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Executive Summary 

Colorado State University has been working with Reclamation to develop a framework to evaluate 
the uncertainty associated with numerical models developed at the U.S. Bureau of Reclamation 
(Reclamation).   A variety of hydrologic and hydraulic numerical models has been developed and 
widely used by the Reclamation to predict impacts of potential river restoration activities.  Recently, 
assessing the uncertainty in predictions from such models has been underscored in the field of 
hydraulic and sediment transport modeling.  Those uncertainties can result from the simplifications 
and assumptions used in the model’s mathematical structure, errors in the model parameter values, 
and errors in the data used for the model inputs.  Several methods using a Bayesian uncertainty 
framework have been suggested to quantify the uncertainty in the predictions specifically from the 
Sedimentation and River Hydraulics – One Dimension (SRH-1D) model. GSA-GLUE (Global 
sensitivity analysis – Generalized likelihood uncertainty estimation) method was developed to assess 
uncertainty of individual model parameters. The combination of the MSU (Multivariate shuffled 
complex evolution Metropolis) and BMA (Bayesian model averaging) methods was suggested to 
evaluate the uncertainty of model parameters and the uncertainty associated with the selection of a 
transport equation in SRH-1D simulations. 
 
The purpose of this research project was to develop and test a formal and efficient framework to 
assess the uncertainty in the predictions from hydrologic, hydraulic, and sediment transport models. 
Through this research, we aimed to develop improved methodologies that: (1) require few model 
simulations and (2) retain enough formality so that data collection and model calibration strategies 
can be simplified to reduce the uncertainty in the model predictions. To constrain the immediate 
scope, the new methods focused on quantifying how the uncertainties originating from model 
parameter values, input data, and the model’s mathematical structure affect the predictions from the 
SRH-1D model, but those methods are transferrable to other types of models. The chapters in the 
final report address three specific objectives that have been accomplished to achieve the primary 
purpose of this research.  Those chapters are summarized below: 
 
1. Simple error models are developed for the input data of a sediment transport model and integrated 
into an existing Bayesian method in order to determine whether uncertain inputs contribute 
substantially to the overall uncertainty in the predictions. Input errors are modeled using Gaussian 
distributions separately for various input data such as discharges, sediment rating curves, and cross 
section elevations. The means and standard deviations of those distributions are treated as uncertain 
parameters, and they are estimated within the Bayesian framework for parameter uncertainty. This 
approach enables a modeler to identify the contribution of each uncertain input to the overall 
uncertainty, which can suggest strategies to reduce the uncertainty and improve 
reliability in the model predictions. 

2. A new algorithm is developed to improve the efficiency of the uncertainty estimation process for 
sediment transport model parameters. In order to reduce the computational cost, the new method is 
designed to use repeated parameter sets in the sample when specifying the probability distributions of 
parameters instead of generating new but similar parameter sets that require new model simulations, 
which is the typical approach of existing Markov chain Monte Carlo methods. This new approach 
can save large numbers of model simulations when evaluating the uncertainty in model predictions 
due to uncertainty in the parameter values. 
 



3. A multivariate version of the BMA method is developed to assess the uncertainty associated with 
the selection and application of a transport equation in sediment transport models. The existing BMA 
method is modified to enable consideration of multiple model output variables and allow the 
uncertainty associated with each equation to vary with the magnitude of the variables if needed. This 
methodology can reduce the effects of imperfections in a single model prediction and provide a 
forecast along with its credible interval to characterize the uncertainty through combining the 
predictions from a set of competing transport equations. 
 
The Final Report for this project is submitted in the form of a project report from Colorado State 
University and is found in Appendix A.
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CHAPTER 1 
INTRODUCTION 

1.1 Project History 

The U.S. Bureau of Reclamation (USBR) protects and manages water resources in the western 

United States. A variety of hydrologic and hydraulic numerical models has been developed and 

widely used by the USBR to predict impacts of potential river restoration activities. Recently, 

assessing the uncertainty in predictions from such models has been underscored in the field of 

hydraulic and sediment transport modeling. Those uncertainties can result from the 

simplifications and assumptions used in the model’s mathematical structure, errors in the model 

parameter values, and errors in the data used for the model inputs. Colorado State University has 

been working with USBR to develop a framework to evaluate the uncertainty associated with 

USBR models. Through this collaboration, several methods using a Bayesian uncertainty 

framework have been suggested to quantify the uncertainty in the predictions specifically from 

the Sedimentation and River Hydraulics – One Dimension (SRH-1D) (Huang and Greimann 

2013) model. GSA-GLUE (Global sensitivity analysis – Generalized likelihood uncertainty 

estimation) method (Ruark et al. 2011) was developed to assess uncertainty of individual model 

parameters. The combination of the MSU (Multivariate shuffled complex evolution Metropolis 

– uncertainty analysis) and BMA (Bayesian model averaging) methods (Sabatine et al. 2015) 

was suggested to evaluate the uncertainty of model parameters and the uncertainty associated 

with the selection of a transport equation in SRH-1D simulations. 

8 



 
 

   

                 

            

              

              

               

             

            

               

              

                

                

            

             

            

           

            

             

              

            

     

1.2 Objectives 

The purpose of this research project was to develop and test a formal and efficient framework to 

assess the uncertainty in the predictions from hydrologic, hydraulic, and sediment transport 

models. Through this research, we aimed to develop improved methodologies that: (1) require 

few model simulations and (2) retain enough formality so that data collection and model 

calibration strategies can be modified to reduce the uncertainty in the model predictions. To 

constrain the immediate scope, the new methods focused on quantifying how the uncertainties 

originating from model parameter values, input data, and the model’s mathematical structure 

affect the predictions from the SRH-1D model, but those methods are transferrable to other types 

of models. The following chapters address three specific objectives that have been accomplished 

to achieve the primary purpose of this research. Those chapters are summarized below: 

1. Simple error models are developed for the input data of a sediment transport model and 

integrated into an existing Bayesian method in order to determine whether uncertain 

inputs contribute substantially to the overall uncertainty in the predictions. Input errors 

are modeled using Gaussian distributions separately for various input data such as 

discharges, rating curves, cross section coordinates, and benchmark elevations. The 

means and standard deviations of those distributions are treated as uncertain parameters, 

and they are estimated within the Bayesian framework for parameter uncertainty. This 

approach enables a modeler to identify the contribution of each uncertain input to the 

overall uncertainty, which can suggest strategies to reduce the uncertainty and improve 

reliability in the model predictions. 
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2. A new algorithm is developed to improve the efficiency of the uncertainty estimation 

process for sediment transport model parameters. In order to reduce the computational 

cost, the new method is designed to use repeated parameter sets in the sample when 

specifying the probability distributions of parameters instead of generating new but 

similar parameter sets that require new model simulations, which is the typical approach 

of existing Markov chain Monte Carlo methods. This new approach can save large 

numbers of model simulations when evaluating the uncertainty in model predictions due 

to uncertainty in the parameter values. 

3. A multivariate version of the BMA method is developed to assess the uncertainty 

associated with the selection and application of a transport equation in sediment transport 

models. The existing BMA method is modified to enable consideration of multiple 

model output variables and allow the uncertainty associated with each equation to vary 

with the magnitude of the variables if needed. This methodology can reduce the effects 

of imperfections in a single model prediction and provide a forecast along with its 

credible interval to characterize the uncertainty through combining the predictions from a 

set of competing transport equations. 

References 

Huang, J.V., and Greimann, B.P. (2013). User’s Manual for SRH-1D 3.0. Bureau of Reclamation, 
U.S. Department of the Interior, Denver. 

Ruark, M.D., Niemann, J.D., Greimann, B.P., and Arabi, M. (2011). “Method for assessing 
impacts of parameter uncertainty in sediment transport modeling applications.” Journal of 
Hydraulic Engineering, 137(6), 623-636. 

Sabatine, S.M., Niemann, J.D., and Greimann, B.P. (2015). “Evaluation of parameter and model 
uncertainty in simple applications of a 1D sediment transport model.” Journal of Hydraulic 
Engineering, 141(5), DOI: 10.1061/(ASCE)HY.1943-7900.0000992. 
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CHAPTER 2 
MODELING INPUT ERRORS TO IMPROVE UNCERTAINTY ESTIMATES FOR THE 

PREDICTIONS FROM A ONE-DIMENSIONAL SEDIMENT TRANSPORT MODEL 

Abstract 

Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to 

sediment transport models to assess the uncertainty in the model predictions due to the parameter 

values. Unfortunately, the existing approaches can only attribute overall uncertainty to the 

parameters, and this limitation is critical because no model can produce accurate forecasts if 

forced with inaccurate input data. In this research, error models are developed to address the 

uncertainty in hydraulic input data and integrated into an existing Bayesian method to improve 

the uncertainty estimates. The input error is modeled using a Gaussian distribution, and the 

mean and standard deviation are treated as uncertain parameters. This approach is tested by 

coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and 

simulating a 23-km reach of the Tachia River in Taiwan. Six types of input data are considered 

as uncertain: input discharge, two rating curves, vertical and horizontal distance of cross 

sections, and benchmark elevations. The results indicate that the errors in benchmark elevations 

have the largest impact on the model prediction uncertainty among those considered. In addition, 

the predictive intervals from the new method can cover 1.5~2 times more observations and 

improve the performance up to 6 % than the existing method. 

2.1 Introduction 

Numerical hydraulic and sediment transport models have been used widely to make predictions 

about river morphological changes that result from natural or human influences. Those 
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predictions are often used for decision making in water resources management, which involves 

the issues of ecological impacts, potential economic loss, and/or risks to human health. 

Therefore, a full understanding of the modeling strategy and the uncertainty in those predictions 

is essential. In the field of sediment transport modeling, the uncertainty has typically been 

assessed by examining how model predictions spread according to variability in inputted 

physical properties such as discharge, flow depth, and channel slope (McLean 1985; Cui and 

Parker 1998; Bunte and Abt, 2005; Pinto et al. 2006; Gaeuman et al., 2009), model parameters 

like roughness coefficient or critical shear stress (Chang et al. 1993; Yeh et al. 2004; Lai and 

Greimann 2010), and mathematical equations that are used to address transport mechanism 

(Wilcock 2001; Davies et al. 2002; Camenen and Larroudé 2003; Bertin et al. 2008). Those 

traditional approaches are relatively simple to implement, but they do not guarantee the 

reliability of the predictions because they are often restricted to sensitivity analysis without any 

calibration process. 

Bayesian inference provides a formal way to assess the uncertainty in model predictions by 

considering the likelihoods, which calculate the model’s ability to reproduce the data from the 

calibration period. Bayesian methods have recently been applied to sediment transport modeling 

cases to predict erosion within sewer systems (Kanso et al. 2005), sediment entrainment (Wu and 

Chen 2009), bed elevation and material changes (Ruark et al. 2011; Sabatine et al. 2015), and 

cohesive sediment behavior (Cho et al. 2016). The Bayesian methods treat a model parameter as 

a random variable having a posterior probability density function (pdf), which describes the 

uncertainty in the parameter values given a dataset. Numerous Markov chain Monte Carlo 

(MCMC) algorithms, which generate parameter samples and use them in model simulations, 

have been developed to obtain a numerical approximation for that pdf. The algorithm is intended 
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to sample the parameter values with higher likelihoods more frequently over the simulations by 

considering the likelihood information from the previous simulations. Once the MCMC 

algorithm has run sufficient simulations, the parameter sets are sampled from a stationary 

distribution, which is an approximation of the posterior pdf. The parameter samples generated 

from that pdf are then used in the simulations for the forecast scenario in order to quantify how 

the uncertainty due to the parameter values affects the predictions. The key advantages of using 

the MCMC algorithm are that (1) its sampling processes are potentially efficient in computation 

time (Vrugt et al. 2003), (2) the likelihood function is a formal way to calculate model accuracy 

(van Griensven and Meixner 2007), and (3) it can consider the correlations between model 

parameters, which has shown significant impacts on sediment transport model predictions 

(Sabatine et al. 2015), because the algorithm develops the joint probability distribution of the 

multiple parameters when assessing the uncertainty. Readers are referred to Green (2001) to 

learn the details of the MCMC algorithm. 

A distinct limitation in applying Bayesian methods to sediment transport modeling is that the 

past research usually assigned overall uncertainty on model parameters by ignoring other 

potential uncertainty sources. Specifically, the forcing variables and boundary conditions used in 

numerical sediment transport models such as discharge, input sediment flow rate, and channel 

geometry always include uncertainty due to their inherent unsteadiness, heterogeneity, and 

difficulty being measured in the real world (Wilcock 2001; Bunte and Abt 2005; Gaeuman et al. 

2009). For example, the discharge data generally contain 5% - 15% errors (USGS 1996), and the 

flow depth can have errors with a standard deviations of 10 % of the measured value in natural 

rivers (USGS 1992). Adequate characterization of those variables is fundamental to success of 

modeling because no model can produce accurate predictions if forced with inaccurate input data, 
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even if the model is well founded in physical theory or empirically justified by past performance 

(Clement and Piegay 2005). Moreover, in hydrologic applications, it has been demonstrated that 

not accounting for errors in the input data leads to corrupted parameter uncertainty estimates as 

well as unreliable predictions (Ajami et al. 2007). 

A number of methods have been proposed to consider the errors in forcing variables when 

estimating the uncertainty, but those studies only dealt with the measured rainfall data 

particularly for hydrologic modeling (Kavetski 2002; Carpenter and Georgakakos 2006; Huard 

and Mailhot 2006; Ajami et al. 2007; Vrugt et al. 2008). To predict the sediment budget in 

fluvial beds, Schmelter et al. (2011, 2012, and 2015) and Schmelter and Stevens (2013) applied a 

variance to the predictions in order to address the uncertainty due to mathematical 

misspecification, measurement error, and random variations. The uncertain variance parameter 

was calibrated using an MCMC algorithm, and it was found that such errors increase the overall 

uncertainty. However, this approach is not able to evaluate how much uncertainty in model 

predictions comes from the uncertainty in input data or identify the errors in each of various 

forcing variables because the different error sources are lumped together in a single variance 

parameter. In addition, they used a single transport rate equation, rather than a numerical model, 

as a sediment transport model so that neither the number of model simulations nor the 

computational times required for the MCMC algorithm were investigated. 

The goal of this research is to develop error models to address the uncertainty in various 

hydraulic input data and evaluate how the uncertainty estimates are improved when those error 

models are integrated in an existing Bayesian method using an MCMC algorithm. The potential 

input errors are modeled using Gaussian distributions, and the means and standard deviations are 

treated as uncertain parameters, which can be estimated jointly with model parameters. To test 

14 



 
 

               

              

              

               

               

                 

           

   

     

               

               

            

   

                 

               

                

               

            

               

                

              

the advanced method, deposition volumes along the 23-km reach of the Tachia River in Taiwan 

are simulated using the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model. 

Nine model parameters and six different input data used as forcing variables in SRH-1D 

simulations are considered. The benefits of modeling the input errors in the uncertainty analysis 

are evaluated by comparing (1) the number of simulations required for the MCMC algorithm, (2) 

the posterior pdfs of the model and input error parameters, (3) and the coverage of the observed 

data by the prediction intervals to those of the existing method. 

2.2 Methodology 

2.2.1 Estimating Parameter Uncertainty 

Multiple parameters in a sediment transport model are uncertain and need to be determined by 

the modeler. In the Bayesian inference paradigm, those uncertain parameters can be treated as 

random variables having a joint probability distribution, which can be written as: 

p(θ y) ∝ L (y θ) p(θ) (1) 

where p(θ|y) is the joint posterior pdf, which describes the uncertainty in a set of parameters θ 

given a calibration dataset y. The likelihood L(y|θ) represents the model’s ability to reproduce 

the dataset y when parameters θ are used, and the prior pdf p(θ) summarizes the information 

about the parameters θ before considering any calibration data (Christensen et al. 2011). 

A Shuffled Complex Evolution Metropolis – Uncertainty Analysis (SCEM-UA) (Vrugt et al. 

2003), which is one of the most advanced MCMC algorithms, is employed to approximate the 

joint posterior pdf p(θ|y) in this study. Assuming no prior information about the parameters, the 

SCEM-UA algorithm starts by generating an initial population ( ≈ 250) of parameter sets from a 
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uniform prior joint distribution, which is defined within parameter ranges pre-specified by a user. 

Then, the posterior density of each parameter set is evaluated using the model simulation and 

observations from the calibration period as: 

2
 N 

2 
−N 

P (θ y ∝ e θ  (2) ) ∑  i ( )   
 i=1  

where ei represents the model error given the parameter set at a time or space i, and N is the 

number of available measurements in the calibration dataset y. The equation contains a primary 

assumption that the model errors are mutually independent, Gaussian distributed, with constant 

variance (Box and Tiao 1973). The value from the right side of Eq. (2) is proportional to the 

posterior density (and is often called the posterior density for simplicity). Hence, the posterior 

density of different parameter sets can be compared using Eq. (2). After that, the parameter 

samples are partitioned into a number of complexes ( ≈ 10 groups), and the population of each 

complex is updated in parallel using a Metropolis algorithm (Metropolis et al. 1953). The 

highest posterior density parameter set in each complex is treated as a starting point of each 

updating sequence. For each sequence, a new parameter set θ* is generated from a multivariate 

normal distribution, which is centered on either the current parameter set of the sequence or the 

mean of the parameters in the complex with the covariance structure inferred from the 

parameters in the complex, and its posterior density is assessed using the model simulation. If 

the posterior density of the new parameter set θ* is larger than the current one θ, then the new 

parameter set is retained and the highest posterior density member of complex is replaced by the 

new set. Otherwise, the new parameter set can replace the current parameter set with a randomly 

specified probability. Such sampling behavior that can accept a trial with lower posterior density 

helps to escape from locally optimal areas. This updating continues iteratively based on the last 
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retained value for each complex sequence. After a few iterations ( ≈ 5) of the updating, the 

members of all complexes are recombined, shuffled, and re-divided into complexes. Once the 

algorithm has repeated sufficient updating and shuffling, all complexes have the same properties 

such as the average and variance among the contained parameter sets, which implies algorithm 

convergence. 

To diagnose the convergence of SCEM-UA algorithm, Scale Reduction Score (SRS) (Gelman 

and Rubin 1992) is used. The SRS is the ratio of the variance of the average parameter values 

from each complex to the average of the variances of parameter values within each complex. If 

the SRS for all parameters is below 1.2, then adequate convergence is indicated (Vrugt et al. 

2003, Sabatine et al. 2015) and it is reasonable to believe that the samples are generated from a 

stationary distribution, which can be considered as being consistent with joint posterior pdf of 

the uncertain parameters (Wu and Chen 2009). 

2.2.2 Error Modeling for Hydraulic Input Data 

In this research, potential errors in an input variable are modeled using a Gaussian distribution 

where the mean represents the measurement bias and the standard deviation reflects the 

independent errors at each measurement (Fig. 1). Both the mean and standard deviation are 

treated as uncertain parameters in order to account for input data uncertainty in the Bayesian 

method. This approach follows the idea, used for rainfall error in hydrologic modeling cases, 

that the observed data (what we have) are assumed to be from the true values (what we want to 

know) corrupted by random numbers at each measurement (Ajami et al. 2007). This assumption 

can be written as: 

ε ij ~ N (mi ,σ ) (3) i 
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Fig. 1 Conceptual diagram for modeling input data error using a Gaussian distribution. 

where eij is the error at measurement i for the input variable j, and a single error value is 

generated from an identical normal distribution with mean mj and standard deviation σj for each 

measurement. 

Input error models, which relate the errors and the observed data, can be developed separately 

for several input variables based on the error characteristics. The discharge data is usually used 

for an upstream boundary condition (BC) in a model simulation, and a “fair” measurement 

performance shows that 95% of the measured values are within 10% of the “true” discharge 

value (USGS 1996). It implies that the measurement errors have a standard deviation of 5% of 

the “true” value so that the errors are expected to depend on the variable’s magnitude. Such non-

homogeneous characteristics of the errors can be addressed using a multiplicative error model 

(Ajami et al. 2007) as: 

x̂ = x ε (4) ij ij ij 
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where ̂ is the observed value and xij is the estimate of true value at the measurement i for the xij 

input variable j. Unlike the discharge, the errors in water surface elevation data are independent 

of the scale of its measured value because those elevations are often defined relative to an 

arbitrary datum (sea level). By treating those errors as being homogeneous, an additive error 

model is available: 

x̂ij = xij + ε ij (5) 

This model would be helpful to reflect the errors in a rating curve, which controls the water 

surface elevation given discharge at internal or downstream BCs. Specifically, the rating curve 

inherently possesses large uncertainty because the relationship between discharge and water 

surface elevation would vary in time as channel geometry changes during the simulation. 

The geometry data are obtained by measuring horizontal and vertical distances from a 

benchmark point of known elevation at each cross section. The horizontal distance errors are 

usually treated as negligible because their magnitude is less than 1 % of the measured value 

(USGS 1992). However, the horizontal distances might be measured shorter than the actual 

length if the cross section is not orthogonal to the channel direction. The multiplicative error 

model can be modified to account for this error as: 

x̂ij = xij 

1 
(6) 

cos ( ) ε ij 

where εij is the angle from the orthogonal line of the channel direction, ˆ and xij represent the xij 

measured and true distances from the benchmark point, respectively. For vertical distances, the 

measurements can have errors with a standard deviation of 10 % of flow depth in natural rivers 
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(USGS 1992). Those errors might originate from both the existence of dunes (or antidunes) and 

the uneven distributions of large bed materials (cobbles, rocks, and boulders) in active mobile 

channel bed. The vertical distance can apply to the multiplicative error model (Eq. (4)) as the 

error scales are proportional to its magnitude. 

A set of input error parameters η = {m ,σ1,…, m σ J } , where J is the total number of input error 1 J , 

models considered, can be integrated into the governing equation of Bayesian uncertainty 

method (Eq. (1)) as: 

p( ,θ η y ) ∝ L (y θ η , ) p( , )θ η (7) 

where p(θ,η|y) is the joint posterior pdf of model parameters θ and input error parameters η, 

which describes the uncertainty associated with model parameters and input data simultaneously 

given calibration dataset y. To specify the posterior density P(θ,η|y) in the SCEM-UA algorithm, 

the model is simulated using the sampled model parameters θ and the input variables xij, which 

are computed from Eq. (4), (5), or (6) using the sampled input error parameters η. If the 

measured input data are correct, it is expected that (1) the posterior distributions of the model 

parameters would be the same as if the uncertainty analysis did not consider the input errors 

(same as the results from using Eq. (1)), (2) the mean would concentrate around one for the 

multiplicative error models and zero for the additive error models (it means the data are 

unbiased), and (3) the standard deviation would approach zero. This approach allows a user to 

avoid excessive computational costs in using the MCMC algorithm because it only requires 

identifying two additional uncertain parameters for each type of input data instead of calibrating 

the all measurement points considered. 
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2.3 Applications 

2.3.1 Sediment Transport Model 

The proposed method is tested by coupling it to SRH-1D model, which was developed and is 

currently used by the U.S. Bureau of Reclamation to simulate flows and sediment transport in 

open channels and river networks. The section summarizes the mathematical structure of the 

SRH-1D model including the role of its key model parameters, but readers are referred to Huang 

and Greimann (2013) for details. 

SRH-1D computes flow hydraulics by solving the energy equation for steady, gradually varied 

flow using the standard step method, and a time series of input flow rate is used as an upstream 

BC. The energy equation between downstream cross section i and upstream cross section i + 1 is 

expressed as: 

U 2 U 2 
i+1 izi+1 +αi+1 = zi +αi + hc + hf (8) 

2g 2g 

where z represents the water surface elevation, α is the kinematic coefficient, U is the cross-

sectional averaged velocity, g is the gravitational acceleration. The contraction or expansion loss 

hc is computed based on the relationship between the velocity heads at the two cross sections, 

and the friction loss hf is calculated from the friction slopes at the cross sections, which can be 

determined using Manning’s roughness coefficient n. 

For sediment transport computations, Exner equation routing is used to calculate the changes of 

the sediment volume in the bed. By ignoring changes in suspended sediment concentration over 

time, the Exner equation expresses mass conservation as: 
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∂Qs ∂Ad+ (1 −φ) − qsl = 0 (9) 
∂x ∂t 

where x is the longitudinal direction, t is time, Qs is volumetric sediment discharge, ϕ is porosity, 

Ad is volume of bed sediment per unit length, and qsl is lateral sediment input rate per unit length. 

The volumetric sediment discharge Qs is computed by calculating the transport capacity 

separately for each predefined grain size class. 

Among several equations available in SRH-1D, the equation suggested by Wu et al. (2000) is 

used here to compute the transport capacity. The equation computes total bed material load for 

grain size class k by combining the bed load qbk and suspended load qsk, which are calculated 

separately as: 

2.2 
 1/6 1.5  

3  0.05 d50  τbqbk = 0.0053 pk g  (ρ s ρ ) −1 dk   −1 (10) 
 n  τ ck   

3 
 U  τb 


1.74 

qsk = 0.0000262 pk g  (ρs ρ ) −1 dk   −1 (11) 
w τ fk  ck   

where ρ is the density of water, ρs is the density of the sediment, d50 is the median grain diameter, 

τb is bed shear stress, pk is the fraction of material in class k, dk is the median diameter of class k, 

wfk is the fall velocity of particles in class k, and τck is a dimensional critical shear stress for 

particle in class k, which is computed as: 

τ ck = θr  (ρs ρ ) −1 dkξk (12)  
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where  r is the non-dimensional reference shear stress. ξkB is the hiding and exposure function, 

which accounts for the reduction in the reference shear stress for relatively large particles and the 

increase in the reference shear stress for relatively small particles. It is determined: 

λ
 p 

ξk 
hk 

=  (13) 
p ek  

where λ is a hiding and exposure coefficient, phk and pek are the hidden and exposed probabilities 

of particles in class k. 

SRH-1D assumes that the computed transport capacity is reached over some length controlled by 

the total adaptation length Ltotal, which can be calculated as follows: 

fsL = (1− fs ) L + ζ 
Uh (14) total b wfk 

where fs is the fraction of suspended load as computed in Greimann et al. (2008), h is the 

hydraulic depth, and the bed load adaptation length Lb is calculated as: 

Lb = b h L (15) 

where the bL is the bed load adaptation length multiplier. The suspended sediment recovery 

factor ζ possesses different values where deposition (ζd) or scour (ζs) occurs. 

SRH-1D models the bed material mixing by dividing the bed into one active layer, which is a 

thin upper zone containing the bed materials available for transport, and several inactive layers 

below the active layer. All particles in the active layer are assumed to be equally exposed to the 

flow, and the thickness of the active layer can be calculated by multiplying the geometric mean 

of the largest grain size class by the user-specified constant, which is the active layer thickness 

23 



 
 

                

                

              

              

               

               

                 

                

                 

      

 

            

  

         

        

         

         

        

        

          

          

      

  

multiplier parameter nalt. In addition, the weight of bed load fraction parameter χ, which controls 

the weighting of the grain size distribution of bed load when materials transfer from the active 

layer to the inactive layers during deposition, should also be specified by a user. 

Table 1 summarizes the nine model parameters and their feasible ranges for natural river 

simulations. The range for Manning’s roughness n spans the flow resistances in natural rivers 

with smooth meanders, pools, and riffles (Limeneros 1970). The reference shear stress  r spans 

the observed  r values from 45 study sites of gravel-bed steams (Mueller et al. 2005), and the 

porosity ϕ range considers mixtures of sand, gravel, and cobbles (Frings et al. 2011). The 

remaining six parameters (λ, nalt, ζd, ζs, bL, χ) have ranges based on the suggestions of the SRH-

1D developers (Lai and Greimann 2010). 

Table 1 Uncertain model parameters of SRH-1D and their sampling ranges. 

Parameters Ranges 

Manning’s roughness coefficient n 0.035 ~ 0.045 

Reference shear stress  r 0.01 ~ 0.10 

Hiding and exposure coefficient λ 0 ~ 1 

Active layer thickness multiplier nalt 0.5 ~ 5 

Deposition recovery factor ζd 0.05 ~ 1 

Scour recovery factor ζs 0.05 ~ 1 

Bed load adaptation length multiplier bL 0 ~ 25 

Weight of bed load fraction χ 0 ~ 1 

Porosity φ 0.25 ~ 0.40 
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2.3.2 Modeling Tachia River 

Simulations for sediment erosion and deposition volumes along the 23-km reach of the Tachia 

River in Taiwan (Lai and Greimann, 2010) are considered as a case study to evaluate the new 

method. A natural river was chosen because it includes various uncertainty sources such as the 

varied channel geometry, input discharge, and grade controls, which can be examined by the 

suggested method. The case is also able to consider interactions between scour and 

sedimentation processes within a single simulation. 

Severe erosion has occurred in the Tachia River due to the lack of sediment supply downstream 

of Shih-gang Dam, which is located 23 km upstream from the ocean on the river. The reach has 

an average slope of 0.0113. The dominant substrate is cobbles and gravels, and the bed material 

sizes measured in 2007 ranged from 0.125 mm to 512 mm (fine sand to small boulder) with a 

median size D50 of 108 mm. Deposited sediment volumes during two periods (2001 to 2005 

and 2006 to 2009) were measured at cross sections along the reach from the ocean to the dam. 

The historical data indicates that the erosion might continue to progress downstream with large 

flow events in the future as the erosion occurred primarily from the dam to approximately 5 km 

downstream during 2001 to 2005 and to about 8 km downstream during 2006 to 2009. In this 

research, the deposition volume at each cross section is considered as the variable of interest for 

uncertainty analysis, and the datasets are separately treated as a calibration period (2001 to 2005) 

and a forecast period (2006 to 2009). The preliminary test showed that the residuals for the 

deposition volumes, calculated using the calibrated model outputs, satisfy the assumptions of 

SCEM-UA (that the residuals should be mutually independent, Gaussian distributed, with 

constant variance). 
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Input error models are developed for six input variables used in the simulation of the Tachia 

River, and the input error parameters are specified to capture the feasible ranges defined by the 

measurement characteristics (Table 2). Prior to investigating the input uncertainty, Case 0 

implemented the uncertainty analysis only for the nine model parameters. Through Cases 1~6, 

two input error parameters (m and σ) were added when estimating the uncertainty to consider the 

uncertainty in each of the input variables separately. Case 1 used a multiplicative error model 

for discharge data at Shih-gang Dam from 2001 to 2009 (Fig. 2a), which is used for the upstream 

BC. Case 2 and Case 3 applied additive error models to the rating curves used for the internal 

and downstream BCs, respectively. The internal BC was set to the water surface elevations at 

the middle of the river using discharge computed from HEC-RAS simulations (WRA, 2005) (Fig. 

2b), and the downstream BC was set to a critical depth at the mouth of the river from the same 

simulations (Fig. 2c). Case 4 modeled the errors in the angles of measuring cross sections (Fig. 

