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Executive Summary 
Additive manufacturing has been identified as a potential pathway for fabricating obsolete 
mechanical components on Reclamation’s aging infrastructure.  Although Reclamation could 
develop the capability to print the needed metallic parts, post-processing of the complex geometries 
could be costly, time consuming, may not yield required design tolerances, and could initiate 
deleterious effects, such as corrosion.  This study investigated the durability of additively 
manufactured replacement parts in Reclamation’s corrosive service environments. 
 
To determine the effect of various post-processing techniques on corrosion response in additively 
manufactured 316L stainless steel, researchers evaluated the open circuit potential, microstructure, 
phases, and surface roughness of cold-rolled and additively manufactured disk specimens.  The post-
processing techniques evaluated were as-received (cold-rolled)/as-printed (additively manufactured, 
polished and unpolished), as-printed plus a heat treatment (polished and unpolished), and as-printed 
plus a surface sensitization and chemical etching (unpolished). 
 
In general, open circuit potential (OCP) measurements showed that heat treating the specimens 
made them much more susceptible to corrosion while the as-printed specimens were the most 
noble.  This result may be partially explained by the microstructural findings.  The unhomogenized 
grain structure of the as-printed specimen did not provide any quick paths for electrons to reach the 
substrate and also had a higher resistance to corrosive attack; the smaller-grained, heat-treated and 
sensitized/etched specimens had a higher density of grain boundaries for easier electron transport, 
and thus had more negative potentials.  Additionally, the smaller grains may have allowed for an 
increase in carbide precipitation and subsequent chromium depletion, resulting in lower potentials.  
The correlation between grain size/grain boundary density and OCP could be further explored in 
future work. 
 
X-ray diffraction confirmed the presence of pure austenitic steel as well as the presence of corrosive-
attack-inducing carbide precipitates.  Peak quantification—not performed in the present study—
could reveal additional insight into the corrosion response of each specimen type.  In particular, the 
ability to quantify the amount of chromium or other corrosion inhibitor present in the specimen 
could help to further explain the OCP results.  Energy dispersive x-ray spectroscopy must also be 
performed to correlate element concentration with the corrosion potential of each specimen. 
 
Surface roughness also influences corrosion response.  The sensitization/chemical etching process 
provided the most consistently smooth surface of all printed specimens evaluated without the need 
for manual smoothing via grinding, polishing, or other methods.  Polished specimens had worse 
corrosion resistance than their unpolished counterparts, which was an unexpected result.  Additional 
testing should be conducted to confirm this result and to determine exact corrosion mechanisms. 
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1. Introduction 
The cost for post-processing of additively manufactured (AM) parts includes the labor and 
equipment to remove the structural supports that support a piece during the AM process, and can 
account for more than 45 percent of the total cost of printing [1].  One novel solution to simplify 
post-processing was developed by Dr. Owen Hildreth at the Colorado School of Mines [2].  In this 
method, the chemical stability of the top 100-200 microns of the part’s surface is decreased and is 
carburized during thermal annealing by exposing the part to sodium hexacyanoferrate (II) 
decahydrate (Na4Fe(CN)6·10H2O) under certain heating conditions.  The surface is made sensitive 
to chemical and electrochemical dissolution when the protective chromium in chromium carbide 
precipitates is captured during the reaction.  Then, only the carburized layer of the part is selectively 
corroded when the entire part is submerged in a solution of nitric acid (HNO3) and potassium 
chloride (KCl) and subjected to an anodic bias.  On parts intended for service, support structures 
can be designed to be less than 200 microns in width so that they can be dissolved away by utilizing 
this method. 
 
While the support dissolution process is proven to be successful at removing support material from 
stainless steel parts, it is unknown whether the corrosion resistance of the parts is maintained.  This 
paper evaluates powder bed fusion (PBF) additively manufactured 316L steel specimens after they 
have undergone the sensitization and dissolution process.  The corrosion response in sodium 
chloride (NaCl) of 316L powder bed fusion parts was evaluated as a function of post-processing 
parameters to better understand the material-process-structure relationship.  This work also 
evaluated the surface roughness of a part before and after support dissolution.  The goal of this 
work was to optimize the feasibility of using AM to print metal parts while ensuring printed parts 
could be utilized in the Bureau of Reclamation’s (Reclamation) corrosive service environments. 
 
