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specific to the Bureau of Reclamation mission. Reclamation gives no warranties 
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including merchantability or fitness for a particular purpose. 
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Executive Summary 
This project involved two primary components: (1)  evaluation of runoff efficacy changes using 
observed and paleo reconstructed flows and (2) exploration of the benefits of including available 
seasonal temperature forecasts into seasonal streamflow forecast models to improve their skill. In 
the first investigation, it was found that recent declines in runoff efficiency were in part 
attributable to anomalously warm temperatures. In the second part of the project, the 
aforementioned finding was tested for potential improve seasonal streamflow forecasts. 
Specifically, seasonal temperature forecasts were incorporated into the statistical water supply 
methodology employed by the Natural Resources Conservation Service (NRCS). The outcome 
was moderate improvement in seasonal water supply forecast skill. These two components of the 
project each resulted in a publication to the journal Geophysical Research Letters (GRL). 
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Main Report 
Appendix A to this report provides a project summary, including the project purpose and 
research formulation, research phases, peer-reviewed publications and news reports, and next 
steps. 

The outcomes of this project are documented in two peer-reviewed publications, both to the 
journal Geophysical Research Letters (GRL), which are provided as Appendices B and C to this 
report. The first (Appendix B) is “Assessing recent declines in Upper Rio Grande River runoff 
efficiency from a paleoclimate perspective” (Lehner, Wahl, Wood, Blatchford, & Llewellyn, 
2017). The second (Appendix C) is “Mitigating the Impacts of Climate Nonstationarity on 
Seasonal Streamflow Predictability in the U.S. Southwest” (Lehner, et al., 2017). 



 

 

 
  

  
 

 
    

 

 

 

References 
Lehner, F., Wahl, E. R., Wood, A., Blatchford, D., & Llewellyn, D. (2017). Assessing recent 

declines in Upper Rio Grande River runoff efficiency from a paleoclimate perspective. 
Geophysical Research Letters. doi:10.1002/2017GL073253 

Lehner, F., Wood, A., Llewellyn, D., Blatchford, D., Goodbody, A., & Pappenberger, F. (2017). 
Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow Predictability 
in the U.S. Southwest. Geophysical Research Letters. doi:10.1002/2017GL076043 

2 



  
 

 
 

  
  

Appendix A 

Project Summary 

Runoff Efficiency and Seasonal Streamflow Predictability in the U. S. Southwest 



 
 

  
   

  
   
 

 
 

 
 

   
 

       
    
 

     
      

  
  

    
 

  
 

  
 

     
 

    
  

 
 

  
 

   
  

   
  

   
    
   
   
    
    
    

 
 
 
 
 
 

Appendix A: Project Summary 

Bureau of Reclamation Fiscal Year 2015-2017 Science & Technology 
Program Project #8730 

Postdocs Applying Climate Expertise (PACE) Fellowship for Improving 
Seasonal Forecasting to Support Operational Decision-Making within 

Reclamation Service Areas 

March 30, 2018 

PACE Fellow: Flavio Lehner – Postdoctoral Fellow, Research Applications Laboratory, National 
Center for Atmospheric Research, Boulder, CO; expertise in climate variability 

PACE Mentors: The mentor team consisted of: 
• Andy Wood – Project Scientist III and Scientific Supervisor, Research Applications 

Laboratory, National Center for Atmospheric Research, Boulder, CO; expertise in 
operational hydroclimate forecasting. 

• Douglas Blatchford – Bureau of Reclamation, Lower Colorado Region, Boulder City, NV; 
expertise in Reclamation river and reservoir operations.  

• Dagmar Llewellyn – Bureau of Reclamation, Upper Colorado Region, Albuquerque Area 
Office, Albuquerque, NM; expertise in Reclamation river and reservoir operations, and 
use of forecast information to support water management.  

Duration: 1st April 2016 to 31st March 2018 

Project Objective: To investigate potential methods to improve seasonal streamflow forecasting 
for Reclamation’s service areas in the Upper Colorado and Lower Colorado Regions, including 
the Colorado River and Upper Rio Grande basins. 

Content of this Report 

• Research Formulation – Page 2 
• Research, Phase I:  Assessing recent declines in Upper Rio Grande River runoff 

efficiency from a paleoclimate perspective – Page 2 
• Research Phase II:  Mitigating the Impacts of Climate Nonstationarity on Seasonal 

Streamflow Predictability in the U.S. Southwest – Page 4 
• Ongoing Research and Collaboration – Page 5 
• Project Supervision and Interaction – Page 6 
• Financial Reporting – Page 6 
• Next Steps – Page 7 
• Appendix A – Peer-reviewed publication from Research Phase I 
• Appendix B – Peer-reviewed publication from Research Phase II 
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Research Formulation:  

The original project proposal to Reclamation’s Science & Technology Program (FY-2015 
#8730), titled “A web-based data assimilation framework for improving operational decision-
making”, detailed a range of potential strategies for improving operational decision-making 
within Reclamation. The selected fellowship candidate, Flavio Lehner, has expertise in 
climatology and forecasting.  Therefore, the project team elected to focus the work under this 
fellowship on improvements to forecasting of climate and hydrology, with a secondary goal of 
understanding trends in hydroclimate that might be relevant for Reclamation’s management and 
planning challenges. The scope of the PACE project was designed to complement ongoing 
collaborative research toward advancing streamflow prediction practices between NCAR's 
Research Applications Lab and Reclamation (supported under the current and prior Cooperative 
Agreements between the two institutions, from 2013 to the present). 

The Upper Rio Grande basin was selected as the initial focus area for project efforts to improve 
seasonal streamflow forecasts. This basin has less sophisticated forecasting tools available to 
it than many other basins in Reclamation’s service area, including the Colorado Basin.  Also, 
Reclamation water operations practitioners in this basin described poor forecast skill for this 
basin, with a tendency for over-forecasting biases during recent decades. 

Reclamation’s Research Office was notified of the selected fellow, and the intended direction for 
the fellowship research. Dagmar Llewellyn of the Upper Colorado Region, Albuquerque Area 
Office was added to the project as a co-Principal Investigator for Reclamation, along with 
Douglas Blatchford of the Lower Colorado Region. 

Research, Phase I: Assessing recent declines in Upper Rio Grande River runoff
efficiency from a paleoclimate perspective. 

Dr. Lehner undertook a detailed review of the recent seasonal streamflow forecast biases in the 
Upper Rio Grande basin, applying prior expertise with paleo-based and climate-model-based 
analyses. He hypothesized that the over-forecasting bias resulted from declining runoff 
efficiency (water year streamflow divided by water year precipitation), in part driven by warming 
trends. 

To evaluate this hypothesis, Dr. Lehner turned to paleoclimate reconstructions, which allowed 
him to extend his analyses beyond the available instrumental record. The long paleoclimate 
reconstructions allowed Dr. Lehner to tease out the factors contributing to variations in runoff 
efficiency in a more robust fashion than would be possible from the short instrumental record. It 
also enabled him to put the recent downward trend in runoff efficiency in context of the long 
paleoclimate record and to evaluate the extent to which this recent trend has precedent. For 
this phase of the research, Dr. Lehner teamed up with Eugene Wahl from the National Oceanic 
and Atmospheric Administration (NOAA) Paleoclimatology Group, also in Boulder, CO. 

The research found that runoff efficiency varies primarily in proportion to precipitation, but that 
there exists a clear secondary influence of temperature. In years of low precipitation, very low 
runoff efficiencies are made 2.5–3 times more likely by high temperatures. This temperature 
sensitivity appears to have strengthened in recent decades, implying future water management 
vulnerability should recent warming trends in the region continue. 
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The resulting paper (Lehner et al. 2017a) features a number of scientific novelties, such as the 
first successful reconstruction of runoff efficiency from prior to the instrumental record, and the 
first documentation of the influence of temperature on streamflow over such a long period for 
this region of the world. The paper consequently garnered the attention of a couple of 
newspapers and blogs, as well as decision makers and researchers in and outside Reclamation 
(see list below). 

Peer-Reviewed Publication (Appendix B) 
Lehner, F., E. R. Wahl, A. W. Wood, D. Blatchford, and D. Llewellyn, 2017a: Assessing recent 

declines in Upper Rio Grande River runoff efficiency from a paleoclimate perspective. 
Geophys. Res. Lett., doi:10.1002/2017GL073253. 

NCAR/UCAR AtmosNews Article: 
https://www2.ucar.edu/atmosnews/news/126957/warmer-temperatures-cause-decline-in-key-
runoff-measure 

Conference Posters and Presentations 
• AGU Fall Meeting 2016 in San Francisco (December 12 2016): “Declining runoff 

efficiency in the Southwestern US and implications for forecasting and water 
management” (Talk) 

• Southern Nevada Water Authority conference on Colorado River Water Management 
(May 23 2017): “The influence of temperature on runoff efficiency: Implications for 
streamflow forecasting” (Talk) 

• Community Earth System Model (CESM) Paleoclimate Working Group Meeting (March 2 
2017): “Assessing recent declines in Upper Rio Grande River runoff efficiency from a 
paleoclimate perspective” (Talk) 

Field Tours 
• Yuma Area Office operations, September 13-15 2016 

Research Collaborations 
• Eugene Wahl, National Oceanic and Atmospheric Administration (NOAA) 

Paleoclimatology Group, Boulder, CO. 