2d). The ranges for both error parameters were constrained to prevent the angle is over 45° with 

95% confidence. Case 5 considered the vertical distance errors in cross section geometry using a 

multiplicative error model. Case 6 treated the elevations of benchmark points of the cross 

sections as uncertain. Typically, the benchmark elevation is calculated relative to the elevations 

of nearby benchmarks in a network extending from a datum (mean sea level), and the 

measurements usually have errors less than 1 mm, which are negligible. However, in the Tachia 

River case, no information is available about how they were determined or where the 

benchmarks are located. For this reason, this approach assumed that the benchmark elevations 

are the same as the bankfull elevations at each cross section (Fig. 2e), and an additive error 

model was applied. At last, Case 7 used a total of 21 uncertain parameters to include the 

uncertainty from both the nine model parameters and the six input variables listed above 
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simultaneously. This case is helpful to explore the impact of the correlations between the errors 

in different input variables on the uncertainty estimates. 

Table 2 Error models for uncertain input variables and sampling ranges for the input error 
parameters. 

Case Uncertain Input Variables Error Models Parameters Ranges 

0 None 

1 Discharge at Upstream BC 1x xε= ɶ m1 

σ1 

0.95 ~ 1.05 

0 ~ 0.1 

2 Rating Curve at Internal BC 2x x ε= ɶ + m2 

σ2 

-2 ~ 2 

0 ~ 0.05 

3 Rating Curve at Downstream BC 3x x ε= ɶ + m3 

σ3 

-2 ~ 2 

0 ~ 0.05 

4 Cross Section Angles 
where x is horizontal distance from benchmark 

4cos x x ε= ɶ m4 

σ4 

0 ~ 15 

0 ~ 15 

5 Vertical Distance at Cross Sections 5x xε= ɶ m5 

σ5 

0.9 ~ 1.1 

0 ~ 0.15 

6 Benchmark Elevations 6x x ε= ɶ + m6 

σ6 

-2 ~ 2 

0 ~ 0.5 

7 All Data Used in Cases 1~6 
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Fig. 2 Input data used as forcing variables in the SRH-1D simulations of the Tachia River where 
the black markers represent the measured values. 
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2.4 Results and Analysis 

2.4.1 Required Number of Simulations 

The number of simulations required to reach convergence of the SCEM-UA algorithm for the 

Tachia River cases were determined based on the SRS criteria (Gelman and Rubin 1992) (Fig. 3). 

Each bar represents the simulation numbers where the SRS value for each parameter goes below 

1.2. The gray bars for model parameters are placed following the order in Table 1, the black bars 

are for input error parameters m and σ for each case, and the numbers above the bars indicate the 

convergence of each case. 

Compared to Case 0, which considered only model parameter uncertainty, Cases 1, 2, 3, 4 and 6 

ran about 1.5~2.5 times more simulations, but Cases 5 required five times more simulations. 

This difference should be expected because the latter case treats many more elements as 

uncertain compared to the other cases. Specifically, Case 1 varies the time series of discharge 

data but the same discharge values are applied over the entire reach during the simulation. Cases 

2 and 3 cause only local changes near the BCs. Case 4 relaxes the channel widths, but the 

horizontal coordinates at each cross section change proportional to the distance from the 

benchmark point. In Case 6, the elevation of each cross section can vary independently, but the 

shape of the cross sections remains the same. On the other hand, the channel geometry varied 

tremendously every simulation in Case 5 because all points of the cross section data are allowed 

to move independently in the vertical direction. In addition, the standard deviation error 

parameter, which controls the variability of vertical point errors, is one of the parameters that 

needed many simulations to converge in this case. This makes sense because a parameter related 
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to a large number of uncertain factors would be primarily responsible for an increase in the 

computational cost of estimating uncertainty. 

Fig. 3 Number of simulations to reach convergence for model and input error parameters. 

Case 7 required much more simulations to estimate the uncertainty including all those uncertain 

input variables than the other cases. For example, the mean error for discharge m1, standard 

deviation errors for internal BC rating curve σ2 and benchmark elevations σ6 achieved 

convergence after more than 35,000 simulations, which are remarkably later than the model 

parameters. However the required simulations for those input error parameters were similar to 

those for the model parameters in Cases 1, 2, and 6. This result might imply that the joint 

posterior distribution is more complex and harder to specify when it considers the interactions 

between forcing variables compared to when it only deals with a single uncertain input. 

2.4.2 Uncertainty in Model Parameters 

The marginal posterior pdf for a single parameter can be approximated using the histogram of 

the parameter samples generated after convergence, and the distribution describes the uncertainty 

in the parameter values after the analysis. Fig. 4 presents the marginal posterior pdfs for 
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Manning’s n. For each case, the horizontal line shows the interquartile range (IQR), which 

indicates the difference between the 25 % and 75 % quantiles of the sampled values, and the 

median point is also shown with its value. The percentage value is the ratio of the IQR to the 

sampling range, which is specified at the beginning of the analysis (Table 1). The IQR would be 

placed near the middle of the sampling range with the ratio value of 50 % if the parameter is 

sampled independently without considering any calibration data. In this research, the IQR is 

expected to decrease, which indicates the reduction in the parameter uncertainty, as the SCEM-

UA algorithm calibrates the parameters. Specifically, the IQR ratio value would approach 0 % if 

the algorithm converges to a single parameter value. 

Fig. 4 Histograms for Manning’s n using 2,000 samples generated after convergence. Also 
shown are the median (black point) and the interquartile range (horizontal line) of the sampled 
values for each case. 
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Considering input uncertainty leads to only small changes in the posterior pdfs for Manning’s n 

compared to Case 0 (Fig. 4). The medians are around 0.039, and the IQR ratios are 16~23 % 

among the cases, which is acceptable for natural rivers including the smooth meander, pool, and 

riffles. In addition to Manning’s n, the reference shear stress  r and hiding and exposure 

coefficient λ are well calibrated and have the IQRs about 5 % and 15 %, respectively, but their 

posterior pdfs are rarely changed over the cases. These three parameters have shown a high 

impact (sensitivity) on the SRH-1D simulations for bed profile, which is highly related to the 

deposition volume considered here, in both the erosion and deposition cases (Ruark et al. 2011). 

For these three parameters, the changes in posterior pdfs are too small to address the differences 

in sediment transport behavior, and it might imply that all the considered input data are correct. 

Another reason for the small changes might be that these parameters usually depend on the 

composition of bed material sizes whereas all the input uncertainties considered here are related 

to the errors in flow rate or channel geometry. Specifically, Manning’s n can reflect the particle 

roughness in flow modeling, and the reference shear stress  r and hiding and exposure coefficient 

λ control the motion of particles separately for each grain size class as described in Eqs. (12) and 

(13). As the bed material composition is assumed to be correct in this research and applied 

identically for all simulations, the parameter uncertainty estimates do not differ over the cases. 

Unlike those three parameters, the other six parameters (nalt, ζd, ζs, bL, χ, φ ) have IQRs that are 

usually larger than 40 %, which means that they are poorly calibrated by the algorithm and still 

remain highly uncertain. These six parameters have little impact on the SRH-1D model 

simulations of the Tachia River so the parameter values with higher posterior densities cannot be 

specified well. This also produces similar posterior pdfs for those parameters among the given 

cases. 
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Form roughness reflects the flow resistance caused by the channel geometry, and it might be able 

to explain the differences in the IQRs for Manning’s n. The posterior pdf from Case 6 has an 

IQR 4% wider than that from Case 0, which means the calibrated Manning’s n contains more 

uncertainty when the benchmark elevations are treated as uncertain during the estimation process. 

The local channel slopes between the adjacent cross sections vary as the benchmark elevations 

are relaxed in Case 6, so Manning’s n is also allowed to have more variability because the slope 

changes affect the solution of Manning’s equation. On the other hand, Case 7 (which is one of 

the lowest IQRs) shows 3% narrower IQR than Case 0, whereas a wider IQR is expected because 

it includes six uncertain input variables. This IQR reduction can originate from the correlations 

between the uncertainties of different input variables. For example, the errors in rating curves 

can interact with both the errors in the vertical measurements and the benchmark elevations 

because they are all related to the channel geometry and strongly affect the relationship between 

water surface elevation and discharge. 

2.4.3 Uncertainty in Input Variables 

Fig. 5 compares the medians and IQRs for input error parameters m1~m6 obtained from Cases 

1~6 separately and from Case 7. Based on the error model types, m1 and m5 are expected to be 

centered on one, and m2, m3, m4, and m6 would be on zero when the input data are unbiased. The 

parameter values calibrated from each of Cases 1~6 indicate that the bias in the discharge and the 

rating curves for the internal and downstream BCs are negligible even though they still contain 

uncertainty with IQRs of 27~40 %. The median for the cross section measurement angles is 

about 9 degrees, and it suggests the true channel widths might be about 90% of the measured 

widths (Eq. (6)). Vertical distance measurements for the cross sections are positively biased by 

about 3 % of the measured value. Benchmark elevations are also measured with positive bias of 
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0.11 m, which means the actual elevations should be 0.11 m lower than the measured points. 

Overall, the IQRs indicate that the uncertainty in the rating curve at the downstream BC (m3), the 

vertical measurements (m5), and benchmark elevations (m6) are relatively small. 

Fig. 5 Comparison of the medians and interquartile ranges for input error parameter m from 
Cases 1~7. 
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When the mean input error parameters are jointly specified by a single calibration process in 

Case 7, both the medians and IQRs of the posterior pdfs are notably changed from the above 

cases (Fig. 5). For example, the results suggest that the discharge data possess 2 % bias, and the 

rating curves have biases of -0.55 m and 0.17 m for the internal and downstream BCs, 

respectively. Both the cross section angles and the vertical measurements for the cross sections 

show less bias than those identified from the separate cases. For the benchmark elevations, the 

bias in the measurement data shows a 0.38 cm increase, but it has a 3 % narrower IQR, which 

means the calibrated value is less uncertain. Moreover, Case 7 presents noticeable reductions in 

the IQRs (9~20 %) for the three parameters (m2, m4, m5) that are strongly related to both channel 

geometry and flow conditions. 

The standard deviation parameters σ1~σ6 are expected to have posterior pdfs that approach zero 

when the forcing variables include no errors. Overall, both the medians and IQRs from all cases 

are usually located near the middle of the pre-specified ranges. Only little differences in those 

values are observed between the cases like the median for σ6 is 0.25 m from Case 6 and 0.23 m 

from Case 7. 

2.4.4 Uncertainty in Predictions 

Predictive intervals (PI) for sediment deposition volumes in the Tachia River are produced by the 

model simulations for the forest period using 2,000 parameter samples generated after 

convergence (Fig. 6) in order to evaluate how the uncertainty in the model parameters and input 

variables is propagated to the model forecasts. The input error models used in the calibration for 

each case were also applied to the forecast simulations. The spread of the predictions shows the 

forecast uncertainty originating from both the model parameter and input data uncertainties. 
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Fig. 6 Observations and model predictions for sediment deposition volume during the forecast 
period for the Tachia River using 2,000 parameter sets generated after convergence. Also shown 
are the points (the vertical lines with asterisk markers) where the internal and downstream 
boundary conditions are applied. 
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Cases 1~4 show similar PIs to Case 0 along the river reach except that Cases 2 and 3 have wider 

intervals near the points where the uncertain rating curves are applied as BCs. Case 5 shows the 

PI widths increase evenly along the reach compared to Case 0, and uneven and large increases in 

the uncertainty bounds are found in Case 6. The large forecast uncertainty in Case 6 might 

originate from the spatial correlation of the uncertain variables because the uncertainty in a 

single benchmark elevation affects not only the associated cross section but also the slopes to 

both the adjacent upstream and downstream cross sections. In Case 7, the PIs have similar 

profiles with those from Case 6, but they have slightly narrower intervals over the reach except 

near the internal BC. The upper bound of the PI at that point is almost same as the sum of the 

upper bounds from Case 2 and Case 6, which implies the predictive uncertainties from the 

different sources are aggregated. 

The percentages of observations covered by the PIs from each case are shown in Fig. 7a. Overall, 

the estimated uncertainty bounds do not cover 100 % of the data for both the calibration and 

forecast periods, which indicates an underestimation of the uncertainty. This underestimate 

might be caused by neglecting the other sources of uncertainty (such as errors in the observations 

or structural deficiencies in the sediment transport model) or by deviations from the assumptions 

used in the SCEM-UA algorithm or the input error models. However, they reveal that the 

estimated uncertainty bounds generated by considering more uncertain input variables as well as 

the model parameters contain more observations. Specifically, the PI from Case 7 covers more 

than 1.5~2 times the observations that are covered by the PI from Case 0 in the calibration and 

forecast periods. Besides the observation coverage, a comparison of the PI widths averaged 

along the river reach from each case to those from Case 0 (Fig. 7b) indicates that Case 7 covers 

more observations in the calibration period even though it has narrower PIs than Case 6. 
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Fig. 7 Percentage of observations covered by the predictive intervals (PI) and the average width 
ratios of the PI for each case to the PI for Case 0 from the simulations for both the calibration 
and forecast periods using 2,000 parameter sets sampled after convergence. 

Moreover, the average of the root mean squared errors (RMSEs) over the simulations shows that 

Case 7 provides the best performance in calibration period (Table 3) even though its intervals are 

second widest among the cases. It suggests that when all input uncertainties are jointly 

considered the uncertainty estimates not only widen their bounds but also improve their accuracy. 

The averaged PI width ratios when including input uncertainty are larger in the forecast period 

than the calibration period (Fig. 7b). This difference might originate from the discharge data 
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(Fig. 2a), which indicate that three or four large flood events occurred every year during the 

forecast period (2006 to 2009) whereas the peak flow appeared only five times during the 

calibration period (2001 to 2005). 

Table 3 Average of root mean squared error values for 2,000 simulations for the calibration and 
forecast periods using parameter sets sampled after convergence. The lowest values in each 
period are shown in bold face. 

Case Calibration Forecast 

0 112,931 140,036 

1 112,326 140,595 

2 112,070 142,722 

3 113,907 137,013 

4 112,260 141,385 

5 108,426 139,375 

6 113,384 144,024 

7 106,293 146,934 

2.5 Conclusions 

This research proposes a way to address the uncertainty due to hydraulic input variables as well 

as model parameters in order to improve uncertainty estimates for sediment transport model 

predictions. The proposed error models allow the forcing variables in a model simulation to vary 

by applying error values generated from a Gaussian distribution. The mean and standard 

deviation of the Gaussian distribution are then treated as additional uncertain parameters in the 

Bayesian uncertainty evaluation process. Based on the tests performed in this study, we can 

draw the following conclusions: 

1. Considering input uncertainty requires more model simulations to estimate uncertainty. 

The increase in the computational cost is more notable when the error model deals with 
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an input variable containing a larger number of uncertain elements. In such a case, the 

SCEM-UA algorithm used here for the Bayesian analysis converges slower. Compared 

to the 3,450 simulations required for only parameter uncertainty, the algorithm ran about 

5,000~8,000 simulations when the error models are applied to the variables that only 

affect the flow conditions. In contrast, about 17,000 simulations were required for using 

the error model that changes the channel geometry in every simulation. In addition, the 

joint posterior pdf could be approximated after 35,000 simulations when the interactions 

between input variables are included. 

2. For the cases considered, considering input uncertainty leads to only small changes in the 

uncertainty estimates for the SRH-1D model parameters. Specifically, the IQR of the 

posterior pdf for Manning’s n was reduced 3 % by considering the uncertainties in all the 

input variables considered in this study. Only a slight change occurs because well-

calibrated parameters such as Manning’s n, reference shear stress, and the hiding and 

exposure coefficient usually depend on the composition of bed material sizes, but the 

suggested error models were applied to the forcing variables related to only flow rate or 

channel geometry. 

3. Estimated uncertainty for a single input variable can vary if the associated error 

parameters (m and σ) are calibrated jointly with the error parameters for other input 

variables. From the cases considered, the posterior pdfs for the input error parameters 

indicated that the discharge data and the two rating curves do not contain bias when each 

variable was considered separately. When the joint pdfs were developed including the 

error parameters for all uncertain input variables, the IQRs for some input error 
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parameters were reduced by half, which implies a significant decrease in the estimated 

uncertainty in the associated input variables. 

4. The PIs produced by considering input uncertainty are more accurate than the PIs when 

only considering parameter uncertainty. The most notable improvement was observed 

when the predictions are generated by using all input error models suggested here for a 

single calibration process. The simulations from this approach show better performance 

in calibration period as they have 6 % less averaged RMSE compared to the existing 

method, and their PIs also cover 1.5 and 2 times more observations in the calibration and 

forecast periods, respectively. 

The research described in this study should be expanded to several avenues for future work. 

First, the proposed method can be applied to river network cases, where several reaches are 

linked and interact or to reservoir sedimentation cases. One could also consider other forcing 

variables like bed material size composition, which might have meaningful impacts on the model 

parameters including Manning’s n, reference shear stress, and hiding and exposure coefficient. 

Second, the model parameters and input data are not the only source of uncertainty in sediment 

transport modeling. The uncertainty might originate from the selection of the transport equation, 

which is part of the model’s mathematical structure, and the observations used for calibration 

(Ruark et al. 2011). Third, the Bayesian method requires too many model simulations. A single 

simulation of the Tachia River took only 20 seconds to run, but 7 days of continuous 

computation time were required to achieve convergence for the case that considered all uncertain 

input variables. The computational cost would increase tremendously when the proposed 

method is applied to more complex and higher dimensional modeling cases unless high 

41 



 
 

            

   

 

 

            
          

        

             
               
     

           
   

                  
        

             
     

           
            

 

              
            

              
         
    

              
           

              
              

                
          

                
           

performance computing resources are available. Therefore, methods should be developed to 

improve the efficiency. 
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CHAPTER 3 
REDUCED COMPUTATIONAL COST FOR ESTIMATING PREDICTION UNCERTAINTY 

DUE TO SEDIMENT TRANSPORT MODEL PARAMETERS 

Abstract 

Bayesian methods have recently been applied to sediment transport models to assess the 

uncertainty in the model predictions due to uncertainty in the parameter values. However, these 

approaches require too many model runs, so they are not feasible for models of complex fluvial 

systems, which might take significant computation time for each simulation. This research 

suggests a method to estimate the sediment transport model parameters and quantify the 

uncertainty in the model predictions with reduced numbers of model simulations. To accomplish 

this goal, a new algorithm is developed to enable the Generalized Likelihood Uncertainty 

Estimation (GLUE) method to implement conditional sampling. In addition, the algorithm is 

also intended to identify the correlation between parameters. To test the method, four case 

studies including three numerical experiments and a real river simulation are conducted. The 

results indicate that the new approach significantly enhances the efficiency of uncertainty 

analysis as it requires only about 15~25% of the simulations required by existing Bayesian 

methods while still providing similar estimates for both parameter values and model predictions. 

3.1 Introduction 

Numerical hydraulic and sediment transport models have been widely used to predict river 

morphological changes that result from natural and/or human influences. The results from such 

models are often used for decision making in water resources management (e.g., dredging, river 

restoration, and other environmental remediation plans). The predictions from those models 
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always possess uncertainty. One major source of uncertainty is the model parameter values that 

need to be determined by the modeler. Sediment transport models contain various physical 

and/or conceptual (numerical) model parameters that are either difficult or impossible to directly 

measure. Such parameters are calibrated by adjusting their values so that the model results 

successfully reproduce the observed response from the fluvial system, but no single parameter 

value is expected to perfectly represent the system behavior. Thus, it is essential to understand 

the uncertainty in the parameter values and account for the associated uncertainty in the 

predictions when identifying water management strategies based on the model results. 

Bayesian inference offers a formal way to assess the uncertainties in the model parameter values 

by comparing to calibration data and to quantify how those uncertainties affect the model 

predictions. In the past 10 years, Bayesian methods have been applied to sediment transport 

modeling cases that predict erosion within sewer systems (Kanso et al. 2005), sediment 

entrainment in a gravel-bed flume (Wu and Chen 2009), bed elevation and material changes in 

flume experiments (Ruark et al. 2011; Sabatine et al. 2015), cumulative sediment load in a 

fluvial channel (Schmelter et al. 2011, 2012, and 2015; Schmelter and Stevens 2013), and 

cohesive sediment behavior (Cho et al. 2016). The Bayesian paradigm derives the posterior pdf 

by evaluating the ability of parameter sets that are sampled from the prior pdf to reproduce 

available calibration data. It is impossible to derive the large dimensional posterior pdf 

analytically because the numerical simulation models are non-linear and often complex. In 

practice, the posterior distributions are approximated by integrating the likelihoods or posterior 

density values, which are acquired from a large number of model simulations, over the parameter 

space. Such uncertainty analysis can be implemented using Generalized Likelihood Uncertainty 
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Estimation (GLUE) method (Beven and Binley 1992) or Markov Chain Monte Carlo (MCMC) 

algorithm-based methods. 

While the traditional GLUE method (Beven and Binley 1992) and its various transformations 

(Blasone et al. 2008; Stedinger et al. 2008) have been widely used in hydrologic applications due 

to its algorithmic simplicity and flexibility, the large number of model simulations required for 

reliable estimates is the key limitation for sediment transport model cases. Specifically, studies 

using distributed watershed models use 50,000 ~ 100,000 model evaluations depending on the 

number of uncertain parameters considered (Beven and Freer 2001; Blazkova et al. 2002; Jia and 

Culver 2006). However, such simulation numbers would not be feasible for sediment transport 

models where each simulation can be time consuming. For example, a three dimensional 

sediment transport model took 30 minutes for a steady simulation of flow and sediment transport 

near an intake facility where the area was about 7,000 m2 (1.73 acre) using 9,000 coarse cells 

(Ruether et al. 2005). Although this case is simple, 10,000 samples would require a continuous 

computation time of 200 days, which would not be feasible in practice. Moreover, both the 

number of simulations and the time for each simulation would increase substantially when 

assessing the uncertainty in the predictions for more complex and higher dimensional modeling 

cases. Such expensive computational costs originate from inefficient sampling method used in 

GLUE. Specifically, GLUE typically generates a large population of independent parameter sets 

using simple random sampling within specified parameter ranges, which is known as Monte 

Carlo (MC) sampling. As a result, many simulations are performed using parameter sets that 

have low likelihoods of being correct (van Griensven and Meixner 2007; Blasone et al. 2008). 

Some strategies are available to solve the inefficiency in GLUE, but the limitations still exist in 

each of those strategies as discussed following. One of the easiest ways to reduce the massive 
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computation time is to parallelize the simulations using a parallel computing processor (or 

network). Continuous computation time is expected to decrease as the number of available 

processors increases, but it does not mean that the algorithm efficiency is improved. Second, 

sensitivity tests can be used to reduce the number of uncertain parameters prior to conducting the 

uncertainty analysis (Tolson and Shoemaker 2008). The reduced dimension of the parameter 

space would certainly require a smaller sample size to cover that space. However, the sensitivity 

test for a high-dimensional case can also be computationally expensive. For example, Zak and 

Beven (1999) used 60,000 model runs for the sensitivity test before conducting GLUE with 

another 60,000 simulations, and Athira and Sudheer (2015) used 28,000 simulations to reduce 

the number of considered parameters in SWAT model from 13 to 4. Third, Latin Hypercube 

sampling (LHS) can reduce the number of necessary model runs to cover the parameter space in 

GLUE compared to Monte Carlo sampling (Uhlenbrook and Sieber 2005). While its efficiency 

in sampling within a multi-dimensional space has been widely addressed (Jones and Johnson 

2009; Loeppky et al. 2009), the question of whether LHS is able to produce enough samples to 

represent the high likelihood region in detail still remains. 

Another criticism of GLUE is that the method does not provide an estimate of the joint posterior 

pdf because it is not able to identify correlation between the parameters. Specifically, GLUE 

produces the cumulative marginal posterior distribution for each parameter using the likelihood 

values from the calibration period, and the parameter sets generated from those marginal 

distributions are used for the forecast period to determine the prediction uncertainty. Thus, the 

forecast uncertainty estimated by this method does not include any impact of correlation between 

the model parameters. However, multiple parameters in sediment transport models are usually 

highly correlated. In addition, Wu and Chen (2009) and Sabatine et al. (2015) demonstrated that 
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the estimated uncertainty in the predictions is substantially different depending on whether the 

correlations between the sediment transport model parameters are included or not. 

In context of MCMC methods, the parameter sets are generated and used for simulations one-by-

one to iteratively obtain a numerical approximation for the posterior pdf (Green 2001). Once an 

MCMC algorithm has performed sufficient model runs, the parameter sets are sampled from a 

stationary distribution, which implies that the algorithm has converged. The sample generated 

after convergence is then used to estimate the joint posterior pdf. In order to achieve 

convergence with fewer computations, various MCMC algorithms have been suggested such as 

adaptive Metropolis (Haario et al. 2001), delayed rejection adaptive Metropolis (Haario et al. 

2006), Shuffled Complex Evolution (Duan et al. 1992), Shuffled Complex Evolution Metropolis 

- Uncertainty Analysis (SCEM-UA) (Vrugt et al. 2003), Differential Evolution-Markov Chain 

(Ter Braak 2006), and the family of Differential Evolution Adaptive Metropolis (DREAM) 

methods (Vrugt et al. 2008) including DREAM(D) (Vrugt and Tr Braak 2011), DREAM(ZS) 

(Laloy and Vrugt 2012), and DREAM(ABC) (Sadegh and Vrugt 2014). Many of those methods 

have been widely used for hydrologic model applications because their sampling processes are 

more efficient (Vrugt et al. 2003) and they can infer correlations between model parameters, 

which can significant impact the uncertainty estimates (Sabatine et al. 2015). 

Although the MCMC algorithms provide the results based on a rigorous statistical foundation 

and overcome the weaknesses in GLUE, they also possess distinct limitations. First, using the 

MCMC methods is still computationally expensive because they require many simulations not 

only for the algorithm convergence but also for collecting the posterior sample after convergence. 

Specifically, Vrugt et al. (2009) used at least 40,000 simulations of the conceptual watershed 

model to achieve convergence, and Ajami et al. (2007) generated 20,000 parameter sets after 
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convergence to provide well-specified histogram. In addition, Sabatine et al. (2015) found that 

an MCMC method did not substantially improve the computational cost compared to GLUE for 

sediment transport model simulations of flume experiments. Unfortunately, parallel computing 

is not feasible because the MCMC sampling is a sequential and dependent process such that the 

updated parameter set from one step becomes the current point for the next step (Foglia et al. 

2009). Second, stringent assumptions and complex structure used in those algorithms might 

cause difficulty in conducting uncertainty analysis (Tolson and Shoemaker 2008) for the modeler 

who is not an expert on statistics. In addition, a number of algorithmic parameters that might 

affect the results need to be determined by the modeler to use those methods. 

The main goal of this study is to develop and test an efficient way to assess the uncertainties in 

sediment transport model parameters and evaluate their contributions to the uncertainty in the 

model predictions. A new algorithm is built on modifications of GLUE to use its merit of 

simplicity. In order to reduce the computational expense, the algorithm is designed to 

consecutively generate a sample of parameter sets by considering the information about high 

posterior density regions identified during the analysis. The posterior sample collected by the 

new method also enables forecasts to include the correlations between the model parameters. To 

test the method, three published numerical experiments using synthetic posterior distributions 

(Vrugt et al. 2003; Vrugt et al. 2009) and a natural river (Lai and Greimann 2010) are considered 

as case studies. For the real river case, nine sediment transport parameters included in the 

Sedimentation and River Hydraulics – One Dimension (SRH-1D) (Huang and Greimann 2013) 

model are treated as uncertain parameters to simulate the net deposition volumes along the 23-

km reach of the Tachia River in Taiwan. The proposed method is evaluated by comparing to 

both GLUE and an MCMC method based on (1) the number of simulations required for 
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estimating both parameter and prediction uncertainties, (2) the estimated posterior distributions 

for uncertain parameters, and (3) the performance of the model forecasts. 

3.2 Methodology for Parameter Uncertainty Assessment 

3.2.1 Existing GLUE and MCMC Methods 

Before introducing the new algorithm, brief summaries of the traditional GLUE (Beven and 

Binley 1992) and SCEM-UA (Vrugt et al. 2003) methods are provided. These are used as the 

reference methods to evaluate results from the new algorithm in this study. 

In typical GLUE applications, model parameters are initially assumed to conform to uniform 

distributions within specified ranges under the assumption that no prior information is available 

about the parameter values aside from their feasible limits. A population of parameter sets is 

then generated using MC sampling and used in the model to simulate the calibration period. The 

likelihood of each parameter set is computed, most commonly using Nash-Sutcliffe Coefficient 

of Efficiency (Nash and Sutcliffe 1970), and the behavioral parameter sets that produce 

reasonable predictions of the calibration data are determined. Then, the likelihood value of each 

of the behavioral parameter sets is divided by the sum of their likelihoods. For each parameter, 

the resulting likelihood values are accumulated along the parameter values, and the resulting 

distribution can be treated as an estimate for a cumulative marginal posterior distribution for that 

parameter. Parameter sets generated from these posterior distributions are then used to simulate 

the forecast period, and the associated distributions of the model outputs are used to assess the 

forecast uncertainty. 

SCEM-UA is one of the most efficient MCMC methods and has been used for various 

hydrologic applications (Laloy and Vrugt 2012), and it also has a relatively simple algorithmic 

52 



 
 

                

               

                  

               

                

              

                 

              

                

                  

                 

                  

              

                 

               

                

                

               

                

           

             

             

              

structure compared to the other advanced MCMC methods. Readers are referred to Vrugt et al. 

(2003) for a detailed discussion. SCEM-UA starts by generating an initial sample of parameter 

sets from a uniform prior joint pdf, and the parameter sets are used in model simulations of the 

calibration period. After specifying the posterior density of each parameter set, the sample is 

partitioned into a number of complexes. The parameter sets in the complexes are updated in 

parallel using the Metropolis algorithm (Metropolis et al. 1953) by treating the highest posterior 

density parameter set in each complex as the starting point of an updating sequence. For each 

sequence, a new parameter set is generated from a multivariate normal distribution, which is 

centered on the current parameter set of the sequence with a covariance structure that is inferred 

from the parameters in the complex, and the parameter set is used in the model to evaluate its 

posterior density. If the posterior density of the new parameter set is larger than the current 

parameter set, the current one is replaced by the new one. Otherwise, the new parameter set can 

replace the current parameter set with a randomly specified probability. Such sampling behavior 

that can accept a trial with lower posterior density helps to escape from locally optimal areas. 

