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Executive Summary 

Problem Statement 
Precipitation and streamflow extremes are critical parameters in Reclamation’s water resources 
planning, due to both the management threats and opportunities that they provide, as well as their 
importance to ecosystems and endangered species. Given climate variability and change, 
Reclamation needs non-stationary tools to help it characterize these extremes, to improve its 
water management and planning. 

Research Activities and Results  
This project set out to investigate non-stationary tools to characterize extreme precipitation 
events, first by identifying the drivers of precipitation anomalies, and then by modeling their 
characteristics. These tools were demonstrated for monsoon precipitation in New Mexico.  
Monsoons represent a water source that is likely going to continue to grow in importance for 
water management in the U.S. Southwest, but is also a water source that has been challenging to 
forecast seasonally and to project into the future. 

This research has four main components: (1) Examine the variability and trends of precipitation 
extremes, (2) Identify weather types associated with precipitation anomalies, (3) Statistically 
model extreme precipitation using the weather type information, and (4) Develop a generalized 
framework to identify intersections between changing hydrology and water management. The 
components are developed and demonstrated in New Mexico (NM) river basins (e.g., Rio 
Grande and Pecos), but the general approaches are transferable Reclamation-wide. 

Weather types (WTs) are shown to be an effective way to characterize the large-scale conditions 
that drive precipitation variability and trends. Coupling this dynamical understanding with 
statistical approaches based on Extreme Value Theory allowed for the modeling of the 
characteristics of extreme precipitation events, such as the frequency and magnitude, which are 
of interest to water managers. These tools were applied to observations to understand recent 
variability and trends, and were also used with an ensemble of climate model projections to 
characterize likely future changes in extreme precipitation events associated with NM monsoons.  

Future Plans 
From these encouraging results, two new research questions arose: First, can WTs be used to 
forecast monsoon precipitation on other time scales, such as from seasonal to decadal? To 
answer this, there is a need to evaluate the skill of the WT circulation patterns in forecast 
products. Second, what is the potential value of monsoon forecast information for water 
managers? It would be useful to develop a systematic framework to test a range of probabilistic 
forecast scenarios for a water system, with the goal of assessing the sensitivity of the watershed 
hydrology and management to monsoon predictability. These research questions are 
complementary to ongoing Reclamation activities that are focused on improving snowmelt-
runoff forecasts. 
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Main Report 
Problem Statement 
Precipitation and streamflow extremes are critical parameters in Reclamation’s water resources 
planning, due to both the management threats and opportunities that they provide, as well as their 
importance to ecosystems and endangered species. Given climate variability and change, 
Reclamation needs non-stationary tools to help it characterize these extremes, to improve its 
water management and planning. This research was guided by two overarching questions and 
associated hypotheses: 

(1) How can we better detect and interpret the variability and trends of hydrologic extremes? We 
hypothesize that weather types can help to interpret the variability and trends detected in 
historical hydrologic records.  

(2) How can we incorporate this understanding into non-stationary tools that support flexible 
water management and improved planning?  We hypothesize that statistical tools, such as 
Extreme Value Theory (EVT), can be used with weather type information to enable non-
stationary estimates of the frequency and magnitude of extreme threshold exceedances.  

Research Activities and Results  
This research has four main components: (1) Examine the variability and trends of precipitation 
extremes, (2) Identify weather types associated with precipitation anomalies, (3) Statistically 
model extreme precipitation using the weather type information, and (4) Develop a generalized 
framework to identify intersections between changing hydrology and water management. The 
components are developed and demonstrated in New Mexico (NM) river basins (e.g., Rio 
Grande and Pecos), but the general approaches are transferable Reclamation-wide. The main 
approach and findings from each component are detailed below. 

For the first component, we examine recent variability and trends in precipitation characteristics 
within the state of New Mexico and southern Colorado, with a focus on the Rio Grande and 
Pecos basins. To determine how changing precipitation could potentially help to mitigate 
decreasing water supply, we examine both magnitude and frequency of daily precipitation 
characteristics for the warm season, defined here as June 1 to October 31 (June - October) and 
individual months therein, with a focus on the upper quantiles and extremes within the period 
1981 to 2017. We find that the dominant sign of the precipitation trend depends on the 
season/month examined. Negative trends dominate if we examine the entire warm season (i.e., 
June-October), as well as during the individual month of June, and August, while positive trends 
dominate July and for some September indicators. However, the majority of locations in the 
study area do not show any significant trends. The increasing trends for the July indicators show 
the most potential for water supply, with the location of these significantly positive trends mainly 
concentrated in the southeastern and eastern part of the study region, relevant to the Pecos basin. 
The frequency of days above the 99th daily precipitation quantile for September also shows 
increasing trends at some southern and southeastern locations, but this heavy precipitation could 
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be difficult to capture for water supply. However, across most of the upper quantile and extremes 
characteristics examined, we find that significant trends are more detectable in the frequency 
indicators than in the magnitude indicators. The outcomes of this component were published in 
the proceedings of the Western Snow Conference. This publication is provided in Appendix A: 
“Extremes of opportunity: Examining recent trends in warm season extreme precipitation for 
New Mexico river basins,” (Pournasiri Poshtiri et al. 2018). 

The second component uses a clustering algorithm to identify distinct atmospheric circulation 
patterns, or weather types (WTs), associated with NM precipitation anomalies. To identify the 
WTs, three large-scale variables (precipitable water, sea level pressure, and wind speed) are 
selected and examined over the state of NM. Four hydrologically important weather types that 
occur during NM’s warm season (June through October) are identified as follows: WT1 and 
WT2 are associated with dry conditions, while WT3 and WT4 are associated with wet 
conditions. WT4 represents the North American Monsoon and contributes more than 50% to the 
warm season precipitation, including the majority of the heaviest precipitation events (~60%). 
WT3 contributes about a third of the warm season precipitation, and has less intense 
precipitation than WT4. The analysis shows that NM has experienced a decrease in average daily 
precipitation from 1980 to 2010, mostly caused by a change to more frequent dry weather types 
and decreasing precipitation rates in two of the four WTs. We examine WT frequency in a large 
ensemble climate projection dataset, and find that the model is able to reproduce the WT 
climatology well, despite not being able to resolve the actual monsoon processes and 
precipitation. In the future, the large ensemble median shows a decrease in the frequency of WT4 
days (the wetter monsoon days) until about 2050 (-5%), mostly in August, September, and 
October. This is followed by increasing frequency until the end of the century (+15%), mostly 
occurring in June, July, September, and October. The processes that trigger these nonlinear 
changes are unclear but additional model experiments show that they are caused by increasing 
greenhouse gas forcing rather than changes in aerosols or land use. However, both large-scale 
dynamic and thermodynamic changes suggest more monsoonal rainfall in New Mexico in the 
second half of the century. A manuscript containing pertinent data and results pertaining to this 
component has been finalized and submitted to a refereed journal. The title is: “The Changing 
Character of the North American Monsoon and its Impacts on New Mexico’s Precipitation”, by 
Andreas F. Prein. The principal investigator of this work will update this section to include the 
submitted manuscript once the journal peer review process has been resolved and information is 
ready for public dissemination. There is a placeholder for this manuscript in Appendix B.  

The third component was to statistically model extreme precipitation using the WT information. 
An Extreme Value Theory (EVT) model is developed using daily precipitation extremes in the 
Rio Grande Watershed. Specifically, the Point Process (PP) approach is used, which is a unified 
framework for modeling the frequency and magnitude of extremes above a threshold using the 
Poisson and Generalized Pareto (GP) models, respectively. Incorporating the wet WT covariates 
in the PP model improves the fit: the number of WT4 days is included as a covariate in the 
location parameter and the number of WT3 days in the scale parameter. When the PP model is 
applied in a downscaling context using the large ensemble climate projection dataset, the 
frequency of having an extreme precipitation event increases after 2050, which is consistent with 
the increase in WT4 days.  No change is seen, however, in the magnitude of extremes.  The 
accepted manuscript containing pertinent data and results pertaining to this component is 
included in Appendix C: “Extreme-value analysis for the characterization of extremes in water 
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resources: A generalized workflow and case study on New Mexico monsoon precipitation”, by 
Erin Towler, Dagmar Llewellyn, Andreas Prein, and Eric Gilleland.  

The fourth component was to develop a generalized approach to identifying potential 
intersections between changing hydrology and water management. The first step is to articulate 
management vulnerabilities and opportunities. The second step is to quantify current water 
contributions from sources that may provide the hydrologic opportunity. Next, it is important to 
identify key climatic and atmospheric drivers of the hydrologic opportunity, and finally, it is 
necessary to explore the opportunity-management nexus. The framework is demonstrated using 
the Middle Rio Grande Basin of New Mexico and its downstream delivery point, Elephant Butte 
Reservoir. In Step 1, we articulate how NM’s water supplies are vulnerable to decreasing 
snowpack, but also that the summer monsoon season could offer a potential, currently under-
developed, water supply opportunity. In Step 2 we examine historical Elephant Butte Reservoir 
inflows and find that although monsoon season volumes vary from year-to-year, they are an 
important contribution to annual water supply. Further, we find that the upper percentile inflows 
contribute a disproportionately larger fraction of the monsoon volume relative to their frequency 
of occurrence. Step 3 examines possible climate and atmospheric drivers for different 
characteristics of monsoon season interannual variability, finding that most monsoon inflow 
characteristics show a strong association with average precipitation over the contributing 
watershed and atmospheric precipitable water. In Step 4 we suggest how this information could 
be integrated into existing planning and operations for the Rio Grande Basin. The outcome of 
this component was peer reviewed and published in the proceedings of the Federal Interagency 
Sedimentation and Hydrologic Modeling Conference (SEDHYD). This publication is provided 
in Appendix D: “Extremes of Opportunity? A generalized approach to identify intersections 
between changing hydrology and water management,” (Towler et al. 2019).  

Appendix E to this report provides a complete list of the research products for each component, 
including the papers, presentations, and outreach efforts. 

Summary Findings and Future Plans 
This project set out to investigate non-stationary tools to characterize extreme precipitation 
events, first by identifying the drivers of precipitation anomalies, and then by modeling their 
characteristics. These tools were demonstrated for monsoon precipitation in New Mexico.  
Monsoons represent a water source that is likely going to continue to grow in importance for 
water management in the U.S. Southwest, but is also a water source that has been challenging to 
forecast seasonally and to project into the future. 

WTs are shown to be an effective way to characterize the large-scale conditions that drive 
precipitation variability and trends. Coupling this dynamical understanding with statistical 
approaches based on Extreme Value Theory allowed for the modeling of the characteristics of 
extreme precipitation events, such as the frequency and magnitude, which are of interest to water 
managers. These tools were applied to observations to understand recent variability and trends, 
and were also used with an ensemble of climate model projections to characterize likely future 
changes in extreme precipitation events associated with monsoons in New Mexico.  
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From these encouraging results, two new research questions arose: First, can WTs be used to 
forecast monsoon precipitation on other time scales, such as from seasonal to decadal? To 
answer this question, there is a need to evaluate the skill of the WT circulation patterns in 
forecast products. This could be assessed using existing seasonal forecast ensembles, such as the 
North American Multi-Model Ensemble (NMME). Second, what is the potential value of 
monsoon forecast information for water managers? It would be useful to develop a systematic 
framework to test a range of probabilistic forecast scenarios for a water system, with the goal of 
assessing the sensitivity of the watershed hydrology and management to monsoon predictability. 
These research questions are complementary to ongoing Reclamation activities that are focused 
on improving snowmelt-runoff forecasts. Future plans include explicitly linking monsoon-based 
forecasts with spring-runoff forecasts being developed in another Reclamation-funded Science & 
Technology Program project, “Improving the resiliency of southwestern US water supply 
forecasting in the face of climate trends and variability” (S&T Project 8117), being conducted by 
PI Llewellyn and NCAR colleagues. 

	  



ST-2019-1782-01 

15 

 

References 
Pournasiri Poshtiri M, Towler E, Llewellyn D, Prein AF (2018) Extremes of opportunity: 
Examining recent trends in warm season extreme precipitation for New Mexico river basins, 
86th Western Snow Conference, Albuquerque, NM, 
https://westernsnowconference.org/files/PDFs/2018Poshtiri.pdf. 

Towler E, Llewellyn D, Barrett L, Young R (2019) Extremes of Opportunity? A generalized 
approach to identify intersections between changing hydrology and water management. 
Proceedings of the Federal Interagency Sedimentation and Hydrologic Modeling Conference 
(SEDHYD), Reno, NV, 
https://www.sedhyd.org/2019/openconf/modules/request.php?module=oc_program&action=vie
w.php&id=160&file=1/160.pdf. 