Outreach to Reclamation, the Water Management Community, and the Public 
• Presentation to Reclamation Yuma Area Office, Yuma, AZ (September 15 2016) 
• Presentation to Lower Colorado Region Water Operations Group, Boulder City, NV 

(February 8, 2017) 
• Presentation to Southern Nevada Water Authority, Las Vegas, NV (February 9, 2017) 
• Presentation to National Weather Service Interagency symposium of hydrology and 

climate, Albuquerque, NM (via webinar; April 18 2017) 
• Newspapers and blogs: 

o “How does global warming affect flows in the Rio Grande?” (Summit County 
Citizen’s Voice and Coyote Gulch blog, May 11 2017; 
https://coyotegulch.blog/2017/05/11/how-does-global-warming-affect-flows-in-
the-rio-grande/) 

o “Warmer temperatures drying the Rio Grande” (Climate Central, May 12 2017; 
http://www.climatecentral.org/news/warmer-temperatures-drying-rio-grande-
21446) 
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o “Boulder scientist leads study probing warming impact on runoff” (Daily Camera – 
Boulder News, May 17 2017; 
http://www.dailycamera.com/news/boulder/ci_30994168/boulder-scientist-leads-
study-probing-warming-impact-runoff) 

o “Calentamiento afecta río Bravo” (El Manana Nuevo Laredo, May 21 2017; 
http://elmanana.com.mx/noticia/136151/Calentamiento-afecta-rio-Bravo.html ) 

o “Warmer temperatures cause decline in key runoff measure” (Geophysical 
Research Letters, Editor’s Highlight, May 22 2017; 
https://agupubs.onlinelibrary.wiley.com/hub/article/10.1002/2017GL073253/editor 
-highlight/) 

Research Phase II:  Mitigating the Impacts of Climate Nonstationarity on Seasonal
Streamflow Predictability in the U.S. Southwest. 

The downward trend in runoff efficiency over the last 30 years was shown, in the first phase of 
this research, to be significant. This trend clearly poses a challenge for the current statistical 
forecasting models that assume a stationary background climate. While prior research has 
shown limitations in using seasonal precipitation forecasts for streamflow forecasting, the first 
paper published as part of this fellowship supported the idea that temperature forecasts could 
be beneficial in correcting for warming trends in regression-based forecasts. Therefore, the 
team focused the second phase of this research fellowship on an exploration of the benefits of 
including available seasonal temperature forecasts into seasonal streamflow forecast models to 
improve their skill. To that end, they used the publicly available seasonal climate forecasts from 
the North American Multi-Model Ensemble (NMME; 7 models) and later was able to add 
forecasts from the proprietary European Centre for Medium Range Weather Forecasts 
(ECMWF; 1 model), leveraging an ongoing collaboration between the ECMWF Head of 
Forecasting (Florian Pappenberger) and Dr. Wood. Dr. Wood introduced Dr. Lehner to the 
methods, data and practice of statistical water supply forecasting and to colleagues in the 
operational forecast center (Natural Resources Conservation Service, NRCS) serving 
Reclamation in the Upper Rio Grande basin. 

Dr. Lehner’s experience with climate model dynamics and datasets proved instrumental in 
analyzing and staging the large ensemble prediction dataset for application to streamflow 
forecasting. In the ensuing work, the team corroborated that they could indeed improve the 
streamflow forecast skill for key headwater gages in the Colorado and Rio Grande by around 
10% in hindcasts over the period 1987-2016 by adding temperature information to the current 
operational forecasting approach by the Natural Resources Conservation Service (NRCS). 
Angus Goodbody, a hydrologic forecaster at NRCS, joined the co-author team, as well as Dr. 
Pappenberger. The resulting paper on the forecasting work was published in December 2017 
(Lehner et al. 2017b) and presented on several occasions, such as the American Geophysical 
Union (AGU) Fall Meeting in New Orleans. 

Peer-Reviewed Publication (Appendix C) 
Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, and F. Pappenberger, 

2017b: Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow 
Predictability in the U.S. Southwest. Geophys. Res. Lett., doi:10.1002/2017GL076043. 

NCAR/UCAR AtmosNews Article: 
https://www2.ucar.edu/atmosnews/just-published/131553/taking-temperature-streamflow-
forecasts 
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Conference Posters and Presentations 
• AGU Fall Meeting 2017, New Orleans, LA (December 11 2017): “Using temperature 

forecasts to improve seasonal streamflow forecasts in the Colorado and Rio Grande 
Basins” (Talk) 

• AGU Fall Meeting 2017, New Orleans, LA (December 12 2017): “Projected drought risk 
in 1.5°C and 2°C warmer climates” (Invited Talk) 

• New Mexico Water Resources Research Institute Annual New Mexico Water 
Conference, Socorro, NM (August 16 2017): “Using Temperature Forecasts to Improve 
Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins” (Poster) 

• National Center for Environmental Prediction Subseasonal-to-Seasonal Science 
Meeting, College Park, MD (September 15 2017): “Using Temperature Forecasts to 
Improve Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins” 
(Poster) 

• National Center for Atmospheric Research Water System Retreat, Boulder, CO (January 
17 2018): “Mitigating the impacts of climate non-stationarity on seasonal streamflow 
predictability in the US Southwest” (Talk) 

• “Surviving Peak Drought and Warming” Conference, University of Arizona, Tucson, AZ 
(March 29 2018): “Drought in 1.5°C and 2°C warmer climates: uncertainties and 
implications” (Invited Talk) 

• Western Snow Conference, Albuquerque, NM (April 17 2018): “On the use of snow and 
climate information in statistical streamflow forecasting” (Talk) 

Research Collaborations 
• Florian Pappenberger, Head of Forecasting, European Center for Medium-Range 

Weather Forecasts (ECMWF), Reading, United Kingdom 
• Angus Goodbody, hydrologic forecaster, Natural Resources Conservation Service, 

Portland, OR 

Field Tours 
• Lower Colorado Region Operations, Boulder City, NV, February 7-9, 2017 
• Upper Rio Grande Tour – Alamosa Office Operations, Reclamation’s Closed Basin 

Project, and San Luis Valley irrigation operations, May 1-3, 2017 
• “Connecting People to Rivers”, Rio Chama Wild and Scenic Reach, hosted by Rio 

Grande Restoration, July 14-16, 2017 

Outreach to Reclamation, the Water Management Community, and the Public 
• Participation in discussions at USGS New Mexico Water Science Center, Upper Rio 

Grande Focus Area Study annual research symposium (via webinar; December 5 2017) 
• Meeting with Colorado Division of Water Resources in Alamosa, CO (May 1 2017) 
• Presentation at Reclamation’s Albuquerque Area Office to a group of approximately 30 

local water management stakeholders in the Middle Rio Grande valley (via webinar; 
January 23, 2018) 

• Presentation to Rio Grande Compact Engineer Advisor’s Meeting for Compact Year 
2017 (March 6, 2018) 
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Ongoing Research and Collaboration 

The team has remained in contact with the NRCS to discuss and design ways to incorporate the 
research results into NRCS’s operational forecasting model. Dr. Lehner has also been in close 
contact with Carolyn Donnelly, water operations supervisor, and Lucas Barrett, a hydrologic 
modeler in Reclamation’s Albuquerque Area Office, and provided Lucas Barrett with the 
project’s experimental streamflow forecasts to be used in the Upper Rio Grande Water 
Operations Model (URGWOM) to project the 2018 snowmelt runoff in the Rio Grande Basin. 
Thus, the project is beginning to directly benefit Reclamation’s water operations in the Rio 
Grande basin, and has the potential to similarly benefit forecasts and water operations in other 
parts of Reclamation’s service area. 

Reclamation also cares about the timing of runoff as it occurs in spring of each year. That is, 
Reclamation water managers would like to know ahead of time in which week the peak 
streamflow will occur. This interest is motivated by ecological considerations, mostly related to 
fish spawning and riparian health. Initial work is underway to explore the predictability of peak 
streamflow for the Upper Colorado and Rio Grande using antecedent hydrologic information, 
such as snow pack, accumulated precipitation, or soil moisture, as well as seasonal climate 
information. Only a few streamflow gages offered sufficient correlations between these potential 
predictors and peak streamflow, and in almost all cases this correlation did not translate into 
predictive skill in a cross-validation hindcasting framework. Other sources of predictability for 
peak streamflow timing were discussed (e.g., radiative forcing from dust on snow), but ultimately 
were not pursued due to lack of clear applications potential and/or overlap with other research 
groups in the field. 

Project supervision and interaction 
At the beginning of the project, a repeating monthly call with Andy Wood, as well as Douglas 
Blatchford and Dagmar Llewellyn from Reclamation was established, leading to a regular 
exchange of ideas and feedback that was very useful for tracking progress and making 
adjustments to the research focus, where necessary. Mr. Blatchford and Ms. Llewellyn invited 
relevant people from Reclamation, the USGS, and other water-management institutions to these 
calls, thereby allowing the research effort to be optimally aligned with stakeholder needs. 

The project supervisors arranged a number of interactions with the decision makers in water 
operations that were critical for the success of the project. These included a visit to the Lower 
Colorado Operations Office and the Yuma Area Office, where the exposure of the research led 
to invited talks in meetings with the Southern Nevada Water Authority, and with Colorado and 
Rio Grande river stakeholders. Dr. Lehner was also able to give a presentation at the National 
Center for Environmental Prediction (at the Subseasonal-to-Seasonal, or S2S, Science 
Meeting). 

The team also facilitated insightful site visits to Reclamation projects in Yuma AZ, Boulder City 
NV, Alamosa, CO, and Taos and Chama, NM. Similarly, Dr. Wood used his many contacts in 
both the private, federal, and academic sector of water management in the Western US to 
support the project with critical data and information. 

Financial reporting 
The total Reclamation funding for this PACE fellowship was $119,980, including funding in 
Fiscal Year 2015, 2016, and 2017. 
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Funding available under this PACE Fellowship did not adequately cover some of the publication 
costs and travel of Dr. Lehner, nor the needed mentoring time for Dr. Lehner by Dr. Wood. To 
successfully complete this project, Dr. Wood leveraged contributions from his ongoing 
Reclamation forecasting project, and dedicated time from his project to mentor Dr. Lehner and 
contribute to the scientific outcomes of this fellowship. Dr. Wood also organized NCAR funds to 
pay for new computing infrastructure for Dr. Lehner. Dr. Wood facilitated a smooth project 
progression by managing budget through leveraging synergies with his other projects. 

Next Steps 

As a result of the research initiated under this PACE fellowship, two projects have been funded 
under Reclamation’s Fiscal Year (FY) 2018 Science & Technology Program. These follow-on 
projects are described below. Dr. Lehner has been promoted to a Project Scientist I position at 
NCAR in order to continue his involvement with this research, through these Science & 
Technology Program projects. Work on this effort is expected to be initiated in May, 2018. 