After a few iterations of the updating procedure, the members of all complexes are recombined, 

shuffled, and re-divided into complexes in order to use the most likely parameter sets as the 

starting point for the updating sequences more frequently. While such a process can improve the 

changes of sampling the high posterior density region, it violates the detailed balance principle of 

MCMC algorithm that the update should always be performed from their last updated point in a 

sequence (Vrugt et al. 2008; Laloy and Vrugt 2012). 

As the iterative procedure continues, the parameters are being calibrated because the parameter 

values with higher posterior density are sampled more frequently, and the convergence of 

SCEM-UA can be determined using the Scale Reduction Score (SRS) (Gelman and Rubin 1992), 
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which is the ratio of the variance of the average parameter values from each complex to the 

average of the variances of parameter values within each complex. When the SRS for all 

parameters is below 1.2, the samples are generated from an adequately stationary distribution, 

and the joint posterior pdf of the uncertain parameters can be estimated using a large sample 

collected after that convergence point. In addition, the prediction uncertainty can be investigated 

by using those collected parameter sets for the forecast simulations. 

3.2.2 Evolving Latin Hypercube Method 

The new algorithm entitled the Evolving Latin Hypercube (ELH) method is suggested in this 

study by resolving the limitations of the GLUE method. The method is developed by focusing 

on the following strategies: (1) selecting an efficient sampling method to reduce the number of 

parameter sets that require model runs, (2) constructing the posterior sample by collecting 

parameter sets that include the correlations between the parameters, (3) estimating the posterior 

distributions every few simulations by considering the information about the high posterior 

density region obtained during the analysis, and (4) determining the point to stop the process to 

avoid unnecessary additional model simulations. The details about the ELH algorithm are below 

and illustrated in Fig. 8. 

a. Generate Sample (Step 1) 

The ELH algorithm starts by generating a prior sample of parameter sets from a uniform prior 

joint pdf under the same assumption used in GLUE (no prior information). In order to explore 

the large dimensional parameter space efficiently, LHS (McKay et al. 1979), which has been 

shown to more efficiency sample than the MC method from previous studies (van Griensven et 

al. 2006; Matala 2008), is used. For generating a sample size S given a joint uniform prior of the 
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P parameters θ = [ 1,  2, …,  P], LHS first divides each parameter range into S non-overlapping 

equal sized intervals. For each parameter, only one value is selected randomly from each 

interval, and the S values of  1 are paired in a random manner with the values of  2. These pairs 

are then associated similarly with the values of  3 and so on. 

Fig. 8 Flowchart of the Evolving Latin Hypercube (ELH) algorithm. 

55 



 
 

               

              

               

            

               

                   

              

               

              

                

                

                   

          

                 

                 

               

              

   

                  

                    

           

Although no clear recommendation for the appropriate sample size S for LHS has been proposed 

in previous applications, Stein (1987) found that the estimated sample variances are stable with 

smaller sample size if several independent LHS samples are generated. The method is called 

replicated LHS. Specifically, Stein (1987) demonstrated that increasing the number of 

replications while each LHS sample size S is fixed increases the estimated sample variance, but 

the stable sample variance can be acquired as long as ratio S/P is large. This approach helps to 

reach stable properties of sampled parameter values as well as efficient parameter space filling 

properties with a smaller sample size. Preliminary tests indicate that the replicated LHS method 

is much better than original LHS, MC sampling, and stratified sampling methods. The 

recommendations from Stein (1987) that the number of replication should be at least 5 and the 

independent LHS sample size S should be larger than 10*P work well for the cases considered 

here, so the replicated LHS sample size of 50*P will be used for the ELH algorithm. 

b. Run Models and Compute Posterior Densities (Step 2) 

The parameter sets in the sample are used in model simulations of the calibration period, and the 

posterior density of each parameter set is assessed. The likelihood can be computed in a formal 

way by assuming that that the model errors are mutually independent and Gaussian with constant 

variance. This formal function (Box and Tiao 1973) can be written as: 

N O −1 ( i ( ) θ yi )2  
L(y θ) = exp −  (16) 

2∏ 2 
i=1 2πσ  2σ res  

res   

where Oi (θ) represents the simulated output variable when the parameter set θ is used and yi is 

the observed value at time or space i, and σ res 
2 is the variance of the model errors. Under the 

assumption of no prior parameter information, the prior pdf is: 
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1 
θ ∝p( ) (17) 

σ res 

Box and Tiao (1973) demonstrated that the influence of σres can be integrated out, and suggested 

a simplified form to evaluate the posterior density of each parameter: 

1− N
 N 

2 2 
p (θ ∝ ( i θy ) ∑ O ( ) − yi ) (18)  

  i =1  

This simplified posterior density equation has been used in various MCMC methods (Tiemann et 

al. 2001; Vrugt et al. 2003; Vrugt et al. 2008; Vrugt et al. 2009) because it can reflect the 

likelihood information of each parameter set in a formal way. Thus, this equation is used in this 

algorithm when evaluating the posterior density of a parameter set. 

c. Estimate Posterior Distribution (Step 3) 

Once the posterior densities of the parameter sets are identified, the posterior sample is 

constructed in order to estimate the joint posterior pdf. To do this, the parameter set θbest that has 

the highest posterior density among the prior sample is duplicated 1000 times and all of those 

copies are collected into the posterior sample. Next, the other parameter sets θl are also 

duplicated and complied into the posterior sample, but the number of copies for a parameter set 

ncl is determined according to the ratio of its posterior density to the most likely parameter set’s 

posterior density as: 

p (θ y ) 
(19) nc = 1000 × l 

l p (θ y )best 
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where ǁ·ǁ represents a rounding function. The duplication process is applied for all the parameter 

sets included in the prior sample. The parameters are expected to be calibrated because the 

parameter values with higher posterior densities will be more included more frequently in the 

posterior sample. As a result, the marginal posterior distribution for each parameter can be 

approximated using the histogram of the parameter values included in the posterior sample. 

The posterior distributions from ELH are expected to be similar to the results from GLUE 

because both methodologies consider the ratio of each parameter set’s likelihood to the other 

likelihoods when approximating the posterior distributions. Specifically, GLUE divides the 

likelihood value of each behavioral parameter set by the sum of the likelihoods of all behavioral 

sets to generate the cumulative posterior distributions, while ELH duplicates the parameter sets 

according the ratio of posterior densities. However, ELH can estimate the joint posterior pdf 

because the covariance structure can be identified using the sample of parameter sets complied in 

the posterior sample. 

The specification for ncl can vary according to the modeler’s decision. However, preliminary 

tests revealed that when the most likely parameter set is duplicated only 100 times the ELH 

method leads to a posterior distribution with lower variance than expected, which might be 

caused by discarding too many parameter sets in the low posterior density region (due to the 

rounding function). On the other hand, the results do not vary significantly when that parameter 

set is duplicated more than 1,000 times. 

d. Specify New Parameter Ranges (Step 4) 

The acquired posterior sample might not be able to provide an accurate distribution for high 

posterior density regions if the initially specified parameter ranges are too broad. Specifically, 
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the histogram from the posterior sample would not be able to describe the exact posterior 

distribution in detail because the prior sample (50*P parameter sets) from the LHS method is 

supposed to cover the parameter space efficiently (coarsely). To overcome this limitation, ELH 

specifies new parameter ranges by excluding the outlier ranges that are found from the previous 

estimation and generates additional samples to improve the detail in the high posterior density 

region. For each parameter, the interquartile range (IQR), which is the difference between the 25% 

and 75% quantiles in the posterior sample, is computed, and the new bounds for the next 

sampling are determined as: 

[25% quantile point – 2.5*IQR 75% quantile point + 2.5*IQR ] (20) 

The new bounds are not allowed to exceed the initial bounds. The reduction in the parameter 

ranges enables the next sampling to concentrate on the higher posterior density region. 

e. Repeat Sampling and Estimating (Steps 1-4) 

The process continues by generating 50*P new parameter sets from a uniform prior joint pdf 

with the updated parameter ranges (Step 1). The model simulations of calibration period are run 

using the new parameter sets, and the posterior densities are also computed using Eq. (18) (Step 

2). Before moving to Step 3, the replications of the previous sample are removed. After that, the 

new sample is combined with the previous sample, and the duplicating process is applied to all 

the parameter sets generated so far (Step 3). Thus, the total number of parameter sets considered 

at Step 3 in the second estimation would be 2*50*P. The most likely parameter set θbest can be 

either from the previous or the new sample. After updating the sample (with replications), the 

new parameter ranges are specified for the next sampling, and the iterative process continues 

until the results are stable. 
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f. Check Stability of Estimation 

In order to check the stability of the estimation results, the standard deviation (SD) of the 

posterior sample (with replications) is calculated for each parameter after every updating loop. 

After the second loop, the relative SD change can be computed as: 

SD − SD p r , p r , −1ε = p r , + SD (SD p r , p r , −1 ) 2 
(21) 

where SDp,r is the SD of the posterior sample for parameter p at the rth loop. A stationary 

posterior sample is then diagnosed if the relative SD change for all P parameters is less than 1 % 

during at least two updating loops. At that point, the available posterior sample is considered to 

represent the joint posterior pdf of the uncertain P parameters. 

The SD is considered because it can quantify how the posterior distribution is spread, which can 

be interpreted as the uncertainty in the parameter values after calibration. In addition, using the 

relative change can allow more variation for parameters that are poorly calibrated whereas well-

constrained parameters are diagnosed more strictly. Other statistical properties (e.g., IQR or 

coefficient of variation) were also considered and found to produce similar results. However, 

preliminary tests revealed that the relative SD change is able to provide more consistent 

diagnosis for stability than the other metrics. 

g. Simulate Forecast Period 

The parameter sets contained in the final posterior sample obtained from the simulations of the 

calibration period are then used for the forecast scenario. Because ELH duplicated the parameter 

sets, there are many identical parameter sets in the posterior sample. Simulations are only 
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required for the unique parameter sets, which greatly reduces the computational cost compared to 

the total number of parameter sets. The model results are then duplicated according to the 

number of identical parameter sets. The resulting distribution of the model outputs can describe 

the uncertainty in the predicted variables due to the uncertainty of the parameter values. 

3.3 Case Studies for Synthetic Distributions 

Numerical experiments using three synthetic target distributions with increasing complexity, 

which have been used by Vrugt et al. (2003 and 2009), are considered as case studies to evaluate 

the ELH method. The cases cover a diverse set of problem features including multimodality, 

correlation, and high-dimensionality in target probability distributions. These synthetic cases are 

well-controlled systems that do not allow uncertainty from sources other than the parameter 

value itself. In addition, the posterior density value can be computed directly from a probability 

density function (pdf) for given parameter values, instead of running a model, so that the 

computational costs for testing the method can be reduced. No forecast simulation is considered 

here, so the accuracy of estimated posterior distributions is examined through these case studies. 

SCEM-UA is considered as a comparison method to evaluate the performance of the ELH for 

these cases. 

3.3.1 A Single Bimodal Distribution 

To investigate the performance of ELH in presence of multimodality, the first case study 

involves a single parameter   with a bimodal probability distribution (Case 1) where the pdf is 

written as: 

1  1 2  2  1  
p( ) θ = exp − θ + exp − (2θ − 8)2 

(22)    2π   2  2π   2  
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This target distribution is the sum of two Gaussian probability distributions where each has an 

optimal point at   = 0 and 4, respectively. In addition, the distribution has a mean of 2 and a 

variance of 4.6, and its 25% and 75% quantiles are located at   = 0 and 4, respectively. For 

uncertainty analysis, the prior range of the parameter was limited to [-10 10]. ELH updated the 

posterior distribution by generating 50 parameter values in every loop, and SCEM-UA used four 

parallel updating sequences with initial 100 parameter values. 

Fig. 9a presents the histograms of the posterior sample generated by ELH and SCEM-UA from 

5,000 computations to estimate the target distribution of Eq. (22), which is shown as a black 

solid line. SCEM-UA converged after 200 computations so that the parameter values of the 

initial 200 draws from the non-converged sampling process are discarded when constructing the 

histogram. ELH provides the histogram that is not only smoother but also closer to the target 

than SCEM-UA. The accuracy of the histogram is measured by averaging the distances between 

the midpoints of each bar in the histogram and their corresponding point on the target curve. The 

resulting distances indicate that the ELH histogram (0.005) is more accurate than the SCEM-UA 

histogram (0.016). 
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Fig. 9 (a) Bimodal target distribution and histogram of the generated 5,000 parameter values and 
(b) the changes in the posterior sample properties during 5,000 computations using ELH and 
SCEM-UA. 

Fig. 9b compares the changes in the statistics of the posterior sample according to the number of 

computations during each analysis. Such properties should be stationary and match their target 

values if the algorithm approximates the target distribution well. The results from ELH become 

stationary much quicker than those form SCEM-UA. For example, the 25% and 75% quantiles 

from ELH change little and are fixed near the target values after about 100 computations. In 

addition, the final estimates at 5,000 computations (shown as a number above each line) also 
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show that ELH provides more accurate estimates for all the considered target values than SCEM-

UA. Those results suggest that ELH is able to infer the single dimensional bimodal distribution 

defined in Eq. (22) with quicker and better performance than SCEM-UA. 

Such difference might originate from the difference in estimating strategies between two 

methods. Specifically, ELH represents the posterior distribution over the considered parameter 

space every single updating loop by generating several parameter values at the same time and 

comparing their posterior densities, which allows exploration of the region with higher 

likelihood. On the other hand, SCEM-UA wanders the parameter space by comparing the 

posterior densities of the parameter values one-by-one every trial, which might require many 

comparisons to explore the entire space. 

3.3.2 Multi-dimensional Gaussian Distributions 

The second case study considers a two-dimensional Gaussian density function to evaluate ELH 

for application to two correlated parameters (Case 2). The target pdf for a set of two parameters 

θ = [ 1,  2] can be written as: 

1  1 2 −1  
p ( ) θ = exp − (θ − µ) Σ (θ − µ) (23)    2 2π Σ 

 σ 2 0.5 σ σ   1 0.71 1 1 2Σ =   = (24) 
2  0.5 σ σ σ  0.71 2   1 2 2  

where the distribution is centered on zero µ = [0, 0] and the covariance matrix Σ includes the 

variances of p (p = 1, 2) for pth parameter with correlation coefficient of 0.5. The prior ranges 

for both parameters were limited to [-10 10], and ELH generated 100 combinations of two 
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parameter values every updating loop, while SCEM-UA used four parallel sequences with 100 

initial parameter sets. 

Fig. 10a compares the means, variances, and correlation coefficient of the posterior sample from 

each method during 10,000 computations (note that SCEM-UA collected the posterior sample 

after 1,000 computations, during which the algorithm converged). From the results, ELH 

reached the target values quicker and closer than SCEM-UA. In addition, the estimation 

accuracy is also calculated using an average normalized Euclidean distance D as: 

2 2 

1 

ˆ ˆ1 

2 

P 
p p p p 

p p p 

D 
µ µ σ σ 

σ σ= 

    − −
 = +   
           

∑ (25) 

where µp and σp are the mean and standard deviations of target distribution and µ̂ p and σ̂ p are 

the mean and standard deviations of the estimated distribution for parameter p, respectively. 

According to the Euclidian distance D, ELH (D = 0.003) is more accurate than SCEM-UA (D = 

0.022). 
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Fig. 10 (a) Posterior sample properties during 10,000 computations for Case 2, and (b) sample 
variances and (c) correlation coefficients estimated during 100,000 computations for Case 3 
using ELH and SCEM-UA. 
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To explore the higher dimensional problem, the dimensions of the target Gaussian pdf of Eq. (23) 

is extended to five (Case 3). The covariance matrix can be written as follows: 

 σ σ 0.5 1 11 0.5 1 2 σ σ 1 3 0.5 σ σ 4 0.5 σ σ 5  
  

1 2 2 σ σ 2 3 0.5 4 σ σ 50.5 σ σ 0.5 σ σ 2 0.5 2  
Σ 0.5 σ σ 1 3 0.5 σ σ 2 3 3 0.5 σ σ 4 σ σ 5 = 3 0.5 3 (26) 

 σ σ 0.5 3 40.5 1 4 0.5 σ σ 2 4 σ σ 4 4 0.5 σ σ 5  
 σ σ 0.5 3 4 

0.5 1 5 0.5 σ σ 2 5 σ σ 5 0.5 σ σ 5 5  

The means are well estimated (not shown), but notable differences between two algorithms are 

observed in the estimated variances (Fig. 10b). Specifically, SCEM-UA underestimates the 

variances for the 3rd, 4th, and 5th parameters, which have relatively high target variances, whereas 

ELH does not miss the target values as much. The Euclidian distance of ELH (D = 0.027) is also 

better than that of SCEM-UA (D = 0.066). In addition, the correlation coefficients are a little 

underestimated by SCEM-UA as all of them range from 0.45 to 0.49, which is lower than the 

target value of 0.5 (Fig. 10c). 

The underestimated variance from SCEM-UA might be due to its sampling strategy, which 

violates the detailed balance principle. Specifically, the detailed balance principal forces 

continuity of the sampling process, but SCEM-UA disrupts the continuous sampling when the 

algorithm recombines, shuffles, and re-divides the parameter sets of all complexes in order to 

place the highest posterior density parameter sets as the starting point of the updating procedure 

more frequently. It might improve the efficiency to sample the parameter values more from the 

higher likelihood region, but the estimated posterior distribution can also be misrepresented. 

Unlike SCEM-UA, ELH removes only the outlier low likely regions when updating the 

parameter ranges. In addition, even a parameter set with a posterior density value that is lower 

67 



 
 

                  

             

         

               

              

                

              

                

              

              

             

             

              

         

       

               

              

                 

                 

               

                

                  

by a factor of 0.001 than most likely parameter set can be included in posterior sample with the 

impact exactly corresponding to its posterior density value according to Eq. (19). 

3.4 Case Study for Sediment Transport Model Parameters 

The last case study applies the ELH methodology to the Sedimentation and River Hydraulics -

One Dimension (SRH-1D) (Huang and Greimann 2013) model for simulating a 23-km reach of 

the Tachia River in Taiwan (Lai and Greimann 2010). The posterior distributions for nine model 

parameters used in SRH-1D are estimated, and the credible ranges of the model predictions, 

which reflect the impact of the identified parameter uncertainty, are evaluated. In order to assess 

ELH comparatively, GLUE is implemented for this case in addition to SCEM-UA. The 

following section describes the simulation of the Tachia River. After that, the computational 

cost for uncertainty analysis, the posterior distributions of the model parameters, and the 

prediction accuracy are discussed. The detailed mathematics of the sediment transport model 

SRH-1D and its nine model parameters considered in this research have already been addressed 

in detail in the previous chapter (Section 2.3.1). 

3.4.1 Application to Tachia River Simulation 

Scour and sedimentation behavior along the 23-km reach of the Tachia River in Taiwan is 

considered. The selected reach stretches between Shih-Gang Dam and the ocean with bankfull 

widths of 300~1200 m and an average slope of 0.011. In 2007, the dominant substrate was 

cobbles and gravels, and the bed material sizes ranged from 0.125 mm to 512 mm (sand to 

boulders) with a median grain size (D50) of 108 mm. Net deposited/eroded sediment volumes 

were measured during two periods (2001 to 2005 and 2005 to 2009) at cross-sections along the 

reach from the dam to the ocean. During those periods, severe erosion occurred in part due to 
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the lack of sediment supply below the dam. The erosion occurred primarily from the dam to 

approximately 5 km downstream during 2001 to 2005 and to about 8 km downstream during 

2005 to 2009. This case study uses the net deposition volume at each cross-section as the 

variable of interest for the uncertainty analysis and considers the first period (2001 to 2005) as 

the calibration period and the second (2005 to 2009) as the forecast period. 

For the SRH-1D simulations, a time series of measured discharges at Shih-Gang Dam provides 

the upstream BC, but flow and sediment inputs from tributaries downstream of Shih-Gang Dam 

are not considered here due to lack of data. The downstream BC is specified using the critical 

depth obtained from the same HEC-RAS simulations and the 2005 geometry (Lai and Greimann 

2010). Channel geometry data were collected in both 2001 and 2005, and these datasets provide 

the initial bed geometry for each period. Sediment size gradation data from 2007 were averaged 

along the channel and used as the initial bed material distribution for both the calibration and 

forecast periods. No levees, ineffective flow, or blocked obstructions are considered in the 

simulations. 

All three uncertainty methods (ELH, SCEM-UA, and GLUE) use Eq. (18) to compute the 

posterior density of parameter set, which is the combination of the nine SRH-1D model 

parameters, when estimating the posterior distributions for those parameters. Then, the 

calibrated distributions are applied to the forecast period, and the uncertainty estimates are 

compared to the actual spread of the observations. The residuals for the net deposition volumes, 

which were calculated using the calibrated model, were examined to see whether they satisfy the 

assumptions of the posterior density function of Eq. (18). The residual lag plot shows a random 

pattern, so the residuals can be treated as independent, and the Kolmogorov-Smirnov test 

indicates the residuals are approximately Gaussian with constant variance. 
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3.4.2 Computational Cost for Uncertainty Estimates 

In the ELH implementation, 500 parameter sets were generated for the simulations of the 

calibration period in every updating loop. Fig. 11a illustrates the SD change that is calculated 

every 500 simulations, and the stability of ELH is diagnosed at 6,000 simulations. The resulting 

posterior sample contains 2,378 unique parameter sets, and its total size is 116,981. For the 

forecast period, those 2,378 unique sets were used in the simulations, and the resulting 

predictions were also duplicated according to the number of corresponding identical sets. 

SCEM-UA was conducted using 10 parallel updating sequences with 250 initial parameter sets 

following the suggestions from Vrugt et al. (2003) for the case where numerous uncertain 

parameters are expected to be highly correlated. Based on the SRS (Gelman and Rubin 1992), 

SCEM-UA required 8,000 model runs to reach algorithm convergence prior to collecting the 

posterior sample. The SD change is also applied to check the stability of the posterior sample 

from SCEM-UA by calculating it every 500 simulations after the convergence point, and the 

posterior sample is stationary at 13,000 model runs (Fig. 11b). As 13,000 parameter sets are 

acquired as part of the posterior sample, the forecast simulations use all of those parameter sets 

to obtain the sample of the predictions. 
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Fig. 11 SD changes for SRH-1D model parameters using (a) ELH and (b) SCEM-UA, and (c) 
the total number of model simulations required to estimate the prediction uncertainty using the 
three uncertainty methods for the Tachia River case. 
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Because the GLUE methodology is not a consecutive process, it was implemented several times 

by increasing the sample size from 5,000 up to 150,000 in order to find the size that produces 

stable estimation. The behavioral sets were determined if the posterior density of a parameter set 

is larger than 0.1 % of the most likely parameter set’s posterior density, which is similar with the 

threshold used in ELH. The SD change cannot be applied because GLUE does not collect the 

posterior sample. By considering the median, 25% and 75% quantiles of the cumulative 

posterior distributions, GLUE provided nearly stable results when the simulation number is 

larger than 50,000. Using LHS, 10,000 parameter sets were generated from the marginal 

posterior distributions for each parameter and were used for the forecast simulations. 

Fig. 11c compares the total number of simulations used for each method to implement the 

calibration and simulate the forecast scenario. Overall, the ELH method reduces the required 

simulations about 75% and 86% compared to the SCEM-UA and GLUE methods, respectively. 

For the calibration, ELH could estimate the joint posterior pdf before SCEM-UA achieved 

algorithm convergence. In addition, the sample duplication process in ELH enables reduced 

computational cost when simulating the forecast period. 

A single simulation of the Tachia River took 20 and 28 seconds to run for calibration and 

forecast periods, respectively. In this study, four parallel computing processors of Intel i5-4690 

CPU@ 3.50GHz 8GB RAM were used, and the continuous computation times are about 13 

hours for ELH, 55 hours for SCEM-UA, and 90 hours for GLUE. The ratios of the computation 

times among the methods are almost the same as the ratio of the number of the required model 

runs. However, it is expected that high performance computing systems with larger number of 

multiple processors would greatly reduce the computation time for ELH. For example, ELH is 

expected to need only 0.05 hour for all simulations when 500 parallel processors are available 
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because it will be able to run 500 simulations at the same time for the 500 parameter sets that are 

independently generated from a single updating loop. On the other hand, such a reduction 

cannot be anticipated for SCEM-UA because its sequential sampling and updating processes 

strongly depend on the parameter sets updated from the previous step. Specifically, as 10 

parallel updating sequences were used for this case, only 10 simulations can apply at the same 

time although much more processors are available. 

3.4.3 Uncertainty in Model Parameters 

The marginal posterior distribution for each parameter describes the uncertainty in the parameter 

value that remains after model calibration is complete. Fig. 12 compares the cumulative 

posterior distributions that are produced by the three uncertainty methods using the calibration 

data. In addition, Table 4 presents the median values and the ratio of the posterior IQRs to prior 

IQRs for the corresponding posterior distributions. The percentage values for IQR ratio can be 

interpreted as the fraction of the initial uncertainty that remains in the parameter after calibration. 
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Fig. 12 Cumulative marginal posterior distributions for SRH-1D model parameters generated 
using the three uncertainty methods for the Tachia River case. 
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Table 4 Median values and IQR ratios of the estimated posterior distributions for SRH-1D 
model parameters obtained using the three uncertainty methods for the Tachia River case. 

Parameters n  r λ nalt ζd ζs bL χ ϕ 

Median 

ELH 0.039 0.049 0.13 3.31 0.51 0.55 12.28 0.58 0.32 

SCEM-UA 0.039 0.048 0.18 3.01 0.51 0.52 11.67 0.54 0.33 

GLUE 0.039 0.049 0.13 3.39 0.53 0.50 12.26 0.56 0.33 

IQR Ratio 

ELH 35% 11% 28% 66% 100% 104% 96% 99% 102% 

SCEM-UA 35% 11% 30% 59% 85% 86% 81% 83% 80% 

GLUE 33% 12% 28% 63% 96% 105% 101% 104% 96% 

Overall, the reference shear stress is the best identified parameter as it has the steepest 

cumulative distribution (Fig. 12). Its estimated median values are around 0.048~0.049 (Table 4), 

which are acceptable for the bed material sizes found in the Tachia River (Lai and Greimann 

2010). The hiding and exposure coefficient λ, Manning’s roughness n, and active layer thickness 

multiplier nalt are also reasonably constrained by the data. These parameters were found to have 

the highest impact on SRH-1D simulations of bed profile elevation in erosional flume 

experiments (Ruark et al. 2011), which are related to the net deposition volumes considered here. 

As an example,  r relates the flow velocity to the bed’s overall susceptibility to erosion. Thus, it 

plays a large role in the evolution of the bed profile and the net deposition volumes, and the 

calibration data are expected to constrain their values. Their IQR ratio values (10~66 %) also 

indicate that less uncertainty remains after calibration (Table 4). The other five parameters (ζd, ζs, 

bL, χ, and ϕ) show nearly linear posterior distributions (Fig. 12), which means they are poorly 

constrained by the calibration data and large uncertainty remains in their values. These five 

parameters have little impact on the SRH-1D model simulations of the Tachia River, so preferred 
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values cannot be identified. In addition, their median values are determined near the middle of 

their feasible ranges and have the IQR ratios higher than 80% (Table 4). Both ELH and GLUE 

produce IQR ratios for these parameters near 100%, whereas SCEM-UA provides lower IQR 

ratios for them. On the other hand, the four well-specified parameters are given similar IQR 

ratios from all three methods. This tendency is consistent with the results observed for Case 3 

where SCEM-UA underestimated the target variances for the parameters with larger dispersion. 

From both Fig. 12 and Table 4, notable differences between the uncertainty methods are found in 

the estimates for hiding and exposure coefficient λ and active layer thickness multiplier nalt, 

which are well-calibrated numerical parameters. ELH and GLUE provide similar posterior 

distributions for the both parameters, but SCEM-UA produces different results. Specifically, the 

estimated median for hiding and exposure coefficient from both ELH and GLUE are centered on 

0.13, which is lower than the value of 0.18 from SCEM-UA. However, those changes might be 

attenuated by slight increases in the estimated median for reference shear stress from 0.048 for 

SCEM-UA to 0.049 for ELH and GLUE. The reference shear stress controls the initiation of 

particle movement and its increase of only 0.001 would decrease the particle mobility 

sufficiently. Several studies have already reported its large impact on the SRH-1D model results 

in both flume experiments (Ruark et al. 2011) and real rivers (Lai and Greimann 2010). This 

interpretation can be supported by the fact that the reference shear stress was much better 

calibrated than the other parameters according to the cumulative posterior distributions and the 

IQR ratios obtained from this case. 

Table 5 shows that the correlation coefficients between the four well-calibrated parameters. 

They are similar for ELH and SCEM-UA (note that GLUE neglects parameter correlations). The 

five poorly-calibrated parameters have negligible coefficient values that are all near zero (not 
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shown at the table). From Table 5, the reference shear stress can interact with three other 

parameters. Specifically, its strong relationship with hiding and exposure coefficient can be 

addressed by the mathematical structure of the Wu equation in Eqs. (12) and (13). In addition, 

its negative correlation with λ and the positive correlation with nalt can support the interpretation 

for the different estimated medians in Table 4. 

Table 5 Correlation coefficients between well-specified four model parameters of SRH-1D 
estimated by ELH and SCEM-UA in Tachia River case. 

ELH SCEM-UA 

Parameters n  r λ nalt n  r λ nalt 

n 1.00 0.28 -0.03 -0.13 1.00 0.31 0.02 -0.12 

 r 0.28 1.00 -0.38 0.47 0.31 1.00 -0.35 0.45 

λ -0.03 -0.38 1.00 0.02 0.02 -0.35 1.00 0.00 

nalt -0.13 0.47 0.02 1.00 -0.12 0.45 0.00 1.00 

3.4.4 Model Prediction Uncertainty 

The net sediment deposition volumes for the forecast period (2005 to 2009) were simulated using 

a sample of posterior parameter sets generated from each method. The forecast simulations use 

the cross-section data from 2005 as the initial geometry and the dam discharge data from 2005 to 

2009 as the upstream BC, but the other conditions remain the same as the calibration period. 

For each method in Fig. 13, the mean prediction is shown with a black bold line, and the 99% 

credible interval is shown by the grey region. It reflects the uncertainty due to the parameter 

values. Overall, no remarkable difference is observed between the predictions from ELH and 

SCEM-UA, but GLUE provides much wider ranges along the reach than the other two methods. 

Both ELH and GLUE consistently underestimate the eroded volumes in the upstream portion of 
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the reach (15-23 km) and underestimates deposition at the downstream end of the reach (0-4 km). 

Those predictions also possess similar uncertainty throughout the reach (i.e. the width of the 

prediction range remains relatively constant). On the other hand, the predictions from GLUE 

present much larger uncertainty for the eroded sediment volume, where the lower bound extends 

to the value that is more than 300% of the observed erosion volume at 16~21 km from the 

downstream end. However, the mean predictions from all three methods show similar results 

along the channel. 