 

 





 

 A–1 

Component 1 Paper 

Extremes of Opportunity: Examining Recent Trends in Warm Season 
Extreme Precipitation for New Mexico River Basins 

Maryam Pournasiri Poshtiri1, Erin Towler1, Dagmar Llewellyn2, and Andreas Prein1 

1 National Center for Atmospheric Research (NCAR), Boulder, CO 

2 Bureau of Reclamation, Albuquerque, NM 

Paper published in the Proceedings of the Western Snow Conference 2018 

Abstract 

We explore recent trends in precipitation characteristics within the state of New Mexico and 
southern Colorado, relevant to the Rio Grande and Pecos basins, where increasing temperatures 
and decreasing snowpack threaten to reduce the water available for storage and use. To 
determine how changing precipitation could potentially help to mitigate decreasing water supply, 
we examine both magnitude and frequency of daily precipitation characteristics for the warm 
season (June - October) and individual months therein, with a focus on the upper quantiles and 
extremes within the period 1981 to 2017. We find that the dominant sign of the precipitation 
trend depends on the season/month examined. Negative trends dominate warm season, June, and 
August, while positive trends dominate July and for some September indicators. However, the 
majority of locations in the study area did not show any significant trends. The increasing trends 
for the July indicators show the most potential for water supply, with the location of these 
significantly positive trends mainly concentrated in the southeastern and eastern part of the study 
region. The frequency of days above the 99th daily precipitation quantile for September also 
shows increasing trends at some southern and southeastern locations, but this heavy precipitation 
could be difficult to capture for water supply. However, across most characteristics examined, 
we find that significant trends are more detectable in the frequency indicators than in the 
magnitude indicators. As such, for times and locations showing increasing trends, this suggests 
that water managers looking to exploit changes in precipitation might not need to plan for larger 
events, but rather for more frequent events. 

Introduction 

In many river basins in the Western United States, winter snowmelt provides the primary supply 
of water, with warm season precipitation as a secondary source (Serreze et al., 1999). However, 
decreases in snowpack have already been observed (Mote et al., 2005; Chavarria, 2017) and 
climate models project that these trends will continue (Solomon et al., 2007). This suggests that 
warm season precipitation may provide a more substantial contribution to water supply. 
However, it is generally thought that increasing greenhouse gases will increase heavy 
precipitation. Thus, to investigate if warm season precipitation events might present 
opportunities to mitigate the impacts of decreasing snowmelt, it is necessary to understand the 
changing precipitation characteristics, especially the extremes. The goal of this paper is to 
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investigate trends in precipitation, with a focus on the upper quantiles and extremes, to determine 
how changing precipitation could potentially help to mitigate the impacts of decreasing 
snowpack on water supply. This is of particular interest in the arid U.S. southwest, where water 
resources are strained (Pournasiri Poshtiri & Pal, 2016). As such, we provide a case study 
example relevant to New Mexico river basins, including the Rio Grande and Pecos basins, where 
some evidence suggests that the strength of the summer monsoon may increase (e.g., Asmerom 
et al., 2013) and there may be opportunities to exploit changes in precipitation for water 
management (Gutzler, 2013, Llewellyn & Vaddey, 2013). 

Data and Methods 

This study focuses on the state of New Mexico and southern Colorado (Longitude: 109 to 103 W 
& Latitude: 32 to 38 N, and see Figure 3), which includes the Rio Grande and Pecos basins. We 
use gridded daily precipitation data from PRISM Gridded Climate Data Group 
(prism.oregonstate.edu), downloadable from 
http://www.prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf. The 4 km daily 
precipitation data is processed by averaging 10 x 10 grid cells, resulting in 225 cells total. We 
examine data from 1981-2017, with a focus on the warm season, here defined as June through 
October. This is when most of the direct precipitation that falls on New Mexico is associated 
with summer monsoons and remnant tropical storms. 

For precipitation, we examine both magnitude and frequency characteristics. For magnitude, we 
examine five precipitation magnitude indicators for the upper (higher value) quantiles: q50, q75, 
q90, q95, and q99 (i.e., the 50th percentile to the 99th percentile), as well as the average (avg) 
and maximum (max) values. For each magnitude indicator, we construct a time series of the 
daily value for each year’s warm season (or individual month) in each grid cell. For frequency, 
we consider five thresholds of the upper quantiles (i.e., q50, q75, q90, q95, and q99), which are 
calculated over the entire precipitation record for the warm season (or individual month) in each 
grid cell. Consequently, we define the frequency indicators as the time series of the number of 
days above each of the thresholds in each grid cell.  

To identify if there is a monotonic temporal trend in the magnitude, we use the nonparametric 
Mann-Kendall test (Kendall, 1975, Mann, 1945); this is done for the magnitudes for each 
precipitation indicator at each grid cell. To identify if there is any trend in the frequency of days 
above the threshold, we use Poisson regression.  Poisson regression is used because the response 
variables are in the form of count data and are discrete (e.g., Dobson & Barnett, 2008, Fox, 
2015).  For both, we consider trends with p-values <0.05 as statistically significant. 

Results and Discussion 

In this section, we discuss the trend results, compare the trends in magnitude and frequency, and 
examine the spatial trend patterns.   

Trend Results 

Trend results for the precipitation indicators over the warm season (June through October) and 
each individual month are presented in Table 1. The tables summarize the percentage of grid 
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cells where the precipitation trends are statistically significant (p-values <0.05). For June-
October, we see that for both magnitude and frequency, for q90 and higher, the significant 
negative (drying) trend dominates. However, the percentages are not that high: the maximum 
percent of cells showing drying for the magnitude and frequency indicators are 13% and 50%, 
respectively. June and August show similar drying trend results. Conversely, July differs by 
showing more increasing trends, especially for the q50 indicators (45% and 56% for magnitude 
and frequency indicators, respectively). We point out that many grid cells have a q50 of zero 
(i.e., more than half the days don’t receive any precipitation), so for this, the trend increase 
indicates an increase in the non-zero precipitation days. For July, we also see that positive 
(wetter) trends dominate all of the July frequency indicators. Most of September and October 
indicators don’t have many cells with significant trends (many indicators detect trends at less 
than 5% of the grid cells), with a notable exception: in September, the q99 frequency indicator 
shows an increasing trend at 22% of the grid cells. However, it is important to note that the 
majority of locations in the study area did not show any significant trends. Further, this study 
focuses on trends in the recent period (1981-2017), but it has been shown that trends are 
dependent on time period analyzed (Pournasiri Poshtiri & Pal, 2016).       

Comparing the trend in magnitude and frequency characteristics 

Figure 1 compares the percent of grid cells with statistically significant negative trends between 
the magnitude and frequency quantile indicators. In June-October (Figure 1A), June (Figure 1B), 
and August (Figure 1D), we see that across quantiles, there is a higher percentage of grid cells 
with negative trends in frequency than in magnitude (i.e., the red bars are higher than the orange 
bars). There is one exception for q99 in June (Figure 1B), where magnitude (orange bar) displays 
a higher number of grid cells with a negative trend than frequency (red bar). In short, the trend is 
more detectable in the frequency of extreme precipitation rather than the magnitude, in 
agreement with the recent study by Mallakpour & Villarini (2017). As previously mentioned, we 
don’t see dominant negative trends in July (Figure 1C), September (Figure 1E), nor October 
(Figure 1F), and this is reflected in the both frequency and magnitude bars. 

We do see some positive trends for July and September (Table 1), so Figure 2 compares the 
percent of grid cells with statistically significant positive trends for these two months. We clearly 
see the dominant positive trend in July across all indicators (Figure 2A) and dominant positive 
trend for q50 and q99 in September (Figure 2B). This shows how in recent years, the sign of the 
precipitation trend is sensitive to the season or month examined. In the next section, we explore 
the spatial patterns of the precipitation trends during June-October as well as July and 
September.  
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Table 1. Percentage of grid cells with a statistically significant trend (p-values <0.05) for each precipitation 
indicator. +Sig indicates a statistically significant increasing (wetter) trend, and -Sig indicates a statistically 
significant decreasing (drying) trend. Bold values indicate where the percentage of grid cells is greater than 5% and 
is also higher than that of the opposite sign.  

 

Characteristic Indicator June-October June July August September October 

+Sig -Sig +Sig -Sig +Sig -Sig +Sig -Sig +Sig -Sig +Sig -Sig 

Magnitude 

avg 0.89 5.8 0 24 4.0 0 0 17 0 0 0 0 

q50 19 5.3 4.4 4.9 45 0 4.0 14 8.4 2.7 0 0.44 

q75 2.7 4.0 0.44 17 11 0 0 19 0 0.44 0 0 

q90 0 11 0 27 2.7 0 0 20 0 3.1 0 0 

q95 0.44 13 0 28 4.0 0 0.44 17 0 0.44 0 0 

q99 5.3 8.9 0.44 19 2.7 0 1.3 10 0.44 0.89 0.44 6.2 

max 3.6 6.7 0.44 18 3.6 0.44 1.8 8.0 1.3 1.3 0.89 7.6 

Frequency 

q50 28 26 8.4 31 56 0 7.6 21 7.6 7.6 5.8 0.89 

q75 3.1 39 3.6 37 28 3.6 0 26 0.44 2.7 2.7 0.89 

q90 0.89 50 0 43 13 5.8 0 32 0 4.9 0 5.3 

q95 0.44 39 0 40 15 3.1 1.3 27 4.9 1.3 0 10 

q99 5.8 13 0 16 12 3.6 0.89 10 22 1.8 0.89 13 
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Figure 1. Percent of grid boxes with statistically significant negative (drying) trends (p-values <0.05, Table 1) for 
different quantiles of the magnitude and frequency precipitation indicators. 

 

Figure 2. Percent of grid boxes with statistically significant positive (wetter) trends (p-values <0.05 , Table 1) for 
different quantiles of the magnitude and frequency precipitation indicators for July and September. 

Examining the spatial trend patterns 

In this section, we illustrate the spatial patterns in the magnitude and frequency of the indicators 
for June-October (Figure 3), July (Figure 4), and September (Figure 5) within the study region. 
These figures show that the spatial pattern of both increasing and decreasing trends vary across 
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the different quantiles and seasons/months. Over the warm season (Figure 3), the regions in the 
northwest and southwest exhibit the strongest decreasing trends, which is more notable in 
frequency for q75, q90, and q95 (Figure 3 B-D). On the other hand, positive trends are observed 
from the southern regions to the central parts for q50 (Figure 3A), while it is concentrated in a 
few areas over the east for q75 (Figure 3B) and q99 (Figure 3E). In July, q50 (Figure 4A) shows 
positive trends over much of the domain except in the west and northwestern parts. As we move 
from lower quantile (i.e., q50, Figure 4A) to higher quantiles (i.e., q99, Figure 4E), the spatial 
coverage decreases and positive trends are more concentrated in the southern part with some 
speckling to the north. The locations of the positive trends in September for q99 (Figure 5E) and 
q50 (Figure 5A) tend to be concentrated in the southern regions. Results indicate that increasing 
trends in precipitation are more widespread over the southeast and northeast, likely due to 
moisture coming in from the Gulf of Mexico. Further, the increasing trends seen in the warm 
season are probably coming mainly from July and September contributions. 

Figure 3. Spatial trend pattern in magnitude (top row) and frequency (bottom row) precipitation indicators for the 
warm season (June – October). The blue (red) areas indicate the location of the stations with increasing (decreasing) 
trends (p-values <0.05).  

Figure 4. Spatial trend pattern in magnitude (top row) and frequency (bottom row) precipitation indicators for July. 
The blue (red) areas indicate the location of the stations with increasing (decreasing) trends (p-values <0.05). 
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Figure 5. Spatial trend pattern in magnitude (top row) and frequency (bottom row) precipitation indicators for 
September. The blue (red) areas indicate the location of the stations with increasing (decreasing) trends (p-values 
<0.05). 

Conclusions 

In this study, we explore the trends in precipitation magnitude and frequency characteristics 
within the state of New Mexico and southern Colorado, relevant to the Rio Grande and Pecos 
basins. We examine both magnitude and frequency characteristics for the warm season (June - 
October) and individual months therein, with a focus on the upper quantiles and extremes. The 
purpose of this study is to determine how changing precipitation could potentially help mitigate 
decreases in water supply due to increasing temperatures and decreasing snowpack. For the 
period analyzed (1981-2017), we found that the dominant sign of the precipitation trend depends 
on the season/month examined. Negative trends dominate warm season, June, and August, while 
positive trends dominate July and for some September indicators, although the majority of 
locations in the study area did not show any significant trends. This suggests that the increasing 
trends across many of the July indicators show the most potential for water supply, with the 
location of these positive trends mainly concentrated in the southeastern and eastern part of the 
state. The frequency of days above q99 for September also showed increasing trends at some 
southern and southeastern locations, but this very heavy precipitation could be difficult to 
capture for water supply. However, across most characteristics examined, we find that significant 
trends are more detectable in the frequency indicators than the magnitude. For times and 
locations showing increasing trends, this suggests that water managers looking to exploit 
changes in precipitation might not need to plan for larger events, but rather more frequent events. 
Finally, we note that trend analysis provides important insight for water managers, especially in 
terms of where to focus further analysis. To this point, it is also critical to understand the drivers 
of the trends. In future work, the authors plan to investigate some of the factors that may be 
contributing to these trends, such as large-scale climate phenomena (e.g., the El Nino Southern 
Oscillation) or changes in the frequency of weather conditions (e.g., Prein et al., 2016).  
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Component 2 Paper Placeholder 

The second component of the research project was to identify weather types (WTs). A 
manuscript containing pertinent data and results pertaining to this component has been finalized 
and submitted to a refereed journal. The principal investigator of this work will update this 
section to include the submitted manuscript once the journal peer review process has been 
resolved and information is ready for public dissemination. This is the placeholder for the 
manuscript. The abstract is included below: 

The Changing Character of the North American Monsoon and its Impacts on 
New Mexico’s Precipitation 

By Andreas F. Prein, National Center for Atmospheric Research 

Abstract:  