The first of these follow-on projects is three-year project titled Improving the robustness of 
southwestern US water supply forecasting in the face of climate trends and variability. This 
project will identify parts of the Reclamation management domain that are experiencing climate 
trends that may be undermining the effectiveness and skill of seasonal water supply forecasts 
(WSFs) that are used to inform water management decisions.  ‘Skill’ is a multi-faceted 
description of the quality of a forecast, including components of accuracy, reliability, and 
precision.  It will also identify regions in which seasonal climate (and particularly temperature) 
forecasts from the National Multi-Model Ensemble (NMME) may be sufficiently skillful to make 
WSFs responsive to seasonal and interannual climate trends, and thereby enhance their skill. 
In the Upper Rio Grande basin, where research under Dr. Lehner’s PACE fellowship already 
provided evidence that such changes are underway, the project will refine and demonstrate 
NMME-based strategies for improving the resilience of the existing operational forecasting 
methods (statistical prediction and model-based Ensemble Streamflow Prediction, or ESP) at 
key water management input locations (to the existing RiverWare models), enabling 
experimental operational scenario analysis. The work will lead to operations-ready methods 
suitable for adoption in the two major forecasting agencies, the National Weather Service 
(NWS) and the Natural Resources Conservation Service (NRCS).  The Reclamation-wide 
assessment of hydroclimate sensitivities to trends and NMME climate forecast skill will provide 
foundational information for potential follow-on decision support studies in basins in 
Reclamation’s service area other than the Upper Rio Grande. 

The second of these follow-on projects is also a three-year project, which is titled “Development 
of short-range forecasts of weather-driven channel losses and gains to support Reclamation 
Water Management.” On the field trip to the Reclamation Yuma Area Office (September 13-15 
2016), Reclamation water-management staff Edward Virden (Director of Operations) and Hong 
Nguyen-DeCorse indicated a strong need for improved short-term precipitation forecasts to 
support water operations in the Yuma area. Although only exploratory work was conducted on 
the Lower Colorado basin during the PACE fellowship, clear research needs were identified 
during the site visit. These needs eventually led to a successful proposal to Reclamation’s 2018 
Science & Technology Program in Fiscal Year 2018 to conduct research on short-term weather 
and loss-gain modeling in the Lower Colorado Basin. For this project, a collaboration with 
NOAA’s Michael Scheuerer and Tom Hamill, both in Boulder, CO, was established, with the 
goal of improving the forecast skill of quantitative, short-term precipitation forecasts in the Yuma 
area. 
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Lehner, F., E. R. Wahl, A. W. Wood, D. Blatchford, and D. Llewellyn, 2017a: Assessing 
recent declines in Upper Rio Grande River runoff efficiency from a paleoclimate 
perspective Geophys. Res. Lett., doi:10.1002/2017GL073253 
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11 

12 Key Points: 

13 • The decreasing runoff efficiency trend from 1986-2015 in the Upper Rio Grande River 
14 basin is unprecedented in the last 445 years 

15 • Very low runoff ratios are 2.5 to 3 times more likely when temperatures are above-
16 normal than when they are below-normal 

17 • The trend arises primarily from natural variability but runoff sensitivity to temperature 
18 implies further declines should warming continue 
19 
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20 Abstract 
21 Recent decades have seen strong trends in hydroclimate over the American Southwest, with 

22 major river basins such as the Rio Grande exhibiting intermittent drought and declining runoff 

23 efficiencies. The extent to which these observed trends are exceptional has implications for 

24 current water management and seasonal streamflow forecasting practices. We present a new 

25 reconstruction of runoff ratio for the Upper Rio Grande basin back to 1571 CE, which provides 

26 evidence that the declining trend in runoff ratio from the 1980s to present-day is unprecedented 

27 in context of the last 445 years. Though runoff ratio is found to vary primarily in proportion to 

28 precipitation, the reconstructions suggest a secondary influence of temperature. In years of low 

29 precipitation, very low runoff ratios are made 2.5-3 times more likely by high temperatures. This 

30 temperature sensitivity appears to have strengthened in recent decades, implying future water 

31 management vulnerability should recent warming trends in the region continue. 

32 1 Introduction 

33 Streamflow in most watersheds in the American Southwest is driven primarily by winter 

34 precipitation, with a secondary contribution from summer precipitation (Serreze et al. 1999). 

35 Much of the winter precipitation falls as snow in the mountains and runs off in spring and early 

36 summer, and peak snowmelt-driven streamflows typically occur between March and July. The 

37 influence of summer precipitation increases to the south due to the increased influence of the 

38 North American monsoon (Woodhouse et al. 2013), but the headwater regions of rivers such as 

39 the Colorado and Rio Grande are dominated by winter precipitation. Seasonal outlooks for runoff 

40 volume driven by spring snowmelt, termed water supply forecasts (WSFs), leverage the 

41 relationship between winter precipitation and summer streamflow by using predictors such as 

42 observed winter snow water equivalent (SWE) and accumulated precipitation to forecast spring 

43 runoff. Forecasts have traditionally been made beginning in January of the same year (Pagano et 

44 al. 2014). The skill of these WSFs at longer lead times depends on both the strength and stability 

45 of the relationship between these predictors and the coming spring runoff. The runoff ratio, or 

46 the fraction of runoff generated by a given amount of precipitation, can serve as a simple metric 

47 illustrating the efficiency of this translation. Hence, decadal variations in runoff ratio would 

48 indicate non-stationarity in this translation, which in turn can alter the forecast skill. In the 

49 context of WSFs, relevant runoff ratio calculations might include the spring streamflow volume 

50 divided by winter precipitation up to the start or end of the forecast period. In the context of 
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51 assessing hydroclimate variability more generally, and as necessitated by the temporal resolution 

52 of currently available paleoclimate reconstructions, total water year (October-September) 

53 streamflow and precipitation might be used. 

54 In the American Southwest, and specifically the Upper Rio Grande River basin (URG), annual 

55 runoff ratios are sensitive to a number of factors. The relative contributions of winter, spring, and 

56 summer precipitation to the water year (WY) total precipitation are important because summer 

57 precipitation typically does not contribute to streamflow as much as winter precipitation (Hamlet 

58 et al. 2005), in part due to the higher evaporative losses in summer. In WSFs, for example, 

59 primarily the winter precipitation is used as a predictor, while spring and summer precipitation 

60 variability after the forecast date contributes to the forecasting uncertainty (Pagano et al. 2004; 

61 Rosenberg, et al. 2011), especially since winter and summer precipitation in the American 

62 Southwest are not necessarily correlated on interannual time scales (Griffin et al. 2013; Coats et 

63 al. 2015). Spring temperatures and wind speeds, which control evaporative loss, also influence 

64 the magnitude and timing of peak SWE in the headwaters (Dettinger and Cayan 1995).  Human 

65 influences can strongly modify natural streamflows; among these, groundwater pumping (Alley 

66 et al. 2002) is less easily corrected for than other impairments such as reservoir storage 

67 operations and measured diversions and return flows. Finally, recent research has suggested that 

68 dust loading on snowpack can induce earlier melt and reduced runoff volumes (Painter et al. 

69 2010).  

70 Unexpected seasonal, interannual, or decadal variations in any of these factors can lead to WSF 

71 biases. In the URG, water resources managers have noted systematic over-forecasting biases in 

72 the recent decade. The 2000s and 2010s exhibited intermittent drought conditions, thus the 

73 forecast model’s calibration over a longer period that is relatively wetter on average (i.e., 

74 including the wetter decades of the 1980s and 1990s) is likely to be a partial cause of this bias. 

75 Indeed, runoff ratios have been declining since the mid-1980s in the adjacent Upper Colorado 

76 River basin (Woodhouse et al. 2016) and similar trends exist in the URG (Figure 1). Because the 

77 recent decades have also been marked by substantial upward temperature trends, the question of 

78 whether runoff ratio declines can be linked to temperature increases, and thus potentially to 

79 anthropogenic global warming, have gained the attention of the water management community 

80 (Reclamation 2016; Udall and Overpeck 2017). 
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81 Assessing the long-term significance of the recent runoff efficiency changes is hindered, 

82 however, by relatively short periods of observational records for streamflow, precipitation, and 

83 SWE in many watersheds of the American West, which limit the data available for training 

84 statistical forecast models. This obstacle motivates the development of reconstructions of 

85 streamflow, precipitation, temperature, and their relationships that extend beyond the 

86 instrumental period and thus place recent variations in runoff ratio and associated forecast biases 

87 in the URG into a longer-term context. There have been extensive efforts to understand 

88 hydrologic variability and improve seasonal forecasting in the Colorado River basin (Franz et al. 

89 2003), but less attention has been paid to the URG. Notably, an estimated 5 million people 

90 depend on Rio Grande River water, which is shared between the US and Mexico, making it one 

91 of the most allocated rivers in the world (Dahm et al. 2005). 

92 Here we use existing and new reconstructions of annual streamflow and precipitation to extend 

93 the record of runoff ratio of the URG back to 1571 of the Common Era (CE). We use these 

94 records to assess the extent to which observed changes in WY runoff ratio have precedent over 

95 the past 445 years. The close correspondence between WY runoff ratio and seasonal runoff 

96 ratios, as discussed above, makes this analysis relevant for water resource management. In 

97 addition, we use temperature reconstructions and a climate model simulation to investigate the 

98 role of temperature and large-scale circulation patterns in influencing periods of high and low 

99 runoff ratio. 

100 2 Materials and Methods 

101 2.1 Observational data sets 
102 We use naturalized monthly Rio Grande River streamflow at Otowi Bridge (USGS 08313000; 

103 commonly referred to as Otowi Index Supply) from 1942-2015 obtained from the State of New 

104 Mexico (Nabil Shafike, personal communication). The naturalization does not include potential 

105 impairments from groundwater pumping, the influence of which on streamflow is not currently 

106 well constrained. For precipitation and surface air temperature, we use the Parameter Elevation 

107 Regression on Independent Slopes Model (PRISM) data set from 1895-2015 (Daly et al. 2008) 

108 and spatially average each field across the surface drainage area corresponding to the the Otowi 

109 Bridge gauge, defined by the hydrologic unit code (HUC6) regions 130100 and 130201. For 
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110 precipitation, we multiply the average value with the drainage area of this mask to convert it to 

111 units of volume. 