Evaluated PBF specimens were printed at 0 degrees (horizontal) to the build platform.  The 
specimens were tested as-printed, polished, heat treated, and after the sensitization and etching 
process.  Those results were compared to a specimen of conventionally manufactured, cold rolled 
316L stainless steel. 
 
While there has been little work done to evaluate the corrosion response of PBF-manufactured 316L 
stainless steel parts subject to various post-processing parameters and build orientation, effect of 
print parameters has been well studied in NaCl electrolytes.  Zhang et al. showed that while laser 
scan speed did not affect corrosion resistance, compared to wrought, corrosion resistance improved 
as the porosity of parts printed via selective laser melting (SLM, a PBF derivative) decreased [3].  
Those results corroborated a 2014 work showing corrosion resistance of SLM printed parts being 
worse than that of wrought 316L steel when the porosity was greater than one percent [4].  Another 
study found that increasing porosity lowered the repassivation potentials and had no significant 
effect on pitting potentials [5].  Heat treatment of SLM 316L parts has also been shown to affect 
corrosion resistance.  Heat treatment homogenized the structure of the steel and dissolved 
inclusions—which can act as local sites for corrosion pitting—thus improving the corrosion 
resistance compared to wrought steel [6]. 
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1.1 Project Background 

Reclamation’s aging infrastructure is facing maintenance problems that extend well beyond the 
ability to preserve features utilizing protective coatings or other conservation techniques.  Certain 
metal parts are beginning to need replacement, with AM identified as one possible way to fabricate 
them.  Although Reclamation could easily develop the capability to print the needed parts, post-
processing of the complex geometries could be too costly and time consuming for AM to be a 
feasible solution.  In addition, some parts, like impeller blades and hydraulic pathways within 
generator air coolers, require certain design tolerances to function properly, which presents further 
barriers to Reclamation in utilizing AM to produce replacement parts. 
 
The novel process developed by Dr. Hildreth has already been proven to selectively dissolve support 
structures, remove trapped powder, and improve the mechanical performance of AM parts.  
However, further investigation into the corrosion properties of parts subjected to this and other 
post-processing techniques will provide insight into the durability of additively manufactured 
replacement parts in Reclamation’s corrosive service environments. 

2. Technical Approach and Methods 
The experiment utilized 316L stainless steel disks, 15 millimeters (mm) in diameter and 4 mm thick.  
One replicate of each polished and unpolished specimen type was tested.  Tested disks included 
conventionally manufactured cold rolled 316L steel, 316L steel printed via a PBF process (as-
printed), heat treated as-printed 316L steel, and as-printed 316L steel subjected to the sensitizing and 
etching procedure.  Table 1 shows each manufacturing and post-processing technique evaluated in 
this work. 
 
Table 1: Manufacturing and post-processing techniques evaluated 

Manufacturing 
Technique 

Post-Processing 
Technique 

Polished Unpolished 

Cold rolled N/A (as-received) X X 
AM (PBF) N/A (as-printed) X X 
AM (PBF) Heat treated X X 
AM (PBF) Sensitization/chemical 

etching 
 X 

 

2.1 Specimen Preparation 

2.1.1 Cold rolled 
The cold rolled 316L stainless steel specimens were obtained from McMaster Carr.  One specimen 
was ground and polished to a one-micron finish (mirror finish) on a Struers LaboForce-100 
automatic polisher with a diamond suspension.  A second specimen was tested in the as-received 
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(unpolished) condition.  A VEVOR PS-30A Digital Ultrasonic Cleaner was used to ultrasonically 
clean the specimens for five minutes in isopropyl alcohol. 

2.1.2 As-printed 
The as-printed stainless steel specimens were manufactured by Elementum 3D in Erie, Colorado, 
via a PBF process.  One specimen was ground and polished to a one-micron finish using diamond 
suspension.  A second specimen was tested in the as-received (as-printed) condition.  Specimens 
were ultrasonically cleaned for five minutes in isopropyl alcohol. 

2.1.3 Heat treated 
Typically, AM parts would not be used in their as-printed state.  Most AM metal parts undergo a 
heat treatment scheme to relieve stress built up during the printing process and homogenize the 
microstructure, imparting better mechanical properties and overall improving part performance. 
 