The North American Monsoon (NAM) contributes up to 60 % to New Mexico’s annual 
precipitation. With progressing climate change, monsoon precipitation will become even more 
important since spring and summer runoff from melting snowpack is decreasing with increasing 
warming. Here I identify four hydrologically important warm-season weather types (WTs) and 
aim to understand how their changes alternate New Mexico’s precipitation. Observations show 
that New Mexico experienced a 15 % precipitation decrease between 1980 to 2010, which is 
caused by a shift towards more frequent dry WTs (-2 % per decade) and decreasing precipitation 
rates in two of the four WTs (-3 % per decade). Data from a regional and a global climate model 
ensemble show that the observed trends in WTs are likely caused by natural climate variability 
rather than anthropogenic climate change. However, future climate projections show a forced 5% 
decrease in monsoonal flow days until mid 21st century and a rapid increase thereafter resulting 
in 15% more monsoonal flow days at the end of the century compared to 1990–2019. The 
processes that trigger these nonlinear changes are unclear but they are caused by increasing 
greenhouse gas forcing rather than changes in aerosols or land use. How this will affect New 
Mexico’s warm-season precipitation is uncertain. All models overpredict precipitation on dry 
WT days by more than 100%, which reduces the future wetting that should result from more 
frequent monsoonal flow days. Changes in precipitation rates strongly depend on the global 
climate model but higher resolution regional models increase future precipitation rates compared 
to their coarse-resolution counterparts. 
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Component 3 Paper 

Extreme-value analysis for the characterization of extremes in water 
resources: A generalized workflow and case study on New Mexico monsoon 

precipitation 

Erin Towler1, Dagmar Llewellyn2, Andreas Prein1, Eric Gilleland1 

1 National Center for Atmospheric Research, Boulder CO  

2 U.S. Department of Interior, Bureau of Reclamation, Albuquerque, NM (Opinions expressed 
represent professional opinions of the co-author, not official positions of the government) 

Paper accepted for publication in Weather and Climate Extremes 

Abstract 

Water managers need non-stationary tools to better characterize precipitation extremes. 
Statistical approaches based on extreme value theory (EVT) are increasingly being used, but few 
end-to-end generalized workflows are available. In this paper, a step-by-step framework is 
demonstrated for developing an EVT model that considers the influence of dominant weather 
patterns on precipitation extremes in a watershed. Specifically, the Point Process (PP) model is 
utilized, which is a unified statistical framework for modeling the frequency and magnitude of 
extremes above a threshold. Because threshold selection can be subjective, a demonstration of 
how to go about selecting a threshold is provided; in particular, by examining a range of 
thresholds. The workflow is applied to daily precipitation from the Rio Grande watershed in 
New Mexico. In this arid watershed, extreme precipitation events substantially contribute to total 
runoff. An improved understanding of the drivers and extent of changes in extreme precipitation 
is essential for water resource and risk management. In addition to a stationary PP model without 
covariates, several covariates are examined for inclusion in the location and scale parameters. 
The significance of including the covariates is assessed, as well as several additional criteria, 
including if the covariate(s) make intuitive sense and if it is a good candidate for statistical 
downscaling (i.e., methods that relate large-scale variables to the local scale). A final PP model 
is selected that includes the wet weather types in the location and scale parameters. This model is 
applied in a downscaling context using a large ensemble of climate projections, which shows that 
the frequency of exceeding a high threshold increases after 2050, but the conditional likelihood 
of exceeding the maximum observed precipitation stays relatively constant. 

1. Introduction 

Precipitation extremes are of particular importance to water resources, because of both the 
management threats, such as flooding, and potential opportunities, such as water supply, that 
they provide. Given climate variability and change, water managers need non-stationary tools 
that can better characterize precipitation extremes, and changes in patterns of extreme 
precipitation over time. Dynamical modeling tools such as the Weather Research and 
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Forecasting (WRF) model (Skamarock et al. 2005, Powers et al. 2017) with kilometer-scale 
horizontal grid spacing have been used to examine heavy precipitation (e.g., Mahoney et al. 
2013; Prein et al. 2013). However, high-resolution dynamical downscaling requires considerable 
expertise and computational power. Statistical approaches can be complementary to these 
dynamical models, as they are computationally inexpensive, and are quite flexible so that they 
can easily be transferred across applications and regions (Fowler et al. 2007).  

Extreme Value Theory (EVT, Coles 2001) is a statistical framework to evaluate and simulate the 
extremes of a distribution, and is well suited to the disciplines of hydrology and water 
management (Katz et al. 2002). Extremes in a dataset are typically examined in two ways: either 
using the block maxima approach, where the maximum values for a given time block are 
extracted from the time series, or the peaks-over-threshold (POT) approach, which analyses 
extremes that exceed a high threshold. The generalized extreme value (GEV) distribution is 
appropriate for fitting to block maxima data, and the approach has been applied widely in water 
resources. However, this approach has the disadvantage of ignoring multiple extremes that may 
have occurred during a given time block. The POT approach overcomes this limitation and 
allows for the analysis of all independent extremes data by fitting the generalized Pareto (GP) 
distribution. The point process (PP) model allows for inferring about the frequency and 
magnitude of values above a threshold.    

An advantage of EVT is that it is possible to account for non-stationarity; that is, its techniques 
can include predictors or covariates to vary the likelihood of the extremes. This approach can be 
useful for water managers to characterize their changing risk profiles, for instance, the shifting 
likelihood of an extreme based upon changing land surface or meteorological conditions. In this 
context, EVT can be applied as a form of statistical downscaling (Katz 2002). Statistical 
downscaling is a general term that refers to a range of methods that relate large-scale climate 
variables to local or regional variables. Maraun et al. (2010) provide a comprehensive overview 
of methods for downscaling precipitation under climate change, though most downscaling 
techniques have not been developed to target extreme precipitation, with EVT as the notable 
exception. Recent work has compared the skill of commonly used statistical downscaling 
techniques for water resources, not including EVT, which shows that most of the approaches do 
have some skill at estimating extremes, although the skill varies between techniques, and 
deficiencies remain (Gutmann et al. 2014).   

A multitude of software packages have made EVT accessible to more users (Gilleland et al. 
2013b) and detailed illustrative examples of how to apply software packages to diverse datasets 
are available (Gilleland and Katz 2016). This paper continues in this vein, providing a 
generalized workflow for applying EVT to precipitation extremes in a water resources context. 
Specifically, a PP model is developed and demonstrated that includes the influence of different 
weather types on the precipitation extremes in a watershed. Developing a PP model is a more 
complex EVT modeling approach, first because it is a POT approach that requires threshold 
selection and extremal independence, and second because it provides information about both the 
frequency and magnitude of extremes, which requires additional interpretation. Incorporating 
covariates to account for non-stationarity also adds complexity. However, these features also 
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make the PP a powerful approach, and our aim is to help users to think through its 
implementation in a systematic way. 

2. Statistical Methods: The Point Process (PP) Model 

In this paper, the PP characterization of extreme-value analysis (EVA) is adopted. The PP model 
allows for making inferences about both the frequency and intensity of extreme values. 
Following from Gilleland and Katz (2016), the non-homogeneous Poisson point process with 
intensity measure, Λ, on the set 𝐴 = (𝑡', 𝑡)) × (𝑥,∞) is given by: 

Λ(𝐴) = (𝑡) − 𝑡') ∙ 01 + 𝜉
𝑥 − 𝜇
𝜎

6
7'

89
∙ 𝐼(1 + 𝜉 ∙ (𝑥 − 𝜇)/𝜎 ≥ 0) 

where	−∞< 𝜇,	𝜉 < ∞	and	𝜎> 0	are location, shape and scale parameters, respectively, 𝐼(⋅)	is an 
indicator function that is zero if the argument is not true and one otherwise. Substituting [𝑡', 𝑡)] 
=[0,1] to represent one year (or season), and if the indicator function is 1, the Poisson rate 
parameter, 𝜆, can be calculated to obtain the frequency of exceeding a particular threshold, u: 	

𝜆 = 01 + 𝜉
𝑢 − 𝜇
𝜎

6
7'

89
 

To estimate the parameters of the PP model, maximum likelihood estimation (MLE) is used 
here; for a high threshold, u, the PP log-likelihood, ℓ, is estimated as:	

ℓ(𝜇, 𝜎, 𝜉; 𝑥' … 𝑥L) =																																																																																																																																						

															−𝑘	𝑙𝑛	𝜎	 − P'
8
+ 1Q∑ 01 + 8

S
(𝑥T − 𝑢)6

UVWX
L
TY' − 𝑛Z [1 +

8
S
(𝑢 − 𝜇)\

]^
_

, 

Where 𝑛Z  indicates the number of years of data and [∙]UVWX is the indicator function (as in 
equation 10 in Gilleland and Katz 2016). It is also possible to fit the generalized Pareto (GP) 
distribution to just the threshold excesses; estimating the frequency separately.  This approach is 
called the orthogonal approach, and while it is better to fit the entire PP model to the data so that 
all of the uncertainty in estimating these parameters is simultaneously accounted for, it is easier 
to fit the GP distribution to data, so it is used later in this paper to help inform the estimation of 
the PP model. 

The parameters can vary with covariates, or predictors, to account for non-stationarity. For 
example, the location parameter could be modeled as a linear function of a covariate, x: 

𝜇(𝑥) = 𝜇` + 𝜇'𝑥 , 

And similarly, the scale parameter can also be modeled with a covariate. Because the scale 
parameter must be positive everywhere, it is often modeled with a log-link function: 

ln 𝜎(𝑥) = 𝜙` + 𝜙'𝑥 
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It is also possible to add a covariate to the shape parameter, but given that the shape parameter 
estimates have large confidence intervals, it is assumed to be constant in time. Further, different 
functions (quadratic, nonlinear), or multiple covariates could be investigated. Here, the inquiry is 
limited to linear functions for simplicity.     

To test covariate significance, a likelihood-ratio test is used. From Coles 2001 (section 2.6.6), if 
a model 𝑀` is a sub-(i.e., nested) model of 𝑀', the deviance statistic, 𝐷, can be calculated from 
the maximized log-likelihoods for the models:  

𝐷 = 2[ℓ'(𝑀') − ℓ`(𝑀`)]	

If 𝐷 > 𝑐g, then 𝑀` can be rejected for 𝑀', where 𝑐g  is the (1 − 𝛼) quantile of the 𝜒j) 
distribution. The level of significance is 	𝛼, and the 𝜒j) distribution is the large sample 
approximation with degrees of freedom, 𝑘. Results from the likelihood-ratio test are shown as p-
values, and tested using 𝛼 = 0.05 and 𝛼 = 0.10. Models are also compared based on the Akaike 
Information Criterion (AIC) [Akaike, 1974], which can be calculated as: 

𝐴𝐼𝐶 = −2(ℓ) + 2𝐾	

Where ℓ  is the likelihood function estimate, and K is the number of parameters being estimated. 

3. Workflow Methodology 

This section provides the generalized workflow for fitting a non-stationary PP model to extreme 
precipitation in a water management context. Figure 1 shows the generalized workflow, which 
provides the outline for the below sections. All analyses are performed in the open-source R (R 
Core Team 2019) extRemes package (Gilleland and Katz 2016). In Gilleland and Katz (2016), 
functions for several diverse analyses are applied to different types of datasets. However, it does 
not follow an end-to-end workflow. Part of our contribution is to outline a step-by-step process 
that can provide guidance for estimating and interpreting the non-stationary PP model for water 
management and planning.  

3.1 Extract Independent Peaks over Threshold  

The first step towards developing a PP statistical model is to extract the extremes that will be 
fitted. As mentioned, to maximize the amount of data, a POT approach is adopted, which 
requires selecting a threshold. Selecting a threshold represents a tradeoff between minimizing 
bias and variance: if the threshold is too low, it will violate the statistical assumptions of EVT, 
leading to high bias, but if the threshold is too high, there will not be enough data remaining to 
effectively estimate the parameters, leading to high variance (Coles 2001). Several threshold 
selection diagnostic plots can aid in the selection, including the mean residual life plot and 
examining the model parameters across a range of thresholds (Coles 2001, and see Gilleland and 
Katz 2016 for extRemes commands). However, it is important to note that there is some 
subjectivity to threshold selection, and that several thresholds (or a range of thresholds) may be 
reasonable. As such, in this workflow a range of thresholds are examined.  
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Figure 1. Flow chart for fitting the Point Process (PP) model. 

 

Further, to produce realistic estimates of the uncertainty in estimating parameters and return 
levels, it is prudent to test the extreme data for independence, and make modifications to try to 
obtain independence if they are not. In water resources applications, which often involve 
meteorological data (e.g., precipitation), time series are often autocorrelated. As such, the data 
need to be tested for dependence, and declustered if necessary. Coles (2001) outlines ways to 
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diagnose the dependence, for instance using visual inspection, such as the auto-tail dependence 
function plot (atdf, Reiss and Thomas 2007), and the extremal index. The extremal index ranges 
between 0 and 1, with values closer to 1 indicating less dependence. Coles (2001) also discusses 
methods for declustering, which can be implemented readily in extRemes (see Gilleland and 
Katz 2016). In this workflow, examining the effect of declustering using the extremal index is 
recommended.   