112 2.2 Paleoclimate reconstructions 

113 We use existing tree ring-based reconstructions of water year (October-September) streamflow at 

114 the Otowi Bridge gauge, as well as water year precipitation and annual mean temperature over 

115 the associated drainage basin, covering a common period (1571-1977). The streamflow 

116 reconstruction uses moisture-sensitive tree-ring species, which reflect a combination of winter 

117 precipitation and summer evapotranspiration and thus capture key features of streamflow 

118 variability (Woodhouse et al. 2012). It was calibrated against naturalized flows in the 20th 

119 century and covers the period 1450-2012 CE (updated version; 

120 http://www.treeflow.info/content/rio-grande-owoti-new-mexico-update). 

121 The precipitation reconstruction is a modified version of the 0.5° x 0.5° western US precipitation 

122 reconstruction by Diaz and Wahl (2015), covering the period 1571-1977. The precipitation 

123 reconstruction relies on tree ring-based streamflow reconstructions, but, crucially for the study 

124 here, the streamflow reconstruction from Otowi Bridge has been excluded in the construction of 

125 this modified version. Thus, the streamflow and precipitation reconstructions used here are 

126 largely independent, with very few shared original chronologies (Table S1 and Supplementary 

127 Material Section 1). To estimate precipitation in the Rio Grande basin upstream of Otowi Bridge, 

128 we spatially averaged the reconstructed precipitation over the aforementioned Otowi drainage 

129 region and multiplied it by the drainage area to obtain units of volume. 

130 For annual mean temperature we extract a 5° x 5° grid cell centered at 37.5 °N, 107.5 °W (which 

131 corresponds roughly to the Rio Grande headwaters) from the reconstruction by Wahl and 

132 Smerdon 2012. The coarse spatial resolution of this reconstruction does not weaken the analysis 

133 here because the length scale of high spatial correlation (r>0.8) of the URG annual mean 

134 temperature encompasses the size of the selected grid cell in observations (Figure S1). While the 

135 choice of annual mean is motivated by the available reconstruction data, we note that annual 

136 mean and the more critical melt season (Mar-Aug) mean temperature in the URG basin are 

137 highly correlated (r=0.74 in observations 1895-2015). For the determination of reconstruction 

138 uncertainties see Supplementary Material Section 3. 

http://www.treeflow.info/content/rio-grande-owoti-new-mexico-update
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139 2.3 Model simulation 
140 We use an 1,800-year long preindustrial control simulation (piControl) from the Community 

141 Earth System Model (CESM), which is described in detail by Kay et al. (2015). CESM is a fully-

142 coupled Earth System Model with components of atmosphere, ocean, sea ice, and land surface 

143 (Hurrell et al. 2013). In the configuration here, all components are run at ~1°x1° horizontal 

144 resolution. The forcing represents perpetual 1850 CE conditions for atmospheric composition, 

145 orbital parameters, and land cover. 

146 We extract streamflow from this simulation by extracting the routed runoff at the Otowi Bridge 

147 location from the 0.5° x 0.5° River Transport Model embedded in CESM. We recognize that the 

148 CESM runoff and routing schemes are coarse and contain climatological biases at the watershed 

149 scale, but we expect that they will sufficiently discriminate high and low flows driven by large 

150 scale climate variations to be useful in the context of this study. CESM precipitation and surface 

151 air temperature are then extracted by mapping the Otowi Bridge drainage area onto the CESM 

152 grid. 

153 3 Results 

154 3.1 Hydroclimate over the past four centuries 
155 At Otowi Bridge, streamflow has varied on interannual to decadal time scales, with pronounced 

156 periods of low flow as identified and discussed in Woodhouse et al. (2012). Figures 1a and 1b 

157 show the reconstructed and observed time series of WY precipitation and streamflow for Otowi 

158 Bridge, Figure 1c shows the runoff ratio resulting from dividing streamflow by precipitation, and 

159 Figure 1d shows annual mean temperature. Beyond the decadal time scale, however, no 

160 prolonged periods of high or low flow were recorded in the reconstruction, consistent with other 

161 Southwestern US findings that multi-decadal drought conditions were more prevalent in the first 

162 half of the last millennium (Cook et al. 2004; Meko et al. 2007; Coats et al. 2016), although there 

163 is a 16th century megadrought that ended just before our reconstructions begin (Stahle et al. 

164 2000). Comparing the last four centuries of reconstructed streamflow to the recent decades of 

165 measured streamflow at Otowi Bridge clearly indicates that the observed annual high values of 

166 the 1980s and the low value of 2002 are exceptional, but not unprecedented. The highest value in 

167 the observations is 2,074 KAF (1,000 acre feet; in 1985) and lowest value is 235 KAF (in 2002), 

168 whereas the highest reconstructed value is 2,123 KAF (in 1720) and the lowest value is 216 KAF 
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169 (in 1685). Due to uncertainties in the reconstruction (Woodhouse et al. 2006), which are likely 

170 larger than the margin between the observed and reconstructed highest and lowest flows, it is 

171 uncertain but conceivable that these recent extrema are the highest and lowest flows in more than 

172 400 years. 

173 The 10-year smoothed time series (thick line in Figure 1a) clearly shows the 1980s to be the 

174 decade of highest flow over the whole time period, while the early 2000s tie within uncertainties 

175 with the 1580s and 1770s for the decade of lowest flow. Most importantly, the short sequencing 

176 of the exceptionally high- and low-flow decades within the last 30 years results in this period 

177 showing the strongest 30-year streamflow trends of the entire period 1571-2015 (histogram in 

178 Figure 1a, at 99.1% probability; see Supplementary Material, Section 4). 

179 Precipitation is strongly correlated with streamflow (r=0.75 in reconstructions 1571-1942, r=0.89 

180 in reconstructions 1943-1977, r=0.77 in observations 1943-1977, r=0.79 in observations 1943-

181 2015) and largely drove the extreme streamflow periods in both reconstructions and observations 

182 (Figure 1b). Precipitation is also strongly correlated (r=0.73, 1571-1977) with a reconstruction of 

183 April snow water equivalent in the Rio Grande headwaters (Pederson et al. 2011), suggesting 

184 that winter-spring precipitation can explain at least 50% of water year precipitation variability. 

185 Similar to streamflow, the 1980s stand out as an exceptional decade with precipitation values 

186 almost consistently above the long-term average derived from the reconstruction. Consequently, 

187 this wet decade and the subsequent decline into the generally drier 2000s also produced the 

188 strongest 30-year precipitation trend of the entire period (histogram in Figure 1b, at 97.9% 

189 probability). Interestingly, the 1990s were exceptionally wet as well, but had lesser impact on the 

190 streamflow record than the 1980s (compare Figure 1a and 1b), leaving room for additional 

191 explanatory factors, as discussed later. 

192 Due to the strong influence of precipitation on streamflow and runoff ratio in these arid regions 

193 (Vano et al. 2012), the reconstructed time series of runoff ratio features many of the same high 

194 and low value periods as the precipitation reconstruction (Figure 1c). Again, the 1980s show 

195 exceptionally high runoff ratios and the decline into the early 2000s also marks the strongest 30-

196 year trend in the entire period (histogram in Figure 1c, at 97.8% probability). However, there are 

197 a few periods, including the 1990s and the mid-nineteenth century, in which the relationship 

198 between precipitation and runoff ratio appears to be weaker. 
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199 Compared to precipitation and streamflow, reconstructed temperature in the URG shows distinct 

200 multi-decadal (relatively lower frequency) variations (Figure 1d). A roughly century-long cold 

201 period between 1600 and 1700 was followed by a similarly long period of above-long-term mean 

202 temperatures, followed by a sharp decrease and then gradual rise of temperature until present-

203 day. The highest reconstructed temperatures occurred in the late 18th century and rival the 

204 observed high values of the 20th and 21st century, although the past 15 years are clearly the 

205 warmest period of such length over the last 440+ years (cf. Wahl and Smerdon 2012). Unlike 

206 reconstructed streamflow, precipitation, and runoff ratio, observed 30-year temperature trends 

207 fall well within the distribution of the reconstruction. 

208 3.2 Role of temperature 
209 While precipitation is the main driver of interannual streamflow variations in the URG, 

210 temperature also influences streamflow and hence runoff ratio. To investigate the role of 

211 temperature in interannual variations of runoff ratio, we plot runoff ratio (in percentile units) as a 

212 function of precipitation and temperature anomalies (Figure 2; all time series are relative to their 

213 median due to the non-Gaussian distribution of precipitation and runoff ratio, see Figure S2a). 

214 First, the figure illustrates the weak, but statistically significant negative correlation between 

215 temperature and precipitation (r=-0.28 in reconstructions 1571-1942, r=-0.39 in reconstructions 

216 1943-1977, r=-0.37 in observations 1943-1977, r=-0.30 in observations 1943-2015) that is 

217 typical for this region (Trenberth and Shea 2005; correlation coefficients between -0.30 and 

218 -0.50 based on reanalysis data). Second, the stratification of high and low runoff ratio years 

219 according to associated precipitation anomalies clearly shows that positive precipitation 

220 anomalies are an important prerequisite for high runoff ratios with 76% of the years of high (> 

221 70th percentile) and 88% of the very high (> 90th percentile) runoff ratios coinciding with 

222 positive precipitation anomalies in reconstructions (upper two quadrants in Figure 2a). In turn, 

223 81% of the low (< 30th percentile) and 95% of the very low (< 10th percentile) runoff ratio years 

224 coincide with negative precipitation anomalies. Third, and most importantly for this study, a 

225 further stratification according to temperature shows that when precipitation is below the 

226 median, low and very low runoff ratios are 1.7 and 2.5 times as likely to occur, respectively, in 

227 warm years (51% and 68%; bottom right quadrant in Figure 2a) than in cold years (30% and 

228 27%; bottom left quadrant in Figure 2a). Also, there exists a significant correlation between 
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229 runoff ratio and temperature that is almost entirely driven by the relationship of the two variables 

230 in dry years, with no significant correlation in wet years (Figure S2b-d). Repeating the analysis 

231 with reconstructions of summer and annual maximum monthly temperature does not alter these 

232 conclusions (Supplementary Material Section 5 and Figure S3). 

