The project developed herein is a binary semantic segmentation task,
where each pixel is labeled as “crack” or “no crack”. This type of task differs from image
classification which attempts to label an entire picture of an object as that object such as a cat with
the label “cat” or a picture of a dog with the label “dog”. Over the last decade, as deep learning has
quickly become an efficient way to process and analyze computer vision-related tasks, many
architectures or ways of combining the layers in a deep learning neural network have been
researched and tested. One of the most significant break-through architectures for CNNs has been

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

21

U-net [12]. U-net is named after its U-like structure wherein the encoder, the downward, first half of
the “U”, learns to compress the input image into a representative form useful for determining pixel-
wise labeling, which is then decoded in the decoder or the upward, second half of the “U” to
incrementally up-sample the data back to the original shape [12]. A typical U-net architecture is
displayed if Figure 10 below.

Figure 10. —An original U-Net architecture diagram [12].

U-net and the multitude of U-net improved architectures have consistently made progress in
expanding achievable digital image tasks, especially in the biomedical imagery semantic segmentation
field [13].

As a result of the CGB Region’s prior experience with U-nets which focuses on applying U-nets to
satellite imagery, it was a natural decision and progression to choose a U-net architecture for the
scope of this proof-of-concept project. The team is aware of several newer architectures which
could lead to a significant improvement such as Mask R-CNN, Unet++, or the DeepLab family of
networks and plans to explore these improved architectures in future work [14] [15] [16].

Problem
There are several issues related to traditional crack mapping operations. These include access to the
surfaces of the structure, inaccuracies that develop from sketching the cracks, inconsistency in
identifying cracks, overlooked or missed cracks, distortion in photographs from the perspective and

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

22

angle of the camera, weather conditions affecting the surface such as water, and that the operation is
time consuming – for some large data sets, crack mapping can require up to a month to complete.

Though initially time consuming, computer-based deep learning can be used to teach a computer to
analyze data and, in this case, the computer is taught to analyze images for cracks. In addition, once
the computer is taught how to find data, it can be improved by providing more data. Eventually, the
computer can find cracks in data with greater precision and in less time than previous methods. The
computer can operate all times of the day without needing a break.

Objectives
The objectives of the research are as follows:

• Define a data set that can be used for automatic concrete crack detection
• Organize a dataset into a training set, validation set, and test set.
• Develop code that can use the training dataset to train a concrete crack detection U-net. The

training set includes example pairs of input images and labelled cracks
• Prove the deep learning neural network can identify previously unseen concrete cracks using

the test dataset

Method
The methods employed in this project include a review of commercially available software and the
development of in-house algorithms. The in-house procedure required several steps including data
selection and preparation followed by training, validation, and testing the model using the deep
learning pipeline.

Third Party Software Review
Review of third-party software capable of detecting cracks and defects in concrete were limited to
two companies: Thornton Tomasetti’s T2D2 applications and Niricson damage assessment services.
For the T2D2 and Niricson evaluation, company representatives gave virtual presentations of the
capabilities. In both cases, the offerings are still fairly new, and each company is still working on
their commercial availability and pricing.

T2D2 stands for Thornton Tomasetti Damage Detector [17]. It is an artificial intelligence
technology that can be used to detect defects within a number of structural types and materials
including concrete that was developed by Thornton Tomasetti’s CORE Studio [18]. The system is
primarily promoted as a real-time damage detector that analyzes live video like that from a UAS or a
smartphone. The system is programmed to detect defects from a wide variety of structural materials
including concrete. The application will draw a box identifying the damage and will give a rating to
help organize and prioritize the defects (see Figure 11 below). Finally, the application would
automatically generate a report that summarizes the detected defects. The system is intended to be

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

23

cloud based and would require a subscription though the company indicated that they may be able
to install their system locally. In addition, CORE Studio is positioned to develop custom
applications like the ones that are more interesting to Reclamation – find and identify defects in
orthoimagery and 3D models.

Figure 11. —Examples of the T2D2 deterioration detection system (red boxes highlight damage in real-
time) [17].

Niricson Software Inc. is a company that is developing solutions for infrastructure condition
assessment and risk management. Their system combines robotics and computer vision to inspect
concrete civil infrastructure. Instead of just a software solution, the company deploys UAS flight
navigation systems to autonomously collect optical and thermal images as well as acoustic data (from
sensors lowered onto the concrete surface), detects and quantifies the damage using machine
learning, and then incorporates the data into a report with drawings, orthoimages, and lists of
observed defects. The system is optimized for concrete damage including cracks, delaminations,
voids, and corrosion, among others. In addition to pinning the location of the damage on an
orthoimage and drawing, the report tabulates the estimated cause or type of damage, width, length,
and even depth (see Figure 12 below). Niricson team members have demonstrated the software on
several dams and water control structure features.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

24

Figure 12. —Examples of the Niricson reporting system where cracks and damage are identified by
different color lines, points, and labels (Photos Courtesy of Niricson Software).