Fig. 14 illustrates the distribution of the predictions for net deposition volume at a cross section 

located 21 km upstream from the ocean. The numbers of predictions in each of the equal-sized 

bins was counted and those numbers were divided by the entire prediction sample size, which is 

116,981 for ELH, 13,000 for SCEM-UA, and 10,000 for GLUE. ELH and SCEM-UA show 

similar distributions that have a single mode near -2.2×105 m3 and range from -4×105 to -

0.5×105 m3. On the other hand, GLUE has a much wider prediction range and has modes near 

-2.2×105 and -0.9×105 m3. 
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Fig. 13 Observations and mean predictions for sediment net deposition volume in the forecast 
period of the Tachia River case. The vertical width of the gray region is the 99% credible 
interval of the predictions. 

79 



 
 

 

 

 

              
                 

    

  

Fig. 14 Observation, mean prediction, and uncertainty distributions for net deposition volume at 
the cross section located 21 km upstream from the ocean for the forecast period in the Tachia 
River case. 
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In order to evaluate the performance and the prediction from each method, three metrics are 

computed and presented in Fig. 15. First, the NSCE is calculated for the mean prediction from 

each method during the calibration and forecast periods (Fig. 15a). NSCE can range from -∞ to 

1, where 1 means the model prediction perfectly matches the observations, but note that the 

methods do not use NSCE in their evaluation of the model performance. Overall, all three 

methods reproduce the observations for the calibration period better than the forecast period, but 

there is no meaningful difference in the performance of the mean predictions among the methods 

for both periods. 

Second, Fig. 15b compares the prediction uncertainty estimated from each method by calculating 

the SD of the simulated net deposition volumes (averaged among all cross-sections). The 

resulting SD values indicate that GLUE has the largest uncertainty in the predictions for both the 

calibration and forecast periods. Specifically, ELH has a SD that is about 3 % less than SCEM-

UA for both periods and 4 % and 63 % less than GLUE for calibration and forecast periods, 

respectively. Such large forecast uncertainty estimated by GLUE can be explained by the 

neglect of parameter correlation in GLUE as Sabatine et al. (2015) has previously demonstrated. 
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Fig. 15 (a) Nash-Sutcliffe Coefficient of Efficiency (NSCE) values for the mean prediction from 
each method, (b) standard deviation (SD) of the sample of simulation outputs, (c) Continuous 
Rank Probability Score (CRPS) values for distributions of the same simulations, and (d) 
percentage of observations covered by the 99% credible intervals of the same simulations. 
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Third, the continuous ranked probability score (CRPS) (Brown 1974; Matheson and Winkler 

1976; Hersbach 2000) is calculated in order to evaluate the performance considering the 

predictive distribution (Fig. 15c). The CRPS measures the area between the cumulative 

distribution of the predictions and the observation as: 

CRPS = 1 
∑

N 

∫  Gi ( ) −1{O ≥ yi } 
2 

O dO (27) 
N i=1 

where Gi(O) denotes the cumulative distribution of the model outputs O at measurement i, and 

1{O ≥ yi} is the Heaviside function that attains the value 1 if O ≥ yi and the value 0 otherwise 

(Hersbach 2000). The CRPS has the units of the considered variable, and its minimal value of 

zero is only achieved when a sample of predictions perfectly matches the observations with no 

spread. Smaller CRPS values are preferred and indicate better performance of the predictions. It 

is based on the principle that probabilistic forecasting methods should be designed to maximize 

the sharpness to make the prediction intervals as narrow as possible subject to covering all the 

observations (Gneiting et al. 2003). Overall, ELH produces more accurate predictive 

distributions than the other methods. Such better performance is expected because the ELH 

shows similar mean prediction accuracy (Fig. 15a) with less spread in its predictions (Fig. 15b). 

The reason of remaining uncovered observations should be interpreted as that the methods are 

not able to fully reflect other uncertainty sources in sediment transport modeling. Errors in the 

measurements of net deposition volume, which are not considered in this research, can be one of 

the most important uncertainty factors. Other reasons could be deviations from the assumptions 

used in each uncertainty analysis algorithm or flaws in the hydraulic and sediment transport 

model itself (e.g., the use of the Wu (2000) equation for sediment transport capacity). In 

addition, the predictions are expected to contain more uncertainty from errors in input data or 
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improper simulation setup as it considers modeling a natural river, rather than the previous 

numerical experiment cases. 

3.5 Conclusions 

This study suggested the ELH method to perform uncertainty analysis associated with sediment 

transport model parameters. Through the case studies conducted in this study, the benefits of the 

new method have been specified as follows: 

1. From the synthetic cases where the posterior distributions are known, ELH reproduces 

the target values quicker and more accurately than SCEM-UA. Specifically, ELH 

constructs a histogram of generated parameter values that is a smoother and closer 

approximation for the target bimodal probability distribution. The improved performance 

is more notable when considering a number of parameters that are highly correlated. In 

such a case, ELH is able to estimate the variances and correlation coefficients between 

the parameters accurately whereas SCEM-UA underestimates those variances due to its 

lack of detailed balance. 

2. In the application to the simulation of a natural river, ELH implements parameter 

calibration and evaluates prediction uncertainty much quicker than the existing 

uncertainty methods. When ELH is used, the number of model simulations required for 

obtaining the reliable estimates decreases about 75% and 86% compared to SCEM-UA 

and GLUE, respectively. In addition, high performance computing systems with larger 

numbers of processors is expected to reduce the computation time for ELH much more. 

3. From the natural river case, ELH is able to estimate the uncertainty in the parameter 

values including the correlations between the model parameters. The marginal posterior 
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parameter distributions estimated by ELH are almost the same as the results from GLUE, 

but those are slightly different from the estimations of SCEM-UA, which might be due to 

the different sampling strategies. The correlation coefficients show that both ELH and 

SCEM-UA can identify the strong interactions between reference shear stress, hiding and 

exposure coefficient, and active layer thickness multiplier in the SRH-1D model 

simulation of the Tachia River. 

4. For the natural river case, ELH can produce similar estimates of the prediction 

uncertainty compared to the results from SCEM-UA, whereas GLUE provides larger 

uncertainties in the model predictions. Specifically, the predictive distributions produced 

by ELH and SCEM-UA present similar accuracy based on the CRPS values for both 

calibration and forecast periods. In addition, the performance of both ELH and SCEM-

UA are better than GLUE as they consider the parameter correlations when sampling the 

parameter sets for the forecast simulations (GLUE does not). 

Overall, the results support using ELH for evaluating model prediction uncertainty as it can 

reduce the computational cost remarkably while still providing similar estimates compared to the 

existing methods. Furthermore, it includes parameter correlations when assessing the prediction 

uncertainty for sediment transport models. The methodology suggested in this study should be 

expanded along several avenues in the future. First, the likelihood function used in ELH might 

restrict the applicability of the method in the field of hydraulic and sediment transport modeling. 

Such formal function has been criticized for relying too strongly on residual error assumptions 

because the model errors are correlated, nonstationary, and non-Gaussian in many cases (Beven 

et al. 2008). Several approaches have been suggested to loosen the stringent assumptions for the 

residuals (Schoups and Vrugt 2010; Wöhling and Vrugt 2011; Sadegh and Vrugt 2013; Nourali 
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et al. 2016), but they often make the estimation process more complex or include more 

parameters to calibrate for specifying the form of the likelihood function. In addition, the 

function should be able to consider the likelihoods of multiple variables at the same time because 

sediment transport models generate multiple output variables of interest (e.g., bed elevation, 

median sediment diameter or D50, and water depth) and these variables are often considered 

together (Russel et al. 2010; Ahn and Yang 2015). Second, ELH requires a modeler to 

subjectively determine some algorithmic parameters such as the number of replications and the 

LHS size for the replicated LHS method, the number of duplications for the most likely 

parameter sets, and the SD change threshold. The numbers used in this study were specified 

based on related literature or preliminary tests, but the they should be chosen in a more formal 

and robust way because such decisions might affect the uncertainty estimates or the number of 

required model simulations. Third, future research can additionally improve the efficiency of the 

uncertainty method. Although ELH significantly decreases the computational costs, it used 

about 8,500 simulations to obtain the final estimates for prediction uncertainty, which would be 

still expensive for more complex and higher dimensional modeling cases. Metamodeling 

approaches that mimic the likelihood response surface using a small sample of model outputs to 

approximate the posterior pdf (Khu and Werner 2003) might be an alternative. However, such 

an approach substantially increases the level of complexity of the uncertainty analysis relative to 

GLUE, and it would be inefficient as the problem dimensionality increases (Ong et al. 2004). 

Fourth, future work should also focus on other sources of uncertainty such as the model’s 

mathematical structure (including the selection of the transport equation), model input data errors, 

and the observations used for calibration. 
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CHAPTER 4 
COMBINING PREDICTIONS AND ASSESSING UNCERTAINTY FROM SEDIMENT 

TRANSPORT EQUATIONS USING MULTIVARIATE BAYESIAN MODEL AVERAGING 

Abstract 

Bayesian model averaging (BMA) is a statistical hydrologic method that reduces the effects of 

imperfections in a single model prediction and characterizes the uncertainty due to the 

mathematical model structure. The authors apply BMA to quantify how the uncertainty 

originating from the selection of a transport equation affects the multivariate predictions from a 

sediment transport model. To overcome the limitation of the existing BMA that is only able to 

consider a single variable, the likelihood function of BMA is modified to calculate the likelihood 

of each equation with multiple variables. In addition, the coefficients of variation are used to 

describe the change in the uncertainty scale of model predictions. The proposed modification is 

applied to the transport equations included in Sedimentation and River Hydraulics—One 

Dimension (SRH-1D) program. For two flume experiment cases, the multivariate BMA models 

improve the predictions over the individual transport equations and the univariate BMA models 

and provide more realistic description for its predictive uncertainty. 

4.1 Introduction 

Sediment transport models are widely used to predict impacts of potential river restoration 

activities, but the predictions from these models always possess uncertainty. One major source 

of the uncertainty is the mathematical equation that is used to compute sediment transport 

capacity in these models. Several equations have been empirically developed for different 

fluvial conditions by applying various simplifications and assumptions. For example, the 
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equations are available for a certain range of sediment size such as sand (Yang 1973; Yang 1979), 

gravel (Yang 1984), or sand with high concentration of fine particles (Yang 1996). The 

equations are also designed for different transport types including bedload (Meyer-Peter and 

Müller 1948; Einstein 1950; Rottner 1959; Bijker 1968; Bagnold 1980; Parker 1990; Dibajnia 

and Watanabe 1992; Ribberink 1998; Wilcock and Crowe 2003) and total material load (Laursen 

1958; Engelund and Hansen 1972; Ackers and White 1973; Bailard 1981; Brownlie 1981; van 

Rijn 1989; Wu et al. 2000). In addition, some equations revised existing equations to fit the data 

from additional flume experiments (Wallingford 1990; Wong and Parker 2006) and natural rivers 

(Madden 1993; Yang 1996; Geumann 2009). Thus, predictions based solely on a single 

transport formula are inherently uncertain because no single equation perfectly represents a 

physical system. Past research has focused on the fact that different equations provide different 

predictions even if the equations are calibrated using the same data (Wilcock 2001; Camenen and 

Larroudé 2003; Pinto et al. 2006; Bertin et al. 2008; Schmelter et al. 2011), but little 

consideration is given to quantifying the uncertainty originating from the selection of an 

sediment transport equation for forecast scenarios. 

Multi-model averaging methods offer a formal way to reduce the effects of imperfections in a 

single model prediction and assess the uncertainty due to the model’s mathematical structure. 

The methods combine the predictions from a set of competing models and provide averaged 

forecasts and their credible intervals. Several techniques of multi model averaging include: 

equal weights averaging (Anderson 1965), Bates-Granger averaging (Bates and Granger 1969), 

Granger-Ramanathan averaging (Granger and Ramanathan 1984), Akaike information criterion-

based model averaging (Buckland et al. 1997), Bayesian information criterion-based model 

averaging (Burnham and Anderson 2002), Mallows model averaging (Hansen 2007), and 
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Bayesian model averaging (BMA) (Hoeting et al. 1999; Raftery et al. 2005). Among the 

available methods, BMA has been shown to produce the most accurate predictions and more 

realistic description of the predictive uncertainty in various case studies of hydrologic modeling 

(Clyde 1999, Viallefont et al. 2001, Ye et al. 2004, Raftery et al. 2005, Ajami et al. 2007, 

Sloughter et al. 2010). BMA represents the uncertainty associated with each competing model 

using a normal distribution that is centered on that model’s predictions, and it combines the 

distributions of the models by weighted-averaging (Fig. 16). To generate the best forecasts, the 

weights and the standard deviations, which determine the normal distributions, of the competing 

models are estimated to maximize the likelihood of BMA for the calibration dataset. BMA 

assigns higher weights on better performing models, and it accounts for both the uncertainty due 

to the model selection (represented by the spread in the model predictions) and the uncertainty 

associated with each model (represented by the normal distributions) (Ellison 2004, Vrugt and 

Robinson 2007, Sabatine et al. 2015). 

Fig. 16 Illustration of BMA distribution generated by a weighted-average of normal 
distributions from four competing models. 
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BMA has recently been applied to hydraulic and sediment transport modeling (Sabatine et al. 

2015), but it was constrained to cases that consider only a single variable because the likelihood 

function of BMA is not easily generalized to account for multiple variables at the same time. If 

BMA is modeled to maximize the likelihoods of only a single variable, the other variables might 

be estimated poorly by the BMA model. Moreover, any probabilistic information cannot be 

obtained for the other variables because the standard deviations for a single variable are not able 

to be applied to different variables. This limitation is critical because sediment transport models 

generate multiple output variables (e.g., bed elevations, D50 sizes, and water depths) from a 

single simulation and these variables are usually investigated at the same time in natural rivers 

(Duan et al. 2008, Huang and Greimann 2010, Russel et al. 2010, Ahn et al. 2013, Ahn and Yang 

2015). Several functions have been suggested to compute likelihoods of multiple objectives or 

variables (Beven and Binley 1992; Yapo et al. 1998; Mo and Beven 2004; Yang et al. 2004, 

Chahinian and Moussa 2007; Beven 2011). For example, van Griensven and Meixner (2007) 

proposed the Global Optimization Criterion to compute the likelihoods of multiple variables by 

considering qualitative and quantitative differences between the variables. Ruark et al. (2011) 

extended the Nash-Sutcliffe Coefficient of Efficiency (NSCE) (Nash and Sutcliffe 1970) to 

calculate the likelihoods by weighting multiple variables based on their sensitivities to model 

parameters. However, the existing functions would be inappropriate to apply to BMA because 

they compute the likelihoods based on residuals, which are the differences between model 

outputs and observations, while BMA likelihoods are calculated using a conditional probability 

density function (pdf) of observed data for a given model output. 

Another limitation in the application to sediment transport models is that the BMA assumption, 

which applies the same standard deviations to individual model predictions at all locations and 
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times, cannot reflect the change in the uncertainty scale. The variables such as sediment 

transport rate, deposition or scour volumes are measured on ratio scales, and the residuals 

generally increase with respect to their quantities. This implies that the uncertainty in each 

model prediction depends on the scale of those variables. Thus, the BMA pdf for the 

quantitative variables might overestimate (or underestimate) the predictive uncertainty if the 

standard deviations are calibrated using data with large (or small) values and applied to the 

individual model simulations of the forecast scenario. To consider the heteroscedasticity of 

uncertainty for BMA, a number of methods including the temporal difference algorithm 

(Downey and Sanner 2010), geostatistical kriging (Kleiber et al. 2011), sequential data 

assimilation coupling (Parrish et al. 2012), decay function updating (Veenhuis 2014) have been 

suggested in the field of hydrologic modeling. However, those methods usually require 

continuous updating of the calibration dataset, which is not applicable for hydraulic and sediment 

transport modeling. 

The objective of this research is to develop and test a multivariate version of BMA to assess the 

uncertainty associated with the selection of a transport equation in a one-dimensional sediment 

transport modeling. The likelihood function suggested in this study is intended to compute the 

likelihoods of BMA with respect to multiple variables, and the BMA assumption is revised to 

allow the change in the uncertainty scale for quantitative variables. To test the multivariate 

BMA, two published flume cases including a depositional experiment (Seal et al. 1997) and an 

erosional experiment (Pender et al. 2001) with non-cohesive materials are used. Four sediment 

transport equations, included in the Sedimentation and River Hydraulics – One Dimension 

(SRH-1D) (Huang and Greimann 2013) program, are used to simulate the flume cases, and each 

equation is treated as a separate model. The forecast of multivariate BMA is then compared to 
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existing univariate BMA in both prediction accuracy and observation coverage of their credible 

bounds. 

4.2 Methodology 

4.2.1 Existing BMA Method 

BMA (Hoeting et al. 1999) defines the uncertainty in the model prediction for variable   using a 

pdf p( |M,y), which is the posterior distribution of   given a set of competing models M = { M1, 

M2, …, MA} and calibration dataset y: 

p(Δ M y ) ∑ 
A

p(Δ ,y) ( y) (28) , = Ma p M a 
a=1 

where A is the number of competing models, p( |Ma,y) is the posterior distribution from the 

model a, and p(Ma|y) is the posterior probability that reflects how well model Ma fits the dataset 

y. As the posterior probabilities of all competing models add up to one, they can be considered 

as weights of each model. Thus, the BMA pdf is a weighted average of the posterior 

distributions given each of the individual models. 

BMA has been applied to dynamic models using the assumptions: (1) the forecast Oa from each 

Ma is the most likely result from that model, and (2) the uncertainty associated with each model 

can be represented using a normal distribution that is centered on the predictions Oa (Raftery et 

al. 2005). To obtain the best forecasts, the parameters of each model Ma are optimized using the 

dataset y. BMA represents the posterior distribution of   given a set of competing model 

predictions O = {O1, … , OA} as: 
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p(Δ O) = 
A

w p (Δ O ,σ ) (29) ∑ a a a 
a=1 

where wa is model a’s weight, which represents the posterior probability that prediction Oa is the 

best one among O, and p( |Oa,σa) is the pdf of ∆ occurring by model a’s normal distribution 

with mean Oa and standard deviation σa. To generate the BMA pdf, the weights wa and standard 

deviations σa of competing models are estimated to maximize the BMA likelihood LBMA over all 

locations and times in the calibration dataset y. Assuming that the residuals of each model are 

independent, the log-likelihood function is used for algebraic simplicity and numerical stability: 

N  A 
L = log w g ( y O ,σ ) (30) BMA ∑ ∑ a i ai a  

i=1   a=1  

where g(yi| fai,σa) is the probability density of the observation yi given model a’s prediction Oai 

and standard deviation σa for the measurement i in the calibration period. An optimization 

algorithm called Expectation-Maximization (EM) (Dempster et al. 1977) has been used to find 

the best values of wa and σa. The EM is easy to implement, and its algorithm steps are designed 

in a way that they always satisfy the constraint that the model weights wa are positive and add up 

to one (Vrugt et al. 2008, Givens and Hoeting 2012). 

BMA then applies the same weights wa and standard deviations σa obtained from the calibration 

period to the model predictions at all locations and times in the forecast scenario (Raftery et al. 

2005, Sabatine et al. 2015). The mean of each model’s normal distribution is changing as the 

models make their forecasts, but the other quantities all remain fixed. BMA provides a 

deterministic prediction using an expectation of the BMA pdf, and it is the same as a weighted-

average of the predictions from the competing models: 
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E (Δ O) = ∑ 
A 

w O (31) a a 
a=1 

The uncertainty contained in the BMA prediction can be described using credible intervals (CI), 

which are calculated using specific quantiles of the BMA pdf, and the BMA CIs quantity the 

predictive uncertainty, which originates from both the uncertainty due to the model selection and 

the uncertainty associated with each model. 

4.2.2 Multivariate BMA Model 

Multivariate BMA uses a modified BMA likelihood function to compute the likelihoods of 

multiple variables within a single formula. This method applies two primary assumptions: (1) 

each model has same weight wa for all variables so that the model performance is evaluated with 

respect to multiple variables and (2) each model has different standard deviations for different 

variables σaj to consider the fact that different variables do not necessarily have identical standard 

deviations. The multivariate BMA likelihood LmBMA is calculated as: 

J N j A  1  
O′ aj 


 (32) 

j =1  N j i =1   a=1  
LmBMA = ∑ ∑ log ∑ w g a ( yij ′ aij ,σ ′ ) 

where J is the number of variables considered, Nj is the number of observations for variable j in 

the calibration dataset, and g(·) represents the probability density of reproducing the normalized 

observation yij ′ given model a’s normalized prediction Oaij′ with standard deviation σaj ′ for the 

normalized variable j at a location or time i. In Eq. (32), the likelihood of each variable j is 

divided by Nj to avoid treating highly correlated (or dependent) observations of specific variables 

(e.g., adjacent bed elevations) as independent. In addition, the normalized values of each 

variable are used in the likelihood function because g(·) strongly depends on the scale or units of 

100 



 
 

              

              

               

             

     

     

                  

                 

                

                

   

     

                  

      

                 

                

                 

                  

               

the variables so the overall BMA likelihoods might be distorted when multiple variables with 

different scales are included. While BMA assumes normality of the variables, some quantitative 

variables might not be properly expressed using a single standard deviation, as discussed in the 

previous paragraph. A non-parametric normalization is then used as follows: 

yij ′ = 
yij (33) 

yj ,50 

O
′ aij Oaij = (34) 

yj ,50 

where yij is the observation, Oaij is model a’s prediction for variable j at a measurement i, and 

yj,50 is the median of the observed variable j. By using the normalized variables, the multivariate 

BMA likelihood LmBMA can be computed independent from the variable’s scale or units. As the 

model standard deviation σaj ′ has a normalized scale, it needs to be transformed to the original 

scale as: 

σ aj = σ aj ′ × yj ,50 (35) 

The wa and σaj values from the EM algorithm are then applied to Equation (29) to generate the 

BMA pdf separately for each variable. 

In multivariate BMA, the coefficient of variation (CV) can be used to reflect the change in the 

uncertainty scale of a variable instead of the standard deviation, following the idea of a linear 

dependency in standard deviations (Vrugt and Robinson 2007). The CV is a ratio of the standard 

deviation to the mean. Multivariate BMA assumes that each model has a single value of CV for 

a quantitative variable, and applies the identical CV to each model’s predictions at all locations 
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and times. By applying the CV, the standard deviation of each model is allowed to vary based 

on the model predictions as: 

σ ′ = CV × O′ (36) aij aj aij 

where CVaj is model a’s coefficient of variation for variable j and σ ′ is model a’s standard aij 

deviation for the normalized variable j at measurement i. If the model prediction value is a 

negative, its absolute value can be used in the Eq. (36) (e.g., the simulated deposition Oaij′ 

volume would be negative where the results indicate erosion). The BMA likelihood for the 

quantitative variable q can be calculated as: 

N 
q A 

f ′ ,σ ′ (37) L = log w g y′ q ∑ ∑ a ( iq aiq aiq ) 
i=1   a=1  

where Nq is the total number of observations for the variable q. The likelihood Lq then can be 

divided by Nq and inserted into Eq. (32) in order to compute the multivariate BMA likelihood. 

After obtaining the best model weights and the CVs, the BMA pdf for this variable can be 

generated as: 

p(Δ Y) = 
A

w p (Δ O ,CV ) (38) ∑ a a a 
a=1 

4.3 Application 

4.3.1 Flume Experiments 

Two flume experiments with non-cohesive sediment transport, conducted by Seal et al. (1997) 

and Pender et al. (2001), are considered as case studies to evaluate the multivariate BMA. These 
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experiments are chosen, rather than natural rivers, because flume conditions such as channel 

geometry, flow rate, sediment supply, and bed materials are well-documented for both cases. 

That reduces uncertainty about the system configuration. In addition, the computational costs 

are low because a sediment transport model is able to quickly simulate the flume cases. Scour 

and sedimentation processes occur separately in each experiment. 

The Seal et al. (1997) experiment was designed to investigate downstream fining and sediment 

sorting during aggradation in narrow channels. The flume was 0.3 m wide, 45 m long with 

rectangular shape, and initial slope was 0.002. No initial bed material was used and water 

discharge was steadily applied at 0.049 m3/s for 64 hours. At the upstream end, sediment was 

supplied with the rate of 0.047 kg/s during the experiment, and the supplied material was a 

mixture of sand and gravel ranging from 0.125 mm to 65 mm with median diameter of 5 mm. 

Bed elevations were measured every 4-5 hours at 18 locations, and D50 of deposited materials 

along the channel distance were measured at five different times. Both bed elevation profile and 

D50 distribution are considered as variables of interest for multivariate BMA modeling, and the 

dataset is divided into a calibration period (hours 0 to 32) and a forecast period (hours 32 to 64) 

(Table 6). 

The Pender et al. (2001) experiment was designed to simulate bed degradation and investigate 

changes in transport rate. The flume was 0.8 m wide, 20 m long, trapezoidal shape with 45° side 

slope, and initial slope was 0.0026. Initial bed material was a mixture of sand and gravel ranging 

from 0.25 mm to 22.63 mm. Water discharge was steadily applied at 0.117 m3/s for 84.6 hours, 

and there was no sediment supply. Bed elevations were measured every 2-3 hours at 21-42 

locations, and bed load transport rate was measured at 5 m from the downstream end during the 

experiment. Both the bed elevation profile and sediment transport rate are considered as 
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variables of interest in BMA, and the dataset is divided into a calibration period (hours 0 to 32.1) 

and a forecast period (hours 32.1 to 84.6) (Table 6). 

Table 6 Available Observations from Two Experiments for the Calibration and Forecast Periods 
of BMA Modeling. 

Number of Observations 

Experiment Period 
Duration 

(hour) 

Flow 
Rate 

(m3/s) 

Supplied 
Sediment 

(kg/s) 
Bed 

Elevation D50 

Sediment 
Transport 

Rate 

Seal et al. 
(1997) 

Calibration 

Forecast 

0 – 32 

32 – 64 
0.049 0.094 

126 

87 

46 

18 

-

-

Pender et al. 
(2001) 

Calibration 

Forecast 

0 – 32.1 

32.1 – 84.6 
0.117 0 

168 

203 

-

-

17 

17 

4.3.2 BMA Modeling for Sediment Transport Equations 

Four equations in SRH-1D are treated as separate sediment transport models for BMA modeling 

in this study. The following paragraphs describe the three equations for sediment transport 

capacity considered here in addition to the Wu (2000) equation (Section 2.3.1). 

The Parker (1990) and Wilcock and Crowe (2003) (W&C) equations were developed to compute 

bed load transport capacity using the following form: 

ρ )1.5 
pk (τ g 

F (ϕ ) (39) qbk = 
g  (ρs ρ ) −1 

k 

where qbk is volumetric bed load transport rate per unit width, pk is percentage of materials 

available for grain size class k, τg is grain shear stress, ρ is density of water, ρs is density of the 

sediment, and φk is a measure of shear stress relative to reference shear stress. 
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In the Parker equation, the empirical function F(φk) was fit to data from the field with mixed size 

gravel (2 mm to 64 mm) as: 

 11.93 1 ( − 0.853 
4.5 ϕk ) ϕk > 1.59  2

F (ϕ ) = 0.002183exp 14.2 ϕ −1) − 9.28 ϕ −1)  1 < ϕ ≤ 1.59 k  
  ( k ( k k (40) 

 14.2 ≤ 1
 0.002183 ϕk 

ϕk
 

On the other hand, the W&C equation defines the function F(φk) using a mixture of sand and 

gravel (62.5 µm to 64 mm) as: 


14 1 ( − 0.894 ϕk )4.5 

ϕk ≥ 1.35 
(41) F (ϕk ) =  

7.5 ϕ < 1.35  0.002002 ϕ k k 

The modified Meyer-Peter Muller (MPM) equation (Wong and Parker 2006) was also suggested 

to compute bed load transport capacity using mixed materials of medium sand to coarse gravel 

(0.38 mm to 28.65 mm) as: 

1.5 

0.5  RS  
1.5 f qbk = 3.97 g0.5 

 (ρs ρ ) −1 dk  − 0.0495  (42) 
 (ρ s ρ ) −1 dk    

where dk is median particle diameter of class k, R is hydraulic radius, and Sf is energy slope. 

For BMA modeling, the eight parameters of each model were estimated using an optimization 

algorithm and the dataset from the calibration period (ead of the standard deviations. 

Table 7). The optimization was performed using Multivariate Shuffled Complex Evolution 

Metropolis – Uncertainty Analysis (MSU) (Sabatine et al. 2015), which is able to compute the 

likelihood of parameter sets using multiple model output variables. The roughness coefficient 
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has units of s∙m-1/3, and all the other parameters are non-dimensional. Fig. 17 shows the 

observations and best outputs from individual models for the calibration period of each case. For 

the Seal et al. (1997) experiment, the outputs from the Parker, W&C, and Wu models are similar 

in both bed elevations and D50 size distributions, and they seem better than the outputs from the 

MPM model. For the Pender et al. (2001) experiment, all the models provided similar bed 

elevation profiles, but the W&C model simulated bed forms along the channel, and noticeable 

differences between the model outputs for sediment transport rate occur during hours 8 to 20. 

Using the individual model outputs, two univariate BMA models and one multivariate BMA 

model were developed for each case by applying standard deviations for two variables for which 

observations are available from each experiment. An additional multivariate BMA model was 

also developed for the Pender et al. (2001) case by applying the coefficient of variation for 

sediment transport rates instead of the standard deviations. 

Table 7 Optimized Eight Parameters of SRH-1D Used for Each Model’s Simulation of Two 
Experiments. 

Seal et al. (1997) Pender et al. (2001) 

Parameter Parker W&C MPM Wu Parker W&C MPM Wu 

Manning’s roughness 0.023 0.024 0.025 0.023 0.015 0.016 0.015 0.015 

Reference shear stress 0.066 0.052 0.049 0.046 0.055 0.015 0.049 0.038 

Hiding and exposure 
coefficient 

0.958 0.868 0 0.797 0.037 0.006 0 0.003 

Active layer thickness 
multiplier 

15.270 11.236 4.934 3.145 3.151 0.130 1.494 2.930 

Deposition recovery factor 0.873 0.688 0.680 0.902 0.314 0.718 0.131 0.772 

Scour recovery factor 0.077 0.463 0.123 0.519 0.241 0.511 0.334 0.443 

Bedload adaptation length 
multiplier 

1.155 3.169 9.594 3.353 21.245 19.329 23.283 21.736 

Weight of bedload fractions 0.661 0.474 0.996 0.151 0.687 0.742 0.572 0.655 
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Fig. 17 Observations (crosses) and individual model outputs (lines) of (a) bed elevation profile 
and (b) D50 distribution at 20 hour of the Seal et al. (1997) experiment; (c) bed elevation profile 
at 32.1 hour and (d) sediment transport rate during the calibration period of the Pender et al. 
(2001) experiment. 
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4.4 Results and Analysis 

4.4.1 Model Weights and Standard Deviations 

The weights of the four models were determined based on their ability to reproduce the 

observations for the calibration period, and they varied significantly according to the types of 

data used for BMA modeling (Fig. 18). No individual model was always the best at all variables 

and cases. 