3.2. Determine covariates  

A key to using EVT in a downscaling context is to identify appropriate covariates. Maraun et al. 
2010 summarize the key criteria, including that predictors must have high predictive power or 
explanatory power. It is important to note that covariate selection is to some extent subjective, 
and results are dependent upon predictor selection (Fowler et al. 2007). In a climate-change 
context, it is critical that the covariate is well-represented by the coarse-resolution dynamical 
model, and that the predictive relationship is thought to be constant, i.e., it does not change over 
time (Wilby et al. 2004). Simulating precipitation extremes directly is challenging because the 
physical processes responsible for them occur on very small scales (Seneviratne et al. 2012). 
However, climate models are able to skillfully reproduce large-scale circulation patterns (Flato et 
al. 2013), which can be an appealing covariate option. One popular approach in the downscaling 
literature has been to identify so-called “weather types”, which are recurring large-scale 
atmospheric patterns that are associated with precipitation (Maraun et al. 2010; Wilby et al. 
2004). In terms of water resources applications, this is a departure from the status quo, since 
most impact studies to date essentially use precipitation as a covariate; that is, precipitation is 
downscaled from coarser scales to finer scales (Guttman et al. 2014). However, this could be 
problematic given the uncertainty in simulating precipitation from climate models (Collins et al. 
2013), especially when it comes to extremes.    

3.3 Identify significant location parameter covariates 

The next step is to identify which, if any, location covariates improve the fit, and for what 
thresholds. For each threshold, the stationary PP model is fit to the data, i.e., without covariates, 
as well as the non-stationary PP model, i.e., where each covariate is tested for whether or not it is 
reasonable to include it as part of the model for the location parameter. The likelihood-ratio test 
is employed here to assess if including the location covariate is significant. This process is 
repeated for each threshold and each covariate. 

3.4. Identify significant scale parameter covariates  

The scale parameter affects the spread of the distribution. In this step, the significance of the 
scale covariate using the GP model is tested. Within the PP modeling framework, it is not 
necessary to explicitly fit the GP to the threshold excesses, rather the likelihood function for the 
PP can be maximized directly to estimate the parameters. However, the purpose of this step is to 
identify potential scale covariate candidates before developing the full PP model (i.e., in 
upcoming section 3.5). Hence, when looping through many covariates and thresholds, it is 
simpler to implement and interpret the GP model fit. As such, the stationary GP model and non-
stationary GP model are fit to the threshold excesses by incorporating the scale covariate, and the 
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likelihood-ratio test is used to assist in determining whether or not to include them in the final PP 
model. This procedure is repeated for each threshold and covariate.    

3.5. Test location and scale PP models  

The next step is to test the significance of a PP model that includes non-stationarity in the 
location and scale. Here, outputs from the previous two steps (3.3 and 3.4) can be used to inform 
what location and scale model combinations should be tested. From Section 3.3, only models 
with thresholds where the location parameter covariate is significant are tested further. Output 
from Section 3.4 is used as a diagnostic to identify which scale covariates should be tested with 
the location covariates from Section 3.3. The non-stationary PP model with a location covariate 
and a non-stationary PP model with a location and scale covariate are fit to the data, and the 
likelihood-ratio test and AIC values are used to help evaluate their importance in the model. The 
result is helpful at informing if including both the location and scale covariate in the model is 
significant for that threshold. 

3.6. Select final model(s)  

The final step is to examine the output from the prior step, and to select the final model(s). There 
is some subjectivity to this step, but it includes examining fit diagnostics, such as the quantile-
quantile plots (qqplots), which are readily created in extRemes (Gilleland and Katz 2016), as 
well as the AIC values. It is also important, here, to investigate whether or not the covariates are 
physically meaningful, as well as if they are suitable for downscaling, and to determine if they 
have utility for water management.    

4. Case Study Overview 

The Rio Grande watershed in New Mexico (NM) is used to demonstrate the generalized 
workflow. Similar to many water systems in the western United States, one key vulnerability for 
the Rio Grande is decreasing snowpack (Chavarria and Gutzler 2018), which has historically 
been the primary water source for NM. As such, water managers have a renewed interest in their 
secondary water source: warm-season precipitation. In summer, the central and southern parts of 
New Mexico are influenced by the North American Monsoon (Gutzler 2013; Adams and Comrie 
1997), which result in significant contributions to annual precipitation (Douglas et al. 1993). 
Towler et al. (2019) show that although monsoon season streamflow volumes vary from year-to-
year, they are an important contribution to annual water supply in NM. Further, most extreme 
precipitation in NM (Kunkel et al. 1999) as well as most observed flooding (Villarini 2016), 
occurs in summer.  Therefore, there is an interest in understanding the predictability of warm-
season precipitation characteristics, including extremes. Extremes are often considered for flood 
risk, but have been less explored in terms of potential opportunities for water supply, which is 
the primary interest here. From a water management perspective, extreme precipitation events 
from summer monsoon or remnant hurricanes are relevant for both operational planning, such as 
optimizing reservoir management, as well as for assessing the need for more temporary detention 
of water in downstream reaches, including within irrigation networks, so that water from an 
extreme event can be used over time, rather than simply flushed downstream. In this study, the 
focus is restricted to the monsoon season - July, August, and September - and remnant hurricanes 
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are not explicitly considered, which tend to provide occasional high contributions during the 
otherwise relatively dry month of October (Wood and Ritchie 2013).  

Daily precipitation data from PRISM Gridded Climate Data Group (prism.oregonstate.edu), 
downloadable from http://www.prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf 
are used. All of the points within the Rio Grande watershed upstream of the Elephant Butte 
Reservoir, a large- reservoir in south-central NM (Figure 2) are taken as a subset. The Rio 
Grande watershed extends into southern Colorado, but this region is excluded because it is the 
headwater of the basin, where most of the current water storage already exists to capture 
snowmelt runoff, and interest is centered on warm season moisture that occurs in, and could 
potentially be captured in, NM. Because of the interest for water supply, it is the extreme values 
across the watershed that are of primary interest, so the daily precipitation are spatially averaged.  
For assessing local risk, it is not a good idea to first average data before looking at extremes.  
However, accounting for spatial dependence in the extreme values is a challenging task that is 
computationally very intensive.  Therefore, utilizing a spatial average allows for gleaning a 
picture of extremes in a climatological sense over the entire region. The daily spatial averages in 
each year’s monsoon season July-September are investigated, resulting in 92 days per year. Data 
are available from 1981-2018 (38 monsoon seasons). Figure 2 shows how most of the 
differences in precipitation climatology (Figure 2b) are related to orography (Figure 2a). An 
alternative to taking the spatial average that would be more conservative would be to take the 
spatial maximum; this would be more appropriate if the primary interest was in flood risk, rather 
than potential opportunities for water supply, which is the primary interest here. 

 

Figure 2. Rio Grande watershed above Elephant Butte Reservoir (red outline) in New Mexico (bold black line) 
showing a) orography and b) average daily precipitation for the monsoon season (July-September) from 1981-2018. 



 

 C–9 

5. Results 

In this section, the results for each step of the workflow are demonstrated, as applied to the NM 
Rio Grande watershed. 

5.1. Extracting the Independent POT 

The first step is to extract the POT data, which in this case come from the daily monsoon 
precipitation data described in Section 4. Figure 3 shows the daily precipitation for each year’s 
monsoon season over the NM Rio Grande watershed. Horizontal lines show several quantiles: 
Q91 is 5.0 mm, Q95 is 7.0 mm, and Q99 is 11.9 mm. The maximum value (Q100) is 25.7mm. 
For threshold selection, the PP model is fit to data across a range of thresholds and how the fitted 
parameters vary is checked (Supplemental Figure 1). For all three of the parameter estimates, 
these quantile values, including the uncertainty bounds, do not change much using thresholds 
from 4mm to 12mm, though it starts to change after 13mm. This result is backed up by the 
qqplots, which show 4mm to be a reasonable choice, while the qqplot is less straight for 13mm 
(Supplemental Figure 2); this degrade in fit diagnostic is to be expected as the sample size 
decreases. Although it is desired to pick a lower value to maximize the sample size, the exact 
threshold value to select is somewhat subjective. For this study, the Q91(=5.0 mm) is selected as 
a minimum, so the range of thresholds from 5 mm to 12 mm by 0.5 mm increments are 
examined. 

 

Figure 3. Monsoon (July-September) daily precipitation averaged over the New Mexico Rio Grande watershed from 
1981-2018. Horizontal lines are select quantiles: Q91=5.0mm (blue), Q95=7.0mm (orange), and Q99=11.9 mm (red). 

While not important for estimating the parameters themselves, the estimated uncertainty will be 
too low if the data above the threshold are not independent. Because daily precipitation data are 
often highly autocorrelated, it is prudent to test for dependence. As expected, visual inspection 
using the auto-tail dependence function plot (atdf) showed that there is some dependence in the 
tails (see Supplemental Figure 3) and that the dependence should be accounted for in the 
analysis. The extremal index is also examined, which is a more automated approach for testing 
the effect of declustering. Using the runs method for declustering (see Coles, 2001 sec. 5.3.2), 
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implemented in the extRemes package, the extremal index is calculated for the raw and 
declustered data. For every threshold tested below 12mm, the extremal index increases/improves 
(the extremal index for the 12mm threshold stays constant at 1; see Supplemental Table 1). 
Further, the PP stationary model is fitted with the original and declustered data, and compared 
using the AIC; the result showed that the declustered data resulted in lower AIC (better fit) for 
every threshold despite reducing the data retained (see Supplemental Table 1). Hence, all 
subsequent results use the declustered POT data.   

5.2. Determining the Covariates 

As mentioned in Section 3.2, it is important to select covariates based on their predictive and 
explanatory power, as well as how well they are represented in climate models. One appealing 
option that has gained credibility in climate-change studies is to use large-scale circulation 
patterns (Christensen et al. 2013). This approach is particularly attractive in regions and seasons, 
such as NM during mid- to late-summer, where large-scale climate oscillations, such as the El 
Niño–Southern Oscillation, provide limited opportunities for improving weather predictability 
(Vigaut et al. 2017). In a companion study, Prein (2019) identifies four hydrologically important 
weather types that occur during NM’s warm season. The algorithm is identical to Prein et al. 
2016 and 2019 and maximizes the skill of differentiating precipitation anomalies and extreme 
precipitation events over NM by iterating over four different domain sizes focused on NM, seven 
input variables, and the number of weather types. Aiming for a small number of weather types, 
optimal performance is found for selecting four weather types over a domain covering NM and 
using three large-scale input variables – precipitable water, sea level pressure, and low-level (850 
hPa) wind speed. The data is based on instantaneous values at 12:00 UTC (Universal Time 
Coordinated). These variables relate to both dynamic and thermodynamic processes associated 
with precipitation. A domain the size of NM was selected.  Figure 4 shows the four identified 
circulation patterns and precipitation anomalies for the weather types (WTs). WT1 and WT2 are 
associated with dry conditions, and WT3 and WT4 are associated with wetter conditions.  

The frequency of days within a weather type are related to extreme precipitation since extremes 
are very unequally distributed between the four weather types (see Figure 5). Figure 5a shows 
that the four weather types have a similar amount of days in each warm season climatologically. 
However, the average contribution to NM's warm season mean rainfall and heavy precipitation 
events are very unequally distributed with WT4 contributing ~50 % of the warm season rainfall 
(Figure 5b) and 60% of all heavy events occurred in this weather type (Figure 5c). WT3 has 
lower (but positive) precipitation anomalies, and less intense precipitation than WT4.  

To obtain the covariates, the number of days in each weather type for the warm season are 
summed, and then this becomes the (seasonal) covariate upon which the (daily) precipitation data 
are conditioned. The average of each large-scale variable (i.e., precipitable water, sea level 
pressure, and wind speed) as a covariate is also explored; average values are calculated by 1) 
averaging the daily values over each year’s monsoon season, and 2) spatially averaging over the 
entire state of NM. The gridded large-scale data were from ECMWF’s Interim Reanalysis (Dee 
et al. 2011) (ERA-Interim); see Prein (2019) for details. Table 1 shows the covariates examined. 
Year was also examined as a covariate to see if there was a temporal trend to the extreme values.  
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Figure 4. Circulation patterns based on sea level pressure, precipitable water (PW), and 850-hPa wind speed and 
direction (arrow length and angle) for Weather Types (WT) 1 – 4 (a-d). The data is based on instantaneous values at 
12:00 UTC. Note that only the wind speed component was used in the weather typing. Associated daily precipitation 
anomalies are shown in (e-h). 

 

 

 

Figure 5 (a) Climatological average (1979 to 2014) frequency of weather types (WTs) between June to October; (b) 
WT contribution to total precipitation over New Mexico; (c) the number of the top 200 heaviest precipitation events 
associated to the WT under which they occur. 
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5.3. Identifying Significant Location Covariates 

For each threshold, the stationary PP model (no covariates) is fit to declustered POT data. A non-
stationary PP model is also fit using each of the covariates in Table 1 as linear predictors in the 
location parameter. Figure 6 shows the likelihood-ratio test results for all the covariates tested, 
across thresholds. The results show that the fitting of the extreme-value data can be highly 
sensitive to the inclusion/exclusion of certain points: for instance, using Year as a covariate for a 
threshold of 6mm shows significance (p<0.10), but this result is not found for the other 
thresholds. Similarly, for the sum of WT4 over the season, if we had arbitrarily selected 7.5mm 
as a threshold, it would show non-significance (p>0.10), although the model is significant for 
thresholds less than 7.5 mm and greater than 7.5 up to 8.5 mm. This behavior is an important 
reminder that while the p-values can be used diagnostically to assess which covariates are 
reasonable to include, a statistical test should only be used as evidence to help guide scientific 
research and never employed in its stead.  