As-printed PBF specimens from the same batch as specimens described in 2.1.2 were heat treated in 
a Thermo Scientific Lindberg Blue M tube furnace.  Starting at room temperature, the ramp rate was 
10 degrees Celsius (°C) per minute to 950 °C.  The temperature was held at 950 °C for two hours 
and then the specimens were removed from the furnace and quenched in air at room temperature to 
preserve the microstructure [7].  One specimen was ground and polished to one micron.  A second 
heat-treated specimen that did not undergo grinding or polishing was also tested.  Specimens were 
ultrasonically cleaned for five minutes in isopropyl alcohol. 

2.1.4 Sensitized/etched 
The sensitized/etched 316L stainless steel specimens used for this portion of the study were from 
the same batch as the printed specimens described in 2.1.2.  The sensitizing and etching parameters 
described below were experimentally determined through previous studies. 
 
To sensitize the printed 316L stainless steel specimens, a saturated solution of Na4Fe(CN)6·10H2O 
(≥99%; Alfa Aesar) and deionized water was prepared.  In addition, a paste of 4.2 parts by mass 
Na4Fe(CN)6·10H2O and one-part deionized water was also prepared.  The specimens were 
submerged in the saturated solution for 20 minutes and then completely coated with the 4.2:1 paste.  
The coated specimens were wrapped tightly with a high temperature tool wrap (MSC Industrial 
Supply, 309 stainless steel tool wrap).  A small hole, approximately 0.1-mm in diameter, was 
punched into the corner of the tool wrap to allow for the release of cyanide and water vapor that is 
formed during the decomposition of the paste.  The tool wrap-and-specimen package was placed in 
a Lindberg Model C10 silicon carbide box furnace at room temperature.  The furnace was heated 
with a ramp rate of 5 °C per minute to 800 °C.  The package remained at that temperature for six 
hours; then, the furnace was turned off and allowed to cool to room temperature. 
 
To etch the sensitized specimens, they were first removed from the tool wrap package and 
ultrasonicated in deionized water for five minutes.  The specimens were then secured in a specially 
made sample holder.  An electrolyte solution of 0.48 molar concentration HNO3 and 0.1 molar 
concentration of KCl (28.52 milliliters (mL) HNO3 and 6.7 grams (g) KCl in 900 mL deionized 
water) was prepared.  The electrolyte was poured into a corrosion cell and the specimen in the 
sample holder was placed into the cell.  A silver/silver chloride (Ag/AgCl) reference electrode was 
ionically connected to the electrolyte through a KCl salt bridge.  The counter electrode was a 6-mm 
diameter graphite rod. 
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A Princeton Applied Research Parstat MC potentiostat was utilized to perform chronoamperometry 
with a potential of -0.01 Volts (V) for 60 seconds to clean the specimen’s surface.  The open circuit 
potential (OCP) was then measured for 200 seconds and cyclic voltammetry curves were generated.  
Finally, the etching process was initiated through chronoamperometry at a potential of 0.2 V for a 
duration of 50 hours.  Once the etching was complete, the specimens were ultrasonically cleaned in 
deionized water for five minutes.  The etched specimens were not ground or polished. 
 
Figure 1 shows each specimen type after preparation (polished versions not shown).  Note the slight 
change in color of the heat-treated and sensitized/etched specimens which is due to diffusion of 
carbon to the specimens’ surfaces. 
 
 

 
Figure 1: 316L stainless steel specimens.  From left: cold rolled steel, as-printed PBF printed steel, heat 
treated PBF printed steel, and PBF printed steel after sensitization and etching. 

2.2 Specimen Analysis 

2.2.1 Open circuit potential measurements 
 
To prepare specimens for OCP measurements, conductive copper wire leads were attached to the 
specimens’ surfaces with silver epoxy.  Then, the specimens with attached leads were cold mounted 
in epoxy.  OCP was measured with a potentiostat for a duration of 50 hours.  The electrolyte 
solution was 3.5 wt. % NaCl in deionized water.  An Ag/AgCl reference electrode was ionically 
connected to the electrolyte through a KCl salt bridge.  The counter electrode was a 6-mm diameter 
graphite rod.  Figure 2 shows the test cell set up for the OCP measurements, which was functionally 
equivalent to the set up utilized during the etching process. 
 