Data Preparation
The original data used in this study came from previously existing UAS data. The data was collected
for crack mapping of the lower portions of the gate piers and inverts in each of the six bays of
Folsom Dam Auxiliary Spillway Gate Structure (see Figure 8). Twelve walls and six inverts were
captured; both the wall and floor areas were about 24 feet high by 70 feet long (from the pier nose
to the radial gate).

The data was collected between Tuesday, July 16 and Wednesday, July 17, 2019. The data consisted
of individual 16.2 MP images captured from a Ricoh GR II camera mounted on a 3DR Solo
quadrocopter UAS. Since the images were captured within the gate structure, GNSS positioning and
waypoint navigation were not able to be used to collect the data. The UAS was operated from a
nominal 30 feet from each surface in a technique to allow for about 80% image overlap for
photogrammetric processing into high-resolution orthoimages. Camera settings were set manually to
limit shadowing though raw images were captured to allow for exposure adjustments in post-
processing. Targets were placed throughout each subject area for scaling and accurate measurements
within the orthoimages.

An average of 168 images were collected of the inverts and an average of 314 images were collected
of each wall. The average ground sampling distance or GSD (based on the offset) of the images was
about 0.06 inches per pixel.

The data was processed photogrammetrically using Agisoft PhotoScan V.1.2.6 to produce the scaled
orthoimages. The photogrammetric software was fed the images for each wall or floor separately.
The software matched adjacent images using uniquely identified key points and position of each
camera location was solved. Once the three-dimensional camera locations were known, the images
were corrected for skew along each x, y, and z rotation axis and combined to create a total of 18

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

25

orthoimages (three for each bay: North wall, South wall, and invert). Scale was added by providing
measurements between each target.

Once the orthoimages were produced, they were imported into AutoDesk Civil 3D 2018. Then lines
were drawn over the cracks which could be visibly observed (to about 1/16 inch). The resulting
orthimages and cracks were saved as a drawing. An example of the crack mapped drawing is shown
in Figure 13 below.

Figure 13. —Example crack map drawing with cracks in red.

However, the deep learning method required the orthoimage and exported image format of the
cracks both in the same size so that the crack image could be layered over the orthoimage as
representative of the cracks. The crack image was referred to as the binary orthoimage label mask.
While the orthoimage was exported from the photogrammetric software as an image file, the crack
mask was exported from the CAD software in an image format with the same dimensions or
resolution as the orthoimage.

Data Sorting
The initial deep learning process was to identify images with cracks but was changed to identify the
cracks in the images. In the case of identifying images with cracks, the orthoimages would need to
be divided into small segments and the computer would determine if there was a crack in each
segment and would categorize the segments as “crack” or “no crack”. (This methodology is still

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

26

being considered as preliminary step to reduce processing time, see the Discussion section for more
details).

In order to train the computer to identify the segments “crack” or “no crack”, it would need to be
exposed to a training set of data. This data would need to be sorted into the two folders. This step
would be time consuming, since the data would need to be manually sorted into appropriate folders,
so a “Sorter” program was written at the TSC to help reduce the sorting time. The program was not
completely automated but reduced time required by displaying an image that the operator could
mark as “crack” or “no crack” and use a mapped keyboard input to place the image in the
appropriate folder and advance the display to the next image. The program was built in Microsoft
Visual Basic and controlled Microsoft Photos to display the image and used keyboard shortcuts to
drop the image into the predetermined folder path. However, as mentioned above, a different
approach was utilized that didn’t require the Sorter program after all.

Processing
All the orthoimages were in a 3-channel RGB (red green blue) *.tif format typical of raster data. This
data is easily read into Python using libraries such as rasterio along with Python’s defacto array
library: numpy [19] [20]. Each orthoimage has an accompanying concrete crack mask file which is in
a *.jpeg format. For the purpose of this project the *.jpeg crack mask file was converted into a
binary mask of “crack or “no crack” using a Boolean array (true/false). The orthoimage and the
binary label mask are of the exact same size and thus every pixel has a discrete label. It is important
to note that the orthoimages are 8-bit images with pixel values in each of the 3 channels ranging
from 0-255. No preprocessing in terms of exposure, color correction, etc. was utilized. In order to
be used in a deep learning pipeline capable of being trained on a laptop, the orthoimages and
accompanying label masks had to be reduced to 256- by 256-pixel patches, which is a customary
input size for U-nets. An example of the orthoimage for the Bay 6 Invert along with its
accompanying binary label mask is displayed in Figure 14 and 15 below:

