

Final Report ST-2016-0809-01 Technical Memorandum No. 8540-2016-02

Durable Silicone Foul Release Coatings CRADA – Final Report

Research and Development Office Science and Technology Program

U.S. Department of the Interior Bureau of Reclamation Technical Service Center Denver, Colorado

MISSION STATEMENTS

The U.S. Department of the Interior protects America's natural resources and heritage, honors our cultures and tribal communities, and supplies the energy to power our future.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

On the cover: Steel plate coated with an experimental foul release coating supplied by Fujifilm Hunt Smart Surfaces, LLC, after 12 months of immersion in mussel-infested water.

Disclaimer:

Information in this report may not be used for advertising or promotional purposes. The enclosed data and findings should not be construed as an endorsement of any product or firm by the Bureau of Reclamation (Reclamation), U.S. Department of the Interior, or the Federal Government. The products evaluated in this report were evaluated in environmental conditions and for purposes specific to Reclamation's mission. Most of these products were originally developed for the marine environment and not necessarily for use in freshwater. The data should be viewed as site specific and not necessarily applicable to all freshwater exposure conditions. Reclamation gives no warranties or guarantees, expressed or implied, for the products evaluated in this report, including merchantability or fitness for a particular purpose.

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188			
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.							
1. REPORT DA	TE (DD-MM-YYYY	() 2. REPO	RT TYPE			3. DATES COVERED (From - To)	
01/2016		Resear	rch				
4. TITLE AND S	SUBTITLE				5a. CONTRACT NUMBER		
Durable Sil	icone Foul Relea	se Coatings CRA	DA – Final Report		16XR0680A1-RY1541ZQ201420809		
					5b. GRANT NUMBER		
					5c. PRC	OGRAM ELEMENT NUMBER	
					154	1 (S&T)	
6. AUTHOR(S)		a			5d. PRC		
Allen Skaja	a, Ph.D., Coatings	s Specialist	ntor		080	9	
Materials a	nd Corrosion Lab	oratory			5e. TAS	KNUMBER	
askaja@usl	or.gov; 303-445-2	2396			5f. WOF		
_	-				86-0	68540	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT Allen Skaja, Ph.D., Coatings Specialist NUMBER Bureau of Reclamation, Technical Service Center 8540-2016-02 Materials and Corrosion Laboratory 8. PERFORMING ORGANIZATION REPORT				8. PERFORMING ORGANIZATION REPORT NUMBER 8540-2016-02			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Research and Development Office U.S. Department of the Interior, Bureau of Reclamation PO Box 25007, Denver, CO 80225-0007					 10. SPONSOR/MONITOR'S ACRONYM(S) R&D: Research and Development Office BOR/USBR: Bureau of Reclamation 		
						DOI: Department of the Interior	
						11. SPONSOR/MONITOR'S REPORT NUMBER(S) ST 2015 0800 01	
12 DISTRIBUT		Y STATEMENT				51-2013-0007-01	
Final repo	rt can be downl	oaded from the	Bureau of Reclar	nation's Web	site: <u>htt</u>	ps://www.usbr.gov/research/	
13. SUPPLEME	ENTARY NOTE						
14. ABSTRACT	г						
The Bureau of Reclamation and Fujifilm Hunt Smart Surfaces, LLC, entered into Cooperative Research and Development							
Agreement (CRADA) 13-CR-8-1006 on March 5, 2014. The goal of the CRADA was to develop a durable foul release coating							
system that would resist damage and aquatic invasive mussel attachment. At the time, there were no durable foul release coatings							
provided nonfouling or easy release characteristics. This report explains the approaches taken under the CRADA and the test results							
15. SUBJECT	FERMS	,			F		
Invasive Mussel Control, Quagga Mussels, Zebra Mussels, Foul Release Coatings, Fouling Prevention							
16. SECURITY Unclassifie	CLASSIFICATION ed	OF:	17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NA Al	ME OF RESPONSIBLE PERSON len Skaja	
a. REPORT U	b. ABSTRACT U	a. THIS PAGE U	U	37	19b. TE 30	LEPHONE NUMBER (Include area code) 3-445-2125	

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

PEER REVIEW DOCUMENTATION

Project and Document Information

Project Name:	Durable Silicone Foul Release Coatings CRADA	WOID:	Z0809
Document:	Durable Silicone Foul Release Coatings CRADA – Final Report		
Document Author(s):	Allen Skaja	Document date:	March 2016
Peer Reviewer (Reclamation):	David Tordonato, Bobbi Jo Merten		

Review Certification

Peer Reviewer: I have reviewed the assigned items/sections(s) noted for the above document and believe them to be in accordance with the project requirements, standards of the profession, and Bureau of Reclamation policy.

Reviewer:

Dave Tordonat

Date reviewed: 3/24/2016

(Signature)

Reviewer:

(Signature)

Date reviewed: 4/18/2016

BUREAU OF RECLAMATION Technical Service Center, Denver, Colorado Materials and Corrosion Laboratory, 86-68540

Final Report ST- 2016-0809-01 Technical Memorandum No. 8540-2016-02

Durable Silicone Foul Release Coatings CRADA – Final Report

MININ

Prepared by: Allen D. Skaja, Ph.D., PCS Chemist, Materials and Corrosion Laboratory, 86-68540

ave Tordonato

Checked by: David S. Tordonato, Ph.D., P.E. Materials Engineer, Materials and Corrosion Laboratory, 86-68540

Technical Approval by: Bobbi Jo Merten, Ph.D. Chemist, Materials and Corrosion Laboratory, 86-68540

JEL

Peer Review: William F. Kepler, Ph.D., P.E. Manager, Materials and Corrosion Laboratory, 86-68540

4-18-

Date

4/18/2016

Date

4/18/2016

Date

Flogla

Date

ACKNOWLEDGMENTS

We would like to thank the Bureau of Reclamation Research and Development Office's Science and Technology Program for providing funding for this research over the past 3 years. We would also like to thank the Bureau of Reclamation, Lower Colorado Region, Lower Colorado Dams Office, and the Parker Dam staff for all of their in-kind contributions, access, and support.

ACRONYMS AND ABBREVIATIONS

ASTM	American Society for Testing and Materials
CRADA	Cooperative Research and Development Agreement
Fuji	Fujifilm Hunt Smart Surfaces, LLC
g	gram(s)
g/mol	grams per mole
m ² /g	meters squared per gram
MTAS	methyl triacetoxy silane
PDMS	polydimethyl siloxane
pli	per liner inch
psi	pounds per square inch
Reclamation	Bureau of Reclamation

Symbols

>	greater than
%	percent
wt. %	weight percent

Contents

Executive Summary ES-	·1
Introduction	1
Preliminary Research	1
Cooperative Research and Development Agreement Development	3
Cooperative Research and Development Agreement Research Plan	5
Experimental	6
Dry Film Thickness Study	6
Fuji's Formulations	6
Reclamation's Formulations	7
Experimental Formulations with Field Results	7
Laboratory Studies Only	8
Test Procedures	0
Linear Abrasion1	0
Pseudo-Barnacle Adhesion Test1	0
Tensile Properties1	1
Tear Resistance	1
Results and Discussion	1
Dry Film Thickness Study1	1
Fuji's Laboratory Testing1	2
Fuji Film's Field Results1	3
Reclamation's Laboratory Results	5
Reclamation's Field Results1	7
Conclusions	8
References	9

Tables

1	Pseudo-barnacle adhesion tests on commercial coatings	
2	Tensile strength and tear resistance of commercially available	
	coatings. Baseline for developing new materials	6
3	Fuji's experimental formulations, all shown in weight percent	7
4	Experiment 1 formulations shown in weight percent	8
5	Experiment 2 formulations shown in weight percent	9
6	Experiment 3 formulations shown in weight percent	9
7	Experiment 4 formulations with 27 wt. % fumed silica, shown	
	in weight percent	10
8	Mechanical properties of Fuji's formulations	12
9	Experiment 1 pseudo-barnacle, mechanical property, and	
	mechanical abrasion test results	15
10	Experiment 2 results showing the effect of hydrophobic fumed	
	silica	16
11	Experiment 3 results for multiple molecular weights	16
12	Experiment 4 results for 27% fumed silica and varied curing	
	agents	17
	<u> </u>	

Figures

Page

1	Aerial view of Parker Dam field test site	1
2	Fujifilm Hunt Smart Surfaces, LLC, oil free formulation at 178 weeks of exposure	2
3	Fuji commercial product with 18-micron surface coat,	
	69 weeks exposure.	11
4	Fuji commercial product, brush abrasion test after	
	1,500 cycles and 4,500 cycles	12
5	Fuji experimental product CRADA T3, brush abrasion test	
	after 1,500 cycles.	13
6	Fuji's T1 formulation after 30 weeks of dynamic water exposure.	14
7	Fuji's T1 formulation after 30 weeks in static water exposure	14
8	S51 MTAS 10 at 82 weeks of exposure	18

EXECUTIVE SUMMARY

In an attempt to combat zebra and quagga mussels, a Cooperative Research and Development Agreement (CRADA) was initiated between the Bureau of Reclamation (Reclamation) and Fujifilm Hunt Smart Surfaces, LLC (Fuji). CRADA 13-CR-8-1006 was signed on March 5, 2014, with the goal of developing a durable foul release coating system that would resist damage and aquatic invasive mussel attachment.

On December 10, 2015, Fuji issued Reclamation a notification of CRADA discontinuance, stating that the company elected to discontinue its Smart Surfaces fouling release coatings business. Despite a shortened time period of performance, valuable information was gathered that advanced the goal of developing a durable foul release coating.