 

 

Figure 6. p-values from likelihood ratio test for declustered PP model (PP_dc) fit with location covariate (see title) 
over a range of thresholds. Horizontal lines are p=0.10 (dashed) and p=0.05 (dotted). 
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Figure 6 provides evidence for not including Year, average sea level pressure (PSL_avg), 
average wind speed (UV_avg), nor the sum of WT3 over the season as covariates in the location 
parameter, since they don’t show much or any significance across the thresholds tested. On the 
other hand, the p-value results suggest that average precipitable water (PW_avg) and the sum of 
WT1, WT2, and WT4, as well as WT34 (i.e., the sum of WT3 and WT4 days) are all generally 
significant for the lower thresholds. This provides guidance to further constrain the upper bound 
for the thresholds examined in the next step to 8.5mm (rather than up to 12mm).   

5.4. Identifying Significant Scale Covariates  

Using the new threshold range (i.e., from 5mm to 8.5mm), the stationary GP model (no 
covariates) is fit to declustered threshold excess data. The GP distribution is also fit to the 
excesses using the covariates in Table 1 as linear predictors in the scale parameter. Figure 7 
shows results for covariates that showed significance. The sum of WT3 is significant across most 
thresholds (p<0.05), which suggests that it would be a good scale covariate to test in the full PP 
model (next step). The sum of WT1 and WT34 are also shown to be significant for the lower 
thresholds, warranting further investigation.  

Table 1. Variables considered for location and scale covariates. 

 

 

 

Figure 7. p-values from likelihood ratio test for declustered GP model (GP.dc) fit with scale covariate (see title) over 
a range of thresholds. Horizontal lines are p=.10 (dashed) and p=0.05 (dotted). 

Variable Description
Year Year of season
PW_avg Average precipitable water over New Mexico for the season (kg m2)
PSL_avg Average sea level pressure over NM for the season (hPa)
UV_avg Average wind speed over NM for the season (m/s)
WT1 Sum of weather type 1 days over the season
WT2 Sum of weather type 2 days over the season
WT3 Sum of weather type 3 days over the season
WT4 Sum of weather type 4 days over the season
WT34 Sum of weather type 3 and 4 days over the season
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5.5. Testing the Location and Scale PP Models 

Using the full PP, the location and scale combinations that are informed by the prior steps are 
tested. For the location parameter, PW_avg, WT4, WT1, WT2, and WT34 are tested for 
inclusion. For the scale parameter, WT3, WT1, and WT34 are tested. Table 2 shows results from 
the PP model with location covariates WT4 and PW_avg fit to the data, because those choices 
resulted in the lowest AIC values by threshold in the PP model. All model combinations tested 
and associated AIC values are shown in Supplemental Table 2. For the PP model with WT4 in 
the location, PP_dc+Loc(WT4), it is found that all three scale combinations result in improved 
fits according to both the likelihood-ratio test and the AIC. Results for using the location of 
WT1, WT34, and WT2 with the different scale parameters are shown in Supplemental Table 3; 
these models did not yield as many significant combinations and higher (worse) AIC values.  

Table 2. p-values from likelihood ratio test for PP models for different combinations of location and scale. Bold 
indicates p-value <=0.05; red indicates lowest AIC by threshold. 

 

5.6. Selecting Final Model(s) 

The last step is to select the final model(s), which has an element of subjectivity. Here, several 
additional criteria are considered: 1) the parameter is a good candidate for downscaling, and 2) 
the covariate(s) make intuitive sense. PW_avg makes intuitive sense, but is not ideal to use it 
directly in our downscaling: although PW_avg is projected to increase because of warming (e.g., 
Soden and Held 2006), it only represents a thermodynamic response, and ignores the dynamical 
response (e.g., changes in circulation). In short, it may be too simple to assume it is the only 
factor that would influence extremes. WT4 makes physical sense because it is one of the wet 
weather types that tends to be associated with heavy precipitation. Further, the WTs are based on 
variables (i.e., precipitable water, sea level pressure, and wind) that represent both 
thermodynamic and dynamic properties associated with precipitation. 

As mentioned previously, it was found that the PP_dc+Loc(WT4) model has improved fits using 
all three scale combinations, at least for some of the thresholds. Here, again, there needs to be 
scientific reasoning, as well as some subjectivity, that contribute to the selection of what, if any, 
scale covariate should go into a final model. Because WT34 combines the sum of days for the 
two wet WTs, it is more difficult to interpret, so it is not selected here. WT1 and WT3 both have 
inverse relationships with WT4 (Supplemental Figure 4), so it is consistent that both of these 

Threshold 
(mm) 

PP_dc+Loc(WT4) PP_dc+Loc(PW_avg) 
- +sca(WT3) +sca(WT1) +sca(WT34) - +sca(WT3) +sca(WT1) +sca(WT34) 

5 0.04 0 0 0 0 0.01 0 0 
5.5 0.02 0 0 0 0 0.02 0.01 0.01 
6 0.01 0 0 0 0 0.12 0.13 0.04 
6.5 0.04 0 0.03 0.01 0 0.08 0.38 0.09 
7 0.03 0.04 0.23 0.11 0 0.44 0.93 0.43 
7.5 0.14 0.03 0.39 0.28 0.04 0.22 0.92 0.60 
8 0.07 0.08 0.36 0.27 0.05 0.41 0.6 0.42 
8.5 0.06 0.26 0.47 0.47 0.12 0.78 0.57 0.57 
 



 

 C–15 

covariates are identified as significant additions to the model. One thing to notice is that 
incorporating WT3 in the scale improves the fit for most of the thresholds, whereas WT1 and 
WT34 result in higher p-values (less significance) for some of the higher thresholds. Further, 
WT3 is the other wet WT, which makes it a compelling covariate to select, because it develops a 
model with both precipitation scenarios experienced in NM, helping with interpretation. For 
these reasons, the PP model with Loc(WT4)+Scale(WT3) is selected for further investigation, 
though we acknowledge that there may not be a single “best” model, and another option could be 
to look at multiple models. Table 3 shows the parameter coefficients for the selected model: 
across all thresholds, the coefficient for the location parameter is positive and the coefficient for 
the scale parameter is negative. The shape parameter goes from positive to negative as the 
threshold increases, but all values are close to zero; further, the 95% confidence intervals for the 
shape parameter span across zero (not shown).   

Next, the sensitivity of the selected PP model fit to the covariates is investigated. The frequency 
of exceedance, as calculated by the Poisson distribution, is most sensitive to the location 
parameter. Figure 8 shows how the frequency of exceedance varies across thresholds when the 
scale parameter (WT3) is held constant at its median value and the location covariate (WT4) is 
varied between the 5th and 95th percentile values. For the stationary fit with threshold = 6mm, the 
frequency of exceedance is about 4 days per season. However, given the positive coefficient on 
the location parameter (Table 3), it follows that when there are not very many WT4 days (e.g., 5th 
percentile value), the frequency drops to about 2 days per season, versus when there are many 
WT4 days (e.g., 95th percentile value), and it increases to 7 days.  

 

Figure 8. For the declustered Point Process (PP_dc) model with location (WT4) and scale (WT3), estimated 
frequency (days per monsoon season) of exceeding each threshold. Sensitivity is shown where location parameter 
varies to 95th and 5th percentile values, and scale stays at median value. 

The conditional exceedance likelihood is sensitive to the scale parameter. Figure 9 shows the 
conditional exceedance likelihoods when the location covariate is held constant at the median 
and the sensitivity of the scale parameter using the 5th and 95th percentile values is examined. 
First, the conditional probability of exceeding 12 mm is checked: once 6mm is exceeded, there is 
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an 18% chance of exceeding 12 mm in the stationary model. The conditional exceedance is 
influenced by the scale covariate, in this case WT3, which has a negative coefficient (Table 3). 
As such, when there are fewer WT3 days (e.g., 24 days), that chance increases to almost 25%, 
and similarly when there are more WT3 days (e.g., 49 days), it decreases to 9%. While this result 
may seem counterintuitive at first (i.e., fewer WT3 days leading to increased exceedance 
likelihood), WT3 has less intense precipitation than WT4; further, WT3 days and WT4 days are 
inversely correlated (r=-0.51, see Supplemental Figure 4.) If a more extreme value is analyzed, 
such as 25 mm (close to the Q100 of Figure 3), for 6mm, the stationary probability of 
exceedance is about 1%, and when WT3 is low (5th), it is about 2% and when WT3 is high (95th), 
it is an order of magnitude lower (0.2%). For the 6mm threshold, it is also possible to look at the 
return-level time series, which shows how the return levels vary over time (Supplemental Figure 
5).  Finally, it is important to look at the fit diagnostics, (Supplemental Figure 6 and 7), which 
indicate that the model is a reasonable fit.  

Table 3. Estimated parameters for the PP model with location covariate of the sum of weather type 4 days over the 
season (WT4) and scale covariate of the sum of weather type 3 days over the season (WT3). 

 

 

Figure 9. For the declustered Point Process (PP_dc) model with location (WT4) and scale (WT3), conditional 
probability of exceedance of 12 mm (left) and 25 mm (right); exceedance is conditional on the x-axis threshold being 
exceeded. Sensitivity is shown where scale parameter varies to 95th and 5th percentile values, and location stays at 
median value. 

Threshold 
(mm) 

Location 
(WT4) Scale (WT3) Shape 

5 0.12 -0.073 0.041 
5.5 0.12 -0.077 0.065 
6 0.12 -0.071 0.103 
6.5 0.11 -0.082 0.060 
7 0.10 -0.062 0.134 
7.5 0.10 -0.081 -0.013 
8 0.11 -0.078 -0.019 
8.5 0.10 -0.054 -0.001 
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6. Downscaling with the PP Model for Water Management 

In this study, the PP model is fitted to historical data, but it can also be used to downscale 
climate model projection data. To demonstrate this, the output from the Community Earth 
System Large Ensemble (CESM-LE; Kay et al. 2015) is utilized. The CESM-LE is a set of 
climate change projections, run from 1920 to 2100, and has 40 ensemble members that only 
differ slightly in their initial conditions to estimate climate internal variability. For each 
ensemble, the clustering algorithm (Prein 2019) is used to associate each day to one of the four 
WTs, but importantly, any trends in the three variables (PW, SLP, wind) are removed. 
Subsequently, only changes in the warm-season large-scale dynamics are considered and 
thermodynamic effects, such as the increase in PW, are eliminated. Therefore, this downscaling 
is likely conservative because thermodynamic effects can significantly increase precipitation 
rates (e.g., Kröner et al. 2017). The results for counting the number of WT3s and WT4s per 
monsoon season for each ensemble, and run through the final PP model with Loc(WT4)+ 
Scale(WT3) are shown in Figure 10. Selecting a threshold of 6mm, the frequency of exceedance 
exhibits an increasing trend after 2050, which is consistent with increasing frequency of WT4 
patterns in the model. From this plot, it can also be seen that the model fitted historical 
frequencies are mostly within the inner quartile range (blue band). In terms of the conditional 
probability of exceeding 25mm, there is not much of a trend that can be seen in the CESM-LE, 
consistent with the fact that frequency of WT3 patterns stays relatively constant in the ensemble 
time series. Interestingly, the fitted model (red line) spans the inner quartile range (blue 
envelope) but also spans lower towards the minimum of the CESM-LE estimate, suggesting that 
the ensemble may be slightly overpredicting the likelihood of exceedance.  The CESM-LE can 
help to provide context for historical as well as future extremes in this area, and provides a 
demonstration of its use as an extremes downscaling technique for water management.   

 

Figure 10. Using weather type data from the CESM-LE (Community Earth System Model Large Ensemble), the 
frequency of exceeding 6mm (left) and the conditional probability of exceeding 25mm if 6mm is exceeded. Grey lines 
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are ensemble min/max, blue envelop is 25th-75th percentile, white line is ensemble average, and red line is historical 
fitted.  

7. Discussion and Conclusions 

In this paper, a generalized workflow employing the PP modeling framework is developed. Of 
the extreme-value theory (EVT) tools, the non-stationary PP model is one of the more complex 
and has been used less extensively in water resources applications. This paper provides an end-
to-end application of its development and demonstration. The workflow is demonstrated using 
precipitation extremes in a watershed in NM, where understanding the current risk profile and 
drivers of precipitation extremes is useful for understanding the opportunities and threats for 
water resource management and flood protection. The developed PP model is demonstrated for 
downscaling using a large ensemble climate projection dataset, which shows that the frequency 
of exceeding a high threshold increases after 2050, but the conditional likelihood of exceeding a 
very high threshold, such as the maximum observed, stays relatively constant. This result is 
consistent with other work that has found that trends are more detectible in frequency of extreme 
precipitation, rather than the magnitude (Pournasiri Poshtiri et al, 2018; Mallakpour & Villarini 
2017). For water managers looking to exploit changes in precipitation for water supply, this 
behavior suggests that in a climatological sense across the watershed, there may be an increase in 
opportunities to harness more frequent extreme events. At the same time, this work suggests that 
managers may not need to plan for events larger than previously experienced. However, in this 
downscaling product, the WT information is employed to account for changes in large-scale 
dynamic drivers of extremes; increases in PW caused by warming (i.e., a thermodynamic driver) 
could lead to an increase in high-return period events.  