Figure 14. —Original Bay 6 Invert orthoimage

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

27

Figure 15. —Original Bay 6 Invert binary label mask

The orthoimages and label masks were extracted into 256- by 256-pixel image patches using
n-dimensional array slicing of non-overlapping portions. Originally this resulted in approximately
15,000 patches; however, due to a massive class imbalance with less than 1 percent of the pixels
labeled as “crack”, the extraction process had to be modified to only extract 256- by 256-pixel
patches that contained at least 200 pixels labeled as “crack”. This led to a significant reduction in the
number of patches to approximately 2,000.

The preprocessing step which included some manual cropping of the orthoimages and binary mask
labels along with the extraction process reduced the 18 original orthoimages to 15 orthoimages and
label masks suitable for use in the deep learning pipeline. The 15 orthoimages filenames, the binary
label mask filenames, their y, x pixel size and the number of extracted pixel patches are summarized
in Table 1 below.

Table 1. —The organization of the 15 orthoimages and labeled binary crack masks used in creating the
deep learning pipeline along with the number of non-overlapping 256- by 256-pixel patches extracted
from each.

Number Orthoimage
Filename

Mask
Filename

Orthoimage
Size
(y, x pixels)

Number of
extracted
patches

1 Bay 1 North.tif B1N.jpg 7959, 23849 103
2 Bay 1 South.tif B1S.jpg 5512, 18750 95
3 Bay 2 North.tif B2N.jpg 8411, 24250 147
4 Bay 2 South.tif B2S.jpg 7664, 23341 99
5 Bay 3 North.tif B3N.jpg 6723, 20195 112
6 Bay 3 South.tif B3S.jpg 5871, 20840 52
7 Bay 3 Invert.tif B3I.jpg 6052, 21601 26
8 Bay 4 North.tif B4N.jpg 5215, 15553 45
9 Bay 4 South.tif B4S.jpg 7366, 25500 80

10 Bay 5 North.tif B5N.jpg 5121, 16290 67
11 Bay 5 South.tif B5S.jpg 6397, 21590 80
12 Bay 5 Invert.tif B5I.jpg 5928, 22872 365
13 Bay 6 North.tif B6N.jpg 6748, 22760 218
14 Bay 6 South.tif B6S.jpg 8435, 36369 96
15 Bay 6 Invert.tif B6I.jpg 5858, 23606 265

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

28

Once the matching pairs of 256- by 256-pixel image patches were extracted they were written out as
new individual picture files as *.jpegs split into training and test datasets. The training dataset
included all the extracted patches except patches from Bay 5 North, South and Invert. The extracted
patches from Bay 5 North, South and Invert were written to a test dataset folder as to fully exclude
the Bay from training to limit picture autocorrelation effects. It is important to note that this led to
1,283 image patches in the training dataset and 509 image patches in the test dataset. The training to
test dataset split was 72% training and 28% test. While this is a fairly low number of non-
overlapping 256- by 256-pixel image patches extracted for each of the training and test datasets, it
was deemed sufficient for a proof-of-concept U-net to demonstrate the potential of deep learning.

In order to build an original U-net, the deep learning library Tensorflow was used – specifically,
Tensorflow 2.0 with the integrated Keras library from Google [21]. It is important to note that
PyTorch or MXNet could have also been used as the deep learning methodology as it is not locked
into or particular to a specific deep learning library in Python. Furthermore, a different programming
language could have been used such as C++ or Julia to achieve a similar outcome.

For the sake of reproducibility, the class structure of the U-net model used for this proof-of-concept
effort is provided in Figure 16 below. The majority of this class code was modified from commonly
available non-original code available on the internet in various locations.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

29

Figure 16. —The U-net Python code utilizing the Keras API of Tensorflow 2.0 for the proof-of-concept
effort

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

30

It is critical to note that the original implementation of U-net used Convolution Transposing rather
than UpSampling; however, research since the original publication of U-net has demonstrated that
convolution transposing can introduce artifacts into the output predictions of the U-net, and thus it
has been ever so slightly modified to use UpSampling instead.

The U-net model was trained on an 8 GB (gigabyte) EVGA Nvidia GeForce GTX 1070 GPU
(graphics processing unit) card using a batch-size of 32 image patches for approximately 128 epochs,
which took only about two hours to train.

It is not practical to fully include every code block utilized in this proof-of-concept effort.
Therefore, the entire workflow has been preserved in Jupyter Notebooks which is a common
application for evaluating and archiving Python code and can be provided upon request.