In one study, the CRADA partners investigated the thickness of silicone topcoat required to prevent fouling. Five different dry film thicknesses of Fuji's commercial foul release coating were applied, ranging from 18 to 97 microns. All thicknesses prevented fouling. The results of this study showed that a very thin film of silicone prevents mussel attachment.

Fuji's initial formulations were an attempt to improve coating durability by reinforcing the silicone polymer with greater volumes of fumed silica. The fumed silica significantly increased the viscosity, necessitating additional solvent to produce viscosities for spray application. Fuji then experimented with the reinforcing filler, Celtix, in an effort to maintain the solution's viscosity. Following preliminary screening, Fuji provided Reclamation with four experimental formulations thought to have increased abrasion resistance. However, Reclamation's brush abrasion test indicated a material loss of 0.300–0.580 gram, which is a decrease in performance compared to Fuji's commercial product. Field testing showed many juvenile mussels and a few adult mussels attached to the surface in flowing water (dynamic) conditions. In static conditions, many adult mussels attached to the surface.

Reclamation experimented with many different formulations, but the mechanical properties were not significantly improved compared to commercial foul release coatings. The formulations with field results prevented mussel fouling.

The formulation entitled "Experiment 4" delivered the greatest improvement in mechanical properties by using a blend of polymer molecular weights and increasing the fumed silica content to 27 percent by weight of the cured coating. The results indicated that the poly (ethoxy silicate) curing agent provided better tensile strength, but the methyl triacetoxy silane curing agent provided better tear resistance. The majority of the experimental formulations exceeded Federal

volatile organic compound regulations and, therefore, cannot be commercially sold or distributed in the United States for industrial maintenance coating applications.

It was not determined which mechanical property contributes most to improved abrasion resistance; tensile strength, elongation, and tear strength were measured for all samples.

INTRODUCTION

Preliminary Research

The Materials and Corrosion Laboratory staff evaluated foul release coatings at Parker Dam since May 2008. The Parker Dam facility consists of a large forebay area created by a trashrack bridge structure that spans the length of the forebay opening (figure 1). More than 100 coatings in flowing conditions downstream from the trashrack structure (yellow line) and also in quasi-static flow conditions on the upstream face of the dam (red line) were evaluated. Several of the commercial coatings evaluated prevented mussel attachment but were susceptible to damage; this presented a durability concern for application at Bureau of Reclamation (Reclamation) facilities.

Figure 1.—Aerial view of Parker Dam field test site.

One aspect of commercial foul release coating design is the slow release of silicone oils from the film to form an oil layer on the coating surface. The theory for marine environments is that fouling organisms, including mussels, cannot attach firmly to this protective layer. To evaluate the theory's applicability to

invasive mussel attachment in freshwater, a commercial product was tested sideby-side with a silicone oil-free version of the same product in May 2012. The theory did not stand, and the silicone oil-free formulation continues to prevent mussel colonization following 3-1/2 years of field exposure, shown on figure 2.

Figure 2.—Fujifilm Hunt Smart Surfaces, LLC, oil free formulation at 178 weeks of exposure.

The inconsistency between marine and freshwater fouling requirements prompted efforts to better understand the coating properties required to prevent mussel fouling in freshwater environments. Pseudo-barnacle adhesion testing was conducted in accordance with American Society for Testing and Materials (ASTM) D5618 on commercially available foul release coatings. This laboratory screening method measures the shear force required to remove a circular dolly fixed to the coating surface with an adhesive. A lower force to remove the dolly generally resulted in better field performance. Table 1 shows both datasets for a comparison of many of the commercial products tested. The results are shaded green, yellow, and red to indicate good, fair, and poor performance, respectively.

Another preliminary study involved field evaluation of liquid applied silicone gasket materials. These gasket materials had improved mechanical properties compared to the silicone foul release coatings. Some of the silicone gasket materials prevented mussel attachment, while other materials did not. Although specific formulations were unknown, the results suggested that different combinations of fillers, polymers, and curing agents can improve mechanical properties while preventing mussel attachment.

Туре	Commercial coatings	Pseudo-barnacle adhesion (psi) ¹	Field performance (mussel fouling)
	Fuji Optimized	7.3	No mussels
	Fuji Original	2	No mussels
	Fuji Oil Free	8.9	No mussels
	Bioclean	14.1	No mussels
	Sigmaglide 890	9.2	No mussels
ase	Intersleek 970	20.6	Few
rele	Intersleek 1425	3.3	No mussels
Foul	Hempasil X3	8.4	No mussels
	Jotun Sealion Repulse	3.6	No mussels
	Nusil 9707	76	No mussels
	SEI Coat	30.9	Many
	AS&M Black	104.4	Many
	AS&M White	67.4	Many
	Seaspeed V5	> 390	Many
ase	Du Slip	> 390	Many
rele	SEI Chemical	> 390	Many
foul	Duromar 2510FR	166	Many
able	Nusil R1082	229	Many, easily cleaned
Dur	Jotun Sealion Resilient	122.7	Many, self-cleaning
	Tesla	> 390	Many

Toble 1	Deoudo	harnada	adhacian	tooto on	commorcial	continge
	-rseuuu-	vaniacie	aunesion	16212 011	commercial	coalings

¹ Pounds per square inch.

Cooperative Research and Development Agreement Development

Reclamation initiated a Cooperative Research and Development Agreement (CRADA) conversation with Fujifilm Hunt Smart Surfaces, LLC (Fuji), in February 2013 to develop a more durable nonfouling coating system for freshwater applications. CRADA 13-CR-8-1006 was signed on March 5, 2014. This CRADA brought together the joint interests and complementary capabilities necessary to effectively achieve research results that neither party was producing on its own. Reclamation's contributions:

- Research expertise from a materials engineering, chemistry, and biology perspective
- Use of Reclamation's Parker Dam field test site
- Use of Materials and Corrosion Laboratory equipment

Fuji's contributions:

- Research staff with extensive experience in formulating foul release coatings
- Specialized research and production facilities
- Extensive coating scale-up and manufacturing know-how

The following coating performance goals were identified under the CRADA:

- 1. Mussels will not colonize on the coating surface during a 1-year test period in the Colorado River. Colonization is defined as a group of mussels attached to a coating sample under normal water flows at the Parker Dam test site.
- 2. A coating will adhere to a corrosion-resistant primer or tie coat (i.e., no delamination).
- 3. Coating weight loss resulting from the Reclamation abrasion tests will not exceed:

Target goal: 0.10 gram (g). Abrasion tests on currently available foul release coatings result in a weight loss of 0.50 g or more.

Stretch goal: 0.05 g. Abrasion tests on a conventional epoxy coating result in a weight loss of 0.035 g.

4. A coating will meet NSF/ANSI Standard 61 for coatings used in water pipes with diameters equal to 54 inches or greater. Ideally, the coating will meet NSF/ANSI Standard 61 for pipes as small as 3 inches in diameter.

This report provides the final results and conclusions obtained during the performance period of the CRADA.

Cooperative Research and Development Agreement Research Plan

Reclamation and Fuji developed a collaborative research plan during a meeting in April 2014. The goal of the first study was to investigate variations in silicone topcoat thicknesses and determine if there was a lower limit in which fouling prevention degraded. Subsequent studies were conducted to pursue targeted mechanical properties. Based on preliminary field research and literature reviews, the CRADA partners identified the following approaches to creating a durable foul release coating:

- Mechanical properties of silicones are improved by incorporating reinforcing fillers such as fumed silica. The filler's enhancement becomes stronger with increased concentration and decreased particle size. This experiment was also conducted in an attempt to maximize tear resistance; 30–35 percent (%) fumed silica is the desired pigment loading for this experiment (Brassard, 2010).
- 2. Increasing the number of covalent bonds between the material's silicone polymer and fumed silica particles increases its mechanical properties. This experiment was conducted in an attempt to increase covalent bonds in the polymer-pigment matrix using silicate curing agents to increase toughness in the resulting coating. Tri-functional methyl triacetoxy silane is a very common silicate curing agent. It can form silsesquioxanes (ring structures) when used in excess that aid in reinforcing coating materials.
- 3. The final approach was to reduce the thickness of the topcoat's silicone polymer layer to evaluate the effect of bulk modulus of the primer or tie coat on coating toughness.

The goal of the research was to develop a silicone polymer coating system that had greater resistance to scraping or impact damage; this exposure is typical of Reclamation's coated equipment. Baseline data provide a means to determine if experimental formulation properties are more desirable than commercially available coating systems. Tensile strength (ASTM D2370) and tear resistance (ASTM D624) are two tests that can be performed quickly to screen coatings for durability and toughness. Baseline mechanical testing was performed on three commercially available coatings: Sigmaglide 890, Fuji Duplex,¹ and NuSil R1082. The latter is a silicone coating with significantly increased toughness compared to other foul release coatings. Field results indicated that this coating allows mussels to attach, but it is easily wiped clean of mussels. These baseline test results are shown in table 2, reported as pounds per square inch (psi), per liner inch (pli), and percent (%).

¹ 2013 formulation.

Table 2.—Tensile strength and tear resistance of commercially available coatings. Baseline for developing new materials.

Product	Ultimate tensile (psi)	Elongation (%)	Tear strength (pli)
Sigmaglide 890	250	165	8
Fuji Duplex	145	148	9
Nusil R1082	1,421	950	126

EXPERIMENTAL

Dry Film Thickness Study

The first experiment executed under the CRADA was to evaluate Fuji's commercial product at varying surface coat film thicknesses. The goal was to understand the impact of silicone topcoat thickness on its ability to prevent mussel attachment. Fuji provided two replicates per sample set with the surface coat applied at the following thicknesses: 18, 29, 53, 63, and 97 microns. These samples were installed at the Parker Dam field test site on August 20, 2014.