In the Seal et al. (1997) experiment, the W&C model is the best for BMA using bed elevation 

data, and the Wu model is the best for BMA using D50 size data. The multivariate BMA model 

using both bed elevation and D50 data distribute the model weights in a compromise of the 

distributions from the two univariate BMA models. Specifically, MPM has no weight on bed 

elevation but it has a meaningful weight on D50 because a couple of D50 data points were 

captured by this model (Fig. 17). However, the multivariate BMA puts zero weight on MPM. It 

reflects the fact that the MPM produced worse output profiles for both bed elevation and the D50 

distribution than the other models. This result is expected because the range of material sizes 

used in this experimental case was wider than the sizes used for developing MPM model. In the 

Pender et al. (2001) experiment, MPM had a weight near one for bed elevation, and Parker was 

the best for sediment transport rate data. The weights for the multivariate BMA model were also 

distributed in a compromise of the two univariate BMA models. 
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Fig. 18 Weights of individual models determined by BMA using each type of variable from the 
two experiments. 

The standard deviations of each model prediction were determined generally following the 

reverse order of the model weights (Table 8), implying that predictions from models with low 

weights contain large uncertainties. The multivariate BMA model was able to specify the 

standard deviations for both bed elevation and D50 in the Seal et al. (1997) case and for both bed 

elevation and sediment transport rate in the Pender et al. (2001) case. In addition, the standard 

deviation for each variable from the multivariate BMA model are similar to the values from each 

of univariate BMA models. 

To evaluate the assumption in which BMA applies the same weights and standard deviations at 

all times, the observations at a given time were grouped for each variable and the model weights 

and standard deviations were specified for each of the aggregated dataset. For bed elevations 
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and D50 sizes in both flume cases, the weights changed every time step with fluctuating patterns, 

and the average of those fluctuated values followed the weights determined by grouping the 

observations from all the different times as a single variable. The same patterns occurred for the 

standard deviations of the individual models, so the assumption is expected to be reasonable for 

those two variables. However, the sediment transport rates in the Pender et al. (2001) case 

showed standard deviations that varied following the scales of the observations and model 

outputs. It suggests that a different approach is required to specify the standard deviations for 

the variables where such behavior is expected. 

4.4.2 BMA Predictions and Uncertainty 

The predictive distributions of the BMA models are illustrated using the predictions of bed 

elevation at one location and time in the forecast period of the Pender et al (2001) case (Fig. 19). 

Each of the competing models provided a single prediction (white markers), and the 

deterministic BMA predictions (color filled markers) are the same as a weighted-average of the 

predictions from the individual models. Both the BMA using bed elevation and the multivariate 

BMA model generated probabilistic distributions of their predictions, but the prediction from the 

BMA model using transport rate data was not able to produce the distribution because the 

standard deviations for model predictions of bed elevation were not specified. The 90% credible 

intervals (CI), which are expected to include 90% of the data, can be determined by calculating 

the 5% and 95% quantiles from the BMA pdf at every prediction point. 
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Table 8 Standard Deviations of Each Model Prediction Obtained from BMA Calibration: 
Multivariate BMA Model Uses Bed Elevation and D50 Data for the Seal et al. (1997) Case and 
Bed Elevation and Sediment Transport Rate for the Pender et al. (2001) Case. 

Bed Elevation (cm) 
D50 (mm) / Transport Rate 

(g/s) 

Parker W&C MPM Wu Parker W&C MPM Wu 

Seal et al. (1997) 

Bed Elevation BMA 2.93 0.74 12.15 2.20 - - - -

D50 BMA - - - - 1.25 0.77 2.30 0.61 

Multivariate BMA 3.05 0.69 12.20 2.12 3.35 0.76 2.47 0.85 

Pender et al. (2001) 

Bed Elevation BMA 0.09 0.13 0.23 0.10 - - - -

Transport Rate BMA - - - - 0.54 6.01 3.15 5.84 

Multivariate BMA 0.19 0.15 0.28 0.10 0.53 6.14 3.17 6.57 

Fig. 19 Observation (dashed vertical line), and predictions from the individual models (white 
markers) and the BMA model using sediment transport rate (black marker), predictive 
distributions of BMA using bed elevation (solid black line with filled circle marker) and 
multivariate BMA model (solid grey line with filled triangle marker) for bed elevation at 10.5 m 
upstream at 79.6 hour in the Pender et al. (2001) experiment. 
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In order to examine whether the BMA models defined using calibration data also apply to the 

forecast period, the predictions and their CIs for the two experimental cases are presented in Fig. 

20 and Fig. 21. Overall, the deterministic predictions differ between the BMA models, and the 

multivariate BMA model was able to produce the CIs for all considered variables at the same 

time whereas the univariate BMA models provided the CIs only for the considered single 

variable. For the Seal et al. (1997) depositional case (Fig. 20), the BMA model using D50 data 

generated lower bed elevation profiles and larger D50 sizes near the upstream end of the flume 

compared to the other BMA models. It can be interpreted that the amount of deposited material 

is underestimated and the predicted particle sizes are larger compared to the observed data. For 

the Pender et al. (2001) erosional case (Fig. 21), the predictions of bed elevation from all the 

models produce similar profiles, but the transport rates were overestimated by the BMA model 

using bed elevation. The predictive CIs from both the BMA model using transport rate data and 

the multivariate BMA covered much wider ranges of transport rate compared to the scale of 

observed values. Moreover, the lower bounds of the CIs for transport rates were below zero, 

which is not realistic. The results reinforce the idea that the scale of the uncertainty in the 

predictions should change according to the predicted values, and this approach is explored in the 

next section. 
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Fig. 20 Observations, predictions and 90% credible intervals from each type of BMA model for 
bed elevations at 50 hr and D50 at 53 hour in the forecast period of the Seal et al. (1997) 
experiment. 
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Fig. 21 Observations, predictions and 90% credible intervals from each type of BMA model for 
bed elevations at 84.6 hr and sediment transport rate during the forecast period of the Pender et al. 
(2001) experiment. 
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The model performance was assessed using the Nash-Sutcliffe Coefficient of Efficiency (NSCE), 

which computes the accuracy of the deterministic predictions from each model. The value of 

NSCE can range from -∞ to one, and it approaches one when the model reproduces the 

observations perfectly. For each variable, the NSCE values were calculated for the individual 

and BMA models (Table 9). For the Seal et al. (1997) case, the NSCE indicated that the 

multivariate BMA models provided the best predictions for bed elevations in both calibration 

and forecast periods. Specifically, the BMA using bed elevations and the multivariate BMA had 

same NSCE in the calibration period, but the multivariate model showed better performance in 

forecast period. The BMA using D50 data provided the worst forecasts for D50 even though it 

was the best model in the calibration period. This might result from the fact that MPM gained 

some weight for the BMA model using D50 (Fig. 18) because MPM captured some observed 

points of D50 by chance although it produced the worst profiles for both bed elevation and D50 

sizes with the lowest NSCE in calibration period (Fig. 17). On the other hand, the performance 

of the multivariate BMA model, which ignored MPM by considering all available calibration 

data, is superior to that of the two univariate BMA models. In the Pender et al. (2001) case, the 

three BMA models provided better estimations for bed elevations than the individual models. 

However, the BMA model defined by bed elevation had a large negative NSCE, which indicates 

poor predictions for transport rate in the forecast period. It can be concluded that if the BMA 

model is developed using only a single variable (limited calibration data), it might provide poor 

estimates for the forecast period for either its own variable or other variables. 
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Table 9 Nash-Sutcliffe Coefficient of Efficiency (NSCE) Values for Individual Models and 
BMA Models from Calibration (Calib.) and forecast (Fore.) Periods of Two Experiments. 

Seal et al. (1997) Pender et al. (2001) 

Bed Elevation D50 Bed Elevation Transport Rate 

Model Calib. Fore. Calib. Fore. Calib. Fore. Calib. Fore. 

Parker 0.99 0.81 0.36 -0.99 0.91 0.91 0.63 -0.53 

W&C 0.98 0.98 0.43 -0.72 0.89 0.89 0.59 -1.36 

MPM 0.84 0.50 0.22 -14.89 0.93 0.92 0.45 -9.47 

Wu 0.98 0.97 0.47 -0.24 0.91 0.84 0.54 -34.44 

Bed Elevation BMA 0.99 0.96 0.42 -0.70 0.93 0.93 0.47 -7.89 

D50 BMA 0.97 0.94 0.53 -2.54 - - - -

Transport Rate BMA - - - - 0.92 0.93 0.60 -0.80 

Multivariate BMA 0.99 0.98 0.43 -0.57 0.92 0.94 0.59 -1.42 

The model weights did not exactly follow the order of NSCE, but the BMA models are typically 

expected to give higher weights to the better performing models. Specifically, the BMA model 

is specified by optimizing the combination of weights and standard deviations of the competing 

models so that the single model weight is highly correlated to the weights of the other models 

and the standard deviations. For example, the Wu model had a zero weight for all BMA models 

for the Pender et al. (2001) case although the NSCE of this model was not the worst among the 

competing models for both bed elevations and transport rates in the calibration period. Also, the 

BMA prediction is located on the expectation of the BMA pdf not the highest probability point. 

Tests using the mode of the BMA pdf showed that the predictions from the BMA model were 

generally consistent with the predictions from the individual model with the largest weight, and 

the model performances were not better than the predictions using a weighted-average. In 

addition, the BMA pdf had a multi-modal distribution when the predictions from competing 
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models were widely spread, like the BMA model using bed elevation in Fig. 19. Therefore, the 

expectation of the BMA pdf is expected to provide a reasonable BMA prediction although it 

does not possess the highest probability. 

The percentages of observations covered by the 90 % CIs of each BMA model are shown in 

Table 10. The multivariate BMA models cover approximately 90% of the observations in the 

calibration period of both experimental cases, and they generally covered more observations than 

the univariate BMA models for the considered variables. Specifically, the multivariate BMA 

model covers more than 90 % of the observations for all considered variables in the Pender et al. 

(2001) case. For the Seal et al. (1997) case, only 77 % of the observed bed elevations in the 

forecast period were covered by the multivariate BMA CIs. Despite missing the observations 

more than expected, the deterministic predictions for the bed elevations are outstanding because 

its NSCE value was 0.98. This can be interpreted that the uncertainty in those predictions was 

underestimated by the multivariate BMA model. The 90 % CIs for the D50 sizes from the 

multivariate BMA model covered more observations with narrower widths compared to the 

univariate BMA model using D50 data. 

Table 10 Percentage of Observations Covered by 90% Credible Intervals of BMA Models from 
Calibration and Forecast Periods of Seal et al. (1997) and Pender et al. (2001) Experiments. 

Seal et al. (1997) Pender et al. (2001) 

Bed 
Elevation 

D50 
Bed 

Elevation 
Transport 

Rate 

Model Calib. Fore. Calib. Fore. Calib. Fore. Calib. Fore. 

Bed Elevation BMA 89.6 70.1 - - 88.7 91.1 - -

D50 / Transport Rate BMA - - 84.7 66.7 - - 82.4 100 

Multivariate BMA 88.9 77.0 89.1 83.3 89.3 94.1 82.4 100 
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4.4.3 Applying Coefficient of Variation 

In order to resolve the problem of overestimation in the uncertainty for the Pender et al. (2001) 

case, the coefficients of variation were applied to the sediment transport rates whereas the 

standard deviations were applied to the bed elevations. Table 11 presents the calibration results 

of the multivariate BMA modeling. Compared to the multivariate BMA using standard 

deviations for both variables (Fig. 18), the Parker and W&C models gained larger weights and 

the weight of MPM reduced remarkably. Standard deviations of individual model predictions for 

bed elevations were not much different compared to Table 8. The coefficients of variation for 

transport rates follow the reverse order of the model weights. Fig. 22 compares the predictions 

from the multivariate BMA models for sediment transport rate in both the calibration and 

forecast periods. By applying the coefficients of variation, the BMA provided more realistic CIs, 

where the widths vary according to the scale of the predicted values. In addition, there was no 

negative value for the lower bounds of the CIs. The model performance was also improved as 

the NSCE values for transport rate increased (Table 12), and the BMA model covered all 

observations of transport rate from both the calibration and forecast periods. 

Table 11 Multivariate BMA Calibration Results from Applying Standard Deviations (STDEV) 
for Bed Elevation and Coefficients of Variation (CV) for Sediment Transport Rate in the Pender 
et al. (2001) Case. 

Parker W&C MPM Wu 

Model Weight 0.77 0.20 0.03 0.00 

STDEV for Bed Elevation 0.24 0.14 0.41 0.01 

CV for Transport Rate 0.52 0.53 0.55 0.61 
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Fig. 22 Observations, predictions and 90% credible intervals for sediment transport rate from the 
multivariate BMA models applying standard deviations (STDEV) and coefficient of variations 
(CV) during both the calibration and forecast periods of the Pender et al. (2001) experiment. 

Table 12 NSCE and Percentage of Observations Covered by the 90% Credible Intervals of the 
Multivariate BMA Model Applying CV from Calibration and Forecast Periods of the Pender et 
al. (2001) Case. 

Bed Elevation Sediment Transport Rate 

Calib. Fore. Calib. Fore. 

NSCE 0.918 0.922 0.629 -0.155 

Coverage (%) 88.1 90.6 100 100 
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A gamma distribution, which would not allow the values to be negative, was also applied to the 

transport rate in order to evaluate the assumption of normality. To develop the BMA model, the 

shape parameter α and scale parameter β of the gamma distribution were determined for each 

individual model as well as the model weights. This approach showed the similar performance 

in prediction accuracy and observation coverage as the BMA model using a normal distribution, 

and the lower bounds of 90% CI were inherently non negative, which satisfies the basic 

characteristics of the considered variable. However, a couple of distinct weaknesses were found 

when applying the gamma distribution. It was not easy to implement because the parameters α 

and β vary every prediction point, and they were not able to be calibrated using the EM method 

so an alternative (more complex) optimization algorithm was required. In addition, the 

prediction from individual model, which is used as a mean of the distribution, cannot be treated 

as the most likely value because the mean and mode are not same in the gamma pdf whereas they 

are same for the normal pdf. Overall, the results strongly supported applying the coefficient of 

variation to the normal distributions of model predictions for the ratio-scaled variables in BMA 

modeling. 

4.5 Conclusions 

1. The proposed likelihood function enables BMA to assess model structure uncertainty in 

the predictions of multiple variables from sediment transport models within a single 

calibration whereas the previous BMA requires separate calibration for each of the 

considered variables. The multivariate BMA determines the weights and standard 

deviations of competing models based on the behavior of multiple variables, and it is also 

able to generate probabilistic predictions for multiple variables in the forecast scenario. 
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2. The multivariate BMA model provides better model performance than the univariate 

BMA models. Based on NSCE, the accuracy of the deterministic predictions is improved 

by considering multiple variables from the calibration dataset. Specifically, the D50 size 

distribution in the Seal et al. (1997) case was poorly estimated by the univariate BMA 

even though the model was developed using the D50 size data from the calibration 

period. This behavior results from MPM, which showed the worst performance for this 

case among the competing models but gained meaningful weight due to its match for a 

couple of D50 observations. On the other hand, the multivariate BMA model, which was 

developed using a larger dataset including both bed elevations and D50 sizes, was able to 

distinguish that MPM was worse than the other models, and then produced more accurate 

and reliable forecasts by assigning no weight to MPM. In the Pender et al. (2001) case, 

the univariate BMA model using the bed elevation data made poor forecasts for sediment 

transport rates, and the multivariate BMA produced the improved predictions because it 

was modeled using both bed elevations and transport rate data. 

3. Probabilistic distributions of the predictions are also enhanced by using the multivariate 

BMA model. In the Seal et al. (1997) case, the multivariate BMA model generated 

narrower CIs, which represent the less uncertainty in predictions, and covered more 

observations for D50 sizes than the univariate BMA model developed using D50 size 

data. It can also be inferred that the credibility of the predictions increases by minimizing 

role of the MPM model in the multivariate BMA modeling. From the Pender et al. 

(2001) case, approximately 90 % of the observations for both variables were covered by 

the multivariate BMA CIs, which showed larger percentages than the CIs for the 

univariate models. 
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4. Applying coefficients of variation instead of standard deviation allows BMA to vary the 

uncertainty scale by reflecting the magnitude of model predictions for the variables. 

Several advantages of using this approach for the transport rates in the Pender et al. 

(2001) case were found including: (1) the CI widths changed according to the predicted 

values, (2) their lower bounds did not contain negative values, which is unrealistic, (3) 

the CIs cover more observations than the CIs determined by the standard deviations, and 

(4) the EM algorithm is easily applied to find the best values of the coefficient of 

variation. 

Several notable avenues are available for future research. First, the results presented in this 

study were obtained from the case studies of flume experiments where the sediment transport 

behavior was well-controlled. In order to establish generality, the proposed method should be 

expanded to consider other cases that contain natural rivers where the erosion and sedimentation 

processes occur together and are more complex. Other available sediment transport equations 

such as Ackers and White (1973), Brownlie (1981), modified Laursen’s formula (Madden 1993), 

and Yang (1996) could be considered. In addition, future research could consider which 

variables are appropriate to use standard deviations and coefficients of variation to describe their 

uncertainty. Second, in a natural river, it is expected that the most likely transport model would 

be different in space and time because the system configuration generally changes in time. The 

way to describe the variation of model weights needs to be studied in more detail. Third, the 

underestimates of uncertainty for predicting bed elevations in the Seal et al. (1997) case might 

result from the magnitude of uncertainty increasing with respect to the length of the forecast 

period. This issue could be explored. Fifth, the selection of a transport equation is not the only 

source of uncertainty in sediment transport modeling. Uncertainty might originate from the 
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errors included in the model parameter values, the data used for model forcing variables, the 

channel geometry information, and the observations (Ruark et al. 2011). 
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	The U.S. Bureau of Reclamation (USBR) protects and manages water resources in the western United States. A variety of hydrologic and hydraulic numerical models has been developed and widely used by the USBR to predict impacts of potential river restoration activities. Recently, assessing the uncertainty in predictions from such models has been underscored in the field of hydraulic and sediment transport modeling. Those uncertainties can result from the simplifications and assumptions used in the model’s mat
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	A new algorithm is developed to improve the efficiency of the uncertainty estimation 

	process for sediment transport model parameters. In order to reduce the computational cost, the new method is designed to use repeated parameter sets in the sample when specifying the probability distributions of parameters instead of generating new but similar parameter sets that require new model simulations, which is the typical approach of existing Markov chain Monte Carlo methods. This new approach can save large numbers of model simulations when evaluating the uncertainty in model predictions due to u
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	A multivariate version of the BMA method is developed to assess the uncertainty associated with the selection and application of a transport equation in sediment transport models. The existing BMA method is modified to enable consideration of multiple model output variables and allow the uncertainty associated with each equation to vary with the magnitude of the variables if needed. This methodology can reduce the effects of imperfections in a single model prediction and provide a forecast along with its cr
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	MODELING INPUT ERRORS TO IMPROVE UNCERTAINTY ESTIMATES FOR THE PREDICTIONS FROM A ONE-DIMENSIONAL SEDIMENT TRANSPORT MODEL 
	Abstract 
	Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters, and this limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data. In this research, error models are developed to address the uncertainty in hydraulic input data and in
	2.1 Introduction 
	2.1 Introduction 
	Numerical hydraulic and sediment transport models have been used widely to make predictions about river morphological changes that result from natural or human influences. Those 
	predictions are often used for decision making in water resources management, which involves 
	the issues of ecological impacts, potential economic loss, and/or risks to human health. Therefore, a full understanding of the modeling strategy and the uncertainty in those predictions is essential. In the field of sediment transport modeling, the uncertainty has typically been assessed by examining how model predictions spread according to variability in inputted physical properties such as discharge, flow depth, and channel slope (McLean 1985; Cui and Parker 1998; Bunte and Abt, 2005; Pinto et al. 2006;
	Bayesian inference provides a formal way to assess the uncertainty in model predictions by considering the likelihoods, which calculate the model’s ability to reproduce the data from the calibration period. Bayesian methods have recently been applied to sediment transport modeling cases to predict erosion within sewer systems (Kanso et al. 2005), sediment entrainment (Wu and Chen 2009), bed elevation and material changes (Ruark et al. 2011; Sabatine et al. 2015), and cohesive sediment behavior (Cho et al. 2
	Bayesian inference provides a formal way to assess the uncertainty in model predictions by considering the likelihoods, which calculate the model’s ability to reproduce the data from the calibration period. Bayesian methods have recently been applied to sediment transport modeling cases to predict erosion within sewer systems (Kanso et al. 2005), sediment entrainment (Wu and Chen 2009), bed elevation and material changes (Ruark et al. 2011; Sabatine et al. 2015), and cohesive sediment behavior (Cho et al. 2
	to sample the parameter values with higher likelihoods more frequently over the simulations by considering the likelihood information from the previous simulations. Once the MCMC algorithm has run sufficient simulations, the parameter sets are sampled from a stationary distribution, which is an approximation of the posterior pdf. The parameter samples generated from that pdf are then used in the simulations for the forecast scenario in order to quantify how the uncertainty due to the parameter values affect

	A distinct limitation in applying Bayesian methods to sediment transport modeling is that the past research usually assigned overall uncertainty on model parameters by ignoring other potential uncertainty sources. Specifically, the forcing variables and boundary conditions used in numerical sediment transport models such as discharge, input sediment flow rate, and channel geometry always include uncertainty due to their inherent unsteadiness, heterogeneity, and difficulty being measured in the real world (W
	even if the model is well founded in physical theory or empirically justified by past performance 
	(Clement and Piegay 2005). Moreover, in hydrologic applications, it has been demonstrated that not accounting for errors in the input data leads to corrupted parameter uncertainty estimates as well as unreliable predictions (Ajami et al. 2007). 
	A number of methods have been proposed to consider the errors in forcing variables when estimating the uncertainty, but those studies only dealt with the measured rainfall data particularly for hydrologic modeling (Kavetski 2002; Carpenter and Georgakakos 2006; Huard and Mailhot 2006; Ajami et al. 2007; Vrugt et al. 2008). To predict the sediment budget in fluvial beds, Schmelter et al. (2011, 2012, and 2015) and Schmelter and Stevens (2013) applied a variance to the predictions in order to address the unce
	The goal of this research is to develop error models to address the uncertainty in various hydraulic input data and evaluate how the uncertainty estimates are improved when those error models are integrated in an existing Bayesian method using an MCMC algorithm. The potential input errors are modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters, which can be estimated jointly with model parameters. To test 
	The goal of this research is to develop error models to address the uncertainty in various hydraulic input data and evaluate how the uncertainty estimates are improved when those error models are integrated in an existing Bayesian method using an MCMC algorithm. The potential input errors are modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters, which can be estimated jointly with model parameters. To test 
	the advanced method, deposition volumes along the 23-km reach of the Tachia River in Taiwan are simulated using the Sedimentation and River Hydraulics -One Dimension (SRH-1D) model. Nine model parameters and six different input data used as forcing variables in SRH-1D simulations are considered. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing (1) the number of simulations required for the MCMC algorithm, (2) the posterior pdfs of the model and input error par


	2.2 Methodology 
	2.2 Methodology 
	2.2.1 Estimating Parameter Uncertainty 
	2.2.1 Estimating Parameter Uncertainty 
	Multiple parameters in a sediment transport model are uncertain and need to be determined by the modeler. In the Bayesian inference paradigm, those uncertain parameters can be treated as random variables having a joint probability distribution, which can be written as: 
	p(θ 
	y)∝ L(y 
	θ) p(θ) (1) 
	where p(θ|y) is the joint posterior pdf, which describes the uncertainty in a set of parameters θ given a calibration dataset y. The likelihood L(y|θ) represents the model’s ability to reproduce the dataset y when parameters θ are used, and the prior pdf p(θ) summarizes the information about the parameters θ before considering any calibration data (Christensen et al. 2011). 
	A Shuffled Complex Evolution Metropolis – Uncertainty Analysis (SCEM-UA) (Vrugt et al. 2003), which is one of the most advanced MCMC algorithms, is employed to approximate the joint posterior pdf p(θ|y) in this study. Assuming no prior information about the parameters, the SCEM-UA algorithm starts by generating an initial population ( ≈ 250) of parameter sets from a 
	A Shuffled Complex Evolution Metropolis – Uncertainty Analysis (SCEM-UA) (Vrugt et al. 2003), which is one of the most advanced MCMC algorithms, is employed to approximate the joint posterior pdf p(θ|y) in this study. Assuming no prior information about the parameters, the SCEM-UA algorithm starts by generating an initial population ( ≈ 250) of parameter sets from a 
	uniform prior joint distribution, which is defined within parameter ranges pre-specified by a user. Then, the posterior density of each parameter set is evaluated using the model simulation and observations from the calibration period as: 
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	where ei represents the model error given the parameter set at a time or space i, and N is the number of available measurements in the calibration dataset y. The equation contains a primary assumption that the model errors are mutually independent, Gaussian distributed, with constant variance (Box and Tiao 1973). The value from the right side of Eq. (2) is proportional to the posterior density (and is often called the posterior density for simplicity). Hence, the posterior density of different parameter set
	retained value for each complex sequence. After a few iterations ( ≈ 5) of the updating, the 
	members of all complexes are recombined, shuffled, and re-divided into complexes. Once the algorithm has repeated sufficient updating and shuffling, all complexes have the same properties such as the average and variance among the contained parameter sets, which implies algorithm convergence. 
	To diagnose the convergence of SCEM-UA algorithm, Scale Reduction Score (SRS) (Gelman and Rubin 1992) is used. The SRS is the ratio of the variance of the average parameter values from each complex to the average of the variances of parameter values within each complex. If the SRS for all parameters is below 1.2, then adequate convergence is indicated (Vrugt et al. 2003, Sabatine et al. 2015) and it is reasonable to believe that the samples are generated from a stationary distribution, which can be consider

	2.2.2 Error Modeling for Hydraulic Input Data 
	2.2.2 Error Modeling for Hydraulic Input Data 
	In this research, potential errors in an input variable are modeled using a Gaussian distribution where the mean represents the measurement bias and the standard deviation reflects the independent errors at each measurement (Fig. 1). Both the mean and standard deviation are treated as uncertain parameters in order to account for input data uncertainty in the Bayesian method. This approach follows the idea, used for rainfall error in hydrologic modeling cases, that the observed data (what we have) are assume
	ε~ N (m,σ) (3) 
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	Figure
	Fig. 1 Conceptual diagram for modeling input data error using a Gaussian distribution. 
	where eij is the error at measurement i for the input variable j, and a single error value is generated from an identical normal distribution with mean mj and standard deviation σj for each measurement. 
	Input error models, which relate the errors and the observed data, can be developed separately for several input variables based on the error characteristics. The discharge data is usually used for an upstream boundary condition (BC) in a model simulation, and a “fair” measurement performance shows that 95% of the measured values are within 10% of the “true” discharge value (USGS 1996). It implies that the measurement errors have a standard deviation of 5% of the “true” value so that the errors are expected
	xˆ= x ε (4) 
	ij ij ij 
	where ˆis the observed value and xij is the estimate of true value at the measurement i for the 
	ij 
	x

	input variable j. Unlike the discharge, the errors in water surface elevation data are independent of the scale of its measured value because those elevations are often defined relative to an arbitrary datum (sea level). By treating those errors as being homogeneous, an additive error model is available: 
	xˆ= x+ε(5) 
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	ij 
	ij 

	This model would be helpful to reflect the errors in a rating curve, which controls the water surface elevation given discharge at internal or downstream BCs. Specifically, the rating curve inherently possesses large uncertainty because the relationship between discharge and water surface elevation would vary in time as channel geometry changes during the simulation. 
	The geometry data are obtained by measuring horizontal and vertical distances from a benchmark point of known elevation at each cross section. The horizontal distance errors are usually treated as negligible because their magnitude is less than 1 % of the measured value (USGS 1992). However, the horizontal distances might be measured shorter than the actual length if the cross section is not orthogonal to the channel direction. The multiplicative error model can be modified to account for this error as: 
	xˆ= x(6) 
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	where εij is the angle from the orthogonal line of the channel direction, ˆand xij represent the 
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	measured and true distances from the benchmark point, respectively. For vertical distances, the measurements can have errors with a standard deviation of 10 % of flow depth in natural rivers 
	(USGS 1992). Those errors might originate from both the existence of dunes (or antidunes) and 
	the uneven distributions of large bed materials (cobbles, rocks, and boulders) in active mobile channel bed. The vertical distance can apply to the multiplicative error model (Eq. (4)) as the error scales are proportional to its magnitude. 
	A set of input error parameters η ={m ,σ,…, m σ } , where J is the total number of input error 
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	1 J models considered, can be integrated into the governing equation of Bayesian uncertainty method (Eq. (1)) as: 
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	where p(θ,η|y) is the joint posterior pdf of model parameters θ and input error parameters η, which describes the uncertainty associated with model parameters and input data simultaneously given calibration dataset y. To specify the posterior density P(θ,η|y) in the SCEM-UA algorithm, the model is simulated using the sampled model parameters θ and the input variables xij, which are computed from Eq. (4), (5), or (6) using the sampled input error parameters η. If the measured input data are correct, it is ex