Because the primary focus here was on the potential opportunities for water supply within the 
entire watershed attained from extreme values, spatial averaging of the gridded daily 
precipitation data is investigated. Perhaps the maximum over space is a better spatial summary to 
use when investigating the behavior of extreme values for flood risk, but for this study, it is 
sufficient.  Gilleland et al. 2013a employ the Heffernan and Tawn (2004) model in order to 
account for spatial dependence across locations whereby the process-level dependence at each 
location is modeled using a spatial field energy. In their work, this energy was defined to be the 
upper quartile over space, but the spatial average could be used instead, and in that case, the 
extreme values are not lost because this variable is only used in capturing the spatial dependence 
structure.  

The workflow could also be applied to data from a particular point (either gridded data or from 
an observational dataset), or in some cases applied to each grid point individually (e.g., Heaton et 
al. 2011), where a spatial model on the parameters of the GP and PP models was employed 
within a Bayesian hierarchical model (BHM), which accounts for some spatial dependence but 
not at the process level. In the field of spatial extremes, statistical tools have been brought to bear 
on the problem, including BHM (Cooley et al. 2007; Bracken et al. 2016), copulas, and max-
stable random fields (see Davison et al. 2012 for a review); however, spatial extremes modeling 
is still an active area of research.   

For the downscaling demonstration, here, a large ensemble climate projection is used, but note 
that this approach could be used on different projection datasets and/or prediction timescales. For 
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instance, it could be applied with sub-seasonal to seasonal, annual, or decadal predictions as 
well; future work will be focusing on seasonal prediction. Specifically, the skill of the WT 
patterns could be assessed using existing seasonal forecast ensembles, such as the North 
American Multi-Model Ensemble (NMME). In the Rio Grande, as well as for other river basins 
in the Western U.S., warm-season precipitation and streamflow predictability has been elusive. 
This work on identifying large-scale monsoon circulation patterns and incorporating them into an 
extremes model to predict monsoon characteristics has shown promise in an area for which very 
little predictive information has been available in the past. Hence, the potential for the use of 
WTs to provide some robust seasonal predictability warrants further study, and is a critical step 
towards implementation. Reliable prediction of the characteristics of warm-season precipitation 
anomalies and extremes during a given year can help water managers make key operational and 
planning decisions. 
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Supplemental Figures 

 

 

Supplemental Figure 1. For Point Process (PP) model fit, parameter estimates for location, scale, and shape over a 
range of thresholds. 
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Supplemental Figure 2. Quantile-quantile (QQ) plot of the data quantiles against the fitted model quantiles for 
4mm (left) and 13 mm (right).  

 

 

Supplemental Figure 3. Auto-tail dependence function (atdf) of different thresholds (Q91=5mm and Q95=7mm) 
showing the dependence in the precipitation extremes. 
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Supplemental Figure 4. Relationship between sum of weather type 3 days (WT3.sum) and weather type 4 days 
(WT4.sum) (left), and weather type 1 days (WT1.sum) and WT4.sum; r is linear correlation coefficient. 
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Supplemental Figure 5. Return level time series for final model with WT4 in location and WT3 in scale for 
threshold = 6mm. 
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Supplemental Figure 6. Quantile-quantile (QQ) plot of the data quantiles against the fitted model quantiles. 
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Supplemental Figure 7. Zplot for threshold = 6mm; this is a diagnostic for the PP model based on Smith and 
Shively (1995); Smith, R. L. and Shively, T. S. (1995). A point process approach to modeling trends in tropospheric 
ozone. Atmospheric Environment, 29, 3489–3499. 
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Supplemental Tables 

Supplemental Table 1. Comparing the raw to declustered daily data in terms of extremal index, Akaike 
Information Criterion (AIC) values from the stationary Point Process fit, and percent of data points retained after 
declustering. 

 

 

 

 

 

 

 

 

 

 

 

 

Threshold Raw Declustered Raw Declustered Raw Declustered
5 0.694 1 674 667 318 (9.1%) 207 (5.9%)

5.5 0.686 1 643 631 282 (8.1%) 181 (5.2%)
6 0.755 1 623 597 241 (6.9%) 164 (4.7%)

6.5 0.789 1 606 561 198 (5.7%) 138 (4.0%)
7 0.808 1 565 522 175 (5.0%) 124 (3.6%)

7.5 0.738 1 538 484 137 (3.9%) 100 (2.9%)
8 0.808 1 500 449 115 (3.3%)  87 (2.5%)

8.5 0.787 1 463 416 103 (3.0%)  77 (2.2%)
9 0.756 0.97 425 383  85 (2.4%)  67 (1.9%)

9.5 0.815 1 388 351  72 (2.1%)  58 (1.7%)
10 0.855 1 358 327  64 (1.8%)  53 (1.5%)

10.5 0.811 0.93 318 294  50 (1.4%)  44 (1.3%)
11 0.851 0.97 284 262  41 (1.2%)  36 (1.0%)

11.5 0.873 0.97 273 254  40 (1.1%)  36 (1.0%)
12 1 1 246 231  34 (1.0%)  31 (0.9%)

Extremal Index AIC  Data Retained (%)
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Supplemental Table 2. Akaike Information Criterion (AIC) values for all model combinations considered in Step 
5.5. of manuscript; red indicates lowest AIC value by threshold. 

 

 

Supplemental Table 3. p-values from likelihood ratio test for PP models for different combinations of location and 
scale. Red indicates p-value <=0.05. 

Location Scale 5 5.5 6 6.5 7 7.5 8 8.5
- - 667 631 597 561 522 484 449 416

PW_avg - 657 620 583 552 515 482 447 416
PW_avg WT1 651 615 582 554 517 484 449 417
PW_avg WT3 653 616 582 551 516 482 448 417
PW_avg WT34 650 614 581 552 516 483 448 417
WT1 - 652 617 586 556 519 484 448 416
WT1 WT1 651 616 585 556 521 486 450 418
WT1 WT3 651 617 587 556 521 484 450 418
WT1 WT34 649 614 583 553 519 485 449 418
WT2 - 664 628 594 559 521 485 450 418
WT2 WT1 650 614 583 555 520 485 450 418
WT2 WT3 661 626 595 559 523 486 451 420
WT2 WT34 649 614 583 553 519 485 450 418
WT34 - 653 618 586 554 518 484 449 417
WT34 WT1 650 615 584 555 520 485 450 418
WT34 WT3 653 618 587 555 520 485 450 419
WT34 WT34 650 615 583 553 519 485 450 418
WT4 - 664 628 592 558 519 484 447 414
WT4 WT1 651 616 585 556 519 485 449 416
WT4 WT3 648 613 582 550 517 481 446 415
WT4 WT34 650 615 583 553 518 485 448 416

Model Threshold

- +sca(WT3) +sca(WT1) +sca(WT34) - +sca(WT3) +sca(WT1) +sca(WT34) - +sca(WT3) +sca(WT1) +sca(WT34)
5 0 0.06 0.09 0.03 0 0.11 0.02 0.02 0.03 0.03 0 0

5.5 0 0.1 0.07 0.02 0 0.18 0.03 0.03 0.03 0.05 0 0
6 0 0.38 0.09 0.02 0 0.59 0.06 0.03 0.03 0.32 0 0

6.5 0.01 0.16 0.27 0.04 0 0.29 0.22 0.07 0.07 0.16 0.01 0
7 0.03 0.66 0.6 0.15 0.02 0.92 0.43 0.23 0.14 0.78 0.05 0.03

7.5 0.13 0.26 0.75 0.4 0.14 0.34 0.5 0.41 0.41 0.24 0.18 0.15
8 0.11 0.47 0.58 0.37 0.15 0.6 0.35 0.32 0.48 0.41 0.12 0.12

8.5 0.17 0.88 0.62 0.58 0.27 0.96 0.36 0.47 0.67 0.72 0.17 0.22

PP_dc+Loc(WT1) PP_dc+Loc(WT34) PP_dc+Loc(WT2)Threshold 
(mm)





 

 D–1 

Component 4 Paper 

Extremes of Opportunity? A generalized approach to identify intersections 
between changing hydrology and water management. 

Erin Towler1, Dagmar Llewellyn2, Lucas Barrett2, Rick Young2 

 
1 National Center for Atmospheric Research (NCAR), Boulder, CO 

2 Bureau of Reclamation, Albuquerque, NM 

Paper published in the Proceedings of the Federal Interagency Sedimentation and Hydrologic 
Modeling Conference (SEDHYD) 2019 

  
Abstract 

For water managers, changing hydrology can underscore existing vulnerabilities as well as offer 
new opportunities. The purpose of this paper is to put forth a generalized approach to identify 
potential intersections between changing hydrology and water management. The generalized 
approach includes 4 steps: (i) Articulate management vulnerabilities and opportunities, (ii) 
Quantify current water contributions from sources that may provide the hydrologic opportunity, 
(iii) Identify key climatic and atmospheric drivers of the hydrologic opportunity, and (iv) 
Explore the opportunity-management nexus. The framework is demonstrated using a case study 
example of the Middle Rio Grande Basin of New Mexico and its downstream delivery point, 
Elephant Butte Reservoir. In Step 1, we articulate how New Mexico’s water supplies are 
vulnerable to decreasing snowpack, but also that the summer monsoon season could offer a 
potential, currently under-developed, water supply opportunity. In Step 2 we examine historical 
Elephant Butte Reservoir inflows and find that although monsoon season volumes vary from 
year-to-year, they are an important contribution to annual water supply. Further, we find that the 
upper percentile inflows contribute a disproportionately larger fraction of the monsoon volume 
relative to their frequency of occurrence. Step 3 examines possible climate and atmospheric 
drivers for different characteristics of monsoon season interannual variability, finding that most 
monsoon inflow characteristics show a strong association with average precipitation over the 
contributing watershed and atmospheric precipitable water. In Step 4 we suggest how this 
information could be integrated into existing planning and operations for the Rio Grande Basin.  

 

1. Introduction 

In many river basins in the Western United States, snowmelt provides the primary contribution to 
water supply (Serreze 1999); hence, most reservoirs are designed to capture snowmelt runoff. 
However, increasing temperatures (Hayhoe et al. 2018) and decreasing snowpack (Mote et al. 
2005, 2018) have already been observed across the Western United States (US), and general 
circulation models predict that these trends will continue into the future (Collins et al., 2013). 
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Taken together, these changes suggest increasing threats to water storage and availability in these 
reservoirs (Barnett et al. 2005). It is generally thought that increasing greenhouse gases will lead 
to an intensification of the hydrologic cycle, with an increase in heavy precipitation, potentially 
increasing local runoff (Seneviratne et al. 2012). In addition to posing flooding threats, these 
potentially increasing extreme precipitation events present opportunities to mitigate the impacts 
of decreasing snowmelt runoff volumes on water supply. However, the relevance of changing 
hydrology, including extremes, will depend on the particular water management context. As 
such, the purpose of this paper is to put forth a generalized approach to identify potential 
intersections between changing hydrology and water management. 
 
The generalized approach includes 4 steps: (i) Articulate management vulnerabilities and 
opportunities, (ii) Quantify current water contributions from sources that may provide hydrologic 
opportunities, (iii) Identify key climatic and atmospheric drivers of the hydrologic opportunity, 
and (iv) Explore the opportunity-management nexus. In this paper, we first present the 
generalized framework (Section 2), which is demonstrated using a case study example of a 
reservoir in the Rio Grande Basin, New Mexico.  This is followed by discussion and conclusions 
(Section 3).  
 
2. Framework to Identify Intersections 

2.1 Step 1. Articulate management vulnerabilities and opportunities   

The relevance of changing hydrology is dependent on the particular water management context. 
Articulating local management vulnerabilities and potential opportunities is a critical first step 
towards adaptation planning. In this step, we provide background information on climate and 
water resources for New Mexico basins that include projects managed by the US Bureau of 
Reclamation.  
 
2.1.1. Background: Similar to many water systems in the Western US, one key vulnerability for 
New Mexico is decreasing snowpack. Snowpack provides the main water source for most of the 
New Mexico river basins that begin in Colorado, (including the Rio Grande, San Juan, and 
Chama Rivers) and northern New Mexico (such as the Pecos River) (Gutzler 2013).  As such, 
most of the reservoirs in these river systems are designed to capture snowmelt runoff, with 
storage located in the headwaters of the basins where temperatures and evaporation rates are 
lower (Gutzler 2013). Recent work by Chavarria and Gutzler (2018) has shown decreasing 
snowpack and increasing temperatures in the upper Rio Grande, resulting in slight decreases in 
snowmelt runoff. Further, they found that small precipitation increases have offset the impact of 
decreasing snowpack (Chavarria and Gutzler 2018). However, there is growing evidence that 
runoff efficiencies in the basin are becoming more sensitive to temperature (Lehner et al. 2017).  