Fuji's Formulations

Fuji screened more than 20 experimental formulations; the specific formulations were not made available to Reclamation. In their experiments, Fuji maintained a favorable solution viscosity for spray applications as they attempted to improve the dry film's mechanical properties. Typically, hydrophobic fumed silica is used to reinforce silicone polymers; however, this significantly increased the viscosity, requiring more solvent to achieve a sprayable viscosity (Brassard, 2010). Many formulations with the desired toughness were formulated, but balancing sprayable viscosities was very difficult to achieve without incorporating a high solvent content. Fuji next experimented with Celtix, a natural diatomaceous earth material, in an attempt to reinforce the polymer while minimizing the viscosity increase.

Fuji provided four formulations (T1, T3, T5, and T9) to Reclamation in March 2015 for lab and field evaluation; the formulations are listed in table 3. These samples were installed at Parker Dam for field testing on May 19, 2015. All formulations used a silanol terminated polydimethyl siloxane (PDMS) polymer resin. Formulation T1 used a resin with a molecular weight of 49,000 grams per mole (g/mol) and an ethyl silicate curing agent. Formulation T3 was the same formulation as T1, but it incorporated a quaternary ammonium salt in the polymer backbone as an antimicrobial agent. Formulation T5 used a

ID	PDMS polymer	Celtix	Naphtha + pigment	Ethyl silicate	Quaternary ammonium
T1	36	22	40	2	0
Т3	36	22	38	2	2
T5	36	22	40	2	0
Т9		Commer	cial proprietary fo	rmulation	

Table 3.—Fuii's experimental form	ulations. all shown in wei	aht percent
rabio o. Taji o okponinionarionna		gin porooin

slightly lower molecular weight resin, 44,000 g/mol, compared to T1 to decrease the viscosity of the formulation. Formulation T9 was the commercial foul release formulation.

Reclamation's Formulations

Reclamation's formulations aimed to identify coatings with increased durability while providing adequate fouling prevention. Reclamation did not target a sprayable solution viscosity, and the coatings were brush applied.

The formulation ingredients were purchased from Gelest, Inc., or Evonik, Inc., including a number of hydroxyl-terminated PDMS resins. Gelest DMS-S21, DMS-S27, DMS-S31, DMS-S35, DMS-S42, DMS-S45, and DMS-S51 have molecular weights 4,200, 18,000, 26,000, 49,000, 77,000, 110,000, and 140,000 g/mol, respectively. These polymers were crosslinked with three different curing agents: Gelest SIM 6519.0 methyl triacetoxy silane (MTAS), Gelest PSI-021 poly (diethoxy silicate), and Evonik Silbond 40 poly (diethoxy silicate).

The formulations were reinforced at varying levels with hydrophobic fumed silica treated with hexamethyldisilazane; Gelest SIS 6962.0 and Evonik Aerosil R 8200 fumed silica products were used. The primary difference was that Aerosil R 8200 has a surface area of 160 meters squared per gram (m^2/g) compared to Gelest SIS 6962.0, which has a surface area of 200 m²/g. The average particle size is 20 nanometers for Gelest SIS 6962.0 and 25 nanometers for Aerosil R 8200.

The catalyst for the formulations was Gelest SND3260 dibutyltin diluarate. Naphtha, purchased from Superior Oil, was added to reduce viscosity and improve film formation.

Experimental Formulations with Field Results

The Reclamation formulations described in table 4 have field test results. The formulations varied the molecular weight of the silicone polymer, the percentage of fumed silica, and the type of curing agent in the formulations. Gelest fumed

ID	DMS-S31	DMS-S45	DMS-S51	Naphtha	SND3260	Fumed silica	SIM-6519	PSI-021
S31 MTAS 0	77.5			11.6	0.1		10.8	
S31 MTAS 5	72.3			12	0.1	5.3	10.3	
S31 MTAS 10	68.0			13.6	0.1	9.3	9.0	
S31 PSI-021 5	66.8			20	0.1	5.0		8.1
S45 MTAS 0		52		44.4	0.1		3.5	
S45 MTAS 5		46.7		46.7	0.1	3.4	3.1	
S45 MTAS 10		45.2		45.2	0.1	6.5	3.0	
S45 PSI-021 5		40		56	0.1	2.9		1.0
S51 MTAS 0			40.7	57	0.1		2.1	
S51 MTAS 5			40	54.6	0.1	3.2	2.1	
S51 MTAS 10			27.8	66.6	0.1	4.0	1.5	
S51 PSI-021 5			28.6	68.6	0.1	2.1		0.6

Table 4.—Experiment 1 formulations shown in weight percent

silica was the reinforcing pigment used, which was known to have a strong effect of increasing a coating's mechanical strength and imparting toughness (Brassard, 2010). It was also known that increasing the molecular weight of the silicone polymer increases the mechanical properties and abrasion resistance (Brassard, 2010). The majority of these formulations exceed the Federal volatile organic compounds regulation for industrial maintenance coatings at 450 grams per liter, which may limit their viability for commercialization.

Laboratory Studies Only

Reclamation also evaluated other formulations but did not initiate field testing prior to terminating the CRADA. Experiment 2 involved investigating different hydrophobic fumed silica, keeping the hydroxyl-terminated PDMS molecular weight constant. The PDMS used was Gelest DMS-S31. Two different fumed silicas were used: Evonik Aerosil R 8200 and Gelest SIS 6962.0. Table 5 shows these formulations.

ID	DMS-S31	Naphtha	SND3260	Fumed silica	PSI-021
5% Aero 8200	69.0	20.7	0.3	5.0	5.0
10% Aero 8200	65.8	19.7	0.3	9.5	4.7
20% Aero 8200	53.6	26.8	0.2	15.5	3.9
20% Gelest silica	53.6	26.8	0.2	15.5	3.9

Table 5.—Experiment 2 formulations shown in weight percent

Experiment 3 involved investigating the use of multiple polymer molecular weights. Table 6 shows these formulations. It was hypothesized that one could increase the tear resistance by using multiple molecular weight polymers, and the chains would break at different elongation lengths. For this study, 15 weight percent (wt. %) of Gelest SIS 6962.0 fumed silica was constant; it varied the ratios and molecular weights of the polymer.

ID	DMS-S27	DMS-S31	DMS-S35	DMS-S45	Naphtha	Fumed silica	SND3260	PSI-021
A Varied MW ratios	0	31.9	0	19.2	38.3	9.5	0.2	1.0
B Varied MW ratios	0	31.9	9.5	9.5	38.3	9.5	0.2	1.1
C Varied MW ratios	6.4	31.9	6.4	6.4	38.3	9.5	0.2	1.0
D Varied MW ratios	9.5	31.9	0	9.5	38.3	9.5	0.2	1.1
E Varied MW ratios	9.5	31.9	9.5	0	38.3	9.5	0.2	1.1
F Varied MW ratios	0.0	31.9	19.2	0	38.3	9.5	0.2	1.0
G Varied MW ratios	19.2	31.9	0	0	38.3	9.5	0.2	1.0
H Varied MW ratios	0	31.9	6.4	12.7	38.3	9.5	0.2	1.0

Table 6.—Experiment 3 formulations shown in weight percent

Experiment 4 involved investigating multiple molecular weights of hydroxylterminated PDMS but kept the ratios of each molecular weight constant. For this study, fumed silica content increased to 27 wt. %. Both Gelest SIS 6962.0 and Aerosil R 8200 were used for direct comparison. Two curing agents were used in this study. Fuji suggested Silbond 40 because it is believed to be similar to Gelest PSI-021. The other curing agent was Gelest SIM 6519.0. Table 7 shows these formulations.

ID	DMS-S15	DMS-S21	DMS-S31	DMS-S27	DMS-S35	DMS-S42	DMS-S45	Naphtha	Fumed silica	SND3260	SIM-6519	Silbond 40
Gelest Si Silbond 40	4.3	4.3	4.3	4.3	4.3	4.3	4.3	53.2	12.8	0.1	0.0	3.8
Gelest Si MTAS	4.3	4.3	4.3	4.3	4.3	4.3	4.3	53.2	12.8	0.1	3.8	0.0
Gelest Si Silbond 40/MTAS	4.3	4.3	4.3	4.3	4.3	4.3	4.3	53.2	12.8	0.1	1.9	1.9
8200 Si Silbond 40	4.3	4.3	4.3	4.3	4.3	4.3	4.3	53.2	12.8	0.1	0.0	3.8
8200 Si MTAS	4.3	4.3	4.3	4.3	4.3	4.3	4.3	53.2	12.8	0.1	3.8	0.0
8200 Si Silbond 40/MTAS	4.3	4.3	4.3	4.3	4.3	4.3	4.3	53.2	12.8	0.1	1.9	1.9

Table 7.- Experiment 4 formulations with 27 wt. % fumed silica, shown in weight percent

Test Procedures

Linear Abrasion

The mechanical abrasion testing procedure was performed using a reciprocating Linear Taber Abraser test machine (Model 5750) equipped with a silicon carbide abrasive end brush 1/2-inch diameter with a 0.035-inch bristle diameter manufactured by Weiler. A 3 x 6 x 1/8-inch panel was submerged in 10 ounces of deionized water in an acrylic tub and held in place by two C-clamps. A weight (1,000 g) was placed on a splined shaft connected to the brush to control the normal force exerted on the coated surface; the total weight of the splined shaft and weight was 1,380 g. The brush was cycled 1,500 times at a speed of 75 cycles per minute, creating a 3.5-inch wear track on the coating. The test panel was removed from the solution and allowed to dry overnight. The coating was weighed to the nearest 0.001 g to determine material loss due to abrasion. The test was terminated at 1,500 cycles or at breakthrough to the epoxy coating, whichever occurred first.