233 The relationships found in the reconstructions are also clearly visible in the shorter (73 years) 

234 observational record (Figure 2b), which exhibits strong warming during the recent decades. In 

235 fact, 86% and 88% of all low and very low runoff ratio years, respectively, were dry and warm, 

236 while 0% and 13% of the low and very low runoff ratio years, respectively, were dry and cold. 

237 Notwithstanding the uncertainties due the small observational sample, the recent warm decades 

238 appear to have been an important factor in very low runoff ratio years. 

239 Turning to the CESM simulation, we find the model generally reproduces the sensitivities of 

240 runoff ratio that are found in the reconstructions and observations (Figure 2c): 59% of high 

241 runoff ratio years and 65% of very high runoff ratio years occur in wet years (above-median 

242 precipitation; top two quadrants in Figure 2c). In turn, 59% of low and 67% of very low runoff 

243 ratio years occur in dry years (below-median precipitation; bottom two quadrants in Figure 2c). 

244 Further, the apparent importance of high temperatures for the occurrence of very low runoff ratio 

245 years is found in CESM as well: 50% of the very low runoff ratio years occur in a dry and warm 

246 year, while only 17% occur in a dry and cold year, making it approximately 3 times as likely to 

247 have a very low runoff ratio year if temperatures are above normal rather than below normal 

248 (Figure 2c).  Notable differences of the model output from the reconstructions and observations 

249 are the percentages of very high runoff ratio years when it is dry and cold, and the opposite very 

250 low runoff ratio years when it is wet and warm (Figure 2c, bottom-left and upper-right quadrants, 

251 respectively). 

252 Due to the negative correlation between precipitation and temperature there exists a natural 

253 tendency for dry years to coincide with warm years. To account for this, we investigated the 

254 likelihood for very low/low/high/very high runoff ratios conditional on the background climate 

255 of the respective year and find the results reported above to be robust (Supplementary Material 

256 Section 6 and Figure S4). 
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257 3.3 Circulation composites 
258 To investigate the large scale atmospheric circulation patterns potentially associated with certain 

259 cases of very high and low runoff ratios in the reconstruction, we search for analogous situations 

260 in CESM and create composite maps. Here, we focus on the following four situations (using the 

261 very low/low/high/very high categories defined above): 

262 A: Years with very high runoff ratio, high precipitation, and low temperature. 

263 B1: Years with very high runoff ratio, below-median precipitation, and below-median 

264 temperature. 

265 B2: Years with very low runoff ratio, below-median precipitation, and below-median 

266 temperature. 

267 C: Years with very low runoff ratio, low precipitation, and high temperature. 

268 To construct the composites, we extract sea level pressure (SLP), precipitation, and temperature 

269 during the years that fulfill the above criteria from the CESM simulation and average them 

270 (Figure 3). Naturally, not all four situations occur with equal frequency in the 1,800 model years 

271 analyzed; all four composites combined cover 9.3% of the 1,800 total model years. 

272 Situation A features a deep Aleutian Low over the North Pacific in both the cold (October-

273 March) and warm (April-September) seasons, leading to a strong North-South temperature 

274 gradient across North America and high precipitation totals over much of the contiguous US 

275 (hereafter “US”; Figure 3a-b). Both cold and warm season responses are robust over much of 

276 North America and the North Pacific (no stippling in Figure 3). Situation A in the cold season is 

277 reminiscent of the canonical El Niño response over the North Pacific-North America region. 

278 Indeed, 57% of all situations A coincide with a winter (Dec-Feb) in which the Nino 3.4 index 

279 (sea surface temperatures averaged over 170-120 °W, -5-5 °N) exceeds 1 standard deviation. 

280 Situation B1, in which very high runoff ratios occur with below-median temperatures but in 

281 conjunction with below-median precipitation, shows a sharp contrast between cold and warm 

282 season in terms of circulation and precipitation (Figure 3c-d). The cold season features a wave 

283 train across the Pacific and North America, somewhat resembling the surface signature of the 

284 Pacific North American pattern. A deep Aleutian Low channels cold air from the Bering Sea to 

285 the US, while northern Canada receives positive temperatures anomalies due to the southerly 



       

 

    

    

    

  

    

  

    

  

  

  

 

   

 

  

  

    

    

 

   

 

 

  

 

  

    

 

  

	   

   

Confidential manuscript submitted to Geophysical Research Letters 

286 flow on the east side of the Aleutian Low (Figure 3c). Together with another low pressure 

287 anomaly over the US East Coast, these two SLP anomalies cause substantial positive 

288 precipitation anomalies across large parts of the US. In the warm season, the low pressure 

289 anomaly over the Northeast Pacific is weaker, and the SLP anomaly on the US East coast moves 

290 further inland (Figure 3d). The resulting flow across the central US is predominantly northerly, 

291 causing dry and cold conditions and counteracting the moisture influx into the Southwestern US 

292 that is typical for the North American summer monsoon. The contrasting precipitation totals 

293 from the cold and warm season result in a net negative water year precipitation anomaly, but due 

294 to the high accumulation in the cold season and the relatively cold warm season, runoff ratios 

295 remain very high. 

296 Situation B2, in turn, during which very low runoff ratios occur during years of below-median 

297 precipitation and temperature, features a positive SLP anomaly over much of the northeastern 

298 Pacific in the cold season, diverting incoming storms from the Pacific to Canada and steering 

299 cold Arctic air across most of North America (Figure 3e). In the warm season, the positive SLP 

300 anomaly over the North Pacific is weaker and no clear circulation patterns are established over 

301 the US (Figure 3f), although temperatures are slightly elevated and precipitation is slightly 

302 reduced over much of the western US.  As a net result, this situation is mainly dominated by the 

303 cold season precipitation deficit, which together with slightly above-average temperatures during 

304 the warm season, appears to be sufficient to drive very low runoff ratios. 

305 Finally, situation C, during which some of the lowest runoff ratios of all CESM years occur is in 

306 many ways the reversal of situation A, with high temperatures and low precipitation over most of 

307 the US in both seasons (Figure 3g-h). The key features of the cold season composite are negative 

308 SLP anomalies over the Gulf of Alaska and a blocking high over the US West coast, steering 

309 storms into the northern half of the US West coast, while leaving the southern half of the coast 

310 and the central US dry (Figure 3g). While resembling La Niña, only 38% of the winters in this 

311 composite show a Nino 3.4 index < -1 standard deviation. In the warm season, the blocking high 

312 over the Pacific persists and a thermal low sets in over the central US, creating very warm and 

313 dry conditions, and further decreasing streamflow relative to the precipitation decrease, thus 

314 causing anomalously low runoff ratios (Figure 3h). 
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315 All of these situations resemble viable climatological circulation patterns and can arise from 

316 unforced climate variability, as demonstrated by the use of a control simulation, which were 

317 found to contain substantial multi-decadal variability of large scale circulation patterns (Deser et 

318 al. 2012a). Our results therefore suggest that decadal variations in the frequency of these 

319 circulation patterns (for example associated with the relative frequency of El Niño and La Niña 

320 events in recent decades; Meehl et al. 2009) might not, or only to a small degree, be associated 

321 with externally forced climate change, e.g., from increasing greenhouse gas concentrations. Due 

322 to the short observational record and the small signal-to-noise ratio of forced sea level pressure 

323 trends in simulations (Deser et al. 2012b), detection and attribution of anthropogenically forced 

324 changes in observed circulation patterns and hydroclimate over the American Southwest remains 

325 an active area of research (Prein et al. 2016). 

326 4 Summary and conclusions 
327 In summary, paleoclimate reconstructions suggest that both the high and low annual runoff ratios 

328 of the most recent decades in the URG were extreme in context of the last 440 years. As a 

329 consequence, the 30-year declining trend in runoff ratio from the mid-1980s to present-day 

330 appears to be unprecedented, and is problematic for current statistical seasonal streamflow 

331 forecasting approaches that assume hydroclimatic stationarity. Although decadal-scale trends in 

332 runoff ratio are driven primarily by precipitation variations, the paleoclimate record also reveals 

333 an important role for temperature in creating some of the lowest runoff ratio years in the last four 

334 centuries. Supported by a long climate model simulation, we estimate that in years with below-

335 median precipitation, very low (< 10th percentile) runoff ratios are 2.5-3 times more likely if 

336 temperatures are warmer than normal (above-median). 

337 If recent warming trends continue, our findings suggest a further decline in runoff ratios in the 

338 URG and other Southwestern US basins. Nevertheless, the paleoclimate record and associated 

339 circulation composites indicate that low and high runoff ratios of almost equal magnitude as 

340 observed in recent decades are possible in the absence of any significant greenhouse gas forcing 

341 trend. In this light, careful detection and attribution is warranted when diagnosing underlying 

342 causes of recent hydroclimate trends in the Southwestern US. 