	2.3 Applications 
	2.3 Applications 
	2.3.1 Sediment Transport Model 
	2.3.1 Sediment Transport Model 
	The proposed method is tested by coupling it to SRH-1D model, which was developed and is currently used by the U.S. Bureau of Reclamation to simulate flows and sediment transport in open channels and river networks. The section summarizes the mathematical structure of the SRH-1D model including the role of its key model parameters, but readers are referred to Huang and Greimann (2013) for details. 
	SRH-1D computes flow hydraulics by solving the energy equation for steady, gradually varied flow using the standard step method, and a time series of input flow rate is used as an upstream BC. The energy equation between downstream cross section i and upstream cross section i + 1 is expressed as: 
	2 2 
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	where z represents the water surface elevation, α is the kinematic coefficient, U is the cross-sectional averaged velocity, g is the gravitational acceleration. The contraction or expansion loss hc is computed based on the relationship between the velocity heads at the two cross sections, and the friction loss hf is calculated from the friction slopes at the cross sections, which can be determined using Manning’s roughness coefficient n. 
	For sediment transport computations, Exner equation routing is used to calculate the changes of the sediment volume in the bed. By ignoring changes in suspended sediment concentration over time, the Exner equation expresses mass conservation as: 
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	where x is the longitudinal direction, t is time, Qs is volumetric sediment discharge, ϕ is porosity, Ad is volume of bed sediment per unit length, and qsl is lateral sediment input rate per unit length. The volumetric sediment discharge Qs is computed by calculating the transport capacity separately for each predefined grain size class. 
	Among several equations available in SRH-1D, the equation suggested by Wu et al. (2000) is used here to compute the transport capacity. The equation computes total bed material load for grain size class k by combining the bed load qbk and suspended load qsk, which are calculated separately as: 
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	where ρ is the density of water, ρs is the density of the sediment, d50 is the median grain diameter, τb is bed shear stress, pk is the fraction of material in class k, dk is the median diameter of class k, wfk is the fall velocity of particles in class k, and τck is a dimensional critical shear stress for particle in class k, which is computed as: 
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	where θr is the non-dimensional reference shear stress. ξkB is the hiding and exposure function, which accounts for the reduction in the reference shear stress for relatively large particles and the increase in the reference shear stress for relatively small particles. It is determined: 
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	where λ is a hiding and exposure coefficient, phk and pek are the hidden and exposed probabilities of particles in class k. 
	SRH-1D assumes that the computed transport capacity is reached over some length controlled by the total adaptation length Ltotal, which can be calculated as follows: 
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	where fs is the fraction of suspended load as computed in Greimann et al. (2008), h is the hydraulic depth, and the bed load adaptation length Lb is calculated as: 
	L= b h (15) 
	b 
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	where the bL is the bed load adaptation length multiplier. The suspended sediment recovery factor ζ possesses different values where deposition (ζd) or scour (ζs) occurs. 
	SRH-1D models the bed material mixing by dividing the bed into one active layer, which is a thin upper zone containing the bed materials available for transport, and several inactive layers below the active layer. All particles in the active layer are assumed to be equally exposed to the flow, and the thickness of the active layer can be calculated by multiplying the geometric mean of the largest grain size class by the user-specified constant, which is the active layer thickness 
	multiplier parameter nalt. In addition, the weight of bed load fraction parameter χ, which controls 
	the weighting of the grain size distribution of bed load when materials transfer from the active layer to the inactive layers during deposition, should also be specified by a user. 
	Table 1 summarizes the nine model parameters and their feasible ranges for natural river simulations. The range for Manning’s roughness n spans the flow resistances in natural rivers with smooth meanders, pools, and riffles (Limeneros 1970). The reference shear stress θr spans the observed θr values from 45 study sites of gravel-bed steams (Mueller et al. 2005), and the porosity ϕ range considers mixtures of sand, gravel, and cobbles (Frings et al. 2011). The remaining six parameters (λ, nalt, ζd, ζs, bL, χ
	-

	Table 1 Uncertain model parameters of SRH-1D and their sampling ranges. 
	Parameters 
	Parameters 
	Parameters 
	Ranges 

	Manning’s roughness coefficient 
	Manning’s roughness coefficient 
	n 
	0.035 ~ 0.045 

	Reference shear stress θr 
	Reference shear stress θr 
	0.01 ~ 0.10 

	Hiding and exposure coefficient λ 
	Hiding and exposure coefficient λ 
	0 ~ 1 

	Active layer thickness multiplier 
	Active layer thickness multiplier 
	nalt 
	0.5 ~ 5 

	Deposition recovery factor ζd 
	Deposition recovery factor ζd 
	0.05 ~ 1 

	Scour recovery factor ζs 
	Scour recovery factor ζs 
	0.05 ~ 1 

	Bed load adaptation length multiplier bL 
	Bed load adaptation length multiplier bL 
	0 ~ 25 

	Weight of bed load fraction χ 
	Weight of bed load fraction χ 
	0 ~ 1 

	Porosity φ 
	Porosity φ 
	0.25 ~ 0.40 



	2.3.2 Modeling Tachia River 
	2.3.2 Modeling Tachia River 
	Simulations for sediment erosion and deposition volumes along the 23-km reach of the Tachia River in Taiwan (Lai and Greimann, 2010) are considered as a case study to evaluate the new method. A natural river was chosen because it includes various uncertainty sources such as the varied channel geometry, input discharge, and grade controls, which can be examined by the suggested method. The case is also able to consider interactions between scour and sedimentation processes within a single simulation. 
	Severe erosion has occurred in the Tachia River due to the lack of sediment supply downstream of Shih-gang Dam, which is located 23 km upstream from the ocean on the river. The reach has an average slope of 0.0113. The dominant substrate is cobbles and gravels, and the bed material sizes measured in 2007 ranged from 0.125 mm to 512 mm (fine sand to small boulder) with a median size D50 of 108 mm. Deposited sediment volumes during two periods (2001 to 2005 and 2006 to 2009) were measured at cross sections al
	Input error models are developed for six input variables used in the simulation of the Tachia River, and the input error parameters are specified to capture the feasible ranges defined by the measurement characteristics (Table 2). Prior to investigating the input uncertainty, Case 0 implemented the uncertainty analysis only for the nine model parameters. Through Cases 1~6, two input error parameters (m and σ) were added when estimating the uncertainty to consider the uncertainty in each of the input variabl
	Input error models are developed for six input variables used in the simulation of the Tachia River, and the input error parameters are specified to capture the feasible ranges defined by the measurement characteristics (Table 2). Prior to investigating the input uncertainty, Case 0 implemented the uncertainty analysis only for the nine model parameters. Through Cases 1~6, two input error parameters (m and σ) were added when estimating the uncertainty to consider the uncertainty in each of the input variabl
	simultaneously. This case is helpful to explore the impact of the correlations between the errors in different input variables on the uncertainty estimates. 

	Table 2 Error models for uncertain input variables and sampling ranges for the input error 
	parameters. 
	Case 
	Case 
	Case 
	Uncertain Input Variables 
	Error Models 
	Parameters 
	Ranges 

	0 
	0 
	None 

	1 
	1 
	Discharge at Upstream BC 
	1x xε= ɶ 
	m1 σ1 
	0.95 ~ 1.05 0 ~ 0.1 

	2 
	2 
	Rating Curve at Internal BC 
	2x x ε= ɶ + 
	m2 σ2 
	-2 ~ 2 0 ~ 0.05 

	3 
	3 
	Rating Curve at Downstream BC 
	3x x ε= ɶ + 
	m3 σ3 
	-2 ~ 2 0 ~ 0.05 

	4 
	4 
	Cross Section Angles where x is horizontal distance from benchmark 
	4cos x x ε= ɶ 
	m4 σ4 
	0 ~ 15 0 ~ 15 

	5 
	5 
	Vertical Distance at Cross Sections 
	5x xε= ɶ 
	m5 σ5 
	0.9 ~ 1.1 0 ~ 0.15 

	6 
	6 
	Benchmark Elevations 
	6x x ε= ɶ + 
	m6 σ6 
	-2 ~ 2 0 ~ 0.5 

	7 
	7 
	All Data Used in Cases 1~6 


	Figure
	Fig. 2 Input data used as forcing variables in the SRH-1D simulations of the Tachia River where the black markers represent the measured values. 


	2.4 Results and Analysis 
	2.4 Results and Analysis 
	2.4.1 Required Number of Simulations 
	2.4.1 Required Number of Simulations 
	The number of simulations required to reach convergence of the SCEM-UA algorithm for the Tachia River cases were determined based on the SRS criteria (Gelman and Rubin 1992) (Fig. 3). Each bar represents the simulation numbers where the SRS value for each parameter goes below 
	1.2. The gray bars for model parameters are placed following the order in Table 1, the black bars are for input error parameters m and σ for each case, and the numbers above the bars indicate the convergence of each case. 
	Compared to Case 0, which considered only model parameter uncertainty, Cases 1, 2, 3, 4 and 6 ran about 1.5~2.5 times more simulations, but Cases 5 required five times more simulations. This difference should be expected because the latter case treats many more elements as uncertain compared to the other cases. Specifically, Case 1 varies the time series of discharge data but the same discharge values are applied over the entire reach during the simulation. Cases 2 and 3 cause only local changes near the BC
	to a large number of uncertain factors would be primarily responsible for an increase in the 
	computational cost of estimating uncertainty. 
	Fig. 3 Number of simulations to reach convergence for model and input error parameters. 
	Case 7 required much more simulations to estimate the uncertainty including all those uncertain input variables than the other cases. For example, the mean error for discharge m1, standard deviation errors for internal BC rating curve σ2 and benchmark elevations σ6 achieved convergence after more than 35,000 simulations, which are remarkably later than the model parameters. However the required simulations for those input error parameters were similar to those for the model parameters in Cases 1, 2, and 6. 

	2.4.2 Uncertainty in Model Parameters 
	2.4.2 Uncertainty in Model Parameters 
	The marginal posterior pdf for a single parameter can be approximated using the histogram of the parameter samples generated after convergence, and the distribution describes the uncertainty in the parameter values after the analysis. Fig. 4 presents the marginal posterior pdfs for 
	Manning’s n. For each case, the horizontal line shows the interquartile range (IQR), which 
	indicates the difference between the 25 % and 75 % quantiles of the sampled values, and the median point is also shown with its value. The percentage value is the ratio of the IQR to the sampling range, which is specified at the beginning of the analysis (Table 1). The IQR would be placed near the middle of the sampling range with the ratio value of 50 % if the parameter is sampled independently without considering any calibration data. In this research, the IQR is expected to decrease, which indicates the 
	-

	Figure
	Fig. 4 Histograms for Manning’s n using 2,000 samples generated after convergence. Also shown are the median (black point) and the interquartile range (horizontal line) of the sampled values for each case. 
	Considering input uncertainty leads to only small changes in the posterior pdfs for Manning’s n 
	compared to Case 0 (Fig. 4). The medians are around 0.039, and the IQR ratios are 16~23 % among the cases, which is acceptable for natural rivers including the smooth meander, pool, and riffles. In addition to Manning’s n, the reference shear stress θr and hiding and exposure coefficient λ are well calibrated and have the IQRs about 5 % and 15 %, respectively, but their posterior pdfs are rarely changed over the cases. These three parameters have shown a high impact (sensitivity) on the SRH-1D simulations f
	usually larger than 40 %, which means that they are poorly calibrated by the algorithm and still remain highly uncertain. These six parameters have little impact on the SRH-1D model simulations of the Tachia River so the parameter values with higher posterior densities cannot be specified well. This also produces similar posterior pdfs for those parameters among the given cases. 
	Form roughness reflects the flow resistance caused by the channel geometry, and it might be able to explain the differences in the IQRs for Manning’s n. The posterior pdf from Case 6 has an IQR 4% wider than that from Case 0, which means the calibrated Manning’s n contains more uncertainty when the benchmark elevations are treated as uncertain during the estimation process. The local channel slopes between the adjacent cross sections vary as the benchmark elevations are relaxed in Case 6, so Manning’s n is 
	2.4.3 Uncertainty in Input Variables 
	Fig. 5 compares the medians and IQRs for input error parameters m1~m6 obtained from Cases 1~6 separately and from Case 7. Based on the error model types, m1 and m5 are expected to be centered on one, and m2, m3, m4, and m6 would be on zero when the input data are unbiased. The parameter values calibrated from each of Cases 1~6 indicate that the bias in the discharge and the rating curves for the internal and downstream BCs are negligible even though they still contain uncertainty with IQRs of 27~40 %. The m
	0.11 m, which means the actual elevations should be 0.11 m lower than the measured points. 
	Overall, the IQRs indicate that the uncertainty in the rating curve at the downstream BC (m3), the vertical measurements (m5), and benchmark elevations (m6) are relatively small. 
	Figure
	Fig. 5 Comparison of the medians and interquartile ranges for input error parameter m from Cases 1~7. 
	When the mean input error parameters are jointly specified by a single calibration process in Case 7, both the medians and IQRs of the posterior pdfs are notably changed from the above cases (Fig. 5). For example, the results suggest that the discharge data possess 2 % bias, and the rating curves have biases of -0.55 m and 0.17 m for the internal and downstream BCs, respectively. Both the cross section angles and the vertical measurements for the cross sections show less bias than those identified from the 
	The standard deviation parameters σ1~σ6 are expected to have posterior pdfs that approach zero when the forcing variables include no errors. Overall, both the medians and IQRs from all cases are usually located near the middle of the pre-specified ranges. Only little differences in those values are observed between the cases like the median for σ6 is 0.25 m from Case 6 and 0.23 m from Case 7. 

	2.4.4 Uncertainty in Predictions 
	2.4.4 Uncertainty in Predictions 
	Predictive intervals (PI) for sediment deposition volumes in the Tachia River are produced by the model simulations for the forest period using 2,000 parameter samples generated after convergence (Fig. 6) in order to evaluate how the uncertainty in the model parameters and input variables is propagated to the model forecasts. The input error models used in the calibration for each case were also applied to the forecast simulations. The spread of the predictions shows the forecast uncertainty originating fro
	Figure
	Fig. 6 Observations and model predictions for sediment deposition volume during the forecast period for the Tachia River using 2,000 parameter sets generated after convergence. Also shown are the points (the vertical lines with asterisk markers) where the internal and downstream boundary conditions are applied. 
	Cases 1~4 show similar PIs to Case 0 along the river reach except that Cases 2 and 3 have wider 
	intervals near the points where the uncertain rating curves are applied as BCs. Case 5 shows the PI widths increase evenly along the reach compared to Case 0, and uneven and large increases in the uncertainty bounds are found in Case 6. The large forecast uncertainty in Case 6 might originate from the spatial correlation of the uncertain variables because the uncertainty in a single benchmark elevation affects not only the associated cross section but also the slopes to both the adjacent upstream and downst
	The percentages of observations covered by the PIs from each case are shown in Fig. 7a. Overall, the estimated uncertainty bounds do not cover 100 % of the data for both the calibration and forecast periods, which indicates an underestimation of the uncertainty. This underestimate might be caused by neglecting the other sources of uncertainty (such as errors in the observations or structural deficiencies in the sediment transport model) or by deviations from the assumptions used in the SCEM-UA algorithm or 
	Figure
	Fig. 7 Percentage of observations covered by the predictive intervals (PI) and the average width ratios of the PI for each case to the PI for Case 0 from the simulations for both the calibration and forecast periods using 2,000 parameter sets sampled after convergence. 
	Moreover, the average of the root mean squared errors (RMSEs) over the simulations shows that Case 7 provides the best performance in calibration period (Table 3) even though its intervals are second widest among the cases. It suggests that when all input uncertainties are jointly considered the uncertainty estimates not only widen their bounds but also improve their accuracy. 
	The averaged PI width ratios when including input uncertainty are larger in the forecast period than the calibration period (Fig. 7b). This difference might originate from the discharge data 
	The averaged PI width ratios when including input uncertainty are larger in the forecast period than the calibration period (Fig. 7b). This difference might originate from the discharge data 
	(Fig. 2a), which indicate that three or four large flood events occurred every year during the forecast period (2006 to 2009) whereas the peak flow appeared only five times during the calibration period (2001 to 2005). 

	Table 3 Average of root mean squared error values for 2,000 simulations for the calibration and forecast periods using parameter sets sampled after convergence. The lowest values in each period are shown in bold face. 
	Case 
	Case 
	Case 
	Calibration 
	Forecast 

	0 
	0 
	112,931 
	140,036 

	1 
	1 
	112,326 
	140,595 

	2 
	2 
	112,070 
	142,722 

	3 
	3 
	113,907 
	137,013 

	4 
	4 
	112,260 
	141,385 

	5 
	5 
	108,426 
	139,375 

	6 
	6 
	113,384 
	144,024 

	7 
	7 
	106,293 
	146,934 




	2.5 Conclusions 
	2.5 Conclusions 
	This research proposes a way to address the uncertainty due to hydraulic input variables as well as model parameters in order to improve uncertainty estimates for sediment transport model predictions. The proposed error models allow the forcing variables in a model simulation to vary by applying error values generated from a Gaussian distribution. The mean and standard deviation of the Gaussian distribution are then treated as additional uncertain parameters in the Bayesian uncertainty evaluation process. B
	1. Considering input uncertainty requires more model simulations to estimate uncertainty. The increase in the computational cost is more notable when the error model deals with 
	an input variable containing a larger number of uncertain elements. In such a case, the 
	SCEM-UA algorithm used here for the Bayesian analysis converges slower. Compared to the 3,450 simulations required for only parameter uncertainty, the algorithm ran about 5,000~8,000 simulations when the error models are applied to the variables that only affect the flow conditions. In contrast, about 17,000 simulations were required for using the error model that changes the channel geometry in every simulation. In addition, the joint posterior pdf could be approximated after 35,000 simulations when the in
	2. 
	2. 
	2. 
	For the cases considered, considering input uncertainty leads to only small changes in the uncertainty estimates for the SRH-1D model parameters. Specifically, the IQR of the posterior pdf for Manning’s n was reduced 3 % by considering the uncertainties in all the input variables considered in this study. Only a slight change occurs because well-calibrated parameters such as Manning’s n, reference shear stress, and the hiding and exposure coefficient usually depend on the composition of bed material sizes, 

	3. 
	3. 
	Estimated uncertainty for a single input variable can vary if the associated error parameters (m and σ) are calibrated jointly with the error parameters for other input variables. From the cases considered, the posterior pdfs for the input error parameters indicated that the discharge data and the two rating curves do not contain bias when each variable was considered separately. When the joint pdfs were developed including the error parameters for all uncertain input variables, the IQRs for some input erro


	parameters were reduced by half, which implies a significant decrease in the estimated 
	uncertainty in the associated input variables. 
	4. The PIs produced by considering input uncertainty are more accurate than the PIs when only considering parameter uncertainty. The most notable improvement was observed when the predictions are generated by using all input error models suggested here for a single calibration process. The simulations from this approach show better performance in calibration period as they have 6 % less averaged RMSE compared to the existing method, and their PIs also cover 1.5 and 2 times more observations in the calibrati
	The research described in this study should be expanded to several avenues for future work. First, the proposed method can be applied to river network cases, where several reaches are linked and interact or to reservoir sedimentation cases. One could also consider other forcing variables like bed material size composition, which might have meaningful impacts on the model parameters including Manning’s n, reference shear stress, and hiding and exposure coefficient. Second, the model parameters and input data
	The research described in this study should be expanded to several avenues for future work. First, the proposed method can be applied to river network cases, where several reaches are linked and interact or to reservoir sedimentation cases. One could also consider other forcing variables like bed material size composition, which might have meaningful impacts on the model parameters including Manning’s n, reference shear stress, and hiding and exposure coefficient. Second, the model parameters and input data
	performance computing resources are available. Therefore, methods should be developed to improve the efficiency. 
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	CHAPTER 3 
	REDUCED COMPUTATIONAL COST FOR ESTIMATING PREDICTION UNCERTAINTY 
	DUE TO SEDIMENT TRANSPORT MODEL PARAMETERS 
	Abstract 
	Bayesian methods have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to uncertainty in the parameter values. However, these approaches require too many model runs, so they are not feasible for models of complex fluvial systems, which might take significant computation time for each simulation. This research suggests a method to estimate the sediment transport model parameters and quantify the uncertainty in the model predictions with reduced numbers
	3.1 Introduction 
	3.1 Introduction 
	Numerical hydraulic and sediment transport models have been widely used to predict river morphological changes that result from natural and/or human influences. The results from such models are often used for decision making in water resources management (e.g., dredging, river restoration, and other environmental remediation plans). The predictions from those models 
	always possess uncertainty. One major source of uncertainty is the model parameter values that 
	need to be determined by the modeler. Sediment transport models contain various physical and/or conceptual (numerical) model parameters that are either difficult or impossible to directly measure. Such parameters are calibrated by adjusting their values so that the model results successfully reproduce the observed response from the fluvial system, but no single parameter value is expected to perfectly represent the system behavior. Thus, it is essential to understand the uncertainty in the parameter values 
	Bayesian inference offers a formal way to assess the uncertainties in the model parameter values by comparing to calibration data and to quantify how those uncertainties affect the model predictions. In the past 10 years, Bayesian methods have been applied to sediment transport modeling cases that predict erosion within sewer systems (Kanso et al. 2005), sediment entrainment in a gravel-bed flume (Wu and Chen 2009), bed elevation and material changes in flume experiments (Ruark et al. 2011; Sabatine et al. 
	Estimation (GLUE) method (Beven and Binley 1992) or Markov Chain Monte Carlo (MCMC) 
	algorithm-based methods. 
	While the traditional GLUE method (Beven and Binley 1992) and its various transformations (Blasone et al. 2008; Stedinger et al. 2008) have been widely used in hydrologic applications due to its algorithmic simplicity and flexibility, the large number of model simulations required for reliable estimates is the key limitation for sediment transport model cases. Specifically, studies using distributed watershed models use 50,000 ~ 100,000 model evaluations depending on the number of uncertain parameters consi
	2 

	Some strategies are available to solve the inefficiency in GLUE, but the limitations still exist in each of those strategies as discussed following. One of the easiest ways to reduce the massive 
	computation time is to parallelize the simulations using a parallel computing processor (or 
	network). Continuous computation time is expected to decrease as the number of available processors increases, but it does not mean that the algorithm efficiency is improved. Second, sensitivity tests can be used to reduce the number of uncertain parameters prior to conducting the uncertainty analysis (Tolson and Shoemaker 2008). The reduced dimension of the parameter space would certainly require a smaller sample size to cover that space. However, the sensitivity test for a high-dimensional case can also b
	Another criticism of GLUE is that the method does not provide an estimate of the joint posterior pdf because it is not able to identify correlation between the parameters. Specifically, GLUE produces the cumulative marginal posterior distribution for each parameter using the likelihood values from the calibration period, and the parameter sets generated from those marginal distributions are used for the forecast period to determine the prediction uncertainty. Thus, the forecast uncertainty estimated by this
	the estimated uncertainty in the predictions is substantially different depending on whether the 
	correlations between the sediment transport model parameters are included or not. 
	In context of MCMC methods, the parameter sets are generated and used for simulations one-byone to iteratively obtain a numerical approximation for the posterior pdf (Green 2001). Once an MCMC algorithm has performed sufficient model runs, the parameter sets are sampled from a stationary distribution, which implies that the algorithm has converged. The sample generated after convergence is then used to estimate the joint posterior pdf. In order to achieve convergence with fewer computations, various MCMC al
	-

	Although the MCMC algorithms provide the results based on a rigorous statistical foundation and overcome the weaknesses in GLUE, they also possess distinct limitations. First, using the MCMC methods is still computationally expensive because they require many simulations not only for the algorithm convergence but also for collecting the posterior sample after convergence. Specifically, Vrugt et al. (2009) used at least 40,000 simulations of the conceptual watershed model to achieve convergence, and Ajami et
	convergence to provide well-specified histogram. In addition, Sabatine et al. (2015) found that 
	an MCMC method did not substantially improve the computational cost compared to GLUE for sediment transport model simulations of flume experiments. Unfortunately, parallel computing is not feasible because the MCMC sampling is a sequential and dependent process such that the updated parameter set from one step becomes the current point for the next step (Foglia et al. 2009). Second, stringent assumptions and complex structure used in those algorithms might cause difficulty in conducting uncertainty analysis
	The main goal of this study is to develop and test an efficient way to assess the uncertainties in sediment transport model parameters and evaluate their contributions to the uncertainty in the model predictions. A new algorithm is built on modifications of GLUE to use its merit of simplicity. In order to reduce the computational expense, the algorithm is designed to consecutively generate a sample of parameter sets by considering the information about high posterior density regions identified during the an
	-

	estimating both parameter and prediction uncertainties, (2) the estimated posterior distributions 
	for uncertain parameters, and (3) the performance of the model forecasts. 

	3.2 Methodology for Parameter Uncertainty Assessment 
	3.2 Methodology for Parameter Uncertainty Assessment 
	3.2.1 Existing GLUE and MCMC Methods 
	3.2.1 Existing GLUE and MCMC Methods 
	Before introducing the new algorithm, brief summaries of the traditional GLUE (Beven and Binley 1992) and SCEM-UA (Vrugt et al. 2003) methods are provided. These are used as the reference methods to evaluate results from the new algorithm in this study. 
	In typical GLUE applications, model parameters are initially assumed to conform to uniform distributions within specified ranges under the assumption that no prior information is available about the parameter values aside from their feasible limits. A population of parameter sets is then generated using MC sampling and used in the model to simulate the calibration period. The likelihood of each parameter set is computed, most commonly using Nash-Sutcliffe Coefficient of Efficiency (Nash and Sutcliffe 1970),
	SCEM-UA is one of the most efficient MCMC methods and has been used for various hydrologic applications (Laloy and Vrugt 2012), and it also has a relatively simple algorithmic 
	SCEM-UA is one of the most efficient MCMC methods and has been used for various hydrologic applications (Laloy and Vrugt 2012), and it also has a relatively simple algorithmic 
	structure compared to the other advanced MCMC methods. Readers are referred to Vrugt et al. (2003) for a detailed discussion. SCEM-UA starts by generating an initial sample of parameter sets from a uniform prior joint pdf, and the parameter sets are used in model simulations of the calibration period. After specifying the posterior density of each parameter set, the sample is partitioned into a number of complexes. The parameter sets in the complexes are updated in parallel using the Metropolis algorithm (M

	As the iterative procedure continues, the parameters are being calibrated because the parameter values with higher posterior density are sampled more frequently, and the convergence of SCEM-UA can be determined using the Scale Reduction Score (SRS) (Gelman and Rubin 1992), 
	which is the ratio of the variance of the average parameter values from each complex to the 
	average of the variances of parameter values within each complex. When the SRS for all parameters is below 1.2, the samples are generated from an adequately stationary distribution, and the joint posterior pdf of the uncertain parameters can be estimated using a large sample collected after that convergence point. In addition, the prediction uncertainty can be investigated by using those collected parameter sets for the forecast simulations. 

	3.2.2 Evolving Latin Hypercube Method 
	3.2.2 Evolving Latin Hypercube Method 
	The new algorithm entitled the Evolving Latin Hypercube (ELH) method is suggested in this study by resolving the limitations of the GLUE method. The method is developed by focusing on the following strategies: (1) selecting an efficient sampling method to reduce the number of parameter sets that require model runs, (2) constructing the posterior sample by collecting parameter sets that include the correlations between the parameters, (3) estimating the posterior distributions every few simulations by consid
	a. Generate Sample (Step 1) 
	The ELH algorithm starts by generating a prior sample of parameter sets from a uniform prior joint pdf under the same assumption used in GLUE (no prior information). In order to explore the large dimensional parameter space efficiently, LHS (McKay et al. 1979), which has been shown to more efficiency sample than the MC method from previous studies (van Griensven et al. 2006; Matala 2008), is used. For generating a sample size S given a joint uniform prior of the 
	The ELH algorithm starts by generating a prior sample of parameter sets from a uniform prior joint pdf under the same assumption used in GLUE (no prior information). In order to explore the large dimensional parameter space efficiently, LHS (McKay et al. 1979), which has been shown to more efficiency sample than the MC method from previous studies (van Griensven et al. 2006; Matala 2008), is used. For generating a sample size S given a joint uniform prior of the 
	P parameters θ =[θ1, θ2, …, θP], LHS first divides each parameter range into S non-overlapping equal sized intervals. For each parameter, only one value is selected randomly from each interval, and the S values of θ1 are paired in a random manner with the values of θ2. These pairs are then associated similarly with the values of θ3 and so on. 

	Figure
	Fig. 8 Flowchart of the Evolving Latin Hypercube (ELH) algorithm. 
	Although no clear recommendation for the appropriate sample size S for LHS has been proposed in previous applications, Stein (1987) found that the estimated sample variances are stable with smaller sample size if several independent LHS samples are generated. The method is called replicated LHS. Specifically, Stein (1987) demonstrated that increasing the number of replications while each LHS sample size S is fixed increases the estimated sample variance, but the stable sample variance can be acquired as lon
	b. Run Models and Compute Posterior Densities (Step 2) 
	The parameter sets in the sample are used in model simulations of the calibration period, and the posterior density of each parameter set is assessed. The likelihood can be computed in a formal way by assuming that that the model errors are mutually independent and Gaussian with constant variance. This formal function (Box and Tiao 1973) can be written as: 
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	where Oi (θ) represents the simulated output variable when the parameter set θ is used and yi is the observed value at time or space i, and σ is the variance of the model errors. Under the assumption of no prior parameter information, the prior pdf is: 
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	Box and Tiao (1973) demonstrated that the influence of σres can be integrated out, and suggested a simplified form to evaluate the posterior density of each parameter: 
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	This simplified posterior density equation has been used in various MCMC methods (Tiemann et al. 2001; Vrugt et al. 2003; Vrugt et al. 2008; Vrugt et al. 2009) because it can reflect the likelihood information of each parameter set in a formal way. Thus, this equation is used in this algorithm when evaluating the posterior density of a parameter set. 
	c. Estimate Posterior Distribution (Step 3) 
	Once the posterior densities of the parameter sets are identified, the posterior sample is constructed in order to estimate the joint posterior pdf. To do this, the parameter set θbest that has the highest posterior density among the prior sample is duplicated 1000 times and all of those copies are collected into the posterior sample. Next, the other parameter sets θl are also duplicated and complied into the posterior sample, but the number of copies for a parameter set ncl is determined according to the r
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	where ǁ·ǁ represents a rounding function. The duplication process is applied for all the parameter 
	sets included in the prior sample. The parameters are expected to be calibrated because the parameter values with higher posterior densities will be more included more frequently in the posterior sample. As a result, the marginal posterior distribution for each parameter can be approximated using the histogram of the parameter values included in the posterior sample. 
	The posterior distributions from ELH are expected to be similar to the results from GLUE because both methodologies consider the ratio of each parameter set’s likelihood to the other likelihoods when approximating the posterior distributions. Specifically, GLUE divides the likelihood value of each behavioral parameter set by the sum of the likelihoods of all behavioral sets to generate the cumulative posterior distributions, while ELH duplicates the parameter sets according the ratio of posterior densities.
	The specification for ncl can vary according to the modeler’s decision. However, preliminary tests revealed that when the most likely parameter set is duplicated only 100 times the ELH method leads to a posterior distribution with lower variance than expected, which might be caused by discarding too many parameter sets in the low posterior density region (due to the rounding function). On the other hand, the results do not vary significantly when that parameter set is duplicated more than 1,000 times. 
	d. Specify New Parameter Ranges (Step 4) 
	The acquired posterior sample might not be able to provide an accurate distribution for high posterior density regions if the initially specified parameter ranges are too broad. Specifically, 
	the histogram from the posterior sample would not be able to describe the exact posterior 
	distribution in detail because the prior sample (50*P parameter sets) from the LHS method is supposed to cover the parameter space efficiently (coarsely). To overcome this limitation, ELH specifies new parameter ranges by excluding the outlier ranges that are found from the previous estimation and generates additional samples to improve the detail in the high posterior density region. For each parameter, the interquartile range (IQR), which is the difference between the 25% and 75% quantiles in the posterio
	[25% quantile point – 2.5*IQR 75% quantile point + 2.5*IQR ] (20) 
	The new bounds are not allowed to exceed the initial bounds. The reduction in the parameter ranges enables the next sampling to concentrate on the higher posterior density region. 
	e. Repeat Sampling and Estimating (Steps 1-4) 
	The process continues by generating 50*P new parameter sets from a uniform prior joint pdf with the updated parameter ranges (Step 1). The model simulations of calibration period are run using the new parameter sets, and the posterior densities are also computed using Eq. (18) (Step 2). Before moving to Step 3, the replications of the previous sample are removed. After that, the new sample is combined with the previous sample, and the duplicating process is applied to all the parameter sets generated so far
	f. Check Stability of Estimation 
	In order to check the stability of the estimation results, the standard deviation (SD) of the posterior sample (with replications) is calculated for each parameter after every updating loop. After the second loop, the relative SD change can be computed as: 
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	where SDp,r is the SD of the posterior sample for parameter p at the rth loop. A stationary posterior sample is then diagnosed if the relative SD change for all P parameters is less than 1 % during at least two updating loops. At that point, the available posterior sample is considered to represent the joint posterior pdf of the uncertain P parameters. 
	The SD is considered because it can quantify how the posterior distribution is spread, which can be interpreted as the uncertainty in the parameter values after calibration. In addition, using the relative change can allow more variation for parameters that are poorly calibrated whereas well-constrained parameters are diagnosed more strictly. Other statistical properties (e.g., IQR or coefficient of variation) were also considered and found to produce similar results. However, preliminary tests revealed tha
	g. Simulate Forecast Period 
	The parameter sets contained in the final posterior sample obtained from the simulations of the calibration period are then used for the forecast scenario. Because ELH duplicated the parameter sets, there are many identical parameter sets in the posterior sample. Simulations are only 
	required for the unique parameter sets, which greatly reduces the computational cost compared to 
	the total number of parameter sets. The model results are then duplicated according to the number of identical parameter sets. The resulting distribution of the model outputs can describe the uncertainty in the predicted variables due to the uncertainty of the parameter values. 