Rivers that originate further south in the state get a smaller proportion of their flow from 
snowpack, and warm season precipitation increases in importance.  Warm-season precipitation 
has historically provided a secondary water source in the Western US (Serreze et al., 1999). If 
the total volume of this secondary supply were to increase in response to increasing ocean and air 
temperatures, warm-season precipitation could provide a potential water-supply opportunity for 
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New Mexico, which might make up, at least in part, for decreasing supplies from snowmelt 
runoff. In summer, the central and southern parts of the state are influenced by the North 
American Monsoon (Gutzler 2013; Adams and Comrie 1997), which result in significant 
contributions to annual precipitation (Douglas et al. 1993). Tropical cyclones also contribute 
during this time, though much less (<10%) during the main monsoon period (June 15-Sept 30), 
and more (up to 80%) in the relatively dry month of October (Wood and Ritchie 2013). For New 
Mexico, most extreme precipitation occurs in summer, followed by fall (Kunkel et al. 1999), and 
most flooding has been observed in summer (Villarini, 2016). Pournasiri Poshtiri et al (2018) 
examined recent trends in warm season precipitation characteristics, including extremes, and 
found that negative trends dominate warm season, June, and August, while positive trends 
dominate July and for some September precipitation characteristics. However, the majority of 
locations in New Mexico do not exhibit significant trends. The increasing trends for the July 
indicators show the most potential for water supply, with the location of these significantly 
positive trends mainly concentrated in the southeastern and eastern part of New Mexico. They 
also found that trends are more detectable in the frequency of extreme precipitation rather than 
the magnitude, similar to the findings of Mallakpour & Villarini (2017). As such, for times and 
locations showing increasing trends, their results suggest that water managers looking to exploit 
changes in precipitation might not need to plan for larger events, but rather for more frequent 
events.  

The coarse resolution of general circulation models, which are typically used as a basis for 
projections of future climate and hydrology, limit the ability of these models to resolve 
monsoonal patterns.  Therefore, there is currently low confidence in our ability to project 
changes in monsoonal patterns as the climate warms (Seneviratene et al. 2012). For parts of the 
US Southwest, projections for winter and spring seasons at the end of the century (2070-2099) 
show decreasing precipitation, though changes for this region in all seasons are small and 
relatively insignificant (Hayhoe et al. 2018).  However, some past research (e.g., Asmerom et al., 
2013) has suggested a correlation between ocean temperature and monsoon intensity.  
Seneviratne et al. (2012) recommend that any examination of monsoonal changes should 
consider large-scale circulation and dynamics, rather than solely examining precipitation.  
Examining current and future weather patterns, Prein 2018 finds a robust signal for an increase in 
the frequency of monsoonal circulations in New Mexico, particularly monsoonal patterns that 
contribute to the majority of monsoon season precipitation, as well as heavy precipitation events.  

If Prein’s conclusions are correct, there may be opportunities to exploit changes in warm season 
precipitation for water management (Gutzler, 2013, Llewellyn & Vaddey, 2013), warranting 
further investigation.  

2.2. Step 2. Quantify current water contributions from sources that may provide 
hydrologic opportunities.   

Quantifying the current contribution of water sources that might provide future water supply 
opportunities provides a critical baseline to which future climate or infrastructure scenarios can 
be compared. As articulated in Step 1, given decreasing snowpack, a potential opportunity for 
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New Mexico could be moisture from the monsoon season. In this section we provide an example 
of quantifying current monsoon season contributions to annual water supply.  
 
As a case study, we examine the Middle Rio Grande Basin of New Mexico and its downstream 
delivery point, Elephant Butte Reservoir, located in the south-central New Mexico (see Figure 
1). This reservoir provides significant water storage (up to approximately 2 million acre feet) for 
both snowmelt runoff and summer precipitation events. The analyses in Step 2 rely on the 
following dataset and definitions: 

• Elephant Butte Reservoir inflows: Data are available from 2000-2017, and are calculated 
as the sum of the Rio Grande Low Flow Conveyance Channel at San Marcial and the Rio 
Grande Floodway at San Marcial (URGWOM Technical Team, 2005).  

o Monsoon season volume: We define the monsoon season volume as the sum of 
Elephant Butte Reservoir inflows from July 1 through September 30 (Jul-Sep). 
Initial analyses also included June 15-June 30, a time period that is often 
considered to be part of the monsoon season, but here it was found that that these 
inflows were still influenced by snowmelt. 

o Annual volume: We define the annual volume to be the sum of Elephant Butte 
Reservoir inflows during the calendar year (Jan-Dec).  

o Percentile-based indices: The definition of an extreme inflow at a particular 
location is site-specific; hence, percentile-based indices can be calculated from the 
historical Elephant Butte Reservoir inflows. We examine several percentiles: P99 
is the 99th percentile flow, i.e., the value at which only 1% of daily inflows are 
higher. Similarly, we examine P95 (the 95th percentile, where only 5% of the daily 
inflows are higher), P90 (the 90th percentile), P75 (the 75th percentile), and P50 (the 
50th percentile, or median daily flow). 

 
In this step, we look at the interannual variability of monsoon season volumes and their 
contribution to annual inflows to Elephant Butte Reservoir (2.2.1), as well as the relationship 
between monsoon season volumes and upper percentile thresholds/extremes (2.2.2) and 
frequency and magnitude characteristics (2.2.3).  
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Figure 1.  Map of Middle Rio Grande Basin of New Mexico and its downstream delivery point, Elephant Butte 
Reservoir, New Mexico.  
 
2.2.1. Monsoon season volumes vary from year-to-year, but they are an important 
contribution to annual water supply: The interannual variability of Elephant Butte Reservoir 
inflows and storage volumes play a role in the operations and management decisions in the basin. 
Figure 2a (left) shows the annual monsoon season volumes for the 2000-to-2017 period 
analyzed; the average volume is about 68,383 acre-feet (af), the minimum was 16,432 af in 2003 
and the maximum was 254,214 af in 2006. It is also useful to look at the contribution of the 
monsoon volume to annual volume, as in some years, even relatively low volumes may provide 
critical contributions. Figure 2b (right) shows that on average, monsoon volumes provide 14.4% 
of the annual supply, with a minimum of 4.00% in 2017 and a maximum of 43.6% in 2006. 
There is no statistically significant trend to the contribution, though it is hard to tell with the 
short sample size (18 years).  
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Figure 2.  Monsoon (Jul-Sep) total volume in Elephant Butte Reservoir (a) and proportion of annual volume (Jan-
Dec) coming from that year’s monsoon (Jul-Sep) volume (b). 

 
2.2.2. Inflows from upper percentiles contribute a disproportionately higher proportion of 
the monsoon volume relative to their occurrence: The percentile indices for the Elephant 
Butte daily inflows from the monsoon season (i.e., n = 1656 daily inflows) can be seen from the 
flow duration curve (Figure 3). Figure 3 shows that the upper half of daily inflows span an order 
of magnitude in volume: the 50th percentile (P50) is 452 acre feet and the 99th percentile (P99) is 
5660 acre feet. The maximum daily flow in the analyzed period of record is 11,910 acre feet (in 
2006; not shown in Figure 3). We also see that the 75th percentile (P75) for the inflows marks an 
inflection point: here, the absolute value of the slope starts to increase towards the higher 
percentiles (moving to the left in Figure 3), indicating a rapid shift towards higher daily inflows. 
Using these percentiles, we can look at the contribution of daily inflows above each percentile in 
each monsoon season (Figure 4). In Figure 4, the boxplots are comprised of the annual 
contributions from each percentile, hence the sample size, N, number of years, decreases; this is 
as expected, since the exceedance of the higher percentile indices does not occur in every year. 
As indicated by the median (horizontal line in box plots), the summed volumes from daily flows 
from the upper half of the distribution (>P50) contribute to 78% of the monsoon reservoir 
volume.  Summed volumes from the top quarter (>P75) of daily inflows contributed 47% of 
monsoon reservoir volumes; top decile (>P90) of daily inflows contributed 28% of monsoon 
reservoir volumes. However, there is quite a bit of variability in the contribution from year-to-
year for these percentiles (P50-P90). As we move into the higher, more extreme quantiles, these 
also play a role, but in fewer years. i.e., daily inflows above P99 are contributing 
disproportionately given their low occurrence, but only in the two years that they occur: this 1% 
occurrence accounts for 41% in 2006 and 23% in 2013 (resulting in a 32% median). The 
previously mentioned maximum daily inflow on record (e.g., 11,910 af), which occurred in 
August of 2006, contributed 5% of that year’s monsoon reservoir volume.   
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Figure 3.  Flow duration curve of monsoon (Jul-Sep) daily inflows in acre feet (af; n=1656 days), with daily values of 
select percentile-based flow indices (P50, P75, P90, P95, P99), and smoothed spline (red line). 

 

 

Figure 4.  Proportion of monsoon (Jul-Sep) volume coming from daily inflows above each percentile-based flow 
index; P50 is the 50th percentile, P75th is the 75h percentile, and so on; Max is the maximum daily inflow. N is the 

number of years from which the daily inflows above the percentiles were observed.  
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 2.2.3. Frequency and magnitude inflow characteristics partially explain interannual 
monsoon variability: We can also examine how well other inflow characteristics based on the 
percentile-based indices explain the interannual variability of monsoon reservoir volumes. Here 
we look at two characteristics: first, the frequency, or the number of days that the daily inflows 
were above the percentiles during the monsoon season. Figure 5 shows how the number of days 
above P50, P75, P90, and P95 relates to that year’s monsoon reservoir volume. As we would 
expect, as the number of exceeding days increases, so does the total monsoon inflow volume. We 
see strong linear correlations, as measured by Pearson’s r values, and find that the number of 
days above P75 has a stronger correlation (r=0.85) than P50 (r=0.62), showing the importance of 
the count of days in the upper quarter of the inflow distribution to total monsoon season volume. 
The number of days above P90 and P95 also have high correlations (r = .97 and .96, 
respectively), but here the linear correlations don’t tell the whole story: the scatterplots reveal 
that there are several years with zero days above these thresholds. This relates to our previous 
point that these flows can be pivotal, but only in years in which they occur. The second 
characteristic that we examine is the annual magnitude, i.e., the value of the percentile index 
calculated annually for each monsoon season. For clarity, these are labeled P50annual., P75annual, and so 
on, indicating that these magnitudes are calculated from a flow duration curve like Figure 3, but 
for each year’s monsoon season. The scatterplot in Figure 6 shows the association between the 
annual percentiles and that year’s monsoon reservoir volume. These all exhibit very high linear 
correlations (r=0.95 to 0.98), indicating that these annual percentiles do a good job at explaining 
the interannual monsoon variability.  
 

 

Figure 5.  Frequency of days with inflows above select percentile-based indices versus monsoon (Jul-Sep) volumes in 
acre-feet (af); r is Pearson’s linear correlation.  
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Figure 6.  Inflow magnitudes of annual percentile-based indices versus monsoon (Jul-Sep) volumes in acre-feet (af); 
r is Pearson’s linear correlation.  

 
2.3. Step 3. Identify key climatic and atmospheric drivers of the hydrologic opportunity 

Understanding the key factors that drive the potential opportunity is critical to understanding its 
possible role in water management. In step 2, we examined several aspects of the interannual 
variability of Elephant Butte Reservoir monsoon season volumes. Next we seek to understand 
the key climate and atmospheric drivers. We recognize that other factors, such as land use and 
management, are important as well; and though not examined here we discuss this point in the 
discussion and conclusions. Step 3 analyses rely on several datasets: 

• Average precipitation: We use daily precipitation data from PRISM Gridded Climate 
Data Group (prism.oregonstate.edu), downloadable from 
http://www.prism.oregonstate.edu/documents/PRISM_downloads_FTP.pdf. Average 
precipitation is calculated by 1) averaging the daily values over each year’s monsoon 
season (Jul-Sep), and 2) spatially averaging over the Rio Grande watershed contributing 
to Elephant Butte Reservoir within New Mexico. The data are available through 2014, so 
the overlapping period with the Elephant Butte Reservoir monsoon volumes is 2000-
2014.  

• Average large-scale variables: Prein (2018) identifies three potential predictors of 
monsoon season precipitation anomalies based on weather patterns over New Mexico: 
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sea level pressure, wind speed, and precipitable water; these are from ECMWF’s Interim 
Reanalysis (Dee et al. 2011) (ERA-Interim)  Average values are calculated by 1) 
averaging the daily values over each year’s monsoon season (Jul-Sep), and 2) spatially 
averaging over the entire state of New Mexico.  

 
In this step, we first examine the runoff efficiency of the Elephant Butte Reservoir monsoon 
volumes with precipitation (2.3.1). Second, we examine the above 4 predictors (basin-average 
precipitation, sea level pressure, wind speed, and atmospheric precipitable water) and their linear 
correlation (Pearson’s r) with several monsoon inflow characteristics examined in Step 2 
(Section 2.3.2).    

 
2.3.1. Runoff efficiency exhibits interannual variability.  Runoff efficiency is calculated as the 
fraction of runoff, here the Middle Rio Grande monsoon volume (measured as the inflow to 
Elephant Butte Reservoir), divided by precipitation. Then, we normalize the value (i.e., we 
divide all values by the maximum runoff efficiency). Figure 7 shows the interannual variability 
of the runoff efficiency: the black line is calculated using the monsoon total precipitation, and 
shows that 2006 has the highest normalized efficiency within the years analyzed. To get a sense 
of the efficiency of the upper part of the distribution and extremes, the efficiency is also shown 
by using two percentile-based indices derived from the precipitation: PR_P75annual and PR_P99annual, 
corresponding to the magnitude of the 75th and 99th percentiles of daily precipitation in a given 
year’s monsoon season. All three lines show similar patterns, but the PR_P99annual line (purple) is 
lower for most years, showing that these heavier precipitation events may be less efficient in 
most years, except in the most extreme years (e.g., 2006).  The P75annual line (orange) is above the 
black line in some years, indicating the relatively higher efficiency of the top quarter of 
precipitation days, and is just below the black (and purple) lines in 2006, the most extreme year. 
This underscores the point that when extremes occur, they can be quite efficient, but that more 
moderate extremes (e.g., P75) contribute more reliably in any given year.     
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Figure 7.  Normalized runoff efficiency of monsoon reservoir volumes using monsoon total precipitation 

(PR_Sum_ann), and two percentile-based precipitation indices, the magnitude of the year’s 75th and 99th percentile 
precipitation day (PR_P75_ann and PR_P99_ann).  