343 
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464 

465 

466 Figure 1. Time series of reconstructed (blue) and observed (black) (a) streamflow at Otowi 

467 Bridge, (b) precipitation upstream of Otowi Bridge and normalized snow water equivalent 

468 (SWE; orange), (c) runoff ratio for Otowi Bridge, (d) average surface air temperature upstream 

469 of Otowi Bridge. Thin lines are water year totals: except temperature, which are annual means; 

470 and SWE, which is April 1. Thick lines are smoothed with a 10-year Fourier low pass filter. Blue 
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471 horizontal lines give the reconstruction mean 1571-1977. Thin gray shading indicates 5-95% 

472 reconstruction uncertainty. Right column shows normalized histograms of all 30-year trends of 

473 the water year/annual mean data. Red vertical line indicates the most recent 30-year trend 1986-

474 2015. See Section 2 for data sources and details. 
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476 
477 
478 Figure 2. Runoff ratio at Otowi Bridge (colors) as a function of water year precipitation and 

479 annual mean temperature from (a) reconstructions, (b) observations, and (c) CESM control 

480 simulation (1,800 years total). Time series are relative to their median; in the case of 

481 observations, relative to the median of the reconstructions. Colored numbers give the percentage 

482 of very low (< 10th percentile), low (< 30th), high (> 70th), and very high (> 90th) runoff ratio 

483 years that fall within a given quadrant of precipitation and temperature anomalies. 
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487 Figure 3. Composite situations from CESM control simulation of temperature (shading), 

488 precipitation (blue and red contours; increment of 0.1 mm/day, starting at ±0.05 mm/day), and 

489 sea level pressure (black contours; increment of 0.5 hPa, starting at ±0.25 hPa) anomalies for 

490 years with (a-b) very high runoff ratio (RR) while precipitation (P) is high and temperature (T) is 

491 low, (c-d) very high RR while both P and T are below median, (e-f) very low RR while both P 

492 and T are below median, and (g-h) very low RR while P is low and T is high. Left column shows 

493 cool season (Oct-Mar) means, right column warm season (Apr-Sep) means. Negative anomalies 

494 are given as dashed contours. Stippling (sea level pressure) indicates non-significant difference 

495 at 95% probability level. The number of years forming each composite situation is given in 

496 brackets. The area of the Upper Rio Grande basin is indicated by the green square. 

497 



  
 

   
 

   
   

   
 

 
 

Appendix C 

Peer-Reviewed Publication for Research Phase II: 

Lehner, F., A. W. Wood, D. Llewellyn, D. B. Blatchford, A. G. Goodbody, and F. 
Pappenberger, 2017b: Mitigating the Impacts of Climate Nonstationarity on Seasonal 
Streamflow Predictability in the U.S. Southwest. Geophys. Res. Lett., 
doi:10.1002/2017GL076043. 



 

       

    

  

    
  

  

    

    

    

   

   

    

  

    

   

  

     

    

    

     

     

    

   

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Mitigating the impacts of climate non-stationarity on seasonal streamflow 

predictability in the US Southwest 

Flavio Lehner1, Andrew W. Wood1, Dagmar Llewellyn2, Douglas B. Blatchford3, Angus G. 

Goodbody4, Florian Pappenberger5 

1 Research Applications Laboratory, National Center for Atmospheric Research, Boulder, USA 
2 Bureau of Reclamation, Albuquerque Area Office, Albuquerque, USA 

3 Bureau of Reclamation, Lower Colorado Regional Office, Boulder City, USA 
4 National Water and Climate Center, Natural Resources Conservation Service, Portland, USA 
5Forecast Department, European Centre for Medium-Range Weather Forecasts, Reading, UK 

Corresponding author: Flavio Lehner (flehner@ucar.edu) 

revised for Geophysical Research Letters 

November 2017 

Key Points: 

• Seasonal temperature forecasts from climate prediction models are skillful over the 

headwaters of the Colorado and Rio Grande river basins 

• Adding temperature information to current operational seasonal streamflow forecasts in 

snowmelt-driven basins improves forecast skill 

• Temperature forecasts help mitigate impacts of non-stationarity on US Southwest 
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24 Abstract 

25 Seasonal streamflow predictions provide a critical management tool for water managers in the 

26 American Southwest. In recent decades, persistent prediction errors for spring and summer 

27 runoff volumes have been observed in a number of watersheds in the American Southwest. 

28 While mostly driven by decadal precipitation trends, these errors also relate to the influence of 

29 increasing temperature on streamflow in these basins. Here we show that incorporating seasonal 

30 temperature forecasts from operational global climate prediction models into streamflow 

31 forecasting models adds prediction skill for watersheds in the headwaters of the Colorado and 

32 Rio Grande River basins. Current dynamical seasonal temperature forecasts now show sufficient 

33 skill to reduce streamflow forecast errors in snowmelt-driven regions. Such predictions can 

34 increase the resilience of streamflow forecasting and water management systems in the face of 

35 continuing warming as well as decadal-scale temperature variability, and thus help to mitigate 

36 the impacts of climate non-stationarity on streamflow predictability. 

37 
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38 1 Introduction 

39 With growing populations and rising temperatures, the pressure on water resources in the 

40 southwestern United States (US) is increasing and expected to continue to do so over the next 

41 decades (Reclamation 2016). Water resources in California, Nevada, Arizona, Utah, Colorado, 

42 New Mexico, and Texas are currently almost entirely allocated for agricultural, industrial and 

43 municipal uses and are heavily managed, with seasonal streamflow forecasts being a key tool 

44 used to inform this management. Seasonal streamflow forecasts for a range of lead times are 

45 among the most economically valuable streamflow predictions made in the US and around the 

46 world, given their significance for water management (Hamlet et al. 2002; Raff et al. 2013). 

47 

48 Seasonal streamflow forecasts in the Upper Rio Grande river basin, for example, are used to 

49 predict the annual water delivery requirements between Colorado, New Mexico, and Texas under 

50 an interstate river allocation agreement, the Rio Grande Compact, to plan for water storage and 

51 to inform associated reservoir management decisions. The forecasts in combination with those 

52 decisions enable projections of the water supplies that will be available to farmers, which in turn 

53 can influence cropping decisions. In addition, supplemental water supply to the Upper Rio 

54 Grande basin is imported each year from the Colorado River system through trans-basin 

55 diversions. Forecasts of the water available for diversion are used to estimate the portion of the 

56 imported water that will need to be purchased by the Federal government to support the needs of 

57 endangered species, as well as for planning of drinking water operations in major municipalities. 

58 On the much larger Colorado River system, as well, water supply forecasts issued in spring are 

59 essential to make reservoir storage and release decisions that help avoid shortage conditions in 

60 Lake Mead and Lake Powell, and that determine water and hydropower allocations affecting 7 

61 southwestern US states. These decisions influence water and energy costs for major American 

62 cities such as Los Angeles, Las Vegas and Phoenix, and major irrigation regions such as 

63 California’s Imperial Valley and Arizona’s Welton Mohawk Irrigation and Drainage District. 

64 

65 Although it is difficult to quantify the value of seasonal forecasts or the marginal value of 

66 forecast improvements, the value of the water managed using such forecasts rises well into the 

67 billions of dollars each year (Hamlet et al. 2002; Pierce 2010). In comparison, the costs of 

68 enhancements to operational water supply forecasting are small, especially when they represent 
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69 an extension of the current approaches, similar to the cost-benefit ratio of improved flood 

70 forecasting (Pappenberger et al. 2015). In recent decades the western US has seen strong 

71 hydroclimatic trends and decadal variability, leading to variable streamflow forecasting skill and 

72 a likelihood of sub-optimal management decisions (Pagano and Garen 2005). To better grapple 

73 with water resource management challenges arising from hydroclimate non-stationarity and 

74 increasing water demands, improved efficiency in water management practices is critically 

75 needed (Milly et al. 2008; Lins and Cohn 2011; Steinschneider and Brown 2012). 

76 

77 Operational seasonal streamflow forecasts in snowmelt driven basins commonly derive skill 

78 from the stability of relationships between winter precipitation and snow water equivalent (SWE) 

79 with spring to summer melt season runoff (e.g., April-July streamflow). In some cases, but less 

80 commonly, additional predictability is found in observations of prior streamflow, soil moisture, 

81 and in climate indices such as El Niño-Southern Oscillation (Wood et al. 2005; Koster et al. 

82 2010; Shukla and Lettenmaier 2011; Kalra et al. 2013; Harpold et al. 2017; Bell et al. 2017). The 

83 simplest operational form of seasonal streamflow prediction relies on statistical models that 

84 quantify these relationships, such as principal component regression (PCR) models trained on 

85 observed in situ data records of ~30 years (Garen 1992). These ‘water supply forecasts’ (WSFs) 

86 have traditionally been made beginning in January of the same year with updates on the first day 

87 of each month to incorporate new precipitation and SWE observations (Pagano et al. 2014b). 

88 Operational forecasts are published by regional River Forecasting Centers and the US 

89 Department of Agriculture National Resources Conservation Service (NRCS). A second 

90 common form of seasonal streamflow prediction involves the use of dynamic watershed models 

91 to predict future watershed states and fluxes (Day 1985; Pagano et al. 2014a). 

92 

93 The skill of statistical WSFs varies with lead time and also on decadal time scales, with basins 

94 such as the Upper Colorado River (UC) and Upper Rio Grande (URG) showing declining skill 

95 since the 1980s (Pagano et al. 2004). While extensive research has been conducted on how to 

96 improve seasonal streamflow forecasting systems (Moradkhani et al. 2004; Wood and 

97 Lettenmaier 2006, 2008; Crochemore et al. 2016; Mendoza et al. 2017), the reasons for decadal 

98 variations in skill of a fixed forecasting system remain relatively elusive. Pagano and Garen 

99 (2005) argue that these skill variations originate primarily from interannual to decadal climate 
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100 variations, rather than basin-specific processes or human interference. As such, successful 

101 prediction of interannual to decadal climate variability has the potential to stabilize streamflow 

102 forecasting skill. 

103 

104 Besides decadal climate variability, southwestern US water resources are also sensitive to the 

105 influence of anthropogenically-forced climate change, be it via temperature, precipitation, or 

106 atmospheric circulation changes (Lettenmaier and Gan 1990; Christensen et al. 2004; Barnett et 

107 al. 2005; Mote et al. 2005). For semi-arid and snowmelt driven basins such as the UC and URG, 

108 numerous studies have indicated that increasing temperature decreases streamflow (Christensen 

109 et al. 2004; Nowak et al. 2012; Vano et al. 2012; Woodhouse et al. 2016; Griffin and Friedman 

110 2017; Udall and Overpeck 2017; Lehner et al. 2017). Specifically, runoff efficiency – a metric 

111 indicating the fraction of precipitation that ends up as streamflow – is more likely to be low 

112 when temperatures are above average (Nowak et al. 2012; Lehner et al. 2017). As a 

113 consequence, the relationship between winter moisture accumulation (precipitation and SWE) 

114 and summer streamflow is evidently non-stationary and can be influenced by temperature. 