After the U-net training was completed, a Python visualization utility like Matplotlib was utilized to
assess the performance of the proof-of-concept U-net by direct comparison [22].

Results
The proof-of-concept U-net described in this section was accessed both with accuracy metrics and
through randomized visual inspection on both the training and test datasets.

The proof-of-concept U-net is a very crude and preliminary effort and as such the accuracy metrics
demonstrated here should be interpreted with the understanding that the datasets are too limited,
they possibly contain autocorrelation bleed-through and more time should have been taken to
rigorously test and demonstrate the outcomes provided here. Nonetheless, to describe what has
been achieved, the accuracy metrics on the training and test datasets are provided.

The loss value is the outcome from the minimized objective or loss function at every iteration of
training. In general, when training a deep learning neural network, the goal is to lower the loss in the
training phase to demonstrate the neural network is first learning something, but then to also
demonstrate that the neural network has not been overfitted when applied to a test set.

The accuracy metric is defined as the frequency with which the prediction of the neural network
matches the mask labels. This metric is very sensitive to class imbalance problems.

The U-net was trained using a binary cross-entropy loss function, whose correct accuracy metric
during the training process is the mean-Intersection over Union (mIoU) accuracy metric. For
semantic segmentation, the mIoU accuracy metric is more informative as it penalizes and captures
both false positive and false negatives in a positional informed manner and as such it has also been
utilized in this proof-of-concept methodology. This is because mIoU seeks to directly quantify how
much of a perfect overlap match the prediction is to the label. Generally, mIoU is a perfect match at
1 and becomes a poorer match or has less overlap as it approaches 0.

Once the proof-of-concept U-net was trained, the evaluate() function from Tensorflow was utilized
to calculate the performance over the entire training or the entire test datasets depending on which

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

31

was provided to the evaluate() function, and thus the metric scores provided are not based on
randomly selected subsets. The loss, accuracy, and mIoU performance of the training and test
datasets are shown in Table 2 below.

Table 2. —The loss, accuracy, and mIoU metric of the proof-of-concept U-net’s performance on the
training and test datasets

Dataset Loss Accuracy1 mIoU1

Training 0.0200 0.96 0.490
Test 0.5337 0.93 0.487

The final loss values provided demonstrate that the neural network at least during training can
“learn” or “improve” and is important as a quality check. The final loss on the test dataset is also
much higher than the training dataset likely demonstrating problems with the limited dataset as well
as possible “overfitting” of the model to the training dataset again due to the limited amount of data
processed.

The accuracy metric is perhaps the most misleading as the datasets have a class imbalance problem.
The class imbalance of around 5 percent of the pixels identified as cracks means that this neural
network could have a 0.95 accuracy by just always guessing that every pixel is “no crack”. However,
this also means that the expected behavior that the test dataset performs worse than the training
dataset is correct and demonstrates that the neural network is learning.

The mIoU value around 0.49 means that the prediction is only matching half the data. While this
isn’t a great result it does mean that the neural network is able to learn as shown by the low loss
metrics and because the test dataset score is lower than the training dataset. This indicates that more
data will improve the model and results.

A more representative way to access the current proof-of-concept U-net’s performance is through
visual inspection of randomly chosen (i.e. selected by a pseudo-random number generator)
inputs/target pairs and to examine the proof-of-concept U-net’s prediction. This was done for both
the training and test datasets.

Four examples from each of the training and test datasets including the orthoimage input, binary
label mask targets, and the output prediction are provided in sequence in Figures 17.1-4 and 18.1-4
below. The full selections of 32 orthoimage inputs, binary label mask targets, and the output
prediction of the U-net are provided in Appendix A.

1 The accuracy or mIoU performance stated is not representative of any type of “real-world” or even “academic-level”
performance. The metrics are reported for transparency. The produced proof-of-concept U-net still needs significant
work and improvement before a real product can be produced or evaluated.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

32

1)

2)

3)

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

33

4)

Figure 17.1 - 4. —Four examples from the Training dataset including the original orthoimage input (left),
the binary label mask target (center), and the output prediction mask from the U-net (right) where
“purple” is no crack detected and “yellow” is crack detected

1)

2)

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

34

3)

4)

Figure 18.1-4. —Four examples from the Test dataset including the original orthoimage input (left), the
binary label mask target (center), and the output prediction mask from the U-net (right) where “purple” is
no crack detected and “yellow” is crack detected

Based on the current proof-of-concept U-net, the U-net is capable of learning as evident by the
good visual performance on the training dataset. However, the performance on the test dataset is
not as good as the training dataset and major improvements in generation will be necessary to have
any type of future production system for automated concrete crack detection. The next section will
highlight the path forward for enhancing this U-net methodology.