Pseudo-Barnacle Adhesion Test

The pseudo-barnacle adhesion test is a testing procedure used to rank coatings to determine the release properties. The tests were performed in accordance with ASTM D5618.

Tensile Properties

Tensile strength, elongation at break, and elastic modulus were measured following ASTM D2370. The sample size was 0.5 inch width and 2 inch gauge length. All samples were run at an extension rate of 2 inches per minute.

Tear Resistance

Tear resistance was measured in accordance with ASTM D624. Die cut C was used for all samples. The samples were run at an extension of 20 inches per minute.

RESULTS AND DISCUSSION

Dry Film Thickness Study

All variations in silicone thicknesses allowed algae to attach to the surface but were free of mussels after 69 weeks exposure in dynamic conditions. This suggests that only a thin layer of silicone is required on a coating's surface to provide nonfouling behavior in these test site conditions. Figure 3 shows a panel with an 18-micron surface coat.

Figure 3.—Fuji commercial product with 18-micron surface coat, 69 weeks exposure.

Fuji's Laboratory Testing

Laboratory test results of Fuji's formulations are provided in table 8. Additional information was provided but without corresponding formulation recipes. The maximum mechanical properties obtained were ultimate tensile strength of 870 psi, elongation of 148%, and tear strength of 61 pli.

		Mec	hanical proper	ties	
Formulation name	Pseudo- barnacle adhesion (psi)	Ultimate tensile strength (psi)	Elongation (%)	Tear strength (pli)	Abrasion weight loss (g)
T1	131	595	59	51	0.580
Т3	135	522	50	48	0.447
Т5	120	580	53	50	0.428
Fuji's commercial product	2	145	148	9.0	0.300

Table 8.—Mechanical properties of Fuji's formulations

Abrasion testing produced significant damage on the commercial formulation, but it resisted breakthrough to the epoxy coating for more than 1,500 cycles (figure 4). Formulations T1, T3, and T5 abraded to the epoxy layer within 1,500 cycles. Figure 5 shows T3 as an example of the wear, following completion of the test.

Figure 4.—Fuji commercial product, brush abrasion test after 1,500 cycles and 4,500 cycles.

Figure 5.—Fuji experimental product CRADA T3, brush abrasion test after 1,500 cycles.

Fuji Film's Field Results

The field performance of the Fuji experimental formulations is inconclusive due to test duration. Many juvenile mussels and a few adults were adhered to the coating surface in dynamic conditions, as seen on figure 6. In static water, a greater number of adult mussels were present, as seen on figure 7. This could mean that the coatings are self-cleaning in flowing water conditions. These coatings would need to be tested longer to determine their long-term performance.

Figure 6.—Fuji's T1 formulation after 30 weeks of dynamic water exposure.

Figure 7.—Fuji's T1 formulation after 30 weeks in static water exposure.

Reclamation's Laboratory Results

Table 9 shows the laboratory results for the first experiment, evaluating pseudobarnacle adhesion, mechanical properties, and mechanical abrasion. The colored cells represent desired (green) to undesirable (red) results. Tensile and tear strength increased with increasing fumed silica content and molecular weight as expected. Future studies will be conducted in an attempt to further increase tensile and tear strength by increasing the fumed silica content.

	Pseudo-	Mechan	ical properties	5	
ID	barnacle adhesion (psi)	Ultimate tensile strength (psi)	Elongation (%)	Tear strength (pli)	Abrasion weight loss (g)
S31 MTAS 0	11.5	35.8	85	4.6	0.395
S31 MTAS 5	8	270.9	175	8.4	0.388
S31 MTAS 10	8.1	434.2	N/A	8.7	0.117
S31 PSI-021 5	10.7	420.7	N/A	4.5	0.227
S45 MTAS 0	12.5	44.0	259	6.5	0.33
S45 MTAS 5	23.9	105.2	459	15	0.293
S45 MTAS 10	22	203.8	786	17.5	0.222
S45 PSI-021 5	7.5	118.8	287	12.8	0.084
S51 MTAS 0	16.1	34.8	205	9.5	0.319
S51 MTAS 5	26.7	54.7	315	12.8	0.235
S51 MTAS 10	35.5	175.7	660	25.3	0.239
S51 PSI-021 5	12.8	66.0	171	16.8	0.084

Table 9.—Experiment 1 pseudo-barnacle, mechanical property, and mechanical abrasion test results

Two formulations met the goal of the CRADA to have less than 0.1 g weight loss in the mechanical abrasion test. Unfortunately, these were very high molecular weight polymers that required an extreme amount of solvent to reduce the viscosity to the point required to apply as a coating film. In general, the results show that the poly (diethoxy silicate) (PSI-021) curing agent provides better abrasion resistance than the MTAS. Table 10 shows the laboratory test results for Experiment 2. Pseudo-barnacle adhesion increases with fumed silica content. The mechanical properties were not an improvement over the commercially available foul release coatings, which could be due to using similar molecular weight polymers that are used in the foul release coatings. Abrasion resistance was not measured due to the mechanical properties not being significantly different from the commercial products.

Formulation	Pseudo- barnacle adhesion (psi)	Ultimate tensile strength (psi)	Elongation (%)	Tear strength (pli)
5% Aero 8200	16	120	156	4.6
10% Aero 8200	27.6	196	125	7.4
20% Aero 8200	50.8	290	121	10.8
20% Gelest silica	33.4	232	400	9.1

Table 10.—Experiment 2 results showing the effect of hydrophobic fumed silica

Table 11 shows the laboratory results for Experiment 3. The majority of the formulations in this set had higher pseudo-barnacle adhesion compared to commercial products. The mechanical properties were comparable to the commercial products Sigmaglide 890 and Fuji Optimized. The tear resistance was slightly increased when higher molecular weights were used.

15% gelest silica	Pseudo- barnacle adhesion (psi)	Ultimate tensile strength (psi)	Elongation (%)	Tear strength (pli)
A	17.4	261	181	10.3
В	42.6	273	173	9.1
С	25.2	245	145	8.6
D	31.0	290	158	6.9
E	19.4	232	124	9.7
F	22.9	247	147	9.1
G	18.3	157	75	6.9
Н	24.7	268	175	8.6

Table 11.—Experiment 3 results for multiple molecular weights

Table 12 shows the laboratory results for Experiment 4. All formulations in this set had higher pseudo-barnacle adhesion compared to commercial products. Tensile and tear strength increased compared to the Sigmaglide 890 and Fuji Optimized. However, they were still lower than Nusil R1082. Silbond 40 provided the highest tensile strength, lowest elongation, and slightly higher tear resistance compared to commercial foul release coatings. The MTAS curing agent provided the highest tear strength; by blending the two curing agents, it provided high tensile and tear strengths.

Formulation	Pseudo- barnacle adhesion (psi)	Ultimate tensile strength (psi)	Elongation (%)	Tear strength (pli)
Gelest Si Silbond 40	51.9	648	60	13.9
Gelest Si MTAS	120.2	262	141	15.3
Gelest Si Silbond 40/MTAS	46.7	589	71	14.2
8200 Si Silbond 40	46.4	645	76	15.3
8200 Si MTAS	50	261	44.5	17.4
8200 Si Silbond 40/MTAS	54.5	503	70	16.1

Table 12.—Experiment 4 results for 27 wt% fumed silica and varied curing agents

Fuji indicated during conversations that their formulations had better tensile and tear strength than Reclamation's formulations. From this point forward, Fuji would formulate new coatings while Reclamation provided input, conducted abrasion testing, and perform field testing. Once the field test results were obtained in December 2015, Fuji and Reclamation would have further discussions on the next steps.

Reclamation's Field Results

The Experiment 1 formulations prevented mussel attachment during testing at Parker Dam. Figure 8 shows the field results of formulation S51 MTAS 10, which is representative of all formulations. These formulations were not highly reinforced but provided excellent field performance. This particular formulation had higher elongation properties compared to commercial foul release coatings.

Figure 8.—S51 MTAS 10 at 82 weeks of exposure.

CONCLUSIONS

The Fuji film thickness study indicated that all silicone thicknesses down to 18 microns prevented mussel attachment. This further supports the hypothesis that mussels do not attach to the thinnest surfaces of silicone. Therefore, it may be possible to formulate a tougher tie coat to increase the system's bulk modulus.

The experimental formulations provided by Fuji were incorporated into field testing in May 2015. The field results were inconclusive; however, adult mussels were attached to the surface in static exposure, and many juvenile mussels attached to the surface in dynamic conditions. The laboratory test results showed lower abrasion resistance properties than the commercially available system. Several formulations abraded to the epoxy primer within 1,500 cycles.

The experimental formulations prepared by Reclamation provided minimal improvement in tensile and tear strength compared to commercially available foul release coatings. The best properties required 27 wt. % fumed silica, which significantly increased the viscosity, requiring a large amount of solvent to achieve a sprayable viscosity. The poly (ethoxy silicate) curing agent provided greater tensile strength than the MTAS curing agent; however, the latter gave better tear strength.

