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Key Points: 9 

 Flow in the Colorado River and tributaries is sustained by groundwater during low-flow 10 
periods 11 

 Mean daily temperature and precipitation are both projected to increase in the UCRB 12 

 Simulated groundwater recharge in the UCRB is projected to be mostly above the 13 
historical average through 2099  14 
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Abstract 15 

Understanding groundwater-budget components, particularly groundwater recharge, is important 16 
to sustainably manage both groundwater and surface-water supplies in the Colorado River Basin 17 
now and in the future.  This study quantifies projected changes in upper Colorado River basin 18 
(UCRB) groundwater recharge from recent historical (1950–2015) through future (2016–2099) 19 
time periods, using a distributed-parameter groundwater recharge model with downscaled 20 
climate data from 97 Coupled Model Intercomparison Project Phase 5 climate projections.  21 
Simulated future groundwater recharge in the UCRB is generally expected to be greater than the 22 
historical average in most decades.  Increases in groundwater recharge in the UCRB are a 23 
consequence of projected increases in precipitation, offsetting reductions in recharge that would 24 
result from projected increased temperatures. 25 

1 Introduction 26 

From headwaters in the Rocky Mountains through seven states and Mexico, the Colorado 27 
River traverses more than 2200 km to discharge into the Gulf of California (Figure 1a). The 28 
Colorado River Basin drains parts of Wyoming, Utah, Colorado, New Mexico, Arizona, Nevada, 29 
California, and Mexico, and is divided into upper and lower basins at the compact point of Lee 30 
Ferry, Arizona, a location 1.6 km downstream of the mouth of the Paria River (Anderson, 2004; 31 
Figures 1a and 1b).  The Colorado River provides water for more than 35 million people in the 32 
United States and 3 million people in Mexico (Bureau of Reclamation, 2011; Colorado River 33 
Basin Salinity Control Forum, 2013). The annual discharge of groundwater to rivers and streams 34 
(base flow) in the upper Colorado River basin (UCRB) has been estimated at 21–58% of 35 
streamflow, with higher percentages during low-flow conditions (Miller et al., 2014).  The 36 
UCRB is defined for this study as the 293,721 km2 drainage area upstream of U.S. Geological 37 
Survey (USGS) streamflow-gaging station 09380000, Colorado River at Lees Ferry, Arizona 38 
(Figure 1b).  Major tributaries to the Colorado River in the Upper Basin include the Dolores, 39 
Green, Gunnison, San Juan, White, and Yampa Rivers (Figure 1b). Average annual precipitation 40 
ranges from less than 250 mm in low-elevation areas to more than 1000 mm in high elevation 41 
areas in the Southern Rocky Mountains (PRISM Climate Group, 2012; Figure 1c). The UCRB 42 
varies in elevation from about 944 m near the Lees Ferry streamgage to more than 4260 m in 43 
peaks in the Southern Rocky Mountains in the eastern part of the UCRB (Liebermann et al., 44 
1989). UCRB land cover is predominately shrub/scrub and evergreen forest, with few high-45 
density population centers (Fry et al., 2011; Figure 1d).  46 

Regional aquifers in the UCRB are composed of permeable, moderately to well-47 
consolidated sedimentary rocks ranging in age from Cambrian to Tertiary (Robson and Banta, 48 
1995), although groundwater in shallow alluvial deposits may be locally important in some 49 
locations in the Southern Rocky Mountains (Apodaca and Bails, 2000).  At least three groups of 50 
regional, productive water-yielding geologic units have been identified in the UCRB (Robson 51 
and Banta, 1995; Geldon, 2003a,b; Freethey and Cordy, 1991).  Tertiary aquifers of limited 52 
extent in the northern and southeastern parts of the basin overlie Mesozoic aquifers that also are 53 
present throughout most of the study area.  Deeper Paleozoic aquifers are present throughout 54 
much of the UCRB and may rise to land surface in uplifted areas.  Major aquifers are each 55 
partially separated by confining units, and groundwater flows between the aquifers in areas 56 
where confining units are missing.  Interconnection of the aquifers creates the regional 57 
groundwater-flow system (Geldon, 2003a,b; Freethey and Cordy, 1991).  58 
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2012).  Studies comparing simulated groundwater recharge in future climates projected by 68 
GCMs have been reported for basins in Germany (Eckhardt and Ulbrich, 2003), British 69 
Columbia (Allen et al., 2010; Scibeck and Allen, 2006; Toews and Allen, 2009), Australia 70 
(Crosbie et al., 2010; Crosbie et al., 2011; Crosbie et al., 2013; McCallum et al., 2010), southern 71 
Canada (Jyrkama and Sykes, 2007), eastern Canada (Kurylyk and MacQuarrie, 2013), Africa 72 
(Mileham et al., 2009; Nyenje and Batelaan, 2009), England (Holman et al., 2009), and the 73 
western United States (Meixner et al., 2016).  For this study, the Soil-Water Balance (SWB) 74 
distributed-parameter groundwater recharge model (Westenbroek et al., 2010) was used to 75 
simulate recharge in historical and future time periods.   76 