Discussion
The proof-of-concept U-net has demonstrated clear promise for future work to expand on. An
outline of the next steps is discussed within this specific domain of deep learning applications for
the task of detecting cracks in concrete structures such as dams. It should be highlighted that
detecting cracks in concrete infrastructure is not a task limited to Reclamation as an agency and it is
likely the future value and collaboration should be explored with other agencies with facilities like
Reclamation such as the United States Corps of Engineers (USACE), water districts and other
federal, state and local municipalities. In addition, this work may be expanded to agencies with other
concrete infrastructure such as canals, bridges, freeways, etc.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

35

Dataset Improvements
The single most important future improvements are related to direct and indirect expansions of the
training, validation and test datasets. The currently used dataset only contained fifteen orthoimages
at a single location. The next step would be to utilize additional orthoimages already collected and
processed by the TSC UAS team as well as other UAS teams in the regions such as the
Nebraska/Kansas, Oklahoma/Texas, Provo and Cascade Pacific Northwest (CPN) teams. This
should expand not only the number of images and lighting conditions, but also the number of
locations. Having a diverse dataset improves the capability of the deep learning neural network
performance.

Once existing orthoimage data is further integrated into the existing dataset, the following suggested
efforts should be explored:

1. Performing lighting and camera exposure corrections processes for decreasing the variance
within the data samples either through post-processing or by enforcing stricter data
collection methodologies that compensate for light magnitude and light direction.

2. Performing an extensive statistical analysis on the textures, shapes, and patch autocorrelation
among the imagery and cracks available.

3. Establish a program and criterion for collecting additional concrete crack data such as
deploying more UAS flights, use of non-aerial camera methods, and/or the integration of
terrestrial and aerial LiDAR to create a 3D point cloud and surfaces of the structure.

4. Establish a review system for concrete crack labeling to be performed by a panel of
independent engineers with expertise in detecting and categorizing concrete cracks. Each
crack should be manually labeled and annotated and then reviewed. This labeled dataset can
then be utilized to train deep learning methodologies. This type of labeling methodology is
commonly used in life/safety-critical applications like biomedical image segmentation.

5. Collaborate with other significant partner agencies for dataset labeling, collection, and
domain expansion.

A significant effort should also be made to sterilize the data enough to allow Reclamation to publish
the dataset with an instructional paper and digital object identifier (DOI). If Reclamation releases a
high-quality dataset and publicizes it, it may be that there will be significant interest and value
derived as currently there are no publicly available concrete crack detection datasets for semantic
segmentation.

Neural Network Structure Improvements
While improving performance of deep learning methodologies tends towards improvements of the
dataset yielding the highest returns, there are several developments that can be made to the deep
learning methodology itself. First the U-net itself is now a somewhat outdated architecture and
newer architecture such as Mask R-CNN, Unet++, or the DeepLab family of networks are all freely
available to be implemented in Tensorflow, PyTorch, MXnet, or Julia-based deep learning libraries.
Substantial testing and investment by large tech companies such as Google and other research
groups have demonstrated significant performance improvements over the original U-net
implementation for semantic segmentation.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

36

Additionally, U-net and the improved, newer architectures mentioned above all utilize an encoder
component (i.e. the first downward part of the “U”). Instead of training this encoder from scratch
like was done in this proof-of-concept U-net, a previously trained encoder could be utilized and
implemented in what is termed “transfer learning”. This process is quite simple and allows the
neural network to start from previous image training efforts performed on massive image datasets
that are simply impractical for Reclamation resources to reproduce, and thus by leveraging these
previously trained encoders (which are also free/open-source) and undergoing a process of fine-
tuning it is possible that performance improvements can be gained at a fairly low-cost.

Neural Network Training and Metric Improvements
The current methodology does not take advantage of any data augmentation methods or transforms
which are commonly used in deep learning semantic segmentation tasks/pipelines. A range of data
augmentation procedures should be explored and integrated into the deep learning workflow to
enhance performance and generalization capability.

No validation dataset was provided separately during training. A validation dataset is separate from
both the training datasets and the test datasets and is used to track the performance metric progress
of the neural network as it trains and is often utilized to determine if to keep training or to halting
training. It was decided to not provide a validation dataset due to the already limited size of the
training dataset and the limited GPU computational resources available at the time of the project.
Both of these factors can be easily enhanced at limited cost and would then facilitate the
development of an integrated validation dataset to be used during training of the neural network.