REFERENCES

1. Brassard, David. 2010. The Silicone Elastomer Handbook. Silicone Solutions.

Laboratory Experimental Data of Field Test Samples -- BR & Fujifilm CREDA: #13-CR-8-1006

Formulas

	Field Code T1 [wt, %]	Field Code T3 [wt, %]	Field Code T5 [wt, %]	Field Code T7 [wt, %]	Field Code T9 [wt, %]
PDMS - DMS-S35 (Gelest)	36	36			
PDMS - DMS-S33 (Gelest)			36	36	
Diatomaceous Earth (World Mineral)	22	22	22	22	
Silicon Carbide - SIS6569.0 (Gelest)	e	3	3	3	
Organosilane Antimicrobials - HM4100 (Gelest)		2		2	
Black Pigments - Silcopas Black 220 (Gavson)	õ	n	r	3	
Ethyl Polysilicate (Silbond)	7	2	2	2	
Di-n- Butvldiaurvl Tin (Gelest)	0	0	0	0	
Solid Content [we, %]	65	67	65	67	
Naphtha (Ashland)	35	33	35	33	
Note - Reference or Test	Test	Test	Test	Not Tested	Commercial Sher-Release Surface Coat - Reference

Mechanical Strength

Y. Modulus. [N/mm ²]	39.31	30.73	34.44	42.44	0.45
Touahness. [N.mm]	445	360	447	294	267
Tensile Strenath, [N/mm ²]	4.1	3.6	4.0	3.4	1.0
Elongation, [%]	59	50	53	42	148
Tear Strength.[Ib/in]	51	48	50	47	8.9
Scratech Resistance (ASTM G-171 Modified), [g]	1057	1111	1150	1046	389
Force to cut through 12 mils of TC & SC					

Surface Property

Callado Lobary					
Contact Angle, [Degree]	134	134	132	135	107
					- AVAILABLE - AVAILAB

1.6 120.8 120.3 134.7 131.3 Foul Release Performance Estimate Pseudo-Barnacle Adhesion Strength (ASTM D5179-02), [psi]

CREDA-1

Effect of Adding Water to Pot Solution

	Modulus	Energy to Br	Stress to	Elongation	Tear
		Break	Break		Strength
	N/mm ²	N.mm	N/mm²	%	N/mm
D 201305129 w/o water in pot solution	0.498	492,552	1.691	176.194	1,530
D201305129 with water in Pot solution	0.447	267.091	0.971	148.023	1.556
Test1 w/o water in pot solution	1.470	433.900	2.434	116.193	1.668
Test1 with water in pot solution	1.282	290.664	1.192	96.627	1.689

Other Physical property change - Surface roughness

 \bigcirc

12000

CRADA - 1					2014/05/05	
Part A Viscosity (Broo	okfield DV	'II+ Visco	meter; R	V Spindle	#3)	
	Ref.	T1	72	13	T4	T5
		423.60	7000.00	262.80	847.10	1444.00
		422,90	7920.00	260,60	851.40	1486.00
		424.30	8290.00	260.60	848.60	1496.00
Average		423.60	7737.00	261.33	847.03	1475.33
rpm and torque		140, 59.3%	10, 70%	180, 47.3%	70, 59.2%	50, 72.2%
	Pot soluti	ion mixin	6			
PartA	321.06	342.08	342.69	339.47	332.94	345.38
PartB	56.66	60.36	60.47	59.91	58.75	60.95
Water	7.554	8.05	8.06	7.99	7.83	8.12
Pot Solution Vis	scosity (Br	ookfield I	DVII+ RV	Spindle		
Initial		680.00	773000.00	184.50	360.00	5360.00
5 min		674.30	735000.00	196.00	416.40	5240.00
10 min		687.10	723000.00	206.50	458.60	5270.00
Average		680.47	743666.66	195.66	411.66	5290.00
Spindleand rpm		#3; 70	#5; 0.3	#3; 200	#3; 140	#3; 50
torque		47.60%	58.00%	36.90%	50.40%	53.60%

	dechanica	l Properti	es			
Modulus N/mm ²	0.447	1.282	2.006	0.910	1.515	1.709
Energy to break N.mm	267.091	290.664	436.199	278.064	235.821	168.350
Stress @ break N/mm ²	0.971	1.192	2.127	1.365	1.564	1.243
Elongation %	148.023	96.627	87.264	104.513	78.400	60.560
Tear Strength N/mm	1.556	1.689	3.725	0.813	1.292	1.981
Shore A hardness	19	41	56	34	42	42

CRADA-2 - Sample Dry Film Thickness_072414

		1 - 2 mil			2 - 4 míl			4 - 6 mil			6 - 8 mil			8 = 10 mil		
		1			2			3			4			5		
Coat Layer	la	1b	10	2a	<u>2p</u>	2c	. 3a	35	Эс	4a	4b	40	Sa	56	Sc	
Epoxy - Gray	238	222	282	200	226	258	250	300	196	234	275	288	300	222	246	
	252	240	324	222	254	276	236	300	242	242	262	298	300	232	246	
	234	259	292	246	268	2/4	238	312	242	254	264	284	295	270	256	
	220	246	204	230	270	270	240	204	234	200	200	284	332		259	
	246	252	230	204	272	282	198	200	230	202	230	288	292	272	200	
	252	246	206	252	308	276	232	238	266	284	258	200	312	257	266	
	242	228	256	258	318	274	264	264	266	300	256	290	332	288	265	
	222	Z40	282	256	328	264	264	300	254	282	266	298	320	268	266	
	192	232	214	218	268	282	232	312	205	244	280	294	286	242	244	
Ave.	235	242	262	241	279	274	237	282	245	264	262	292	306	260	256	
5.D.	18	12	38	21	31	8	21	27	25	21	12	7	17	21	9	
Ave.		246			265			255			273			274		
	226	206	276	200	195	232	Z44	302	234	226	282	250	278	256	260	
	258	230	292	230	240	254	266	292	235	244	2/2	262	308	2/2	262	
	254	240	275	260	2.30	274	230	270	250	200	270	276	2/2	282	282	
·	228	210	248	267	200	204	240	230	200	288	270	274	202	200	274	
	234	192	245	212	176	277	216	218	237	285	240	266	2,56	788	275	
	232	228	222	230	212	218	248	216	242	264	246	252	276	277	264	
	238	242	242	256	244	260	250	242	254	274	274	250	274	258	278	
	236	232	202	256	260	276	256	252	245	245	272	240	296	258	270	
	214	215	205	238	248	252	248	294	232	220	262	240	280	218	266	
Ave.	238	225	249	241	238	260	242	257	247	257	265	259	273	270	271	
S.D.		18	32	22	34	21	16	33	14	23	14	14	21	24	7	
Ave.		237			245			248			260			271		
4					9			11	******		23			34		
Tie Coat Thickness is	3	.17		n	-41	-15		.25				-23			10	
ine oost (included) p	5				-44	-42	,	-23				-35	-23	3	13	
Surface Coat-White	240	226	304	232	224	268	302	308	258	274	306	298	356	340	376	
	254	246	322	230	228	256	298	298	268	296	326	296	356	352	372	
	250	244	312	244	230	286	306	312	280	290	334	308	366	358	378	
	258	250	272	242	234	274	298	300	284	302	352	316	352	352	368	
	285	274	266	270	220	274	340	354	290	284	366	330	386	362	380	
	244	270	298	278	258	268	298	302	320	316	374	298	374	388	354	
	260	254	322	268	252	326	298	302	300	322	328	308	362	382	364	
	270	240	328	272	256	276	290	304	312	324	332	296	380	374	378	
	278	245	266	285	270	278	282	332	304	326	316	310	398	388	370	
	300	204	264	100	2/0	285	290	362	325	318	340	338	395	392	404	
	214	2.30	250	284	2.52	260	234	200	296	334	330	330	330	304	344	
	198	244	238	284	286	266	268	292	308	310	304	346	326	368	366	
	220	222	238	308	304	288	274	316	302	328	320	312	318	372	374	
	234	258	228	318	278	306	292	296	330	322	348	342	350	422	350	
	256	228	218	296	278	272	280	276	310	324	325	326	360	378	354	
	236	252	248	290	285	276	274	308	314	328	334	338	366	368	382	
	238	256	244	300	250	290	308	310	298	304	324	290	372	388	378	
	262	254	274	272	246	264	300	310	304	304	328	302	382	356	388	
				275	4 54	2/4		358	292	322	364	504	390	376	378	
														378	392	
Ave.	250	248	272	277	260	280	294	311	301	312	339	316	362	374	377	
S.D.	25	14	34	25	25	19	21	24	18	17	20	17	24	18	15	
Ave.		257			272			302			321			369		
					16			45			65			113		
Surface Coat Thickness, µ	13	22	22	36	22	21	52	54	54	56	70	57	89	104	101	
Ave - S.C.DFT		19			26			53			61			98		
			├ ──┤													
			├ ──			· · ·							<u> </u>			
														<u> </u>		

												1				
														1		

CRADA - 3	6/30/14 (start 6/5/	(14)		
	72			-2 5-	
41.5	45.5	51.5	41.5	4A.S	ちょう
42.5	41.0	54.0	42.5	47.0	54,0
40.2	48.0	55.0	41.5	46.0	530
41.0	46.0	53.5	41.5	47.0	565
40.2	48.0	53.5	42.0	48.0	53.5
6,04	48.0	53.0	43.0	48.0	53.7

ż

Shone A

).