Measured potentials were offset by +0.197 V so they could be reported relative to the standard 
hydrogen electrode (SHE). 
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2.2.2 Metallographic analysis 
 
Specimens for metallographic analysis were cold mounted in epoxy resin.  Specimens were cut in 
half and oriented so the cross section and surface face of the disk could both be evaluated (Figure 
3).  Mounted specimens were ground and polished to a one-micron surface finish.  Polished 
specimens were stain etched in glyceregia (a 3:2:1 ratio of hydrochloric acid, glycerin, and HNO3) for 
1 minute and 20 seconds to reveal grain structure, carbides, and phases. 
 

 
Figure 3: Metallography specimen (as-printed) mounted in epoxy and polished to one micron. 

2.2.3 X-Ray Diffraction 
X-ray diffraction (XRD) was performed on a Bruker AXS D2 Phaser diffractometer from 27 to 130 
two theta. 

Figure 2: Specimen connected to a copper wire lead and mounted in epoxy (left) and electrochemical 
measurement set up (right). 
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2.2.4 Profilometry 
The surface roughness of the specimens was measured using a Bruker DektakXT profilometer.  The 
scan resolution was 0.056 microns and stylus force was 3 milligrams (mg).  Six 1000-micron long 
measurements were taken per specimen and the results were averaged. 

3. Results and Discussion 

3.1 Open Circuit Potential Measurements 
Figure 4 shows the resulting “galvanic series” for all specimens tested.  Specimens with more 
negative OCP measurements after 50 hours are more anodic and more susceptible to corrosion 
(relative to other specimens) whereas more positive OCP measurements indicate the specimens are 
more noble and are less susceptible to corrosion.  In addition, in humid or salty environments, 
galvanic corrosion can occur between two dissimilar metals when their difference in potential is 
approximately 0.15 V or more [8].  Overall, heat treating the specimens made them much more 
susceptible to corrosion while the as-printed specimens were the most noble.  This finding is 
surprising because unhomogenized microstructures (as in the as-printed specimens) contain regions 
of depleted chromium.  Chromium is one of the main corrosion inhibitors in stainless steel.  
However, the heat treated specimens were at a high enough temperature to induce chromium 
carbide precipitation to the grain boundaries which can also result in regions of chromium depletion 
and, subsequently, increase susceptibility to corrosion attack. 

 
The polished version of each specimen type had more negative potentials than their unpolished 
counterparts.  This result was unexpected since pits on rougher surfaces can render them more 
anodic by acting as corrosion concentration cells.  However, one possible explanation is the 
disruption of the steel’s passivation layer due to polishing.  While specimens did not undergo 
electrochemical evaluation until 24-48 hours after polishing, the passivation layer may not have had 
enough time to sufficiently regrow.  Additional work must be performed to identify the exact 
mechanisms that are causing these unexpected phenomena to occur, and to evaluate the effect of 

Figure 4: Resulting galvanic series for all specimens evaluated in 3.5 wt.% NaCl for 50 hours. Specimens 
are listed from most susceptible to corrosive attack to least susceptible. 
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passivation layer thickness on OCP.  Further discussion of the potential versus time curves for 
individual specimen types is included below. 

3.1.1 Cold rolled 
Figure 5 shows the potential versus time curve for the polished and unpolished (as-received) cold 
rolled specimens.  After 50 hours, the potential of the unpolished specimen was +0.2 VSHE while the 
potential of the polished specimen was approximately +0.125 VSHE.  These measured potentials are 
slightly more positive than results noted in literature (typically 0 to +0.1 VSHE) [9].  Both curves 
stabilize after approximately 15 hours of testing and remain relatively stable for the remainder of the 
evaluation period. 

 

3.1.2 As-printed 
Figure 6 shows the potential versus time curve for the polished and unpolished as-printed 
specimens.  The potential of the unpolished specimen was +0.25 VSHE and the potential of the 
polished specimen was +0.15 VSHE after 50 hours.  Both polished and unpolished curves were 
relatively stable throughout the evaluation period—extremely negative potentials in the unpolished 
curve (i.e. at hours 12, 45, and 48) were likely due to external factors unrelated to the specimen’s 
OCP, and overall did not affect the result after 50 hours.  More moderate fluctuations in the 
unpolished curve could be due to the formation and dissolution of corrosion concentration cells that 
formed in surface divots. 