The field of view provided to the neural network at the time of training and the time of prediction
was an image patch of 256- by 256-pixels, while the orthoimage sizes where often in the 10,000+
pixel range. It was noted in back and forth conversations between the engineering labeling team and
the deep learning team that often the engineering labeling team was utilizing the entire context of
the orthoimages in order to first identify “true” concrete cracks and then to trace their complete
shape/effect through the rather large orthoimage. This amount of context utilized by humans could
simply not be provided to the neural network during training due to two important issues. First, the
dataset is simply too small to allow for larger contexts as the number of instances would decrease in
relation to the field of view size. Second, the GPU has a separate memory component than the
RAM (random access memory) that the CPU has access to for the entire computer system. This
GPU memory was limited to 6 of the available 8 GB during the training process utilized for this
project due to other demands on the GPU such as generating the display. As such, increasing the
field of view size was not realistic. Therefore future efforts should be made to expand Reclamation’s
GPU computational resources as well as increasing the dataset size so that the context size (i.e. the
size of a single extracted image patch) can be increased to possibly 384 by 384, 512 by 512 or 1024
by 1024 as this would likely leading to improved performance as typically observed in studies for
satellite imagery semantic segmentation [23].

Another possible improvement is the utilization of two separate but connected neural networks. The
first neural network would determine if any part of an image patch contains a crack. For example, a
simple “yes, the image patch contains a crack somewhere” or “no, the image patch doesn’t contain a

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

37

crack anywhere”. Then if a crack is detected somewhere within the image patch the image patch
could be sent to the second neural network which is trained/designed for semantic segmentation to
determine the exact pixels that form the crack. This rather simple idea actually has three powerful
components. First, cracks often span multiple connected/adjacent extracted image patches and it is
likely that the probability of an adjacent patch also containing a crack is higher if a previously
adjacent patch was detected as positive. Second, the occurrence of a concrete crack is an anomaly
almost by definition as the balance of crack vs. no crack pixels is heavily weighted towards the no
crack pixels bucket, and thus being able to structure a deep learning pipeline around this known fact
will likely have improvements. In fact, evidence for this is already demonstrated in this proof-of-
concept U-net work as there were limitations implemented in the training and test datasets to
achieve an occurrence rate of crack pixels in the datasets to get the U-net to train initially. Thirdly,
by using the two separate task neural networks, it is likely that the computation will be faster as the
majority of the image will not need to be semantically segmented which takes longer to compute
than a simple “yes” or “no” designation. (Note that this is different from the code that was
developed to sort images as this sorting would be automated).

The last set of improvements pertain to changing and/or modifying the loss function, optimizer,
learning rate, and accuracy metrics used. This part of a neural network can often lead to many
different directions, but even simpler explorations in changing the loss function from a binary cross-
entropy to a soft-dice loss would likely see a performance enhancement. Additionally, the choice of
an Adam optimizer as opposed to a stochastic gradient descent (SGD) can have impacts on the
learning rate, that is, how well the model can generalize and perform on unseen or out-of-sample
data. Furthermore, the accuracy metrics all impact how progress is measured and made for overall
improvements and a few simple experiments in this direction would also likely yield performance
enhancements.

Visualizations and Post-Processing Improvements
Currently no visualization or post-processing methods were designed under the proof-of-concept U-
net workflow. Future efforts should be made to produce visualization and post-processing
improvements such as forward and backward visual reconstruction of the complete orthoimage after
prediction; the use of image patch cropping so that only the center of an image patch (i.e. 128 by
128 of a 256 by 246 image) is utilized from the prediction (as predictions are more accurate at the
center of the patch); and the development of an interactive workflow in Jupyter Notebooks or
internal web platform to allow very simple processing of orthoimages once the neural network is
trained. These improvements will move a trained neural network from a research product to actually
being used in production/deployment environments by end-users. Furthermore, nothing prevents
the deployment of the trained neural network onto smartphone devices or tablets, which could even
be utilized by the collectors of the original data to guide additional flight paths or to highlight areas
where higher resolution data should be collected.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

38

Conclusion and Summary
This research made significant progress in producing a deep learning pipeline that is capable of
detecting or identifying concrete cracks within Reclamation structures such as dams. However, this
project is only the beginning of a very powerful and economically valuable tool that could reduce
future costs of concrete monitoring efforts, while enhancing the safety and maintenance procedures
around concrete infrastructure. Additionally, Reclamation stands well poised to capitalize on an
integrative and collaborative approach with other agencies for expanding a future deep learning
method to concrete canals, bridges, roads, highways, and buildings. The following conclusions are
made:

• Deep learning crack identification proof-of-concept was successfully demonstrated using
previously collected UAS data though with limitations.