. • 6

15120 1560 1580 2408 2408 2408 1789 19190 Tert 6 100/38.3 20 20 11/1 980.0 993.3 1033 1089 1742 7763 2763 Tutes t.9%/071 480/44 ·1 Leve 4 1278 1328 1346 833.3 833.3 8837.8 860.0 888.9 888.9 164.0 164.0 #3 50/63.9 CRADA -3 180/szs Tert 3 4560 4456 4890 4890 5360 5360 50/51-6 Test 2 42.48 42.00 42.00 43.20 43.20 49.13 53.60 50/531 (1)/14 Joll + 44/ #3 15/ Tert 1 164.7 4313 4320 4293 3688 3648 3648 3642 3642 3872 4040 4242 Por soluti H'5 90 46-1

, ⁶

CRADA 5 Effect of Cross-Linker Level and Silbond Pure -

	T1	T	тэ	TA	TC	
Part & Viscosity (Brook field)	1280.00	874.00	704.00	1002.00	004.00	-
#3 snindle	1220.00	830.00	678.00	884.00	934.00	-
no spinare,	1214 00	818 00	674.00	866.00	922.00	-
Average	1214.00	840.67	685 33	947 33	950.67	
Average	50; 64%	50; 43.7%	50; 35.2%	50; 54.6%	50; 49.7%	50
Apperance			flow	able		
Mixing						
Part A	434.41	453.67	455.66	452.88	449.21	
Part B	76.66	80.06	80.41	79.72	79.27	
Apperance	gel-flowable			Flowable		_
Pot Viscoaity (Brookfield)	6300.00	1713.00	564.30	250.70	215.00	_
rot viscoarty (brookneid)	6240.00	1640.00	544.30	245 70	213.00	
	6260.00	1627.00	538 60	245.70	214.50	
Average	6266.67	1660.00	549.07	247.50	210.00	
spindle: rpm: torque	3: 10: 63%	3: 30: 51 4%	3: 70: 39 5%	3: 140: 35 1%	3: 140: 30 1%	3.5
spinale, ipin, torque	5, 10, 05 %	5, 50, 51.4/6	5, 70, 55.5%	5, 140, 55.176	5, 140, 50.1%	5,5
Dry to touch in minutes	435	427	296	250	233	
Curing X Time Brookfield Visco	6300	1713	564.3	250.7	215.0	
15 min	6260	1623	540.0	250.7	222.1	
30 min	6360	1647	552.9	264.3	237.9	
45 min	6480	1667	571.4	279.3	257.9	
60 min	6620	1723	591.5	298.6	283.6	
spindle; rpm; torque	5, 50. 25.7%	5,50, 24.2	5, 50, 21.5%	5, 50, 26%	5, 50, 23.3%	5,
	M	lechanical Pr	operties			_
Modulus N/mm ²	1.87	2.30	2.97	3.72	4.67	
Energy to Break N.mm	324	300	433	426	505	-
Stress @ Break N/mm ²	2.72	2.46	3.22	3.47	3.62	-
Elongation %	103.52	82.83	89.31	76.04	77.15	-
Charge A Handward	3.91	3.20	2.96	3.34	4.79	-
	36	35	36	40	52	-
//10/14-//22/14	34.00	32.00	32.00	36.00	43.00	-
	37.00	33.00	35.00	37.00	40.00	-
	34.00	33.00	37.00	40.00	53.00	
	36.00	33.00	36.00	35.00	55.00	-
	38.00	33.00	38.00	42.00	52.00	
	36.00	37.00	37.00	43.00	52.00	
	37.00	34.00	36.00	42.00	55.00	
	37.00	36.00	35.00	38.00	54.00	
	37.00	34.00	34.00	42.00	51.00	
				37.00	55.00	
					43.00	
					50.00	
Ave	36	35	36	40	52	
S.D.	1	2	2	3	5	
7/10/14-8/21/14	40	37	47	49	52	
	40	45	46	53	58	
	38	46	47	47	52	
	39	44	45	51	55	
	43	43	38	47	57	
	41	42	48	54	56	
	41	42	48	48	62	
	41	45	47	51	63	
		1 45	50	51	61	1
	41	43	50			-
Ave	41 45 41	43	50	50	57	F
Ave S.D.	41 45 41 2	43 44 43 3	50 50 47	50	57	

CRADA-7b

T1	Т2	тз	T4	T5	Т6	T7
					Not able	to make

Mixing 90:10

5.710147

1

PartA Viscosity	1660	2223	1029	1446	954
spindle #4	1626	2203	960	1240	889
	1603	2129	914	1157	880
Average	1629.7	2185.0	967.7	1281.0	907.7
	70 rpm; 58.1%	70 rpm; 77.8%	70 rpm; 36.0%	70 rpm 50.5%	70 rpm 33.4%

	5 rpm; 56.2%	5 rpm; 87.0%	20 rpm; 31.6%	20 rpm 34.1%	100rpm 25.2%
Average	10753.3	12860.0	1526.7	1656.7	242.0
	10400	12480	1495	1625	235
spindle #3	10620	12700	1505	1640	239
Pot solution Viscosity	11240	13400	1580	1705	252
		,			
	36.77	39.14	54.45	62.12	48.93
Mixing	328.21	352.31	490.16	559.17	440.37

Mechanical Proper	ties							
Modulus N/r	mm²	5.53	7.72	13.98	20.66	19.75	1	
Energy to Brea	k N.mm	535.31	545.07	522.59	521.87	430.44	N/mm	lb/in
Stress @ Break	N/mm ²	4.49	4.89	5.54	5.38	4.41		1.000
Elongation	%	87.05	77.87	62.78	54.68	48.67		
Trear Strength	N/mm	7.93	7.29	9.28	10.68	8.46		
		45.27	41.60	53.01	61.00	48.30	I	
Shore A Hard	iness	54.25	64.00	84.67	86.22	82.00		
Measured	2014/09/03	57.00	62.00	80.00	90.00	80.00		
Started	2014/07/29	52.00	67.00	87.00	82.00	87.00	1	
		52.00	61.00	77.00	92.00	84.00	1	
		55.00	57.00	87.00	94.00	80.00]	
		53.00	57.00	78.00	86.00	80.00		
		49.00	66.00	87.00	93.00	84.00		
		57.00	71.00	85.00	86.00	82.00		
		54.00	64.00	90.00	83.00	81.00		
		60.00	62.00	86.00	85.00	82.00		
		55.00	58.00	85.00	90.00	83.00		
		53.00	67.00	90.00	85.00	79.00		
		54.00	67.00	83.00	78.00	84.00		
				78.00	90.00	83.00		
-							-	
	Ave	54	64	85	86	82		
-	5.D.	3	5	4	5	2		

9/4/2014

CRADA 11 b

	T1	T2	T3	T4	Т5	⊤6
F			. <u> </u>			
Part A Viscosity						
	1213	20000	1763	1364	870	1560
	1123	19700	1713	1344	844	1530
	1110	19660	1700	1336	836	1522
	1148.67	19786.67	1725.33	1348.00	850.00	1537.33
#3 spindle Torge	30 rpm 36.4%	5 rpm 100%	30 rpm 52.8%	50 rpm 68.2%	50 rpm 43.4%	50 rpm; 78%
Flowability of Part A	Flow	Flow	Flow	Flow	Flow	Flow
	11011			11011	1,011	
Mixing Patio	620 OF	621.67	652.40		CE1 CO	C40.01
	030.85	031.07	052.49	73.50	051.09	649.81
	111.55	90.23	/2.50	/2.62	72.40	/2.81
Flowability Pot	Flow	Flow	Flow	Flow	Flow	Flow
Dry to touch time in min	11	12	12	10	14	8
Pot Soultion Viscoaity	210	1464	728	455	333	557.1
	205	1434	694	437	319.5	531.4
	205	1420	680	432	319	521.4
	206.67	1439.33	700.67	441.33	323.83	536.63
Spindle #3 rpm;torque	200; 42%	50; 73.2%	50; 36.4%	100; 45.3%	200; 66.3%	70; 39%
			<u></u>			
Mechanical Properties						
Mechanical Properties						
Modulus N/mm ²	25 340	42 276	24 226		12 407	27 109
Energy to Break N mm	455 707	136 881	144 694	107.091	447 559	106 752
Stross @ Brook N/mm ²	4 90	6.037	5 720	192.901 6 019	5 104	190.732
Elongation %	F1 225	14 554	14 673	0.010	3.194	2,990
Troor Strangth N/mm	10.02	14.334	14.0/2	20.377	43.14	21.10
	10.02	7.44	5.01	0.54	01.0	7.28
Shore A hardness	/4	07	00	82	78	82
started on 9/24/14	08	65	82	82	/8	84
measured on 10/2//14	74	87	8/	82	//	82
	/5	88	90	81	80	85
	/0	85	87	83	77	86
	/4	88	89	82	78	78
	74	85	90	84	78	
	69	83	83	82	79	82
CRADA11b 9/2014	77	86	85	83	82	86
	79	87	84	83	80	79
	77	85	84	81	74	81
	72	92	90	81	76	74
	80	86	85	84	83	84
	75	86	86	82	78	85
	76	87	85	81	77	85
	72	91	82	84	75	81
Ave	74	87	86	82		82
SD	3	2	3	1	2	3

CARDA 12

T1	T2	Т3	T4	T5

Part A Vi	iscosity					
			860.00	1138.00	3090.00	
			800.00	1090.00	3060.00	
	spindle #3		784.00	1084.00	3055.00	
	Average		814.67	1104.00	3068.33	
	rpm;Torqe		50; 43.0%	50;56.8%	20; 61.8%	
		Flow	good	good	good	
-						
]	Mixing Rati	0	652.92	658.58	650.12	
			72.55	73.17	72.24	
	······					
						 ~~~~
Pot	Soultion Visco	paity	221.00	282.00	428.00	 
			216.50	263.00	406.00	
			215.50	260.00	401.00	
Average			217.67	268.33	411.67	
Spindle #3 rpm;torque		200; 44.2%	100; 28.2%	20; 61.8%		
Flow		good	good	good		
Leveling			good	good	good	<u>i</u>
Dŋ	y to touch time r	nin,	~12	~9	~10	
	Sag resistance			10		