     Unpolished 
     Polished 

Figure 5: OCP curve for polished and unpolished cold rolled specimens. 
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3.1.3 Heat treated 
Figure 7 shows the potential versus time curves for the polished and unpolished heat-treated 
specimens.  The potential of the unpolished specimen was approximately +0.025 VSHE and the 
potential of the polished specimen was approximately -0.025 VSHE after 50 hours of testing.  Both 
curves stabilized after approximately 15-20 hours of evaluation. 

 

     Unpolished 
     Polished 

Figure 6: OCP curves for as-printed polished and unpolished specimens. 

     Unpolished 
     Polished 

Figure 7: OCP curve for polished and unpolished heat-treated disks. 
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3.1.4 Sensitized/etched 
Figure 8 shows the potential versus time curve for the unpolished sensitized/etched specimen.  
From approximately 5 to 40 hours, the potential oscillated around 0 VSHE.  This oscillation is likely 
due to the formation and subsequent destruction of a passivation layer on the specimen’s surface.  
After 40 hours, the potential quickly became more positive to over +0.125 VSHE and continued to 
become more positive throughout the last 10 hours of the evaluation.  OCP evaluations exceeding 
50 hours should be conducted to determine a stabilized potential (if any) at times longer than 50 
hours.  A more detailed electrochemical analysis must also be performed to determine the cause of 
the sharp change in potential observed herein.  One theory is that a more permanent or thicker 
passivation layer formed on the surface after hour 40 and was not subsequently destroyed, thus 
rendering the potential more positive and improving resistance to corrosive attack. 

3.2 Metallographic Analysis 

3.2.1 Cold rolled 
Figure 9 shows the typical microstructure of cold-rolled 316L stainless steel at a magnification of 
12.6X and 63X (inset).  Grains are typically no larger than 50 microns in diameter and are relatively 
uniform in size and shape.  Due to the nature of the cold-rolling process, most grains appear to be 
elongated in one direction, whereas others retain their coaxial perimeters.  Smaller grains are typically 
more favorable for the mechanical properties of steels.  As grain size decreases, hardness, tensile 
strength, yield strength, and impact strength increase [10].  However, it has also been shown that as 
grain size decreases corrosion susceptibility increases.  This phenomenon is due to the increased 
density of grain boundaries which act as “express lanes” to and from the surface for electrons and 
other diffusing species [11]. 
 
The micrograph also shows the presence of annealing twins.  As recrystallization defects, annealing 
twins can be formed through many mechanisms.  They can be particularly dense in FCC materials 
due to the various atomic stacking faults that can occur between the {111} planes.  Annealing twins 

     Unpolished 
     

Figure 8: OCP curve for the sensitized/etched specimen. 
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lower the grain boundary energy and, if present in large enough quantities, can improve the 
mechanical properties of the steel. 
 

 
Specific allotropes (phases) of iron present can be confirmed via XRD analysis.  The body-centered 
cubic (BCC) α-Fe and face-centered cubic (FCC) γ-Fe are typical for steels, although γ-Fe (also 
known as austenite) is expected to be the dominant phase for 316L (austenitic) stainless steels [12].  
Due to the larger size of FCC interstitial sites, austenite is characterized by its ability to absorb a 
significant amount of carbon.  The carbon can then precipitate out of the interstitials and appear in 
the micrographs as small precipitate carbides (solid dark regions within grains and grain boundaries).  
When dispersed evenly throughout the matrix, carbides can improve corrosion resistance; however, 
corrosion resistance is impacted under certain annealing conditions which segregate carbides to grain 
boundaries.  The tiny bound regions that are not completely solid in color are δ-Fe or sigma phase (a 
derivative of δ-Fe, hard and brittle intermetallic phase of chromium and iron).  Presence of sigma 
phase is typically unfavorable as it can decrease a steel’s corrosion resistance, as well as its ductility 
and toughness. 