 
 2.3.2. Most monsoon inflow characteristics show strong linear correlations with 
precipitation and precipitable water.  Table 1 shows the linear correlations between the 
precipitation and large-scale predictors and the monsoon inflow characteristics: total volume and 
maximum annual inflows, as well as the percentile-based frequency exceedances and annual 
magnitudes. Table 1 shows that total volumes are most highly correlated with average 
precipitation over the contributing watershed (r=0.73), and followed by precipitable water 
(r=0.61). Annual maximum values are most strongly correlated with higher average wind speeds 
(r=0.52), followed by precipitable water (r=.43), and not significantly correlated with average 
precipitation, indicating that predictors for averages versus maximums can be quite different.   In 
terms of the frequency characteristics, average precipitation and precipitable water are both 
important, though as we get to higher percentiles, precipitable water becomes more important. 
For the frequency of days above P99, sea level pressure also shows a relatively strong 
association. These initial diagnostics show predictive promise, and the next step is to develop a 
statistical model to identify the best combination of significant predictors and the associated 
predictive skill. The appropriate statistical model that will be explored for each characteristic is 
shown in the last column of Table 1.  
	  



 

 D–12 

 
Table 1.  Pearson’s linear correlations (r) between climate and atmospheric predictors and monsoon inflow 

characteristic predictants for Elephant Butte (EB) Reservoir, as well as the appropriate statistical model form.  
 

Predictant Predictors Appropriate 
Statistical Model 

Form Monsoon EB Inflow 
Characteristic 

AvgPrecip 
NM Rio 
Grande 

NM Avg 
Sea Level 
Pressure 

NM Avg 
Precipitable 

Water 

NM Avg 
Wind 
Speed 

Total Volume 0.73 0.21 0.61 -0.26 Linear Regression 

Max Annual Inflow -0.04 -0.15 0.43 0.52 
Generalized Extreme 

Value  
Frequency P50 0.53 0.29 0.50 -0.36 Poisson 
Frequency P75 0.73 0.46 0.75 -0.25 Poisson 
Frequency P90 0.77 0.52 0.79 -0.14 Poisson 
Frequency P95 0.83 0.32 0.80 0.11 Poisson 
Frequency P99 -0.10 0.47 0.66 0.17 Poisson 

Magnitude P50_Annual 0.66 0.23 0.59 -0.37 Linear Regression 
Magnitude P75_Annual 0.79 0.28 0.69 -0.25 Linear Regression 
Magnitude P90_Annual 0.78 0.28 0.63 -0.05 Linear Regression 
Magnitude P95_Annual 0.59 0.23 0.60 0.10 Linear Regression 
Magnitude P99_Annual 0.24 0.12 0.47 0.25 Linear Regression 

 
 
2.4. Step 4. Explore the opportunity-management nexus  

The fourth step is to explore the opportunity-management nexus, i.e., to identify quantitative 
and/or qualitative entry-points to test if and how the changing hydrology could impact 
management decisions.  Managers often use local operations models to understand how changes 
will affect their water storage and key water operations, which can be used to guide their 
management decisions. In short, it is critical to collaborate with local water managers to 
understand their decision and modeling context to explore the potential opportunity-management 
nexus.  

For the Rio Grande of New Mexico, the Upper Rio Grande Water Operations Model 
(URGWOM) includes reservoirs and operation rules to make hydrologic data relevant to 
management. URGWOM uses streamflow forecasts to select historical hydrographs to calculate 
inflows into its reservoirs, include Elephant Butte Reservoir.  To date, streamflow forecasts are 
provided by the Natural Resources Conservation Services (NRCS), and are based primarily on 
snowpack measurements, aiming to predict snowmelt runoff.  One potential intersection with this 
framework is to use the understanding gained here as a launching point to predict a suite of 
monsoon inflow characteristics. It is hoped that these characteristics could be used as guidance 
for altering the predicted hydrograph during the monsoon season. The tradeoffs between the best 
predicted monsoon inflow characteristics (such as the total volume versus the magnitude or 
frequency attributes) and the ability to integrate with and utility for the URGWOM system need 
to be evaluated. However, even if the information could not be explicitly integrated in the 
modeling system, even qualitative information on monsoon inflow characteristics may be useful, 
and would be more than what is currently provided.   
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3. Discussion and Conclusions 

This study offers a 4-step generalized approach to understanding potential opportunities from 
changing hydrology, including extremes. We provide a specific a case study example of the 
Middle Rio Grande basin in New Mexico. The goal is to provide both a general approach and a 
specific example that can be tailored to other watersheds and management systems.  
 
In this investigation, we examined inflows to Elephant Butte Reservoir during the summer 
monsoon season, as well their association with average basin precipitation and other large-scale 
variables. However, we note that water resources in the Western US, including New Mexico, are 
often over-allocated and tightly managed. With full recognition of this fact, we note that we only 
focus on climate and atmospheric predictors. We recognize a priori that they will only partially 
explain the variability in the monsoon inflow characteristics, and presumably some of the 
remaining, unexplained variability would come from groundwater extraction, land-use changes, 
land surface characteristics, direct management, as well as other factors not examined here. 
However, we do note that this approach is more suited to looking at the upper percentiles and 
extremes, as compared to looking at the lower flows of the distribution, where the non-climate 
signals would likely be more prevalent.     
 
Demonstrating the generalized framework for the Middle Rio Grande basin in New Mexico 
offers a successful application of the generalized framework, but we note that there could be 
other applications that yield less useful, though still informative, results. For example, we also 
stepped-through parts of the framework for the Pecos River basin, New Mexico, which in terms 
of infrastructure, is already well set-up for collecting extreme precipitation and subsequent runoff 
along the system. Here, we were interested in not reservoir inflows, but a decision-relevant 
variable for this watershed, which is the annual allotment to Carlsbad Irrigation District (CID), a 
Reclamation Project. The CID allotment is the amount of water the farmers are allowed to take 
per acre of land irrigated. However, when we examined the connections between the CID and 
Pecos watershed precipitation and the large-scale circulation variables, we did not find strong 
associations. This indicates that either a) different explanatory variables may need to be 
examined for the CID allotment, or b) different decision-relevant variables more closely 
associated with climate could be examined (e.g., reservoir inflows for this basin).   
 
The provocative question posed in this study was “Extremes of Opportunity?” and the results 
here suggest several conclusions relevant to water managers. First, it depends on what you define 
as “extreme”. Here, we examine the entire upper half of the flow distribution, and do find that all 
the upper percentiles contribute a disproportionately higher fraction of the monsoon reservoir 
volume relative to their occurrence. In the 18-year record examined here, the maximum day 
contributed 5% of the monsoon flow in that year, and the days that exceeded P99 (or 1% of the 
days) contributed a median of 32% in the two years that they occurred. Hence, the higher 
extremes (e.g., maximum and >P99) could certainly provide opportunities in the years they 
occur. The more moderate extremes (P75-P90) also provide median contributions that are 
skewed higher than their occurrence, but there is much more variability in these contributions. 
Nevertheless, we also examined several predictors, including basin-average precipitation and 
large-scale variables, which showed significant correlations, especially basin-average 
precipitation and atmospheric precipitable water. These suggest that there is scope for providing 
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outlooks on monsoon inflow characteristics, either from seasonal climate forecasts of the 
predictor variables, or in terms of downscaling from climate model output. Future work will 
develop statistical modeling tools to investigate these different applications and to test their 
ability to integrate with current management in the system.   
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Research Products 

This Appendix provides a complete list of the research products for each component, including 
the papers, presentations, and outreach. 

The first research component was to examine the variability and trends of precipitation extremes, 
which resulted in the following products:  

• Pournasiri Poshtiri M, Towler E, Llewellyn D, Prein AF (2018) Extremes of Opportunity: 
Examining Recent Trends in Warm Season Extreme Precipitation for New Mexico River 
Basins, 86th Western Snow Conference, Albuquerque, NM, 
https://westernsnowconference.org/files/PDFs/2018Poshtiri.pdf. [Paper] 

• Towler E, Llewellyn D, Barrett L, Pournasiri M, Pinson A, Prein A , and Rick Young R 
(2018) Extremes of Opportunity: Mitigation of Snowmelt Decreases through Improved 
Management of Local Extreme Precipitation Events, 86th Western Snow Conference, 
Albuquerque, NM, April 17, 2018.  [Poster] 

• Pournasiri Poshtiri M, Towler E, Llewellyn D, Prein AF (2020) Recent Trends in Warm 
Season Extreme Precipitation for the Pecos River Basin. Appendix for Pecos River New 
Mexico Basin Study. [Paper; in press] 

• Pournasiri Poshtiri M, Towler E, Llewellyn D, Prein AF (2018) Extremes of Opportunity: 
Characterizing the Contribution and Drivers of Monsoon Extreme Streamflows, AGU 
Annual Conference, Washington, D.C, December 2018. [Poster] 
 

The second component was to identify weather types associated with precipitation anomalies; 
this resulted in the following paper that is in revision: 

• Prein, AF (2019) The Changing Character of the North American Monsoon and its 
Impacts on New Mexico's Precipitation, Journal of Climate, in revision. [Paper] 
 

The third component to statistically model extreme precipitation using the weather type 
information task has been accepted by a peer-review journal: 

• Towler E, Llewellyn D, Prein A, Gilleland E (2019) Extreme-value analysis for the 
characterization of extremes in water resources: A generalized workflow and case 
study on New Mexico monsoon precipitation. Weather and Climate Extremes, 
accepted. [Paper] 

The fourth component was to develop a generalized framework. Results from this task were 
presented at the Federal Interagency Sedimentation and Hydrologic Modeling Conference 
(SEDHYD), as well as published in the associated proceedings:  

• Llewellyn D, Towler E, Barrett L, Young R (2019) Extremes of Opportunity? A 
generalized approach to identify intersections between changing hydrology and water 
management. Federal Interagency Sedimentation and Hydrologic Modeling Conference 
(SedHyd), Reno, NV, June 26, 2019.  [Presentation] 
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• Towler E, Llewellyn D, Barrett L, Young R (2019) Extremes of Opportunity? A 
generalized approach to identify intersections between changing hydrology and water 
management. Proceedings of the Federal Interagency Sedimentation and Hydrologic 
Modeling Conference (SEDHYD), Reno, NV, 
https://www.sedhyd.org/2019/openconf/modules/request.php?module=oc_program&acti
on=view.php&id=160&file=1/160.pdf  [Paper] 
 

Outreach to Reclamation, Research, and Water Management Community 

Towler E (2019) Extremes of Opportunity? A generalized approach to identify intersections 
between changing hydrology and water management. S&T Project Team Meeting, Albuquerque 
Area Office, Albuquerque, NM. May 24, 2019. [Presentation] 

Towler E, Llewellyn D, Prein, AF (2019) Extremes of Opportunity? A generalized approach to 
identify intersections between changing hydrology and water management. S&T Water 
Operations and Planning Monthly Webinar, January 10, 2019. [Presentation] 

Towler E (2018), Detecting, Interpreting, & Modeling Hydrologic Extremes to Support Flexible 
Water Management and Planning. Seminar to the Hydrometeorology Applications Program 
(HAP) Research Applications Laboratory (RAL), NCAR, May 18, 2018. [Presentation] 

Towler E (2018) Detecting, Interpreting, and Modeling Hydrologic Extremes to Support Flexible 
Water Management and Planning. All MMM Meeting, NCAR, Boulder, CO, February 8, 2018. 
[Presentation] 

Towler E (2018) Detecting, Interpreting, and Modeling Hydrologic Extremes to Support Flexible 
Water Management and Planning. Brown Bag Seminar for US Bureau of Reclamation, Remote 
presentation to Albuquerque Area Office, Albuquerque, NM, January 23, 2018. [Presentation] 

Towler E, Llewellyn D, Prein A, Pinson A, Young R, Barrett L (2017) Detecting, Interpreting, 
and Modeling Hydrologic Extremes to Support Flexible Water Management and Planning. 
USGS Upper Rio Grande Basin Focus Area Study Project Forum, Remote presentation to 
Albuquerque, NM, December 4, 2017.  [Presentation] 

Towler E. (2016) Nonstationary Tools to Detect, Interpret, and Model Hydrologic Extremes to 
Support Flexible Water Management. Webinar, June 8, 2016. [Webinar presentation to explore 
research ideas for S&T program with Dagmar Llewellyn and 9 Bureau of Reclamation staff from 
the Albuquerque Area Office and El Paso Field Office.] 

Field Tours 

• Upper Rio Grande Tour – Alamosa Office Operations, Reclamation’s Closed Basin 
Project, and San Luis Valley irrigation operations, May 1-3, 2017.



 

 

 