Was not able to make test4 and test 5

Mechanical Properties				P.91-00	
Modulus N/mm ²	23 537	26 512	20 507		Г
Energy to Break N mm	156 179	20.510	20.002		
Stress @ Break N/mm ²	3 522	4 558	3 861		
Elongation %	23.92	30.966	27.76		
Trear Strength N/mm	8 287	8 541	9 116		
Shore A Hardness	73	81	75		
Started on 10/20/14	77	78	77		
Measured on 11/24/14	65	82	73	·	
	68	79	73		
	65	84	70		
	62	82	75		
	74	80	79		
	81	70	82		
	81	78	78		
	77	84	70		
	66	80	77		
	79	82	75		
	80	83	80		
	84	81	76		
	70	85	75		
	65	81	77		
	76	80	70		
	76	75	77		
	77	84	72		
	72	85	78		
	75	80	79		
	73	78	72		
Ave	73	81	75		
SD	6	4	3		



#### CARDA 13

	·		τ1	т2	ТЗ	т4	ть
u			••			17	
Part A Vi	scosity						
	•		896.00	926.00	1548.00	3300.00	4250.00
			844.00	874.00	1460.00	3085.00	3900.00
	spindle #3		828.00	866.00	1444.00	3020.00	3790.00
	Average		856.00	888.67	1484.00	3135.00	3980.00
	rpm:Torae		50: 44.8%	50: 46.3%	50: 77.4%	20: 66.0%	20: 85.0%
		Flow	good	good	good	good	good
<u> </u>	Mixing Ratio	0	690.08	688.34	686.91	687.92	685.08
			76.67	76.49	76.32	76.42	76.12
Pot	Soultion Visco	aity	221.00	244 50	360 00	471.00	552.00
			216.50	239.00	340.00	402.00	578 00
			215.50	238.00	335.00	395.00	521.00
	Average		217.67	240.50	345.00	406.00	533.67
Spindle #3		rom;torave	200: 44.2%	200: 48.9%	100: 36.0%	100: 42.1%	100: 55.2%
	·	Flow	qood	good	qood	aood	good
		Levelina	dood	cood	good	aood	good
L.,			<u> </u>	3	3	<b>J</b>	
Dry	to touch time	min.	<10	<12	<12	<13	13
	Sagresistance		10+	12+	12+	12+	12++
	1						
Mechani	cal Proper	ties	r	r			
<u>м</u>	lodulus N/mn	<u>n"</u>	25.906	23.54	21.563	21.462	20.551
Ener	gy to Break N	1.mm	190.676	158.991	432.278	640.919	656.55
Stres	s @ Break N/	/mm*	3.572	3.24	4.531	4.864	4.815
Tues	Elongation %	)	26.46	24.545	47.86	68.051	71.365
- Hea	ir Sulengun N		7.597	9,49	9.534	9.49	9.846
) 		:55	70	72	71	/2	/5
Started on 10/20/2014				70	74	70	80
wieasureu	00 11/24/20	14	0/		/9	70	72
			20	77	00	67	70
			72	71	70	67	70
			92	71	70	72	79
			78	71	73	70	78
			76	66	77	78	65
			71	72	80	68	75
			74	65	80	82	75
			83	74	75	73	74
			80	74	76	79	72
			71	75	80	74	77
			69	67	66	64	73
			71	72	75	64	74
			80	72	80	80	75
			76	76	76	79	76
			70	76	82	65	78
			70	70	80	73	65
			75	70	80	78	77
			81	69	75	74	78
		Ave	76	72	77	72	75
		SD	5	4	Λ	6	1



11/3/2014

#### CRADA 14 10/24/2014

Raw Material	T1	T2	Т3	T4	T5	Т6
Ph. 5 A 1 C ¹						
Part A Viscosity						
	1840.00	4120.00	18480.00	3952.00	4496.00	
	1740.00	4008.00	17400.00	3824.00	4344.00	
	1/24.00	3968.00	17280.00	3792.00	4328.00	
#5 coindle: rom and Tore	1768.00	4032.00	1//20.00	3856.00	4389.33	
spinule, tpin and tore	100; 46.00%	50; 51.6%	10; 46.2%	50; 49.4%	50; 56.2%	
Elouishility of Dart A	<b></b>		<b>-</b> 7	<b>E</b> 1	<b>C</b> 1	
FIUWAUIILY UI PAR A	FIOW	FIOW	FIOW	FIOW	FIOW	
Mixing Datio		600.00	000.07	010.00	040.05	
Mixing Kadu	69.70	66.06	67.57	69.02	67.00	
	00.70	00.90	01.57	00.03	07.02	
Flowability Pot	Elow	Elow	Flou	Elow	Elow	
	Good	Good	Good	FIOW	Good	
bry to touch time in mi	1/	10	12	4000	10	
ry to touch time in him	۰++ ا	19	10	10	101	
Pot Soultion Viscosity	625 70	1212.00	1800.00	870.00	1039.00	
For Sourion viscoarcy	505.70	1156.00	1807.00	838.00	036.00	
	584 30	1132.00	1777.00	824.00	960.00	
	605.23	1166 67	1824.67	844.00	970.00	
Spindle rpm:torque	70. 44 5%	50. 60.6%	30: 56 7%	50: 43.5%	50: 51.9%	
			00,00	00, 10.077	00, 01.070	
Mechanical Properti	ac					
racenanical Fropera	63					
Modulus N/mm ²	18.844	13.893	23.487	26.339	30.435	
Energy to Break N.mm	565.808	569.740	444.882	503.036	457,473	
Stress @ Break N/mm ²	3.629	3.983	3.802	3.967	3.527	
Elongation %	73.280	70.949	56.665	68.817	62.105	
Trear Strength N/mm	8.741	8.819	9.020	8.798	8.740	
Shore A Hardness	75	71	75	78	78	
Started on 11/3/14	77	74	75	78	76	
Measured on 12/3/14	65	66	78	78	72	
	80	60	73	82	81	
	74	70	70	84	80	
	79	73	73	82	74	
	76	72	70	80	77	
	78	74	74	72	83	
	76	77	73	80	84	
	70	71	73	80	80	
	83	75	73	79	75	
	72	76	77	76	75	
	73	75	74	78	72	
	74	77	77	82	77	
	78	65	78	78	76	
	72	72	72	79	79	
	79	69	76	74	76	
	70	65	78	74	74	
	75	69	75	75	83	
	80	70	77	80	80	
	69	75	72	79	81	
	77	75	78	78	77	
Ave	75	71	75	78	78	
SD	4	5	3	3	4	

#### CARDA 15 Test 2-00070



انة
<u>ت:</u>
핖
g
님
ച
Ŭ
, ra
۳EI
3
S
-
_
2
2
8 N

		Te	st1			Te	st2			Tes	st3	
	Diido	Water	Adv	Reced	Diido	Water	Adv	Reced	Diido	Water	Adv	Reced
	19.91	137.40	148.30	126.60	97.87	136.1	147.5	127.8	101.6	138.2	147	126
	98.28	136.90	150.60	126.80	99.37	137.60	147.20	127.90	101.20	139.00	145.70	124.20
	100.60	136.90	147.10	124.90	90.06	135.20	143.00	122.60	98.08	138.50	147.90	125.40
	99.66	133.20	150.30	126.50	100.40	138.10	146.00	124.10	99.09	136.40	147.80	127.00
	100.80	133.70	149.20	128.00	101.50	138.60	147.60	127.00	98.28	138.00	138.80	114.50
	101.00	134.40	149.00	128.30	102.70	137.90	146.40	126.60	101.00	138.80	142.90	124.80
Avg.	100.04	135.42	149.08	126.85	100.15	137.25	146.28	126.00	99.88	138.15	145.02	123.65
SE	13.21	8.87			13.18	8.94			13.27	9.11		
Disp	13.21	8.66		22.23	13.18	8,62		20.28	13.27	8.72		21.37
Polar	0.00	0.21			0.00	0.32			0.00	0.40		
	ΝN	OWRK			MN	OWRK			WU	OWRK		

		Te	st4	
	Diido	Water	Adv	Reced
	103.4	136.9	143.4	120.6
	98.59	137.30	146.80	122.80
	102.80	137.10	147.60	122.80
	100.90	139.00	147.90	122.3
	99.27	136.80	148.70	123.9
	102.30	139.30	146.20	122.7
Avg.	101.21	137.73	146.77	122.52
SE	12.81	8.55		
Disp	12.80	8.24		24.25
Polar	0.00	0.30		
	MU	OWRK		