3.2.2 Additively manufactured 
 
Figure 10 shows the near surface (top) and cross-section (bottom) micrographs for as-printed, heat 
treated, and sensitized/etched specimens at a magnification of 12.6X.  Each specimen was evaluated 
at five different magnifications, and the micrographs included in the figure were selected to be the 
most representative of each surface.  Some general observations can be made.  The melt pools 
formed during the sintering of powder are clearly seen in the as-printed micrographs; these features 

10 microns 
50 microns 

Figure 9: Observed near-surface microstructure of cold-rolled 316L stainless steel at a magnification of 
12.6X and 63X (inset).  Arrow indicates location of one instance of annealing twins. 
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appear as parallel beads in the near surface micrograph and scallop-like in the cross-section view.  
Applying a heat treatment to the specimens completely dissolved the melt pools, homogenized the 
microstructure, and revealed the resulting grains. 
 

Figure 10: Near surface (top) and cross-sectional (bottom) microstructures of as-printed (left), heat treated 
(center), and sensitized/etched (right) specimens. 
 
While grain growth increases with increasing temperature, the nucleation rate of new grains peaks at 
intermediate temperatures and then decreases [11].  This may partially explain why the grains of the 
heat-treated specimen (annealed at 950 °C) are larger and coarser than the grains of the 
sensitized/etched specimen (annealed at 800 °C).  The sensitized/etched specimen’s longer 
annealing time could have allowed the microstructure more time to achieve grain uniformity.  In 
addition, the presence of precipitates can hinder grain growth, although their presence in each 
specimen type evaluated was not quantified as part of this study.  Cooling rate differences may have 
also contributed to the differing microstructures. 
 
Aside from the annealing component of the process, the surface sensitization and chemical etching 
likely did not greatly affect the sensitized/etched specimen’s sub-surface microstructure.  Future 
work could include microstructural analysis conducted directly on sensitized/etched specimen 
surface.  Additional interesting microstructural features for each specimen type are noted below. 

3.2.2.1 As-printed 
A closer look at the as-printed cross section microstructure at a magnification of 63X (Figure 11) 
reveals the formation of regions with lamellar-like/dendritic structures.  These structures are 
columnar grains formed due to directional solidification and are commonly seen in as-printed AM 
microstructures.  Columnar grains typically grow in clusters with orientations that follow the thermal 

50 microns 
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gradient of the print process and are relatively fine due to higher cooling rates.  This type of grain 
structure can give a material anisotropic mechanical properties—high plasticity but low strength [13]. 

3.2.2.2 Heat treated 
Heat treating the disks at a temperature above the eutectic temperature resulted in a microstructure 
that is predominantly γ-Fe.  A small amount of sigma phase and/or carbide precipitates are also seen 
along grain boundaries in Figure 12. 

  10 microns 

Figure 11: Microstructure of the as-printed specimen at a magnification of 63X. 

  10 microns 

Figure 12: Microstructure of the heat-treated specimen at a magnification of 63X. 

  10 microns 
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3.2.2.3 Sensitized/etched 
The phases present in the sensitized/etched microstructure are also likely to be predominately γ-Fe.  
The microstructure also shows the presence of carbide precipitates and possible sigma phase.  In 
addition to the much smaller grain sizes, annealing twins are visible in Figure 13. 
 
Previous studies have found that the small grained microstructure of the sensitized/etched 
specimens provided enhanced mechanical properties to cold rolled 316L stainless steel [2]. 

 
OCP measurements may be partially explained by the microstructural findings.  The unhomogenized 
grain structure of the as-printed specimen did not provide any quick paths for electrons to reach the 
substrate and also had a higher resistance to corrosive attack; the smaller-grained heat-treated and 
sensitized/etched specimens had a higher density of grain boundaries for easier electron transport 
and thus had more negative potentials.  The correlation between grain size/grain boundary density 
and OCP could be further explored in future work. 

3.3 X-Ray Diffraction 
Diffraction peaks for all specimens are shown in Figure 14.  As expected, all specimens showed 
similar peaks except for the etched/sensitized specimen which had a few additional peaks.  The 
XRD results showed the characteristic peaks associated with austenitic steel.  The etched/sensitized 
specimen also showed the presence of carbides which were visual on the surface and noted in the 
micrographs.  Peak quantification—not performed in the present study—could reveal additional 
insight into the corrosion response of each specimen type.  In particular, the ability to quantify the 

  10 microns 

Figure 13: Microstructure of the sensitized/etched specimen at a magnification of 63X.  
Arrow indicates location of one instance of annealing twins. 
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amount of chromium or other corrosion inhibitor present in the specimen could help to further 
explain some OCP results. 