115 

116 The influence of temperature on runoff efficiency is problematic for WSFs in light of their 

117 underlying stationarity assumptions with regard to the background climate during the forecast 

118 period. Statistical models using observed accumulated precipitation and SWE at the start of the 

119 forecast without additional temperature information for the forecast period would under-predict 

120 streamflow for cool forecast periods and over-predict streamflow for warm forecast periods, in 

121 part because they do not include the information of the secular warming trend and associated 

122 evaporation losses over the entire period. 

123 

124 Here we investigate (1) recent hydroclimate trends and streamflow forecast errors in the study 

125 region, the URG and parts of the UC, (2) the seasonal predictability of temperature over this 

126 region, and (3) whether including predicted temperatures in WSFs improves seasonal streamflow 

127 forecasting skill. To that end, we generate WSFs via the current operational strategy, termed 

128 ‘baseline forecast’, as well as WSFs that include seasonal temperature forecasts as a predictor, 

129 termed ‘temperature-aided forecast’. The comparison of the two approaches enables us to assess 

130 the potential to improve streamflow forecasting skill by including temperature forecasts, as well 
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131 as the sufficiency of current operational temperature forecasts for this purpose. Section 2 

132 introduces the data and methods used, Section 3 presents the results, and Section 4 discusses 

133 their wider implications. 

134 

135 2 Data and methods 

136 2.1 Streamflow, precipitation, snow water equivalent, and temperature datasets 

137 Estimates of naturalized monthly streamflow at a number of gages across the UC and URG are 

138 obtained from the NRCS; the gages are marked with circles in Fig. 1a and are listed in Table S1. 

139 For each gage and year from 1987 to 2016, the total streamflow for the respective forecasting 

140 “target period” (e.g., Apr-July cumulative flow) is calculated. Observations of water year-to-date 

141 cumulative precipitation and instantaneous SWE at the 1st of Jan, Feb, Mar, Apr, and May are 

142 extracted from the same snow telemetry monitoring (SNOTEL) stations as used in the 

143 operational forecasting by NRCS, but only if they cover the entire hindcasting period 1987-2016 

144 (triangles in Fig. 1a; see also Table S1); this is to ensure consistency and reproducibility across 

145 the hindcasting period. The year 1987 is chosen as a start year because it offers continuous 

146 streamflow and SNOTEL measurements across all gages considered here. Monthly mean 

147 temperature is taken from the Parameter Elevation Regression on Independent Slopes Model 

148 (PRISM) data set (Daly et al. 2008) averaged over the box indicated in Fig. 1 (35.5-39.5°N, 

149 108.5-105.0°W). Precipitation used to calculate runoff efficiency in Fig. 1b is taken from PRISM 

150 as well, summed up over the watersheds upstream of Rio Grande at Otowi Bridge, San Juan at 

151 Bluff, and Gunnison at Grand Junction. 

152 

153 2.2 Seasonal temperature forecasts 

154 Seasonal temperature forecasts are derived from 8 initialized coupled climate models that 

155 produce seasonal climate forecasts (Table S2): the North American Multimodel Ensemble 

156 (NMME; Kirtman et al. (2014)), which comprises of 7 models, and the System 4 seasonal 

157 forecasting model from the European Center for Medium-Range Weather Forecast (ECMWF; 

158 Molteni et al. (2011)). In their current configuration, these models issue forecasts each month for 

159 lead times of up to 12 months with various numbers of ensemble members (10-51). Since we are 

160 interested in extracting the seasonally predictable signal, we use each model’s ensemble mean 

161 (rather than all its individual ensemble members) of monthly mean 2-m temperature hindcasts 
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162 issued from January 1987 to May 2016, averaged over the area indicated in Fig. 1a. We then use 

163 an equal-weights multi-model mean across the 8 models, since we found this method to perform, 

164 in terms of correlation with observed temperature, as well as or better than other weighting 

165 schemes in cross-validation across issue dates and lead times of interest (we tested a 

166 performance-weighted multi-model mean and an equal-weights mean of the overall three best 

167 models CFSv2, NASA, and ECMWF; not shown). For each streamflow forecast issue month (1st 

168 January, 1st February, etc), temperature is averaged from that issue month until the end of the 

169 main runoff period (July). Alternatives to this choice were tested, such as using spring (March-

170 May) average temperature or the average over the next or the next two months after issue date, 

171 but were found to be inferior (not shown). 

172 

173 2.3 Streamflow forecasting procedure 

174 The marginal benefit of including seasonal temperature information in WSFs can be evaluated 

175 through benchmarking the performance of enhanced WSF models against models based on the 

176 current operational forecast practice. We mimic the operational forecasting procedure of the 

177 NRCS’s operational WSF by using SNOTEL data in a principal component regression (PCR) 

178 trained on 30 years (1987-2016) of observed naturalized streamflow of the respective target 

179 period (Garen 1992), hereafter ‘baseline forecast’. Before use in the PCR, all predictors are 

180 standardized (subtraction of mean and division by standard deviation) and streamflow is 

181 seminormalized via a square root transformation, as is consistent with NRCS practice. The 

182 number of principal components (PCs) retained is determined through an iterative process as 

183 described in Garen (1992). Specifically, individual PCs are used in a linear regression and the 

184 significance of the regression coefficients is determined via a t-test; only PCs are retained that 

185 result in significant regression coefficients and that show a physically plausible relationship with 

186 streamflow (i.e., positive coefficients, indicating that high precipitation and SWE typically leads 

187 to high streamflow and vice versa). In our case, one PC is retained for all streamflow gages, 

188 consistent with Harpold et al. (2017) who also duplicated the NRCS’s WSF. For each forecast 

189 issue date, forecasts are cross-validated by training the model on 29 of the 30 years and forecast 

190 the remaining (out-of-sample) year, loop through all 30 years to evaluate performance. Note that 

191 our baseline forecast likely differs slightly from the officially published NRCS forecast over the 

192 past decades, since those may also include additional but non-continuous snow course 
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193 information and/or newer SNOTEL data. As discussed above, for consistency across watersheds, 

194 we only use datasets of consistent record length (1987-2016). 

195 

196 We then reforecast the same time period using the same information, but add the ensemble mean 

197 temperature anomaly of the 8 seasonal forecasting models as an additional predictor to the PCR 

198 (hereafter ‘temperature-aided forecast’). For a given year and forecast issue date (e.g., January 1, 

199 February 1, March 1, April 1, and May 1 1987), the mean temperature prediction from the 

200 forecast issue date to the end of July is averaged over the box indicated in Fig. 1a. For all gages, 

201 the regression coefficients derived from the PCR are such that precipitation and SWE always 

202 exhibit a positive relationship with streamflow, and temperature always a negative one, 

203 indicating a physically plausible interaction of precipitation, SWE, and temperature in describing 

204 streamflow. The same rules for PC retention are applied and one PC was retained in all cases. 

205 

206 2.4 Skill metrics 

207 Prediction skill for the baseline and temperature-aided streamflow forecast is calculated via a 

208 leave-one-out cross validation from 1987 to 2016. Each year between 1987 and 2016 is 

209 hindcasted with a principal component regression model that has been calibrated on the 

210 remaining 29 years of data, and the resulting time series of 30 streamflow predictions are verified 

211 against the corresponding observations. 

212 

213 We quantify forecast skill using the following metrics: (i) correlation, (ii) relative root mean 

214 squared error (rRMSE, in %), (iii) the Brier Skill Score (BSS) for streamflow < 33rd percentile, 

215 and (iv) Continuous Ranked Probability Skill Score (CRPSS; Hersbach (2000)). Correlation and 

216 rRMSE describe how well the model predicts the variability and the absolute values, 

217 respectively, of the observed time series. The third metric provides insight into the ability of the 

218 model to predict dry conditions relevant to droughts in the US Southwest, and the fourth metric, 

219 which measures the ability of the forecast model to correctly predict the cumulative distribution 

220 function of the observed streamflow data, is used to quantify probabilistic prediction skill. 

221 

222 Since the skill metrics BSS and CRPSS rely on probabilistic forecasts, we derive exceedance 

223 probabilities from the standard error of the forecasts, consistent with NRCS’ approach (Garen 
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224 1992). Both BSS and CRPSS are expressed as skill relative to a certain reference forecast 

225 (typically persistence or climatology). Here, we express them relative to the ‘baseline forecast’ to 

226 emphasize the improvement relative to the current operational approach. 

227 
228 
229 3 Results 
230 3.1 Hydroclimate trends and streamflow forecast errors 

231 Recent hydroclimate trends in the UC and URG headwaters are illustrated by plotting the runoff 

232 efficiency as a function of temperature anomalies for streamflow gages at the outflow of the 

233 headwaters of the Gunnison, San Juan, and Rio Grande (Fig. 1b; these three gages are 

234 representative of the dynamics at other gages, see Fig. S1). A clear temperature sensitivity exists, 

235 leading to relatively reduced streamflow under positive temperature anomalies. Even in the 

236 absence of a strong precipitation trend, higher temperatures are shifting the partitioning of 

237 precipitation from snow to rain, a phenomenon that is detectable at virtually all SNOTEL 

238 stations in the region (Fig. 1c), thereby changing the peaks and timing of both snowmelt and 

239 runoff. Higher temperatures also allow for more evaporative loss between when the snow falls 

240 and when the water arrives at the streamflow gages downstream, which is a key hydrologic 

241 dynamic leading to forecast errors. 

242 

243 Relatively persistent forecast errors are confirmed by the forecast record in the UC and URG: 

244 streamflow gage records in these two basins show a tendency to be under-predicted in the 1980s 

245 and 1990s and over-predicted in the 2000s and 2010s (Fig. 1d and Fig. S1). While these forecast 

246 errors are in part related to unusually wet springs and summers in the 1980-90s and unusually 

247 dry springs and summers in the 2000-10s, there exists evidence that streamflow in recent years 

248 was lower than expected from precipitation deficits alone (Woodhouse et al. 2016; Lehner et al. 