• Methods should be developed to collect and produce optimal data for deep learning datasets
including strict controls on the sensor exposure and image output as discussed in the Dataset
Improvements section.

• The training, validation, and test sets should be expanded with diverse examples to improve
the accuracy of the identification. These examples could include more previously collected
UAS data as well as new UAS data collected specifically for deep learning. This data
collection effort should include UAS teams from across Reclamation and other agencies that
have similar infrastructure.

• Datasets should include more cracks to improve crack recognition.
• Additional work should be conducted to improve the confidence in the testing method. In

addition, research should be conducted to reassemble the crack segments or chips into the
crack mapped orthoimage as the final data product.

• Other neural net structures should be investigated to improve accuracy and reduce
processing times.

• Deep learning crack identification hardware should be upgraded with GPU with greater
memory and faster processing.

• Formal crack mapping methods and review processes should be discussed and applied to
gage the effectiveness and accuracy of the crack map.

• Third-party automated crack mapping solutions should be further investigated once they
become more established, however, having a Reclamation database for evaluation will be
more accurate.

• Crack mapping processes should be expanded to evaluate the change of a crack over time.

Data
The data used in this project can be made available upon request.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

39

References

[1] American Concrete Institute, ACI Manual of Concrete Inspection, ACI SP-2(07), Farmington Hills:

ACI, 2007, p. 87.
[2] M. Klein, "Unmanned Aerial System (UAS) Data Collection at Reclamation Sites," Bureau of

Reclamation, Denver, 2019.
[3] 3DR Inc, "3DR Solo," Google, 1 September 2016. [Online]. Available:

https://play.google.com/store/apps/details?id=com.o3dr.solo.android&hl=en_US. [Accessed
18 September 2019].

[4] Ricoh Imaging Company, LTD, "GR II," NA. [Online]. Available: http://www.ricoh-
imaging.co.jp/english/products/gr-2/spec/index.html. [Accessed 17 September 2019].

[5] M. Klein, "Photogrammetric Analysis of the Left Gate Abutment at Vallecito Dam," Bureau of
Reclamation, Denver, 2018.

[6] J. Kottenstette, "Use of Photogrammetric Measurements in a Concrete Damage Survey:
Guernsey Dam South Spillway," in Biennial Geotechnical Seminar 2012, Denver, 2012.

[7] E. Schlosser, "Seminoe Dam Photo-Mapping and Photogrammetry Report," Bureau of
Reclamation, Denver, 2013.

[8] M. Klein, "Elephant Butte Dam UAS Inspection, ST-2018-1817-01," Bureau of Reclamation,
Denver, 2018.

[9] M. Klein, "Deformation Monitoring using Unmanned Aerial Systems (UAS) and
Photogrammetry - Seminoe Dam; DSO-2019-03," Bureau of Reclamation, Denver, 2019.

[10] K. Bartojay, "W.H. Brock Reservoir Soil-Cement Crack and Damage Mapping," Bureau of
Reclamation, Denver, 2019.

[11] M. Klein and J. Prickett, "Site Visit to Folsom Auxiliary Spillway to Collect UAS Data for
Crack Mapping," Bureau of Reclamation, Denver, 2019.

[12] O. Ronneberger, P. Fischer and T. Brox, "U-Net: Convolutional Networks for Biomedical
Image Segmentation," in Proceedings of the 18th International Conference on Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2015 - Volume 9349, Berlin, 2015.

[13] T. Liabacher, T. Weyde and S. Jalali, "M2U-Net: Effective and Efficient Retinal Vessel
Segmentation for Real-World Applications," in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), Long Beach, 2019.

[14] K. He, G. Gkioxari, P. Dollar and R. Girshick, "Mask R-CNN," in 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, 2017.

[15] Z. Zhou, M. R. Siddiquee, N. Tajbakhsh and J. Liang, "UNet++: A Nested U-Net
Architecture for Medical Image Segmentation," in Deep Learning in Medical Image Analysis and
Multimodal Learning for Clinical Decision Support, Granada, 2018.

[16] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy and A. L. Yuille, "DeepLab: Semantic
Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully
Connected CRFs," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4,
pp. 834-848, 2017.

[17] Thornton Tomasetti, "T2D2," Thornton Tomasetti, [Online]. Available:
https://www.thorntontomasetti.com/capability/t2d2. [Accessed 20 September 2020].

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

40

[18] Thornton Thomasetti, "CORE Studio," [Online]. Available:
https://www.thorntontomasetti.com/core-studio. [Accessed 20 September 2020].