	3.3 Case Studies for Synthetic Distributions 
	3.3 Case Studies for Synthetic Distributions 
	Numerical experiments using three synthetic target distributions with increasing complexity, which have been used by Vrugt et al. (2003 and 2009), are considered as case studies to evaluate the ELH method. The cases cover a diverse set of problem features including multimodality, correlation, and high-dimensionality in target probability distributions. These synthetic cases are well-controlled systems that do not allow uncertainty from sources other than the parameter value itself. In addition, the posterio
	3.3.1 A Single Bimodal Distribution 
	3.3.1 A Single Bimodal Distribution 
	To investigate the performance of ELH in presence of multimodality, the first case study involves a single parameter θ with a bimodal probability distribution (Case 1) where the pdf is written as: 
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	This target distribution is the sum of two Gaussian probability distributions where each has an 

	optimal point at θ = 0 and 4, respectively. In addition, the distribution has a mean of 2 and a variance of 4.6, and its 25% and 75% quantiles are located at θ = 0 and 4, respectively. For uncertainty analysis, the prior range of the parameter was limited to [-10 10]. ELH updated the posterior distribution by generating 50 parameter values in every loop, and SCEM-UA used four parallel updating sequences with initial 100 parameter values. 
	Fig. 9a presents the histograms of the posterior sample generated by ELH and SCEM-UA from 5,000 computations to estimate the target distribution of Eq. (22), which is shown as a black solid line. SCEM-UA converged after 200 computations so that the parameter values of the initial 200 draws from the non-converged sampling process are discarded when constructing the histogram. ELH provides the histogram that is not only smoother but also closer to the target than SCEM-UA. The accuracy of the histogram is meas
	Figure
	Fig. 9 (a) Bimodal target distribution and histogram of the generated 5,000 parameter values and 
	(b) the changes in the posterior sample properties during 5,000 computations using ELH and SCEM-UA. 
	Fig. 9b compares the changes in the statistics of the posterior sample according to the number of computations during each analysis. Such properties should be stationary and match their target values if the algorithm approximates the target distribution well. The results from ELH become stationary much quicker than those form SCEM-UA. For example, the 25% and 75% quantiles from ELH change little and are fixed near the target values after about 100 computations. In addition, the final estimates at 5,000 comp
	show that ELH provides more accurate estimates for all the considered target values than SCEM
	-

	UA. Those results suggest that ELH is able to infer the single dimensional bimodal distribution defined in Eq. (22) with quicker and better performance than SCEM-UA. 
	Such difference might originate from the difference in estimating strategies between two methods. Specifically, ELH represents the posterior distribution over the considered parameter space every single updating loop by generating several parameter values at the same time and comparing their posterior densities, which allows exploration of the region with higher likelihood. On the other hand, SCEM-UA wanders the parameter space by comparing the posterior densities of the parameter values one-by-one every tr

	3.3.2 Multi-dimensional Gaussian Distributions 
	3.3.2 Multi-dimensional Gaussian Distributions 
	The second case study considers a two-dimensional Gaussian density function to evaluate ELH for application to two correlated parameters (Case 2). The target pdf for a set of two parameters θ =[θ1, θ2] can be written as: 
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	where the distribution is centered on zero µ = [0, 0] and the covariance matrix Σ includes the variances of p (p = 1, 2) for pth parameter with correlation coefficient of 0.5. The prior ranges for both parameters were limited to [-10 10], and ELH generated 100 combinations of two 
	where the distribution is centered on zero µ = [0, 0] and the covariance matrix Σ includes the variances of p (p = 1, 2) for pth parameter with correlation coefficient of 0.5. The prior ranges for both parameters were limited to [-10 10], and ELH generated 100 combinations of two 
	parameter values every updating loop, while SCEM-UA used four parallel sequences with 100 initial parameter sets. 

	Fig. 10a compares the means, variances, and correlation coefficient of the posterior sample from each method during 10,000 computations (note that SCEM-UA collected the posterior sample after 1,000 computations, during which the algorithm converged). From the results, ELH reached the target values quicker and closer than SCEM-UA. In addition, the estimation accuracy is also calculated using an average normalized Euclidean distance D as: 
	2 2 1 ˆ ˆ1 2 P p p p p p p p D µ µ σ σ σ σ=     − − = +            ∑ (25) 
	where µp and σp are the mean and standard deviations of target distribution and µˆ and σˆ are the mean and standard deviations of the estimated distribution for parameter p, respectively. According to the Euclidian distance D, ELH (D = 0.003) is more accurate than SCEM-UA (D = 0.022). 
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	Figure
	Fig. 10 (a) Posterior sample properties during 10,000 computations for Case 2, and (b) sample variances and (c) correlation coefficients estimated during 100,000 computations for Case 3 using ELH and SCEM-UA. 
	Fig. 10 (a) Posterior sample properties during 10,000 computations for Case 2, and (b) sample variances and (c) correlation coefficients estimated during 100,000 computations for Case 3 using ELH and SCEM-UA. 


	To explore the higher dimensional problem, the dimensions of the target Gaussian pdf of Eq. (23) 
	is extended to five (Case 3). The covariance matrix can be written as follows: 
	 σσ 0.5 
	11

	1 0.5 σσ 0.5 σσ 0.5 σσ   
	1 2 
	1 3 
	4 
	5 

	2 σσ 0.5 σσ 
	12 
	2 3
	4 
	5

	0.5 σσ 0.5 σσ 0.5 
	0.5 σσ 0.5 σσ 0.5 
	2 
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	3 
	3 

	
	σσ 0.5 
	3 4


	0.5 0.5 σσ σσ 4 0.5 σσ 
	0.5 0.5 σσ σσ 4 0.5 σσ 
	1 4
	24 
	4 
	5

	 
	 σσ 0.5 
	3 4 


	0.5 0.5 σσ σσ 0.5 σσ 5
	0.5 0.5 σσ σσ 0.5 σσ 5
	1 5
	25 
	5 
	5

	 
	The means are well estimated (not shown), but notable differences between two algorithms are observed in the estimated variances (Fig. 10b). Specifically, SCEM-UA underestimates the variances for the 3, 4, and 5parameters, which have relatively high target variances, whereas ELH does not miss the target values as much. The Euclidian distance of ELH (D = 0.027) is also better than that of SCEM-UA (D = 0.066). In addition, the correlation coefficients are a little underestimated by SCEM-UA as all of them rang
	rd
	th
	th 

	The underestimated variance from SCEM-UA might be due to its sampling strategy, which violates the detailed balance principle. Specifically, the detailed balance principal forces continuity of the sampling process, but SCEM-UA disrupts the continuous sampling when the algorithm recombines, shuffles, and re-divides the parameter sets of all complexes in order to place the highest posterior density parameter sets as the starting point of the updating procedure more frequently. It might improve the efficiency 
	by a factor of 0.001 than most likely parameter set can be included in posterior sample with the 
	impact exactly corresponding to its posterior density value according to Eq. (19). 

	3.4 Case Study for Sediment Transport Model Parameters 
	3.4 Case Study for Sediment Transport Model Parameters 
	The last case study applies the ELH methodology to the Sedimentation and River Hydraulics One Dimension (SRH-1D) (Huang and Greimann 2013) model for simulating a 23-km reach of the Tachia River in Taiwan (Lai and Greimann 2010). The posterior distributions for nine model parameters used in SRH-1D are estimated, and the credible ranges of the model predictions, which reflect the impact of the identified parameter uncertainty, are evaluated. In order to assess ELH comparatively, GLUE is implemented for this c
	-

	3.4.1 Application to Tachia River Simulation 
	3.4.1 Application to Tachia River Simulation 
	Scour and sedimentation behavior along the 23-km reach of the Tachia River in Taiwan is considered. The selected reach stretches between Shih-Gang Dam and the ocean with bankfull widths of 300~1200 m and an average slope of 0.011. In 2007, the dominant substrate was cobbles and gravels, and the bed material sizes ranged from 0.125 mm to 512 mm (sand to boulders) with a median grain size (D50) of 108 mm. Net deposited/eroded sediment volumes were measured during two periods (2001 to 2005 and 2005 to 2009) at
	the lack of sediment supply below the dam. The erosion occurred primarily from the dam to 
	approximately 5 km downstream during 2001 to 2005 and to about 8 km downstream during 2005 to 2009. This case study uses the net deposition volume at each cross-section as the variable of interest for the uncertainty analysis and considers the first period (2001 to 2005) as the calibration period and the second (2005 to 2009) as the forecast period. 
	For the SRH-1D simulations, a time series of measured discharges at Shih-Gang Dam provides the upstream BC, but flow and sediment inputs from tributaries downstream of Shih-Gang Dam are not considered here due to lack of data. The downstream BC is specified using the critical depth obtained from the same HEC-RAS simulations and the 2005 geometry (Lai and Greimann 2010). Channel geometry data were collected in both 2001 and 2005, and these datasets provide the initial bed geometry for each period. Sediment s
	All three uncertainty methods (ELH, SCEM-UA, and GLUE) use Eq. (18) to compute the posterior density of parameter set, which is the combination of the nine SRH-1D model parameters, when estimating the posterior distributions for those parameters. Then, the calibrated distributions are applied to the forecast period, and the uncertainty estimates are compared to the actual spread of the observations. The residuals for the net deposition volumes, which were calculated using the calibrated model, were examined

	3.4.2 Computational Cost for Uncertainty Estimates 
	3.4.2 Computational Cost for Uncertainty Estimates 
	In the ELH implementation, 500 parameter sets were generated for the simulations of the calibration period in every updating loop. Fig. 11a illustrates the SD change that is calculated every 500 simulations, and the stability of ELH is diagnosed at 6,000 simulations. The resulting posterior sample contains 2,378 unique parameter sets, and its total size is 116,981. For the forecast period, those 2,378 unique sets were used in the simulations, and the resulting predictions were also duplicated according to t
	SCEM-UA was conducted using 10 parallel updating sequences with 250 initial parameter sets following the suggestions from Vrugt et al. (2003) for the case where numerous uncertain parameters are expected to be highly correlated. Based on the SRS (Gelman and Rubin 1992), SCEM-UA required 8,000 model runs to reach algorithm convergence prior to collecting the posterior sample. The SD change is also applied to check the stability of the posterior sample from SCEM-UA by calculating it every 500 simulations afte
	Figure
	Fig. 11 SD changes for SRH-1D model parameters using (a) ELH and (b) SCEM-UA, and (c) the total number of model simulations required to estimate the prediction uncertainty using the three uncertainty methods for the Tachia River case. 
	Fig. 11 SD changes for SRH-1D model parameters using (a) ELH and (b) SCEM-UA, and (c) the total number of model simulations required to estimate the prediction uncertainty using the three uncertainty methods for the Tachia River case. 


	Because the GLUE methodology is not a consecutive process, it was implemented several times 
	by increasing the sample size from 5,000 up to 150,000 in order to find the size that produces stable estimation. The behavioral sets were determined if the posterior density of a parameter set is larger than 0.1 % of the most likely parameter set’s posterior density, which is similar with the threshold used in ELH. The SD change cannot be applied because GLUE does not collect the posterior sample. By considering the median, 25% and 75% quantiles of the cumulative posterior distributions, GLUE provided near
	Fig. 11c compares the total number of simulations used for each method to implement the calibration and simulate the forecast scenario. Overall, the ELH method reduces the required simulations about 75% and 86% compared to the SCEM-UA and GLUE methods, respectively. For the calibration, ELH could estimate the joint posterior pdf before SCEM-UA achieved algorithm convergence. In addition, the sample duplication process in ELH enables reduced computational cost when simulating the forecast period. 
	A single simulation of the Tachia River took 20 and 28 seconds to run for calibration and forecast periods, respectively. In this study, four parallel computing processors of Intel i5-4690 CPU@ 3.50GHz 8GB RAM were used, and the continuous computation times are about 13 hours for ELH, 55 hours for SCEM-UA, and 90 hours for GLUE. The ratios of the computation times among the methods are almost the same as the ratio of the number of the required model runs. However, it is expected that high performance comput
	A single simulation of the Tachia River took 20 and 28 seconds to run for calibration and forecast periods, respectively. In this study, four parallel computing processors of Intel i5-4690 CPU@ 3.50GHz 8GB RAM were used, and the continuous computation times are about 13 hours for ELH, 55 hours for SCEM-UA, and 90 hours for GLUE. The ratios of the computation times among the methods are almost the same as the ratio of the number of the required model runs. However, it is expected that high performance comput
	because it will be able to run 500 simulations at the same time for the 500 parameter sets that are independently generated from a single updating loop. On the other hand, such a reduction cannot be anticipated for SCEM-UA because its sequential sampling and updating processes strongly depend on the parameter sets updated from the previous step. Specifically, as 10 parallel updating sequences were used for this case, only 10 simulations can apply at the same time although much more processors are available.


	3.4.3 Uncertainty in Model Parameters 
	3.4.3 Uncertainty in Model Parameters 
	The marginal posterior distribution for each parameter describes the uncertainty in the parameter value that remains after model calibration is complete. Fig. 12 compares the cumulative posterior distributions that are produced by the three uncertainty methods using the calibration data. In addition, Table 4 presents the median values and the ratio of the posterior IQRs to prior IQRs for the corresponding posterior distributions. The percentage values for IQR ratio can be interpreted as the fraction of the 
	Figure
	Fig. 12 Cumulative marginal posterior distributions for SRH-1D model parameters generated using the three uncertainty methods for the Tachia River case. 
	Fig. 12 Cumulative marginal posterior distributions for SRH-1D model parameters generated using the three uncertainty methods for the Tachia River case. 


	Table 4 Median values and IQR ratios of the estimated posterior distributions for SRH-1D model parameters obtained using the three uncertainty methods for the Tachia River case. 
	Parameters n θr λ nalt ζd ζs bL χϕ 
	Median 
	ELH 0.039 0.049 0.13 3.31 0.51 0.55 12.28 0.58 0.32 SCEM-UA 0.039 0.048 0.18 3.01 0.51 0.52 11.67 0.54 0.33 GLUE 0.039 0.049 0.13 3.39 0.53 0.50 12.26 0.56 0.33 
	IQR Ratio 
	ELH 35% 11% 28% 66% 100% 104% 96% 99% 102% SCEM-UA 35% 11% 30% 59% 85% 86% 81% 83% 80% GLUE 33% 12% 28% 63% 96% 105% 101% 104% 96% 
	Overall, the reference shear stress is the best identified parameter as it has the steepest cumulative distribution (Fig. 12). Its estimated median values are around 0.048~0.049 (Table 4), which are acceptable for the bed material sizes found in the Tachia River (Lai and Greimann 2010). The hiding and exposure coefficient λ, Manning’s roughness n, and active layer thickness multiplier nalt are also reasonably constrained by the data. These parameters were found to have the highest impact on SRH-1D simulatio
	Overall, the reference shear stress is the best identified parameter as it has the steepest cumulative distribution (Fig. 12). Its estimated median values are around 0.048~0.049 (Table 4), which are acceptable for the bed material sizes found in the Tachia River (Lai and Greimann 2010). The hiding and exposure coefficient λ, Manning’s roughness n, and active layer thickness multiplier nalt are also reasonably constrained by the data. These parameters were found to have the highest impact on SRH-1D simulatio
	values cannot be identified. In addition, their median values are determined near the middle of their feasible ranges and have the IQR ratios higher than 80% (Table 4). Both ELH and GLUE produce IQR ratios for these parameters near 100%, whereas SCEM-UA provides lower IQR ratios for them. On the other hand, the four well-specified parameters are given similar IQR ratios from all three methods. This tendency is consistent with the results observed for Case 3 where SCEM-UA underestimated the target variances 

	From both Fig. 12 and Table 4, notable differences between the uncertainty methods are found in the estimates for hiding and exposure coefficient λ and active layer thickness multiplier nalt, which are well-calibrated numerical parameters. ELH and GLUE provide similar posterior distributions for the both parameters, but SCEM-UA produces different results. Specifically, the estimated median for hiding and exposure coefficient from both ELH and GLUE are centered on 0.13, which is lower than the value of 0.18 
	Table 5 shows that the correlation coefficients between the four well-calibrated parameters. They are similar for ELH and SCEM-UA (note that GLUE neglects parameter correlations). The five poorly-calibrated parameters have negligible coefficient values that are all near zero (not 
	shown at the table). From Table 5, the reference shear stress can interact with three other 
	parameters. Specifically, its strong relationship with hiding and exposure coefficient can be addressed by the mathematical structure of the Wu equation in Eqs. (12) and (13). In addition, its negative correlation with λ and the positive correlation with nalt can support the interpretation for the different estimated medians in Table 4. 
	Table 5 Correlation coefficients between well-specified four model parameters of SRH-1D estimated by ELH and SCEM-UA in Tachia River case. 
	ELH 
	ELH 
	ELH 
	SCEM-UA 

	Parameters 
	Parameters 
	n 
	θr 
	λ 
	nalt 
	n 
	θr 
	λ 
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	n 
	n 
	1.00 
	0.28 
	-0.03 
	-0.13 
	1.00 
	0.31 
	0.02 
	-0.12 

	θr 
	θr 
	0.28 
	1.00 
	-0.38 
	0.47 
	0.31 
	1.00 
	-0.35 
	0.45 

	λ 
	λ 
	-0.03 
	-0.38 
	1.00 
	0.02 
	0.02 
	-0.35 
	1.00 
	0.00 

	nalt 
	nalt 
	-0.13 
	0.47 
	0.02 
	1.00 
	-0.12 
	0.45 
	0.00 
	1.00 



	3.4.4 Model Prediction Uncertainty 
	3.4.4 Model Prediction Uncertainty 
	The net sediment deposition volumes for the forecast period (2005 to 2009) were simulated using a sample of posterior parameter sets generated from each method. The forecast simulations use the cross-section data from 2005 as the initial geometry and the dam discharge data from 2005 to 2009 as the upstream BC, but the other conditions remain the same as the calibration period. 
	For each method in Fig. 13, the mean prediction is shown with a black bold line, and the 99% credible interval is shown by the grey region. It reflects the uncertainty due to the parameter values. Overall, no remarkable difference is observed between the predictions from ELH and SCEM-UA, but GLUE provides much wider ranges along the reach than the other two methods. Both ELH and GLUE consistently underestimate the eroded volumes in the upstream portion of 
	the reach (15-23 km) and underestimates deposition at the downstream end of the reach (0-4 km). 
	Those predictions also possess similar uncertainty throughout the reach (i.e. the width of the prediction range remains relatively constant). On the other hand, the predictions from GLUE present much larger uncertainty for the eroded sediment volume, where the lower bound extends to the value that is more than 300% of the observed erosion volume at 16~21 km from the downstream end. However, the mean predictions from all three methods show similar results along the channel. 
	Fig. 14 illustrates the distribution of the predictions for net deposition volume at a cross section located 21 km upstream from the ocean. The numbers of predictions in each of the equal-sized bins was counted and those numbers were divided by the entire prediction sample size, which is 116,981 for ELH, 13,000 for SCEM-UA, and 10,000 for GLUE. ELH and SCEM-UA show similar distributions that have a single mode near -2.2×10mand range from -4×10to 0.5×10m. On the other hand, GLUE has a much wider prediction r
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	Figure
	Fig. 13 Observations and mean predictions for sediment net deposition volume in the forecast period of the Tachia River case. The vertical width of the gray region is the 99% credible interval of the predictions. 
	Fig. 13 Observations and mean predictions for sediment net deposition volume in the forecast period of the Tachia River case. The vertical width of the gray region is the 99% credible interval of the predictions. 


	Figure
	Fig. 14 Observation, mean prediction, and uncertainty distributions for net deposition volume at the cross section located 21 km upstream from the ocean for the forecast period in the Tachia River case. 
	Fig. 14 Observation, mean prediction, and uncertainty distributions for net deposition volume at the cross section located 21 km upstream from the ocean for the forecast period in the Tachia River case. 


	In order to evaluate the performance and the prediction from each method, three metrics are 
	computed and presented in Fig. 15. First, the NSCE is calculated for the mean prediction from each method during the calibration and forecast periods (Fig. 15a). NSCE can range from -∞ to 1, where 1 means the model prediction perfectly matches the observations, but note that the methods do not use NSCE in their evaluation of the model performance. Overall, all three methods reproduce the observations for the calibration period better than the forecast period, but there is no meaningful difference in the per
	Second, Fig. 15b compares the prediction uncertainty estimated from each method by calculating the SD of the simulated net deposition volumes (averaged among all cross-sections). The resulting SD values indicate that GLUE has the largest uncertainty in the predictions for both the calibration and forecast periods. Specifically, ELH has a SD that is about 3 % less than SCEMUA for both periods and 4 % and 63 % less than GLUE for calibration and forecast periods, respectively. Such large forecast uncertainty e
	-

	Figure
	Fig. 15 (a) Nash-Sutcliffe Coefficient of Efficiency (NSCE) values for the mean prediction from each method, (b) standard deviation (SD) of the sample of simulation outputs, (c) Continuous Rank Probability Score (CRPS) values for distributions of the same simulations, and (d) percentage of observations covered by the 99% credible intervals of the same simulations. 
	Fig. 15 (a) Nash-Sutcliffe Coefficient of Efficiency (NSCE) values for the mean prediction from each method, (b) standard deviation (SD) of the sample of simulation outputs, (c) Continuous Rank Probability Score (CRPS) values for distributions of the same simulations, and (d) percentage of observations covered by the 99% credible intervals of the same simulations. 


	Third, the continuous ranked probability score (CRPS) (Brown 1974; Matheson and Winkler 1976; Hersbach 2000) is calculated in order to evaluate the performance considering the predictive distribution (Fig. 15c). The CRPS measures the area between the cumulative distribution of the predictions and the observation as: 
	CRPS = G( ) −1{O ≥ y}
	1 
	∑
	N 
	∫ 
	
	i 
	i 
	 
	2 

	O dO (27) 
	i=1 
	N

	where Gi(O) denotes the cumulative distribution of the model outputs O at measurement i, and 1{O ≥ yi} is the Heaviside function that attains the value 1 if O ≥ yi and the value 0 otherwise (Hersbach 2000). The CRPS has the units of the considered variable, and its minimal value of zero is only achieved when a sample of predictions perfectly matches the observations with no spread. Smaller CRPS values are preferred and indicate better performance of the predictions. It is based on the principle that probabi
	The reason of remaining uncovered observations should be interpreted as that the methods are not able to fully reflect other uncertainty sources in sediment transport modeling. Errors in the measurements of net deposition volume, which are not considered in this research, can be one of the most important uncertainty factors. Other reasons could be deviations from the assumptions used in each uncertainty analysis algorithm or flaws in the hydraulic and sediment transport model itself (e.g., the use of the Wu
	improper simulation setup as it considers modeling a natural river, rather than the previous 
	numerical experiment cases. 


	3.5 Conclusions 
	3.5 Conclusions 
	This study suggested the ELH method to perform uncertainty analysis associated with sediment transport model parameters. Through the case studies conducted in this study, the benefits of the new method have been specified as follows: 
	1. 
	1. 
	1. 
	From the synthetic cases where the posterior distributions are known, ELH reproduces the target values quicker and more accurately than SCEM-UA. Specifically, ELH constructs a histogram of generated parameter values that is a smoother and closer approximation for the target bimodal probability distribution. The improved performance is more notable when considering a number of parameters that are highly correlated. In such a case, ELH is able to estimate the variances and correlation coefficients between the

	2. 
	2. 
	In the application to the simulation of a natural river, ELH implements parameter calibration and evaluates prediction uncertainty much quicker than the existing uncertainty methods. When ELH is used, the number of model simulations required for obtaining the reliable estimates decreases about 75% and 86% compared to SCEM-UA and GLUE, respectively. In addition, high performance computing systems with larger numbers of processors is expected to reduce the computation time for ELH much more. 

	3. 
	3. 
	3. 
	From the natural river case, ELH is able to estimate the uncertainty in the parameter values including the correlations between the model parameters. The marginal posterior 

	parameter distributions estimated by ELH are almost the same as the results from GLUE, but those are slightly different from the estimations of SCEM-UA, which might be due to the different sampling strategies. The correlation coefficients show that both ELH and SCEM-UA can identify the strong interactions between reference shear stress, hiding and exposure coefficient, and active layer thickness multiplier in the SRH-1D model simulation of the Tachia River. 

	4. 
	4. 
	For the natural river case, ELH can produce similar estimates of the prediction uncertainty compared to the results from SCEM-UA, whereas GLUE provides larger uncertainties in the model predictions. Specifically, the predictive distributions produced by ELH and SCEM-UA present similar accuracy based on the CRPS values for both calibration and forecast periods. In addition, the performance of both ELH and SCEMUA are better than GLUE as they consider the parameter correlations when sampling the parameter sets
	-



	Overall, the results support using ELH for evaluating model prediction uncertainty as it can reduce the computational cost remarkably while still providing similar estimates compared to the existing methods. Furthermore, it includes parameter correlations when assessing the prediction uncertainty for sediment transport models. The methodology suggested in this study should be expanded along several avenues in the future. First, the likelihood function used in ELH might restrict the applicability of the meth
	Overall, the results support using ELH for evaluating model prediction uncertainty as it can reduce the computational cost remarkably while still providing similar estimates compared to the existing methods. Furthermore, it includes parameter correlations when assessing the prediction uncertainty for sediment transport models. The methodology suggested in this study should be expanded along several avenues in the future. First, the likelihood function used in ELH might restrict the applicability of the meth
	et al. 2016), but they often make the estimation process more complex or include more parameters to calibrate for specifying the form of the likelihood function. In addition, the function should be able to consider the likelihoods of multiple variables at the same time because sediment transport models generate multiple output variables of interest (e.g., bed elevation, median sediment diameter or D50, and water depth) and these variables are often considered together (Russel et al. 2010; Ahn and Yang 2015)
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	CHAPTER 4 
	COMBINING PREDICTIONS AND ASSESSING UNCERTAINTY FROM SEDIMENT TRANSPORT EQUATIONS USING MULTIVARIATE BAYESIAN MODEL AVERAGING 
	Abstract 
	Bayesian model averaging (BMA) is a statistical hydrologic method that reduces the effects of imperfections in a single model prediction and characterizes the uncertainty due to the mathematical model structure. The authors apply BMA to quantify how the uncertainty originating from the selection of a transport equation affects the multivariate predictions from a sediment transport model. To overcome the limitation of the existing BMA that is only able to consider a single variable, the likelihood function o
	4.1 Introduction 
	4.1 Introduction 
	Sediment transport models are widely used to predict impacts of potential river restoration activities, but the predictions from these models always possess uncertainty. One major source of the uncertainty is the mathematical equation that is used to compute sediment transport capacity in these models. Several equations have been empirically developed for different fluvial conditions by applying various simplifications and assumptions. For example, the 
	equations are available for a certain range of sediment size such as sand (Yang 1973; Yang 1979), 
	gravel (Yang 1984), or sand with high concentration of fine particles (Yang 1996). The equations are also designed for different transport types including bedload (Meyer-Peter and Mller 1948; Einstein 1950; Rottner 1959; Bijker 1968; Bagnold 1980; Parker 1990; Dibajnia and Watanabe 1992; Ribberink 1998; Wilcock and Crowe 2003) and total material load (Laursen 1958; Engelund and Hansen 1972; Ackers and White 1973; Bailard 1981; Brownlie 1981; van Rijn 1989; Wu et al. 2000). In addition, some equations revise
	Multi-model averaging methods offer a formal way to reduce the effects of imperfections in a single model prediction and assess the uncertainty due to the model’s mathematical structure. The methods combine the predictions from a set of competing models and provide averaged forecasts and their credible intervals. Several techniques of multi model averaging include: equal weights averaging (Anderson 1965), Bates-Granger averaging (Bates and Granger 1969), Granger-Ramanathan averaging (Granger and Ramanathan 
	Multi-model averaging methods offer a formal way to reduce the effects of imperfections in a single model prediction and assess the uncertainty due to the model’s mathematical structure. The methods combine the predictions from a set of competing models and provide averaged forecasts and their credible intervals. Several techniques of multi model averaging include: equal weights averaging (Anderson 1965), Bates-Granger averaging (Bates and Granger 1969), Granger-Ramanathan averaging (Granger and Ramanathan 
	Bayesian model averaging (BMA) (Hoeting et al. 1999; Raftery et al. 2005). Among the available methods, BMA has been shown to produce the most accurate predictions and more realistic description of the predictive uncertainty in various case studies of hydrologic modeling (Clyde 1999, Viallefont et al. 2001, Ye et al. 2004, Raftery et al. 2005, Ajami et al. 2007, Sloughter et al. 2010). BMA represents the uncertainty associated with each competing model using a normal distribution that is centered on that mo

	Figure
	Fig. 16 Illustration of BMA distribution generated by a weighted-average of normal distributions from four competing models. 
	Fig. 16 Illustration of BMA distribution generated by a weighted-average of normal distributions from four competing models. 