249 2017), pointing to a simultaneous influence of temperature on streamflow and thus on forecast 

250 error. This theory is further corroborated by a significant correlation of streamflow forecast error 

251 with both anomalous precipitation and temperature after the forecast issue date (Fig. S2). This 

252 relationship holds even when the natural correlation between precipitation and temperature is 

253 accounted for, a result consistent with earlier studies (Harding et al. 2012). 

254 

255 3.2 Temperature forecast skill 
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256 While uncertainty in multi-decadal projections of precipitation in the US Southwest remains 

257 high, climate models such as those included in the 5th phase of the Coupled Model 

258 Intercomparison Project (CMIP5) project future temperature increases (Fig. 2a) with far more 

259 certainty (van Oldenborgh et al. 2013). Similarly, dynamical seasonal climate prediction models, 

260 such as the 8 models from the NMME and ECMWF are more skillful in predicting temperature 

261 than precipitation (Becker et al. 2014; Slater et al. 2016). The ensemble mean across these 8 

262 seasonal forecasting models captures the observed warming trend of recent decades as well as 

263 part of the interannual variability of spring-to-summer temperature over the UC and URG 

264 headwaters region at lead times of up to 5 months, showing significant correlations ranging 

265 between 0.65 and 0.75 (Fig. 2a,b). The combination of these two results leads to a usable 

266 temperature forecast skill in the context of streamflow prediction in this region. The ECMWF 

267 model is the best-performing individual model overall, although not necessarily for every lead 

268 times and not necessarily when compared to the multi-model mean across all 8 models. 

269 

270 3.3 Improved streamflow forecast skill 

271 We find that augmenting the baseline forecasting approach through the use of temperature 

272 predictors adds prediction skill across the majority of streamflow gages and issue dates in the 

273 study region, which is representative of snowmelt-influenced watersheds in many parts of the 

274 western US. These benefits are illustrated through the skill difference between the baseline and 

275 temperature-aided forecasts for all skill metrics considered (Fig. 3). The median relative 

276 improvement across gages and skill metrics is between 1% and 5% with some spread across 

277 gages. The vast majority of these improvements are statistically significant in light of sampling 

278 uncertainty (see Section 3.4). However, the probabilistic skill for drought conditions (BSS) is 

279 improved less consistently than the other skill metrics. All four skill metrics indicate larger 

280 improvements for later issue dates, which likely results from a combination of better temperature 

281 forecast skill at shorter lead times and the potential for stronger temperature anomaly signals due 

282 to a shorter averaging period (e.g., May-July versus January-July). 

283 

284 When considering the median skill across gages within each basin, improvements tend to be 

285 larger in the Rio Grande and San Juan than in the Gunnison. The variations of forecast 

286 improvements across gages reflects the different temperature sensitivity of catchment hydrology 
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287 in different locations. The sensitivity of spring runoff to temperature is affected by factors such 

288 as the basin distribution of elevation and aspect, vegetation and land cover (Male and Gray 

289 1981), making it difficult to disentangle the reasons for an individual forecast’s improvement 

290 using a statistical model only. No relationship between magnitude of skill improvement and 

291 basin elevation is found (not shown). 

292 

293 We also calculate the theoretical skill improvement resulting from using the actually observed 

294 temperature and found it overall to be only marginally higher than with the temperature-aided 

295 forecast based on predicted temperature (Fig. 3b,c). This indicates that the majority of the 

296 temperature information that adds skill to WSF can indeed be extracted from seasonal prediction 

297 models. Since temperature in this region over the period 1987-2016 shows a strong positive 

298 trend, the question arises how much of the added skill is attributable to the trend alone. Using the 

299 observed linear temperature trend from 1987 to 2016 as a predictor in the WSF model (thereby 

300 excluding any interannual variability that might be predictable by seasonal prediction models), 

301 we show that the trend alone adds most of the skill that originates from the seasonally forecasted 

302 temperatures (Figure 3b and 3c). 

303 

304 Finally, we repeat the forecasting using the temperature forecasts from the ECMWF model only, 

305 since it is the best-performing individual model (Fig. 2b), and from the 7 NMME models only 

306 (i.e., without ECMWF). Interestingly, we found the streamflow forecasting skill to be roughly 

307 equal in all three cases (Fig. S3). This suggests that temperature forecasts from ECMWF model 

308 contain about as much information, with regard to streamflow forecasting, as the 7 NMME 

309 models combined. 

310 

311 3.4 Robustness of forecast skill improvements 

312 The skill is improved for the majority of the total of 100 possible forecasts (20 gages x 5 issue 

313 dates). For correlation, rRMSE, and CRPSS, 99% of forecasts are improved, with 98-100% of 

314 those significantly. For BSS, only 62% of all forecasts are improved, 95% of those significantly 

315 (see also Table S3). Significance is established through a Monte Carlo approach in which all 

316 forecasts and the associated skill score calculations are repeated 1,000 times on 30-year samples 

317 constructed from bootstrapping the original 30 years with replacement. If the 95th percentile of 
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318 this distribution of skill scores shows an improvement, the skill improvement is considered 

319 significant at the 95% confidence level. 

320 

321 4 Discussion and conclusions 

322 The skill improvement demonstrated here for seasonal streamflow forecasts in the Upper Rio 

323 Grande and Upper Colorado River basins can be of significant value to State and Federal water 

324 managers, which, in turn, can benefit water users throughout these basins (Carolyn Donnelly and 

325 Craig Cotton, personal communication). Despite its limited spatial extent, the study here is of 

326 relevance for other snow-melt driven basins across the US and the world, since streamflow 

327 forecast skill in such basins is often driven by the same temperature-sensitive processes. 

328 

329 We show that current seasonal climate prediction models are skillful in forecasting both the long-

330 term trends and interannual variability of seasonal temperatures for this region. This temperature 

331 information adds skill to existing ‘water supply forecasts’ (WSFs), mitigating some of the 

332 forecast errors introduced through climate non-stationarity, and moving the WSFs closer to their 

333 maximally expected forecast skill based on relationships between observed snow, precipitation, 

334 and temperature. Additional predictability might be available once seasonal precipitation 

335 forecasts become more skillful. 

336 

337 For the statistical WSFs shown here, the proposed extension involves accessing and 

338 incorporating temperature predictions into existing statistical forecasting models. Conventional 

339 forecasting approaches based on hydrologic models (such as Ensemble Streamflow Prediction, or 

340 ESP, a popular operational method that is not discussed in this paper) are also commonly 

341 dependent on climate stationarity assumptions and thus are also likely to benefit from additional 

342 temperature forecast information. Fortunately, many techniques for inclusion of conditional 

343 climate information have been described in the literature over the last several decades for both 

344 statistical and model-based forecasting (e.g., Werner et al. 2004; Beckers et al. 2016; Mendoza et 

345 al. 2017; see also the special issue of Wetterhall et al. 2017), including examples of using 

346 NMME and ECMWF (Yuan et al. 2013; Mo and Lettenmaier 2014; Thober et al. 2015; 

347 Crochemore et al. 2016). It may be impossible to protect or increase streamflow prediction skill 

348 in all locations in the face of a non-stationary climate, but expanding the use of model-based 
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349 seasonal climate predictions, and particularly temperature forecasts, appears to be one pragmatic 

350 strategy for hydroclimates that are similar to the US Southwest. 

351 

352 Despite the evidence of forecast skill improvement through inclusion of temperature, this study 

353 does not support detailed conclusions regarding the hydrologic processes that underpin changes 

354 in prediction skill, as the temperature influence on streamflow can be dampened or amplified due 

355 to other effects and non-linear interactions (e.g., related to groundwater use or vegetation 

356 alterations). Our focus on minimally impaired gages in headwater locations aims to circumvent 

357 this issue, but we cannot exclude all possibilities of processes amplifying or canceling each 

358 other. Similarly, using low-dimensional statistical models only, we are unable to disentangle why 

359 certain gages show greater improvement than others. Process-based observation and modeling 

360 studies tackling this question may therefore be a valuable next step for the hydrologic forecasting 

361 community. 

362 
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525 Figures 

526 

527 
528 Figure 1: (a) Map showing the main rivers, basins, (circles) streamflow gages, and (triangles) 

529 SNOTEL stations analyzed in this study. (b) Runoff efficiency – spring-summer streamflow 

530 divided by water year precipitation – for 3 selected gages marked with colored boxes in (a). (c) 

531 Snow-rain partitioning – peak snow water equivalent (SWE) divided by water year precipitation 

532 – as a function of winter-spring temperature for all SNOTEL stations analyzed in this study 

533 (each linear trend line is for one SNOTEL station). (d) Observed and forecasted streamflow for 

534 the 3 selected gages; solid lines are the observed streamflow, while colored shading indicates the 

535 difference between the observed and forecasted streamflow, i.e., the larger the shading the larger 

536 the forecast error; gray shading indicates time period analyzed in this study. See text for more 

537 details on datasets. 
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538 

539 
540 Figure 2: (a) March-July mean temperature anomalies relative to 1982-2016 from observations, 

541 40 CMIP5 models, and seasonal prediction models (NMME+ECMWF), averaged over the box 

542 indicated in Fig. 1a. The red line is the mean across NMME-ECMWF models, the gray line is the 

543 mean across CMIP5 models, and the black line is observations. Shading indicates the 5-95% 

544 range. (b) Correlation between observed and forecasted temperature for different temperature 

545 targets and seasonal prediction models for 1982-2016. Forecasts are initialized at the start of 

546 each predicted period. All correlations are significant at 95% confidence. 

547 
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550 

551 Figure 3: (a) Absolute skill improvement of the temperature-aided forecast relative to the 

552 baseline forecast at individual gages for issue date 1st March as an illustrative example. (b) 

553 Absolute skill improvement for all gages as a function of issue date. (c) Relative skill 

554 improvement for all gages as a function of issue date. Solid lines are the median across (black) 

555 all gages and (colors) the three basins. Dashed line is the median across all gages when using 
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556 observed temperature, mimicking the hypothetical case where the future temperature is known at 

557 the time of forecast issue, and dotted line is the median when using only the linear trend of 

558 observed temperature. 

559 
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