[19] S. Gillies and others, "Rasterio: geospatial raster I/O for Python programmers," NA, 2013.
[Online]. Available: https://github.com/mapbox/rasterio. [Accessed 28 September 202].

[20] T. E. Oliphant, "Python for Scientific Computing," Computing in Science & Engineering, vol. 9, no.
3, pp. 10-20, 2007.

[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker,
V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng and Google Brain, "TensorFlow: A
System for Large-Scale Machine Learning," in 12th USENIX Symposium on Operating System
Design and Implementation (OSDI '16), Savannah, 2016.

[22] J. D. Hunter, "Matplotlib: A 2D Graphics Environment," Computing in Science & Engineering, vol.
9, no. 3, pp. 90-95, 2007.

[23] V. Iglovikov, S. Seferbekow, A. Buslaev and A. Shvets, "TernausNetV2: Fully Convolutional
Network for Instance Segmentation," in 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Salt Lake City, 2018.

Glossary
Adam optimizer. The Adam optimizer is a very specific and complicated algorithm which

differentiates itself from a standard optimizer like “stochastic gradient descent” by using an
adaptive learning rate. The Adam optimizer works specifically with cross-entropy. It
determines how the neural network model attempts to lower the specific loss function in
every round of training by adjusting weights, parameters, and/or coefficients.

Binary. A separation of two classes. For example, heads and tails is a binary outcome of flipping a

coin. Or more commonly used in computer science, binary is 0 or 1, true or false. In the case
of deep learning models, it is the classification of the objective, that is, a pixel is a “crack” or
“not a crack”.

Convolution Transposing. Convolution Transposing is routine layer used to upsample the input

by allowing all adjacent cells influence the expanded cells.

Cross-entropy. Cross-entropy is a type of loss function commonly used in machine/deep learning

which essentially calculates the total entropy difference between a set of distributions. Cross-
entropy is specifically used with an Adam optimizer. This should not be confused with KL
(Kullback-Leibler) divergence, logistic loss, or log loss.

Learning rate. In deep learning, a learning rate is defined as the magnitude of the step an optimizer

takes in each round of training. The learning rate impacts the generalization and
performance of the final neural network produced.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

41

Loss function. A loss function is the term used in deep learning for the name of the objective

function that is being minimized.

Optimizer. An optimizer is the algorithmic routine of how the model attempts to optimize or

minimize the objective function or in this case the “loss function”.

Soft-dice loss. Soft-dice loss is the dice-loss metric that has been modified and approximated to

make it differentiable for use as a loss function rather than a pure metric. The soft-dice loss
function sometimes performs better than cross-entropy for serving as the objective function
to be minimized rather than an evaluation metric of performance.

Stochastic gradient descent (SGD). SGD is the default optimization routine for deep learning

neural networks.

Upsampling. Upsampling is a generic routine that increases the dimensions of the input.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

42

Appendix A – U-net Performance Verification
Samples
Thirty-two triplet image groups from the Training Dataset, which were randomly chosen. Each
triplet group is composed of the original orthoimage input (left), the binary label mask target
(center), and the output prediction mask from the U-net (right) where “purple” is no crack detected
and “yellow” is crack detected.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

43

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

44

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

45

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

46

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

47

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

48

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

49

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

50

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

51

Thirty-two triplet image groups from the Test Dataset, which were randomly chosen. Each triplet
group is composed of the original orthoimage input (left), the binary label mask target (center), and
the output prediction mask from the U-net (right) where “purple” is no crack detected and “yellow”
is crack detected.

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

52

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

53

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

54

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

55

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

56

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

57

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

58

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

59

Identifying Cracks in Concrete from Previously Collected UAS Data Using Deep Learning

60

	Mission Statements
	Disclaimer
	Acknowledgements
	Figures
	Figures
	Figures
	Figures
	Figures
	Figures
	Executive Summary
	Introduction
	Background
	Unmanned Aerial Systems
	Photogrammetry
	Crack Mapping
	Deep Learning

	Problem
	Objectives

	Method
	Third Party Software Review
	Data Preparation
	Data Sorting
	Processing

	Results
	Discussion
	Dataset Improvements
	Neural Network Structure Improvements
	Neural Network Training and Metric Improvements
	Visualizations and Post-Processing Improvements

	Conclusion and Summary
	Data
	References
	Glossary
	Appendix A – U-net Performance Verification Samples

		2020-09-30T07:02:50-0600
	MATTHEW KLEIN

		2020-09-30T13:38:15-0600
	TREVOR STOCKTON-SALAS

		2020-09-30T15:40:10-0600
	KATIE BARTOJAY

		2020-10-01T09:01:50-0700
	ZACKARY LEADY