2 Methods and Data 77 

2.1 The soil-water balance groundwater recharge model 78 

The SWB model estimates groundwater recharge by direct infiltration by calculating 79 
water-balance components at daily time steps for each model cell using a modified 80 
version of the Thornthwaite-Mather (Thornthwaite, 1948; Thornthwaite and Mather, 81 
1957) soil-water-balance approach (see Text S1 in supporting information for model 82 
details and limitations).  Sources of water in the model include rainfall, snowmelt, and 83 
inflow from other model cells.  Sinks of water in the model include interception, outflow 84 
to other model cells, and evapotranspiration (ET).  Groundwater recharge is calculated on 85 
a daily basis as the difference between sources and sinks of water, and the change in soil 86 
moisture.  The SWB groundwater recharge model has been used in several completed and 87 
ongoing regional groundwater studies in the U.S. including the High Plains Aquifer 88 
(Stanton et al., 2011), the Lake Michigan Basin (Feinstein et al., 2010), basins in 89 
Wisconsin (Dripps and Bradbury, 2009) and Minnesota (Smith and Westenbroek, 2015), 90 
and the Northern Atlantic Coastal Plain Aquifer System (Masterson et al., 2013). 91 

2.2 Climate data 92 

Climate data required by the SWB model include daily precipitation, maximum daily 93 
temperature, and minimum daily temperature.  For UCRB groundwater recharge 94 
simulations, simulated climate datasets were available for 97 climate projections from the 95 
Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model archive (Table S1 96 
in the supporting information).  Each of the 97 ensemble members were derived from a 97 
General Circulation Model (GCM) run using a given future-emission scenario, known as 98 
a Representative Concentration Pathway (RCP), with a unique initial condition.  The four 99 
RCPs, developed at the request of the Intergovernmental Panel on Climate Change 100 
(IPCC), are for radiative forcing levels of 8.5, 6, 4.5, and 2.6 W/m2 by the end of the 101 
century (Van Vuuren, 2011).  The four RCPs include one very high baseline (no climate 102 
policy) emission scenario (RCP8.5), two medium stabilization scenarios (RCP4.5 and 103 
RCP6), and one very low forcing level (RCP2.6; Van Vuuren, 2011).  Since GCMs are 104 
typically run at coarse spatial resolutions (e.g., ~100-200 km on a grid side) and at time 105 
scales of 100-years or longer, there is a need to post-process GCM-derived variables such 106 
as precipitation and temperature to finer spatial scales in order to conduct climate impact 107 
assessments.  This post-processing step is commonly referred to as downscaling, and 108 
there is a continuum of downscaling methods ranging from statistical approaches to 109 
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physically-based modeling.  The 97 projections used in this study were developed using a 110 
statistical downscaling method referred to as BCSD (Bias-Correction and Spatial 111 
Disaggregation; Wood et al., 2004).  The BCSD method was used to develop monthly 112 
precipitation and temperature fields at 1/8° × 1/8° (latitude × longitude) spatial resolution 113 
from the GCM native-scales.  The monthly precipitation and temperature fields were 114 
subsequently disaggregated to daily values using a historical resampling and scaling 115 
technique (Wood et al., 2002).  These daily precipitation and temperature data for the 116 
UCRB study area were obtained from the downscaled climate and hydrology projections 117 
archive (http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html; 118 
Bureau of Reclamation, 2013).   119 