# **CRADA 18 Pseudo Barnacle Comparison**

	DMS S33+HM 4100	DMS S-33	DMS S35+HM 4100	DMS S-35	
20	20	20	20	20	dolly dia (mm)
0.001	0.113	0.113	0.1127	0.119	Energy to peak (N.m)
3.514	265.123	264.224	295.774	288.245	Force @ peak (N)
SSC 003-1 Control	CRADA 18 T4	CRADA 18 T3	CRADA 18 T2	CRADA 18 T1	

	ing	8.90	1.20	0.30	5.10	3.10	6,80		0.90	06.0	0.90 55	0.90 55
	Reced	101	11	11	11	11	10		11	11	28.	<b>28.</b>
18 T5	Adv.	139.60	137.10	140.70	142.30	139.10	137.90		139,45	139,45	139,45	139,45
CARDA	Water	132.10	133.60	130.10	132.20	132.30	133.20		132,25	132.25 <b>12.77</b>	132,25 <b>12.77</b> <b>12.37</b>	132,25 12.77 12.37 0.40
	Diido	86.66	91.09	88.79	92.90	91.94	93.08		90.74	90.74 <b>16.64</b>	90.74 <b>16.64</b> <b>16.64</b>	90.74 <b>16.64</b> <b>16.64</b>
	Receding	109,90	110.20	108.90	102.50	105.90	105.50		107.15	107.15	107.15 <b>35.12</b>	107.15 <b>35.12</b>
18 T7	Adv.	141.40	139.90	141.10	141.40	142.30	141.50		141.27	141.27	141.27	141.27
CARDA	Water	134.00	132.60	136.80	135.90	135.30	136.80		135.23	135.23 11.17	135.23 11.17 10.73	135.23 11.17 10.73 0.44
	Diido	95.29	93.25	93.75	94.78	96.48	94.22		94.63	94.63 <b>15.16</b>	94.63 <b>15.16</b> <b>15.16</b>	94.63 15.16 15.16 0.00
	Receding	101.30	101.90	101.00	103.90	103.50	101.70		102.22	102.22	102.22 9.81	102.22 9.81
18 T9	Adv.	111.10	111.60	111.60	113.50	113.10	111.30		112.03	112.03	112.03	112.03
CARDA	Water	106.90	106.70	107.00	107.00	107.20	106.80		106.93	106.93 <b>26.76</b>	106.93 <b>26.76</b> <b>26.71</b>	106.93 26.76 26.71 0.05
	Diido	62.34	62.14	63.78	64,48	63.33	63,40		63,25	63.25 <b>29.37</b>	63.25 29.37 28.89	63.25 29.37 28.89 0.48
			-					•	Avg.	Avg. SE	Avg. SE Disp	Avg. SE Disp

J.
Q
E
۵I
Ľ.
ЯI
뀌
ωl
÷.
Ы
Ы
<b>N</b>
뉟
히
പ
ထူ
ᆔ
◄
۵Ì
R
G
-

					OWRK	NM			OWRK	NM	
					0.37	0.00			0.37	00'0	Polar
			26,88		10.84	15.26	29.25		10.95	15.36	Disp
					11.21	15.26			11.32	15. 36	SE
		 2	114.5	141.40	134.25	94.37	110.47	139.72	133.98	94.09	wg.
		0	113.20	141.00	135.10	93.48	113.10	145.10	135.00	95.32	
		0	110.2(	139.50	136.60	93.20	111.60	141.00	135.30	91.74	
		0	119.1(	144.10	133.40	93.12	112.00	138.60	134.60	93.92	
		 0	118.9	146.10	133.40	95.65	112.60	140.70	134.40	94.59	
_		0	112.9(	138.40	134.60	97.05	107.70	137.90	132.00	96.33	
		0	112.8(	139.30	132.40	93.73	105.80	135.00	132.60	92.65	
			Receding	Adv.	Water	Diido	Receding	Adv.	Water	Diido	
				18 T1	CRADA			18 T3	CRADA		

Photo				
Scratch	Hardness@6mil tie coat & 12mil Surface Coat	1056.77	1110.95	1150.26
Total	thickness of both	13.74	13.61	11.58
Surface	coat thickness	10.85	10.80	8.08
Tie Coat	thickness	2.89	2.81	3.50
Scratch	Test(g)	1210	1260	1110
8" Tiles Description/Date		CRADA 18 T1	CRADA 18 T1	CRADA 18 T5
SSC 8"X Sample	QI	CRADA 18 T1	CRADA 18 T3	CRADA 18 T5

<u>SSC 127-2a Black Surface Coat</u> 03/30/2015 Г

#### **CARDA 19 Work Sheet and results**

Raw Material	T1	Т2	T3	T4
Part A Viscosity				
	2704.00	3872.00	5496.00	9267.00
	2616.00	3624.00	5256.00	8800.00
spindle #5	2560.00	3528.00	5168.00	8653.00
Average	2626.67	3674.67	5306.67	8906.67
rpm;Torqe	50; 33.8%	50; 48.4%	50; 68.70%	30; 69.50%
Flow	gel	gel	gel	gel
Mixing Ratio	312.45	319.60	328.18	321.22
	19.94	20.40	20.95	20.50

Pot So	ultion Viscoaity	1587.00	2173.00	4533.00	6200.00
		1480.00	1987.00	4093.00	5547.00
	~~~~	1460.00	1950.00	3960.00	5373.00
	Average	1509.00	2036.67	4195.33	5706.67
Spindle #3	rpm;torque	30; 47.60%	30; 65.20%	15; 68.00%	15; 92.90%
	Flow	OK	ОК	ОК	ОК
	Leveling	good	good	ОК	ОК

Dry to touch time min.	less than 15 min					
Sag resistance	16 ++	24	24	24		
Pot Soultion Viscoaity						
Fresh	1587.00	2173.00	4533.00	6200.00		
15 min	1470.00	1960.00	3947.00	5333.00		
30 min	1583.00	2113.00	4140.00	5580.00		
45 min	1777.00	2370.00	4533.00	6100.00		
60 min	2043.00	2740.00	5093.00	6773.00		

Mechanical Properties				
Modulus N/mm ²	41.663	34.397	31.830	35.672
Energy to Break N.mm	290.475	330.688	237.407	281.914
Stress @ Break N/mm ²	3.308	3.198	3.313	3.967
Elongation %	41.248	41.967	35.787	40.469
Trear Strength N/mm	9.031	9.014	8.971	9.200
Shore A Hardness				

3/3/2015

CF	₹A	DA	۱2	0

			T2	T3	T 4
Part A Viscosity					
		3448.00	3488.00	3560.00	4016.00
		3224.00	3248.00	3416.00	3704.00
spindle #	±5	3176.00	3208.00	3392.00	3640.00
Averag	e	3282.67	3314.67	3456.00	3786.67
rpm;Tor	qe	50; 43.10%	50; 43.60%	50; 44.50%	50; 50.20%
Flow		good	good	good	good
Mixing Ra	ntio	310.95	316.33	317.73	326.87
		19.85	20.19	20.28	20.86
Pot Soultion V	iscoaity	2060.00	1583.00	1833.00	1893.00
		1823.00	1453.00	1687.00	1730.00
		1750.00	1437.00	1623.00	1667.00
Averag	1877.67	1491.00	1714.33	1763.33	
Spindle #3	rpm;torque	30; 61.0%	30; 47.50%	30; 55.0%	30; 56.70%
	Flow	good	good	good	good
	Leveling	good	good	good	ОК

Dry to touch time min	า.		less tha	n 15 min	
Sag resistance	24	24	24	24	
		·····			
Pot Soultion Viscoaity					
	2060.00	1583.00	1833.00	1893.00	
	1727.00	1457.00	1603.00	1657.00	
	30 min			1630.00	1690.00
	45 min	1880.00	1817.00	1707.00	1767.00
	60 min	2057.00	2117.00	1813.00	1873.00
	L*	41.50	37.96	35.03	34.00
Color Measurements	a*	1.16	1.17	1.16	1.17
	b*	2.05	1.91	1.75	1.75

Mechanical Properties											
Modulus N/mm ²	47.454	38.193	39.922	37.195							
Energy to Break N.mm	290.049	309.775	232.170	266.891							
Stress @ Break N/mm ²	3.494	3.830	3.450	3.567							
Elongation %	38.944	43.933	38.467	42.967							
Trear Strength N/mm	9.594	8.848	8.560	8.823							
Shore A Hardness											

CRADA 21 Abrasion

No weight added

	1500 strokes			3000 strokes			4500 strokes		
	initial wt	final wt	loss	initial wt	final wt	loss	initial wt	final wt	loss
Test1	144.32	144.27	0.05	144.27	144.26	0.01	144.26	144.23	0.03
Test2	141.85	141.74	0.11	141.74	141.72	0.02	141.72	141.72	0.00
Test3	141.80	141.61	0.19	141.61	141.57	0.04	141.57	141.53	0.04
Test4	139.51	139.45	0.06	139.45	139.43	0.02	139.43	139.43	0.00
Ероху	143.20	143.19	0.01	143.19	143.18	0.01	143.18	143.18	0.00
Control	139.88	139.84	0.04	139.84	139.83	0.01	139.83	139.83	0.00

500g weight added

	1500 strokes			3000 strokes			4500 strokes		
	initial wt	final wt	loss	initial wt	final wt	loss	initial wt	final wt	loss
Test1	138.93	138.72	0.21	138.72	138.66	. 0.06	138.66	138.60	0.06
Test2	144.16	143.91	0.25	143.91	143.88	0.03	143.88	143.80	0.08
Test3	142.49	142.14	0.35	142,14	142.12	0.02	142.12	142.04	0.08
Test4	140.75	140.47	0.28	140.47	140.35	0.12	140.35	140.27	0.08
Ероху	140.28	140.28	0.00	140.28	140.27	0.01	140.27	140.27	0.00
Control	139.13	139.01	0.12	139.01	138.91	0.10	138.91	138.89	0.02

1000g weight added

	1500 strokes			3000 strokes			4500 strokes		
	initial wt	final wt	loss	initial wt	final wt	loss	initial wt	final wt	loss
Test1	139.07	138.71	0.36	138.71	138.43	0.28	138.43	138.38	0.05
Test2	144.20	143.91	0.29	143.91	143.79	0.12	143.79	143.76	0.03
Test3	142.65	142.17	0.48	142.17	142.11	0.06	142.11	141.88	0.23
Test4	144.77	144.33	0.44	144.33	144.14	0.19	144.14	144.09	0.05
Ероху	142.55	142.55	0.00	142.55	142.55	0.00	142.55	142.55	0.00
Control	138.81	138.62	0.19	138.62	138.55	0.07	138.55	138.51	0.04