3.4 Profilometry 
Figure 15 shows the results of the profilometry measurements for the cold rolled and printed disks 
subject to the various post-processing procedures.  All polished specimens had, on average, a 
roughness value of 0.01 microns and were not included in the plot. 
 

Figure 14: Observed diffraction peaks for all specimens.  For enhanced readability, plot has been truncated to 
show only the peaks from 30 to 95 2-theta.  Peaks above 95 2-theta were typical for 316L stainless steel. 

Austenite (111) 

Austenite (200) 

Austenite (220)
 

Carbides 
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The cold rolled (CR) specimen had an average roughness value of 2.66 microns and a standard 
deviation of 0.65 microns.  The average roughness value for the as-printed (AP) specimen was nearly 
double that of the cold rolled at 4.9 microns but had a similar standard deviation of 0.63 microns.  
The heat treated (HT) specimen had the highest average roughness value at 6.7 microns as well as 
the largest standard deviation (1.2 microns), this is potentially due to the precipitation of carbides 
onto the surface.  The etched/sensitized (ETC) specimen had the lowest average roughness value of 
all printed specimens and lowest standard deviation of all specimens tested, 3.74 and 0.22 microns, 
respectively.  Similarly to the heat-treated specimens, carbides precipitated on the surface during the 
specimen sensitization, but the protrusions were then preferentially removed during the etching 
process, leaving behind a smoother surface. 
 
The sensitization/etching process provided the most consistently smooth surface of all printed 
specimens evaluated without the need for manual smoothing via grinding, polishing, or other 
methods. 

 
Figure 15: Box and whisker plots showing profilometry results for all unpolished specimens. 

4. Conclusions 
• As part of a larger effort to explore the potential for implementing AM at Reclamation, this 

work has shown that various post-processing techniques of AM 316L stainless steel result in 
different microstructures, surface conditions, and corrosion responses from conventionally 
manufactured steel.  This proof of concept exemplifies how Reclamation cannot simply 
replace a conventionally manufactured part with a part manufactured via AM without 
considering the broader implications of both the mechanical and environmental interactions 
of the AM material.  While some generalizations can be made, additional work must be 
completed before Reclamation can implement these results. 
 

• The as-printed specimens were the least susceptible to corrosive attack, suggesting 316L 
stainless steel parts should be utilized in their as-printed condition if corrosion resistance is 
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the main concern.  However, this is never recommended because the microstructure of as-
printed parts is typically un-developed or under-developed and residual stresses must be 
relieved via annealing. 
 

• Through 40 hours of OCP evaluation, the sensitized/etched specimen held stable at 
potentials similar to the polished as-printed specimen, but additional work must be done to 
explain the positive potential shift between 40 and 50 hours and to determine the OCP 
behavior past 50 hours. 

 
• Polished surfaces were more susceptible to corrosive attack compared to their unpolished 

counterparts.  Additional replicates must be tested to confirm this result and further work 
needs to be done to identify the exact corrosion mechanisms. 
 

• XRD confirmed the presence of corrosive-attack inducing carbide precipitates as well as 
corrosion inhibiting chromium, but peak quantification as well as energy dispersive x-ray 
spectroscopy must be performed to determine the extent of the effect that these species 
have on the corrosion potential of each specimen. 
 

• The sensitization/etching process provided the most consistently smooth surface of all 
printed specimens evaluated without the need for manual smoothing via grinding, polishing, 
or other methods. 
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Data Supporting the Final Report 

 
Data from this project is stored within folders at the following file path: 
 
T:\Jobs\DO\_NonFeature\Science and Technology\2020-PRG-Corrosion Reliability of Additively 
Manufactured 316L Stainless Steel 

• Point of Contact: Stephanie Prochaska, sprochaska@usbr.gov, 303-445-2323 
• Data saved for this project includes x-ray diffraction peaks, raw profilometry measurements, 

micrographs of the specimens in multiple magnifications, and raw open circuit potential 
data.  Data file types are .CSV, .PNG, .TIF, and .PAR. 

• Data was predominantly collected in the Hildreth Research Laboratory at the Colorado 
School of Mines between January and September 2020. 

• Keywords:  x-ray diffraction, profilometry, open circuit potential, additive manufacturing, 
microstructure, micrograph 

• Approximate total size of all files: 523 MB 
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