3 Projected Groundwater Recharge Results 120 

Daily simulated groundwater recharge for the 1950–2099 time period for the UCRB was 121 
aggregated into water years (October–September) that were subsequently averaged over 10-year 122 
periods, moving every year.  The ten-year moving average balances the need to smooth out 123 
variability in recharge from individual years, whose effects are integrated over time in 124 
groundwater systems (Green et al., 2011), with a desire to provide useful information to water 125 
managers over a reasonably short time frame in order to allow for corrective management action.  126 
Moving the ten-year average through time by one year eliminates the subjectivity of picking 127 
decade start and stop years that may encompass anomalously wet or dry periods.  Comparing 128 
future and past recharge results over ten-year moving averages addresses the question “how 129 
might recharge conditions in any future decade differ from conditions experienced in decades 130 
since 1950?” 131 

Simulation results indicate that average annual UCRB groundwater recharge in future 132 
decades is more likely to be greater than the 1951–2015 historical average than less than the 133 
historical average (Figure 2).  The trend of increased recharge in more future time periods than 134 
the past is observed in pooled simulation results from all RCP climate data where all scenarios 135 
are considered equally likely (Figure 2a), as well as from simulation results that are separated by 136 
RCPs (Figures 2b-e) from low future emissions scenarios (RCP2.6) to high (RCP8.5).  137 
Comparing median values of simulated annual 10-year averages (Figure 2a), in only 14 out of 75 138 
(19%) future decades of combined-RCP results is recharge expected to be less than the median 139 
of historical averages.  Results from separate-RCP simulations range from a low of 56% 140 
(RCP6.0) to a high of 88% (RCP2.6) of future decades with greater recharge than the historical 141 
average (Figures 2b-e).  Comparing medians of all future decades with medians of all past 142 
decades (Figure 3), the median of future recharge is significantly greater than that of the past for 143 
all RCP combinations except RCP6.0 simulations (Mann-Whitney test of medians, one tail, 144 
p<4×10-4 for all groups).  Moreover, the median of average annual groundwater recharge in 59% 145 
of future decades in combined-RCP results exceeds recharge in the 75th percentile of historical 146 
decades (Figures 2a and 3a).  Even under the maximum emissions scenario (RCP8.5), median 147 
average annual recharge in 60% of future decades exceeds the 75th percentile of historical 148 
recharge (Figures 2e and 3e).  For all decadal results from combined or separate RCP 149 
simulations, in only 15 out of 375 (4%) possible future decades is the median of average annual 150 
groundwater recharge projected to be less than the 10th percentile of the median of average 151 
annual recharge in the historical time period. 152 
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overall increase in basin recharge.  Further investigations of temporal sub-basin results are 184 
needed to elucidate this process for the UCRB. 185 

Median values of ten-year moving averages were used in this study to indicate the central 186 
tendency of projected climate data and groundwater recharge simulation results, with 187 
interquartile ranges (IQR) presented to highlight data and simulation variability.  Substantial 188 
variability is evident in the 97 climate data projections, mostly in projected precipitation (Figure 189 
S1 in the supporting information) but also somewhat in projected temperature (Figure S2).  This 190 
variability in input data is compounded in recharge simulation results (Figure 2).  While recharge 191 
simulations from a majority of the projected climate datasets result in increased recharge in the 192 
UCRB during most future decades, a number of projected climate datasets result in decreased 193 
future recharge relative to the historical climate period.  Improvements in climate modeling and 194 
downscaling techniques will help reduce this uncertainty in projected impacts of climate change 195 
on groundwater systems. 196 

 197 

4 Conclusions 198 

Increases in future groundwater recharge in the UCRB are a consequence of projected 199 
increases in precipitation in future climates offsetting reductions in recharge that result from 200 
projected increased temperatures.  Median simulated groundwater recharge in future moving ten-201 
year annual averages is projected to be greater than the median of historical averages in 81% of 202 
combined RCP simulations, and 88%, 73%, 56%, and 75% of RCP2.6, RCP4.5, RCP6.0, and 203 
RCP8.5 simulations, respectively.  These results indicate that, given the current understanding of 204 
projected climate in the UCRB and the mechanics of the SWB model, groundwater recharge in 205 
future climates is not expected to be less than what has been experienced in the recent past and 206 
may in fact be somewhat greater. 207 
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