	BMA has recently been applied to hydraulic and sediment transport modeling (Sabatine et al. 2015), but it was constrained to cases that consider only a single variable because the likelihood function of BMA is not easily generalized to account for multiple variables at the same time. If BMA is modeled to maximize the likelihoods of only a single variable, the other variables might be estimated poorly by the BMA model. Moreover, any probabilistic information cannot be obtained for the other variables because
	Another limitation in the application to sediment transport models is that the BMA assumption, which applies the same standard deviations to individual model predictions at all locations and 
	times, cannot reflect the change in the uncertainty scale. The variables such as sediment 
	transport rate, deposition or scour volumes are measured on ratio scales, and the residuals generally increase with respect to their quantities. This implies that the uncertainty in each model prediction depends on the scale of those variables. Thus, the BMA pdf for the quantitative variables might overestimate (or underestimate) the predictive uncertainty if the standard deviations are calibrated using data with large (or small) values and applied to the individual model simulations of the forecast scenari
	The objective of this research is to develop and test a multivariate version of BMA to assess the uncertainty associated with the selection of a transport equation in a one-dimensional sediment transport modeling. The likelihood function suggested in this study is intended to compute the likelihoods of BMA with respect to multiple variables, and the BMA assumption is revised to allow the change in the uncertainty scale for quantitative variables. To test the multivariate BMA, two published flume cases inclu
	existing univariate BMA in both prediction accuracy and observation coverage of their credible 
	bounds. 

	4.2 Methodology 
	4.2 Methodology 
	4.2.1 Existing BMA Method 
	4.2.1 Existing BMA Method 
	BMA (Hoeting et al. 1999) defines the uncertainty in the model prediction for variable ∆ using a pdf p(∆|M,y), which is the posterior distribution of ∆ given a set of competing models M ={M1, M2, …, MA} and calibration dataset y: 
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	where A is the number of competing models, p(∆|Ma,y) is the posterior distribution from the model a, and p(Ma|y) is the posterior probability that reflects how well model Ma fits the dataset 
	y. As the posterior probabilities of all competing models add up to one, they can be considered as weights of each model. Thus, the BMA pdf is a weighted average of the posterior distributions given each of the individual models. 
	BMA has been applied to dynamic models using the assumptions: (1) the forecast Oa from each Ma is the most likely result from that model, and (2) the uncertainty associated with each model can be represented using a normal distribution that is centered on the predictions Oa (Raftery et al. 2005). To obtain the best forecasts, the parameters of each model Ma are optimized using the dataset y. BMA represents the posterior distribution of ∆ given a set of competing model predictions O ={O1,…, OA} as: 
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	where wa is model a’s weight, which represents the posterior probability that prediction Oa is the best one among O, and p(∆|Oa,σa) is the pdf of ∆ occurring by model a’s normal distribution with mean Oa and standard deviation σa. To generate the BMA pdf, the weights wa and standard deviations σa of competing models are estimated to maximize the BMA likelihood LBMA over all locations and times in the calibration dataset y. Assuming that the residuals of each model are independent, the log-likelihood functio
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	where g(yi| fai,σa) is the probability density of the observation yi given model a’s prediction Oai and standard deviation σa for the measurement i in the calibration period. An optimization algorithm called Expectation-Maximization (EM) (Dempster et al. 1977) has been used to find the best values of wa and σa. The EM is easy to implement, and its algorithm steps are designed in a way that they always satisfy the constraint that the model weights wa are positive and add up to one (Vrugt et al. 2008, Givens 
	BMA then applies the same weights wa and standard deviations σa obtained from the calibration period to the model predictions at all locations and times in the forecast scenario (Raftery et al. 2005, Sabatine et al. 2015). The mean of each model’s normal distribution is changing as the models make their forecasts, but the other quantities all remain fixed. BMA provides a deterministic prediction using an expectation of the BMA pdf, and it is the same as a weighted-average of the predictions from the competi
	BMA then applies the same weights wa and standard deviations σa obtained from the calibration period to the model predictions at all locations and times in the forecast scenario (Raftery et al. 2005, Sabatine et al. 2015). The mean of each model’s normal distribution is changing as the models make their forecasts, but the other quantities all remain fixed. BMA provides a deterministic prediction using an expectation of the BMA pdf, and it is the same as a weighted-average of the predictions from the competi
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	The uncertainty contained in the BMA prediction can be described using credible intervals (CI), which are calculated using specific quantiles of the BMA pdf, and the BMA CIs quantity the predictive uncertainty, which originates from both the uncertainty due to the model selection and the uncertainty associated with each model. 

	4.2.2 Multivariate BMA Model 
	4.2.2 Multivariate BMA Model 
	Multivariate BMA uses a modified BMA likelihood function to compute the likelihoods of multiple variables within a single formula. This method applies two primary assumptions: (1) each model has same weight wa for all variables so that the model performance is evaluated with respect to multiple variables and (2) each model has different standard deviations for different variables σaj to consider the fact that different variables do not necessarily have identical standard deviations. The multivariate BMA lik
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	where J is the number of variables considered, Nj is the number of observations for variable j in the calibration dataset, and g(·) represents the probability density of reproducing the normalized observation y′ given model a’s normalized prediction O′ with standard deviation σ′ for the 
	ij 
	aij
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	normalized variable j at a location or time i. In Eq. (32), the likelihood of each variable j is divided by Nj to avoid treating highly correlated (or dependent) observations of specific variables (e.g., adjacent bed elevations) as independent. In addition, the normalized values of each variable are used in the likelihood function because g(·) strongly depends on the scale or units of 
	the variables so the overall BMA likelihoods might be distorted when multiple variables with 
	different scales are included. While BMA assumes normality of the variables, some quantitative variables might not be properly expressed using a single standard deviation, as discussed in the previous paragraph. A non-parametric normalization is then used as follows: 
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	where yij is the observation, Oaij is model a’s prediction for variable j at a measurement i, and yj,50 is the median of the observed variable j. By using the normalized variables, the multivariate BMA likelihood LmBMA can be computed independent from the variable’s scale or units. As the model standard deviation σ′ has a normalized scale, it needs to be transformed to the original 
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	The wa and σaj values from the EM algorithm are then applied to Equation (29) to generate the BMA pdf separately for each variable. 
	In multivariate BMA, the coefficient of variation (CV) can be used to reflect the change in the uncertainty scale of a variable instead of the standard deviation, following the idea of a linear dependency in standard deviations (Vrugt and Robinson 2007). The CV is a ratio of the standard deviation to the mean. Multivariate BMA assumes that each model has a single value of CV for a quantitative variable, and applies the identical CV to each model’s predictions at all locations 
	and times. By applying the CV, the standard deviation of each model is allowed to vary based 
	on the model predictions as: 
	σ′ = CV × O′ (36) 
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	deviation for the normalized variable j at measurement i. If the model prediction value is a negative, its absolute value 
	can be used in the Eq. (36) (e.g., the simulated deposition 
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	volume would be negative where the results indicate erosion). The BMA likelihood for the quantitative variable q can be calculated as: 
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	where Nq is the total number of observations for the variable q. The likelihood Lq then can be divided by Nq and inserted into Eq. (32) in order to compute the multivariate BMA likelihood. After obtaining the best model weights and the CVs, the BMA pdf for this variable can be generated as: 
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	4.3 Application 
	4.3 Application 
	4.3.1 Flume Experiments 
	4.3.1 Flume Experiments 
	Two flume experiments with non-cohesive sediment transport, conducted by Seal et al. (1997) and Pender et al. (2001), are considered as case studies to evaluate the multivariate BMA. These 
	Two flume experiments with non-cohesive sediment transport, conducted by Seal et al. (1997) and Pender et al. (2001), are considered as case studies to evaluate the multivariate BMA. These 
	experiments are chosen, rather than natural rivers, because flume conditions such as channel geometry, flow rate, sediment supply, and bed materials are well-documented for both cases. That reduces uncertainty about the system configuration. In addition, the computational costs are low because a sediment transport model is able to quickly simulate the flume cases. Scour and sedimentation processes occur separately in each experiment. 

	The Seal et al. (1997) experiment was designed to investigate downstream fining and sediment sorting during aggradation in narrow channels. The flume was 0.3 m wide, 45 m long with rectangular shape, and initial slope was 0.002. No initial bed material was used and water discharge was steadily applied at 0.049 m/s for 64 hours. At the upstream end, sediment was supplied with the rate of 0.047 kg/s during the experiment, and the supplied material was a mixture of sand and gravel ranging from 0.125 mm to 65 m
	3

	The Pender et al. (2001) experiment was designed to simulate bed degradation and investigate changes in transport rate. The flume was 0.8 m wide, 20 m long, trapezoidal shape with 45° side slope, and initial slope was 0.0026. Initial bed material was a mixture of sand and gravel ranging from 0.25 mm to 22.63 mm. Water discharge was steadily applied at 0.117 m/s for 84.6 hours, and there was no sediment supply. Bed elevations were measured every 2-3 hours at 21-42 locations, and bed load transport rate was m
	The Pender et al. (2001) experiment was designed to simulate bed degradation and investigate changes in transport rate. The flume was 0.8 m wide, 20 m long, trapezoidal shape with 45° side slope, and initial slope was 0.0026. Initial bed material was a mixture of sand and gravel ranging from 0.25 mm to 22.63 mm. Water discharge was steadily applied at 0.117 m/s for 84.6 hours, and there was no sediment supply. Bed elevations were measured every 2-3 hours at 21-42 locations, and bed load transport rate was m
	3

	variables of interest in BMA, and the dataset is divided into a calibration period (hours 0 to 32.1) and a forecast period (hours 32.1 to 84.6) (Table 6). 

	Table 6 Available Observations from Two Experiments for the Calibration and Forecast Periods of BMA Modeling. 
	Number of Observations 
	Number of Observations 
	Number of Observations 

	Experiment 
	Experiment 
	Period 
	Duration (hour) 
	Flow Rate (m3/s) 
	Supplied Sediment (kg/s) 
	Bed Elevation 
	D50 
	Sediment Transport Rate 

	Seal et al. (1997) 
	Seal et al. (1997) 
	Calibration Forecast 
	0 – 32 32 – 64 
	0.049 
	0.094 
	126 87 
	46 18 
	--

	Pender et al. (2001) 
	Pender et al. (2001) 
	Calibration Forecast 
	0 – 32.1 32.1 – 84.6 
	0.117 
	0 
	168 203 
	--
	17 17 



	4.3.2 BMA Modeling for Sediment Transport Equations 
	4.3.2 BMA Modeling for Sediment Transport Equations 
	Four equations in SRH-1D are treated as separate sediment transport models for BMA modeling in this study. The following paragraphs describe the three equations for sediment transport capacity considered here in addition to the Wu (2000) equation (Section 2.3.1). 
	The Parker (1990) and Wilcock and Crowe (2003) (W&C) equations were developed to compute bed load transport capacity using the following form: 
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	where qbk is volumetric bed load transport rate per unit width, pk is percentage of materials available for grain size class k, τg is grain shear stress, ρ is density of water, ρs is density of the sediment, and φk is a measure of shear stress relative to reference shear stress. 
	In the Parker equation, the empirical function F(φk) was fit to data from the field with mixed size gravel (2 mm to 64 mm) as: 
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	On the other hand, the W&C equation defines the function F(φk) using a mixture of sand and gravel (62.5 µm to 64 mm) as: 
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	The modified Meyer-Peter Muller (MPM) equation (Wong and Parker 2006) was also suggested to compute bed load transport capacity using mixed materials of medium sand to coarse gravel 
	(0.38 mm to 28.65 mm) as: 
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	where dk is median particle diameter of class k, R is hydraulic radius, and Sf is energy slope. 
	For BMA modeling, the eight parameters of each model were estimated using an optimization algorithm and the dataset from the calibration period (ead of the standard deviations. 
	Table 7). The optimization was performed using Multivariate Shuffled Complex Evolution Metropolis – Uncertainty Analysis (MSU) (Sabatine et al. 2015), which is able to compute the likelihood of parameter sets using multiple model output variables. The roughness coefficient 
	Table 7). The optimization was performed using Multivariate Shuffled Complex Evolution Metropolis – Uncertainty Analysis (MSU) (Sabatine et al. 2015), which is able to compute the likelihood of parameter sets using multiple model output variables. The roughness coefficient 
	has units of s∙m, and all the other parameters are non-dimensional. Fig. 17 shows the observations and best outputs from individual models for the calibration period of each case. For the Seal et al. (1997) experiment, the outputs from the Parker, W&C, and Wu models are similar in both bed elevations and D50 size distributions, and they seem better than the outputs from the MPM model. For the Pender et al. (2001) experiment, all the models provided similar bed elevation profiles, but the W&C model simulated
	-1/3


	Table 7 Optimized Eight Parameters of SRH-1D Used for Each Model’s Simulation of Two Experiments. 
	Seal et al. (1997) 
	Seal et al. (1997) 
	Seal et al. (1997) 
	Pender et al. (2001) 

	Parameter 
	Parameter 
	Parker 
	W&C 
	MPM 
	Wu 
	Parker 
	W&C 
	MPM 
	Wu 

	Manning’s roughness 
	Manning’s roughness 
	0.023 
	0.024 
	0.025 
	0.023 
	0.015 
	0.016 
	0.015 
	0.015 

	Reference shear stress 
	Reference shear stress 
	0.066 
	0.052 
	0.049 
	0.046 
	0.055 
	0.015 
	0.049 
	0.038 

	Hiding and exposure coefficient 
	Hiding and exposure coefficient 
	0.958 
	0.868 
	0 
	0.797 
	0.037 
	0.006 
	0 
	0.003 

	Active layer thickness multiplier 
	Active layer thickness multiplier 
	15.270 
	11.236 
	4.934 
	3.145 
	3.151 
	0.130 
	1.494 
	2.930 

	Deposition recovery factor 
	Deposition recovery factor 
	0.873 
	0.688 
	0.680 
	0.902 
	0.314 
	0.718 
	0.131 
	0.772 

	Scour recovery factor 
	Scour recovery factor 
	0.077 
	0.463 
	0.123 
	0.519 
	0.241 
	0.511 
	0.334 
	0.443 

	Bedload adaptation length multiplier 
	Bedload adaptation length multiplier 
	1.155 
	3.169 
	9.594 
	3.353 
	21.245 
	19.329 
	23.283 
	21.736 

	Weight of bedload fractions 
	Weight of bedload fractions 
	0.661 
	0.474 
	0.996 
	0.151 
	0.687 
	0.742 
	0.572 
	0.655 


	Figure
	Fig. 17 Observations (crosses) and individual model outputs (lines) of (a) bed elevation profile and (b) D50 distribution at 20 hour of the Seal et al. (1997) experiment; (c) bed elevation profile at 32.1 hour and (d) sediment transport rate during the calibration period of the Pender et al. (2001) experiment. 
	Fig. 17 Observations (crosses) and individual model outputs (lines) of (a) bed elevation profile and (b) D50 distribution at 20 hour of the Seal et al. (1997) experiment; (c) bed elevation profile at 32.1 hour and (d) sediment transport rate during the calibration period of the Pender et al. (2001) experiment. 







	4.4 Results and Analysis 
	4.4 Results and Analysis 
	4.4.1 Model Weights and Standard Deviations 
	4.4.1 Model Weights and Standard Deviations 
	The weights of the four models were determined based on their ability to reproduce the observations for the calibration period, and they varied significantly according to the types of data used for BMA modeling (Fig. 18). No individual model was always the best at all variables and cases. 
	In the Seal et al. (1997) experiment, the W&C model is the best for BMA using bed elevation data, and the Wu model is the best for BMA using D50 size data. The multivariate BMA model using both bed elevation and D50 data distribute the model weights in a compromise of the distributions from the two univariate BMA models. Specifically, MPM has no weight on bed elevation but it has a meaningful weight on D50 because a couple of D50 data points were captured by this model (Fig. 17). However, the multivariate B
	Figure
	Fig. 18 Weights of individual models determined by BMA using each type of variable from the two experiments. 
	Fig. 18 Weights of individual models determined by BMA using each type of variable from the two experiments. 


	The standard deviations of each model prediction were determined generally following the reverse order of the model weights (Table 8), implying that predictions from models with low weights contain large uncertainties. The multivariate BMA model was able to specify the standard deviations for both bed elevation and D50 in the Seal et al. (1997) case and for both bed elevation and sediment transport rate in the Pender et al. (2001) case. In addition, the standard deviation for each variable from the multivar
	To evaluate the assumption in which BMA applies the same weights and standard deviations at all times, the observations at a given time were grouped for each variable and the model weights and standard deviations were specified for each of the aggregated dataset. For bed elevations 
	and D50 sizes in both flume cases, the weights changed every time step with fluctuating patterns, 
	and the average of those fluctuated values followed the weights determined by grouping the observations from all the different times as a single variable. The same patterns occurred for the standard deviations of the individual models, so the assumption is expected to be reasonable for those two variables. However, the sediment transport rates in the Pender et al. (2001) case showed standard deviations that varied following the scales of the observations and model outputs. It suggests that a different appro

	4.4.2 BMA Predictions and Uncertainty 
	4.4.2 BMA Predictions and Uncertainty 
	The predictive distributions of the BMA models are illustrated using the predictions of bed elevation at one location and time in the forecast period of the Pender et al (2001) case (Fig. 19). Each of the competing models provided a single prediction (white markers), and the deterministic BMA predictions (color filled markers) are the same as a weighted-average of the predictions from the individual models. Both the BMA using bed elevation and the multivariate BMA model generated probabilistic distributions
	Table 8 Standard Deviations of Each Model Prediction Obtained from BMA Calibration: Multivariate BMA Model Uses Bed Elevation and D50 Data for the Seal et al. (1997) Case and Bed Elevation and Sediment Transport Rate for the Pender et al. (2001) Case. 
	Bed Elevation (cm) 
	Bed Elevation (cm) 
	Bed Elevation (cm) 
	D50 (mm) / Transport Rate (g/s) 

	Parker 
	Parker 
	W&C 
	MPM 
	Wu 
	Parker 
	W&C 
	MPM 
	Wu 

	Seal et al. (1997) 
	Seal et al. (1997) 

	Bed Elevation BMA 
	Bed Elevation BMA 
	2.93 
	0.74 
	12.15 
	2.20 
	-
	-
	-
	-

	D50 BMA 
	D50 BMA 
	-
	-
	-
	-
	1.25 
	0.77 
	2.30 
	0.61 

	Multivariate BMA 
	Multivariate BMA 
	3.05 
	0.69 
	12.20 
	2.12 
	3.35 
	0.76 
	2.47 
	0.85 

	Pender et al. (2001) 
	Pender et al. (2001) 

	Bed Elevation BMA 
	Bed Elevation BMA 
	0.09 
	0.13 
	0.23 
	0.10 
	-
	-
	-
	-

	Transport Rate BMA 
	Transport Rate BMA 
	-
	-
	-
	-
	0.54 
	6.01 
	3.15 
	5.84 

	Multivariate BMA 
	Multivariate BMA 
	0.19 
	0.15 
	0.28 
	0.10 
	0.53 
	6.14 
	3.17 
	6.57 


	Figure
	Fig. 19 Observation (dashed vertical line), and predictions from the individual models (white markers) and the BMA model using sediment transport rate (black marker), predictive distributions of BMA using bed elevation (solid black line with filled circle marker) and multivariate BMA model (solid grey line with filled triangle marker) for bed elevation at 10.5 m upstream at 79.6 hour in the Pender et al. (2001) experiment. 
	Fig. 19 Observation (dashed vertical line), and predictions from the individual models (white markers) and the BMA model using sediment transport rate (black marker), predictive distributions of BMA using bed elevation (solid black line with filled circle marker) and multivariate BMA model (solid grey line with filled triangle marker) for bed elevation at 10.5 m upstream at 79.6 hour in the Pender et al. (2001) experiment. 


	In order to examine whether the BMA models defined using calibration data also apply to the 
	forecast period, the predictions and their CIs for the two experimental cases are presented in Fig. 20 and Fig. 21. Overall, the deterministic predictions differ between the BMA models, and the multivariate BMA model was able to produce the CIs for all considered variables at the same time whereas the univariate BMA models provided the CIs only for the considered single variable. For the Seal et al. (1997) depositional case (Fig. 20), the BMA model using D50 data generated lower bed elevation profiles and l
	Figure
	Fig. 20 Observations, predictions and 90% credible intervals from each type of BMA model for bed elevations at 50 hr and D50 at 53 hour in the forecast period of the Seal et al. (1997) experiment. 
	Fig. 20 Observations, predictions and 90% credible intervals from each type of BMA model for bed elevations at 50 hr and D50 at 53 hour in the forecast period of the Seal et al. (1997) experiment. 


	Figure
	Fig. 21 Observations, predictions and 90% credible intervals from each type of BMA model for bed elevations at 84.6 hr and sediment transport rate during the forecast period of the Pender et al. (2001) experiment. 
	Fig. 21 Observations, predictions and 90% credible intervals from each type of BMA model for bed elevations at 84.6 hr and sediment transport rate during the forecast period of the Pender et al. (2001) experiment. 


	The model performance was assessed using the Nash-Sutcliffe Coefficient of Efficiency (NSCE), which computes the accuracy of the deterministic predictions from each model. The value of NSCE can range from -∞ to one, and it approaches one when the model reproduces the observations perfectly. For each variable, the NSCE values were calculated for the individual and BMA models (Table 9). For the Seal et al. (1997) case, the NSCE indicated that the multivariate BMA models provided the best predictions for bed e
	Table 9 Nash-Sutcliffe Coefficient of Efficiency (NSCE) Values for Individual Models and BMA Models from Calibration (Calib.) and forecast (Fore.) Periods of Two Experiments. 
	Seal et al. (1997) 
	Seal et al. (1997) 
	Seal et al. (1997) 
	Pender et al. (2001) 

	Bed Elevation 
	Bed Elevation 
	D50 
	Bed Elevation 
	Transport Rate 

	Model 
	Model 
	Calib. 
	Fore. 
	Calib. 
	Fore. 
	Calib. 
	Fore. 
	Calib. 
	Fore. 

	Parker 
	Parker 
	0.99 
	0.81 
	0.36 
	-0.99 
	0.91 
	0.91 
	0.63 
	-0.53 

	W&C 
	W&C 
	0.98 
	0.98 
	0.43 
	-0.72 
	0.89 
	0.89 
	0.59 
	-1.36 

	MPM 
	MPM 
	0.84 
	0.50 
	0.22 
	-14.89 
	0.93 
	0.92 
	0.45 
	-9.47 

	Wu 
	Wu 
	0.98 
	0.97 
	0.47 
	-0.24 
	0.91 
	0.84 
	0.54 
	-34.44 

	Bed Elevation BMA 
	Bed Elevation BMA 
	0.99 
	0.96 
	0.42 
	-0.70 
	0.93 
	0.93 
	0.47 
	-7.89 

	D50 BMA 
	D50 BMA 
	0.97 
	0.94 
	0.53 
	-2.54 
	-
	-
	-
	-

	Transport Rate BMA 
	Transport Rate BMA 
	-
	-
	-
	-
	0.92 
	0.93 
	0.60 
	-0.80 

	Multivariate BMA 
	Multivariate BMA 
	0.99 
	0.98 
	0.43 
	-0.57 
	0.92 
	0.94 
	0.59 
	-1.42 


	The model weights did not exactly follow the order of NSCE, but the BMA models are typically expected to give higher weights to the better performing models. Specifically, the BMA model is specified by optimizing the combination of weights and standard deviations of the competing models so that the single model weight is highly correlated to the weights of the other models and the standard deviations. For example, the Wu model had a zero weight for all BMA models for the Pender et al. (2001) case although t
	models were widely spread, like the BMA model using bed elevation in Fig. 19. Therefore, the 
	expectation of the BMA pdf is expected to provide a reasonable BMA prediction although it does not possess the highest probability. 
	The percentages of observations covered by the 90 % CIs of each BMA model are shown in Table 10. The multivariate BMA models cover approximately 90% of the observations in the calibration period of both experimental cases, and they generally covered more observations than the univariate BMA models for the considered variables. Specifically, the multivariate BMA model covers more than 90 % of the observations for all considered variables in the Pender et al. (2001) case. For the Seal et al. (1997) case, only
	Table 10 Percentage of Observations Covered by 90% Credible Intervals of BMA Models from Calibration and Forecast Periods of Seal et al. (1997) and Pender et al. (2001) Experiments. 
	Seal et al. (1997) 
	Seal et al. (1997) 
	Seal et al. (1997) 
	Pender et al. (2001) 

	Bed Elevation 
	Bed Elevation 
	D50 
	Bed Elevation 
	Transport Rate 

	Model 
	Model 
	Calib. 
	Fore. 
	Calib. 
	Fore. 
	Calib. 
	Fore. 
	Calib. 
	Fore. 

	Bed Elevation BMA 
	Bed Elevation BMA 
	89.6 
	70.1 
	-
	-
	88.7 
	91.1 
	-
	-

	D50 / Transport Rate BMA 
	D50 / Transport Rate BMA 
	-
	-
	84.7 
	66.7 
	-
	-
	82.4 
	100 

	Multivariate BMA 
	Multivariate BMA 
	88.9 
	77.0 
	89.1 
	83.3 
	89.3 
	94.1 
	82.4 
	100 



	4.4.3 Applying Coefficient of Variation 
	4.4.3 Applying Coefficient of Variation 
	In order to resolve the problem of overestimation in the uncertainty for the Pender et al. (2001) case, the coefficients of variation were applied to the sediment transport rates whereas the standard deviations were applied to the bed elevations. Table 11 presents the calibration results of the multivariate BMA modeling. Compared to the multivariate BMA using standard deviations for both variables (Fig. 18), the Parker and W&C models gained larger weights and the weight of MPM reduced remarkably. Standard d
	Table 11 Multivariate BMA Calibration Results from Applying Standard Deviations (STDEV) for Bed Elevation and Coefficients of Variation (CV) for Sediment Transport Rate in the Pender et al. (2001) Case. 
	Parker 
	Parker 
	Parker 
	W&C 
	MPM 
	Wu 

	Model Weight 
	Model Weight 
	0.77 
	0.20 
	0.03 
	0.00 

	STDEV for Bed Elevation 
	STDEV for Bed Elevation 
	0.24 
	0.14 
	0.41 
	0.01 

	CV for Transport Rate 
	CV for Transport Rate 
	0.52 
	0.53 
	0.55 
	0.61 


	Figure
	Fig. 22 Observations, predictions and 90% credible intervals for sediment transport rate from the multivariate BMA models applying standard deviations (STDEV) and coefficient of variations 
	Fig. 22 Observations, predictions and 90% credible intervals for sediment transport rate from the multivariate BMA models applying standard deviations (STDEV) and coefficient of variations 


	(CV) during both the calibration and forecast periods of the Pender et al. (2001) experiment. 
	Table 12 NSCE and Percentage of Observations Covered by the 90% Credible Intervals of the Multivariate BMA Model Applying CV from Calibration and Forecast Periods of the Pender et al. (2001) Case. 
	Bed Elevation 
	Bed Elevation 
	Bed Elevation 
	Sediment Transport Rate 

	Calib. 
	Calib. 
	Fore. 
	Calib. 
	Fore. 

	NSCE 
	NSCE 
	0.918 
	0.922 
	0.629 
	-0.155 

	Coverage (%) 
	Coverage (%) 
	88.1 
	90.6 
	100 
	100 


	A gamma distribution, which would not allow the values to be negative, was also applied to the 
	transport rate in order to evaluate the assumption of normality. To develop the BMA model, the shape parameter α and scale parameter β of the gamma distribution were determined for each individual model as well as the model weights. This approach showed the similar performance in prediction accuracy and observation coverage as the BMA model using a normal distribution, and the lower bounds of 90% CI were inherently non negative, which satisfies the basic characteristics of the considered variable. However, 


	4.5 Conclusions 
	4.5 Conclusions 
	1. 
	1. 
	1. 
	The proposed likelihood function enables BMA to assess model structure uncertainty in the predictions of multiple variables from sediment transport models within a single calibration whereas the previous BMA requires separate calibration for each of the considered variables. The multivariate BMA determines the weights and standard deviations of competing models based on the behavior of multiple variables, and it is also able to generate probabilistic predictions for multiple variables in the forecast scenar

	2. 
	2. 
	2. 
	The multivariate BMA model provides better model performance than the univariate 

	BMA models. Based on NSCE, the accuracy of the deterministic predictions is improved by considering multiple variables from the calibration dataset. Specifically, the D50 size distribution in the Seal et al. (1997) case was poorly estimated by the univariate BMA even though the model was developed using the D50 size data from the calibration period. This behavior results from MPM, which showed the worst performance for this case among the competing models but gained meaningful weight due to its match for a 

	3. 
	3. 
	Probabilistic distributions of the predictions are also enhanced by using the multivariate BMA model. In the Seal et al. (1997) case, the multivariate BMA model generated narrower CIs, which represent the less uncertainty in predictions, and covered more observations for D50 sizes than the univariate BMA model developed using D50 size data. It can also be inferred that the credibility of the predictions increases by minimizing role of the MPM model in the multivariate BMA modeling. From the Pender et al. (2

	4. 
	4. 
	Applying coefficients of variation instead of standard deviation allows BMA to vary the 


	uncertainty scale by reflecting the magnitude of model predictions for the variables. Several advantages of using this approach for the transport rates in the Pender et al. (2001) case were found including: (1) the CI widths changed according to the predicted values, (2) their lower bounds did not contain negative values, which is unrealistic, (3) the CIs cover more observations than the CIs determined by the standard deviations, and 
	(4) the EM algorithm is easily applied to find the best values of the coefficient of variation. 
	Several notable avenues are available for future research. First, the results presented in this study were obtained from the case studies of flume experiments where the sediment transport behavior was well-controlled. In order to establish generality, the proposed method should be expanded to consider other cases that contain natural rivers where the erosion and sedimentation processes occur together and are more complex. Other available sediment transport equations such as Ackers and White (1973), Brownlie
	Several notable avenues are available for future research. First, the results presented in this study were obtained from the case studies of flume experiments where the sediment transport behavior was well-controlled. In order to establish generality, the proposed method should be expanded to consider other cases that contain natural rivers where the erosion and sedimentation processes occur together and are more complex. Other available sediment transport equations such as Ackers and White (1973), Brownlie
	errors included in the model parameter values, the data used for model forcing variables, the channel geometry information, and the observations (Ruark et al. 2011). 
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